ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.521
Committed: Sat Dec 28 07:47:35 2019 UTC (4 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.520: +1 -6 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130 # ifndef EV_USE_IOURING
131 # define EV_USE_IOURING EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_IOURING
135 # define EV_USE_IOURING 0
136 # endif
137
138 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139 # ifndef EV_USE_KQUEUE
140 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_KQUEUE
144 # define EV_USE_KQUEUE 0
145 # endif
146
147 # if HAVE_PORT_H && HAVE_PORT_CREATE
148 # ifndef EV_USE_PORT
149 # define EV_USE_PORT EV_FEATURE_BACKENDS
150 # endif
151 # else
152 # undef EV_USE_PORT
153 # define EV_USE_PORT 0
154 # endif
155
156 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157 # ifndef EV_USE_INOTIFY
158 # define EV_USE_INOTIFY EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_INOTIFY
162 # define EV_USE_INOTIFY 0
163 # endif
164
165 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166 # ifndef EV_USE_SIGNALFD
167 # define EV_USE_SIGNALFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_SIGNALFD
171 # define EV_USE_SIGNALFD 0
172 # endif
173
174 # if HAVE_EVENTFD
175 # ifndef EV_USE_EVENTFD
176 # define EV_USE_EVENTFD EV_FEATURE_OS
177 # endif
178 # else
179 # undef EV_USE_EVENTFD
180 # define EV_USE_EVENTFD 0
181 # endif
182
183 # if HAVE_SYS_TIMERFD_H
184 # ifndef EV_USE_TIMERFD
185 # define EV_USE_TIMERFD EV_FEATURE_OS
186 # endif
187 # else
188 # undef EV_USE_TIMERFD
189 # define EV_USE_TIMERFD 0
190 # endif
191
192 #endif
193
194 /* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202 #define _DARWIN_UNLIMITED_SELECT 1
203
204 #include <stdlib.h>
205 #include <string.h>
206 #include <fcntl.h>
207 #include <stddef.h>
208
209 #include <stdio.h>
210
211 #include <assert.h>
212 #include <errno.h>
213 #include <sys/types.h>
214 #include <time.h>
215 #include <limits.h>
216
217 #include <signal.h>
218
219 #ifdef EV_H
220 # include EV_H
221 #else
222 # include "ev.h"
223 #endif
224
225 #if EV_NO_THREADS
226 # undef EV_NO_SMP
227 # define EV_NO_SMP 1
228 # undef ECB_NO_THREADS
229 # define ECB_NO_THREADS 1
230 #endif
231 #if EV_NO_SMP
232 # undef EV_NO_SMP
233 # define ECB_NO_SMP 1
234 #endif
235
236 #ifndef _WIN32
237 # include <sys/time.h>
238 # include <sys/wait.h>
239 # include <unistd.h>
240 #else
241 # include <io.h>
242 # define WIN32_LEAN_AND_MEAN
243 # include <winsock2.h>
244 # include <windows.h>
245 # ifndef EV_SELECT_IS_WINSOCKET
246 # define EV_SELECT_IS_WINSOCKET 1
247 # endif
248 # undef EV_AVOID_STDIO
249 #endif
250
251 /* this block tries to deduce configuration from header-defined symbols and defaults */
252
253 /* try to deduce the maximum number of signals on this platform */
254 #if defined EV_NSIG
255 /* use what's provided */
256 #elif defined NSIG
257 # define EV_NSIG (NSIG)
258 #elif defined _NSIG
259 # define EV_NSIG (_NSIG)
260 #elif defined SIGMAX
261 # define EV_NSIG (SIGMAX+1)
262 #elif defined SIG_MAX
263 # define EV_NSIG (SIG_MAX+1)
264 #elif defined _SIG_MAX
265 # define EV_NSIG (_SIG_MAX+1)
266 #elif defined MAXSIG
267 # define EV_NSIG (MAXSIG+1)
268 #elif defined MAX_SIG
269 # define EV_NSIG (MAX_SIG+1)
270 #elif defined SIGARRAYSIZE
271 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272 #elif defined _sys_nsig
273 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274 #else
275 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
276 #endif
277
278 #ifndef EV_USE_FLOOR
279 # define EV_USE_FLOOR 0
280 #endif
281
282 #ifndef EV_USE_CLOCK_SYSCALL
283 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285 # else
286 # define EV_USE_CLOCK_SYSCALL 0
287 # endif
288 #endif
289
290 #if !(_POSIX_TIMERS > 0)
291 # ifndef EV_USE_MONOTONIC
292 # define EV_USE_MONOTONIC 0
293 # endif
294 # ifndef EV_USE_REALTIME
295 # define EV_USE_REALTIME 0
296 # endif
297 #endif
298
299 #ifndef EV_USE_MONOTONIC
300 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301 # define EV_USE_MONOTONIC EV_FEATURE_OS
302 # else
303 # define EV_USE_MONOTONIC 0
304 # endif
305 #endif
306
307 #ifndef EV_USE_REALTIME
308 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309 #endif
310
311 #ifndef EV_USE_NANOSLEEP
312 # if _POSIX_C_SOURCE >= 199309L
313 # define EV_USE_NANOSLEEP EV_FEATURE_OS
314 # else
315 # define EV_USE_NANOSLEEP 0
316 # endif
317 #endif
318
319 #ifndef EV_USE_SELECT
320 # define EV_USE_SELECT EV_FEATURE_BACKENDS
321 #endif
322
323 #ifndef EV_USE_POLL
324 # ifdef _WIN32
325 # define EV_USE_POLL 0
326 # else
327 # define EV_USE_POLL EV_FEATURE_BACKENDS
328 # endif
329 #endif
330
331 #ifndef EV_USE_EPOLL
332 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
334 # else
335 # define EV_USE_EPOLL 0
336 # endif
337 #endif
338
339 #ifndef EV_USE_KQUEUE
340 # define EV_USE_KQUEUE 0
341 #endif
342
343 #ifndef EV_USE_PORT
344 # define EV_USE_PORT 0
345 #endif
346
347 #ifndef EV_USE_LINUXAIO
348 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349 # define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350 # else
351 # define EV_USE_LINUXAIO 0
352 # endif
353 #endif
354
355 #ifndef EV_USE_IOURING
356 # if __linux /* later checks might disable again */
357 # define EV_USE_IOURING 1
358 # else
359 # define EV_USE_IOURING 0
360 # endif
361 #endif
362
363 #ifndef EV_USE_INOTIFY
364 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365 # define EV_USE_INOTIFY EV_FEATURE_OS
366 # else
367 # define EV_USE_INOTIFY 0
368 # endif
369 #endif
370
371 #ifndef EV_PID_HASHSIZE
372 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373 #endif
374
375 #ifndef EV_INOTIFY_HASHSIZE
376 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377 #endif
378
379 #ifndef EV_USE_EVENTFD
380 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381 # define EV_USE_EVENTFD EV_FEATURE_OS
382 # else
383 # define EV_USE_EVENTFD 0
384 # endif
385 #endif
386
387 #ifndef EV_USE_SIGNALFD
388 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389 # define EV_USE_SIGNALFD EV_FEATURE_OS
390 # else
391 # define EV_USE_SIGNALFD 0
392 # endif
393 #endif
394
395 #ifndef EV_USE_TIMERFD
396 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397 # define EV_USE_TIMERFD EV_FEATURE_OS
398 # else
399 # define EV_USE_TIMERFD 0
400 # endif
401 #endif
402
403 #if 0 /* debugging */
404 # define EV_VERIFY 3
405 # define EV_USE_4HEAP 1
406 # define EV_HEAP_CACHE_AT 1
407 #endif
408
409 #ifndef EV_VERIFY
410 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411 #endif
412
413 #ifndef EV_USE_4HEAP
414 # define EV_USE_4HEAP EV_FEATURE_DATA
415 #endif
416
417 #ifndef EV_HEAP_CACHE_AT
418 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419 #endif
420
421 #ifdef __ANDROID__
422 /* supposedly, android doesn't typedef fd_mask */
423 # undef EV_USE_SELECT
424 # define EV_USE_SELECT 0
425 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426 # undef EV_USE_CLOCK_SYSCALL
427 # define EV_USE_CLOCK_SYSCALL 0
428 #endif
429
430 /* aix's poll.h seems to cause lots of trouble */
431 #ifdef _AIX
432 /* AIX has a completely broken poll.h header */
433 # undef EV_USE_POLL
434 # define EV_USE_POLL 0
435 #endif
436
437 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438 /* which makes programs even slower. might work on other unices, too. */
439 #if EV_USE_CLOCK_SYSCALL
440 # include <sys/syscall.h>
441 # ifdef SYS_clock_gettime
442 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443 # undef EV_USE_MONOTONIC
444 # define EV_USE_MONOTONIC 1
445 # define EV_NEED_SYSCALL 1
446 # else
447 # undef EV_USE_CLOCK_SYSCALL
448 # define EV_USE_CLOCK_SYSCALL 0
449 # endif
450 #endif
451
452 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
453
454 #ifndef CLOCK_MONOTONIC
455 # undef EV_USE_MONOTONIC
456 # define EV_USE_MONOTONIC 0
457 #endif
458
459 #ifndef CLOCK_REALTIME
460 # undef EV_USE_REALTIME
461 # define EV_USE_REALTIME 0
462 #endif
463
464 #if !EV_STAT_ENABLE
465 # undef EV_USE_INOTIFY
466 # define EV_USE_INOTIFY 0
467 #endif
468
469 #if __linux && EV_USE_IOURING
470 # include <linux/version.h>
471 # if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472 # undef EV_USE_IOURING
473 # define EV_USE_IOURING 0
474 # endif
475 #endif
476
477 #if !EV_USE_NANOSLEEP
478 /* hp-ux has it in sys/time.h, which we unconditionally include above */
479 # if !defined _WIN32 && !defined __hpux
480 # include <sys/select.h>
481 # endif
482 #endif
483
484 #if EV_USE_LINUXAIO
485 # include <sys/syscall.h>
486 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487 # define EV_NEED_SYSCALL 1
488 # else
489 # undef EV_USE_LINUXAIO
490 # define EV_USE_LINUXAIO 0
491 # endif
492 #endif
493
494 #if EV_USE_IOURING
495 # include <sys/syscall.h>
496 # if !SYS_io_uring_setup && __linux && !__alpha
497 # define SYS_io_uring_setup 425
498 # define SYS_io_uring_enter 426
499 # define SYS_io_uring_wregister 427
500 # endif
501 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502 # define EV_NEED_SYSCALL 1
503 # else
504 # undef EV_USE_IOURING
505 # define EV_USE_IOURING 0
506 # endif
507 #endif
508
509 #if EV_USE_INOTIFY
510 # include <sys/statfs.h>
511 # include <sys/inotify.h>
512 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513 # ifndef IN_DONT_FOLLOW
514 # undef EV_USE_INOTIFY
515 # define EV_USE_INOTIFY 0
516 # endif
517 #endif
518
519 #if EV_USE_EVENTFD
520 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521 # include <stdint.h>
522 # ifndef EFD_NONBLOCK
523 # define EFD_NONBLOCK O_NONBLOCK
524 # endif
525 # ifndef EFD_CLOEXEC
526 # ifdef O_CLOEXEC
527 # define EFD_CLOEXEC O_CLOEXEC
528 # else
529 # define EFD_CLOEXEC 02000000
530 # endif
531 # endif
532 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533 #endif
534
535 #if EV_USE_SIGNALFD
536 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537 # include <stdint.h>
538 # ifndef SFD_NONBLOCK
539 # define SFD_NONBLOCK O_NONBLOCK
540 # endif
541 # ifndef SFD_CLOEXEC
542 # ifdef O_CLOEXEC
543 # define SFD_CLOEXEC O_CLOEXEC
544 # else
545 # define SFD_CLOEXEC 02000000
546 # endif
547 # endif
548 EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550 struct signalfd_siginfo
551 {
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554 };
555 #endif
556
557 /* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558 #if EV_USE_TIMERFD
559 # include <sys/timerfd.h>
560 /* timerfd is only used for periodics */
561 # if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562 # undef EV_USE_TIMERFD
563 # define EV_USE_TIMERFD 0
564 # endif
565 #endif
566
567 /*****************************************************************************/
568
569 #if EV_VERIFY >= 3
570 # define EV_FREQUENT_CHECK ev_verify (EV_A)
571 #else
572 # define EV_FREQUENT_CHECK do { } while (0)
573 #endif
574
575 /*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584
585 /* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588 #define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593 #ifndef EV_TS_CONST
594 # define EV_TS_CONST(nv) nv
595 # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596 # define EV_TS_FROM_USEC(us) us * 1e-6
597 # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598 # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599 # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600 # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601 #endif
602
603 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604 /* ECB.H BEGIN */
605 /*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645 #ifndef ECB_H
646 #define ECB_H
647
648 /* 16 bits major, 16 bits minor */
649 #define ECB_VERSION 0x00010006
650
651 #ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
658 #if __GNUC__
659 typedef signed long long int64_t;
660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
674 #else
675 #include <inttypes.h>
676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
677 #define ECB_PTRSIZE 8
678 #else
679 #define ECB_PTRSIZE 4
680 #endif
681 #endif
682
683 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686 /* work around x32 idiocy by defining proper macros */
687 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
692 #endif
693 #endif
694
695 /* many compilers define _GNUC_ to some versions but then only implement
696 * what their idiot authors think are the "more important" extensions,
697 * causing enormous grief in return for some better fake benchmark numbers.
698 * or so.
699 * we try to detect these and simply assume they are not gcc - if they have
700 * an issue with that they should have done it right in the first place.
701 */
702 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
704 #else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706 #endif
707
708 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710 #if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712 #else
713 #define ECB_CLANG_BUILTIN(x) 0
714 #endif
715
716 #if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718 #else
719 #define ECB_CLANG_EXTENSION(x) 0
720 #endif
721
722 #define ECB_CPP (__cplusplus+0)
723 #define ECB_CPP11 (__cplusplus >= 201103L)
724 #define ECB_CPP14 (__cplusplus >= 201402L)
725 #define ECB_CPP17 (__cplusplus >= 201703L)
726
727 #if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730 #else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733 #endif
734
735 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739 #if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743 #else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747 #endif
748
749 /*****************************************************************************/
750
751 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754 #if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756 #endif
757
758 #if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760 #endif
761
762 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763 #if __xlC__ && ECB_CPP
764 #include <builtins.h>
765 #endif
766
767 #if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769 #endif
770
771 #ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825 #endif
826
827 #ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867 #endif
868
869 #ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878 #endif
879
880 #ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896 #endif
897
898 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900 #endif
901
902 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904 #endif
905
906 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908 #endif
909
910 /*****************************************************************************/
911
912 #if ECB_CPP
913 #define ecb_inline static inline
914 #elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916 #elif ECB_C99
917 #define ecb_inline static inline
918 #else
919 #define ecb_inline static
920 #endif
921
922 #if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924 #elif ECB_C99
925 #define ecb_restrict restrict
926 #else
927 #define ecb_restrict
928 #endif
929
930 typedef int ecb_bool;
931
932 #define ECB_CONCAT_(a, b) a ## b
933 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934 #define ECB_STRINGIFY_(a) # a
935 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938 #define ecb_function_ ecb_inline
939
940 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942 #else
943 #define ecb_attribute(attrlist)
944 #endif
945
946 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948 #else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954 #endif
955
956 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958 #else
959 #define ecb_expect(expr,value) (expr)
960 #endif
961
962 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964 #else
965 #define ecb_prefetch(addr,rw,locality)
966 #endif
967
968 /* no emulation for ecb_decltype */
969 #if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975 #endif
976
977 #if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979 #else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981 #endif
982
983 #if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985 #elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987 #else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989 #endif
990
991 #if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993 #else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995 #endif
996
997 #define ecb_unused ecb_attribute ((__unused__))
998 #define ecb_const ecb_attribute ((__const__))
999 #define ecb_pure ecb_attribute ((__pure__))
1000
1001 #if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004 #elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006 #elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009 #else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011 #endif
1012
1013 #if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017 #else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021 #endif
1022
1023 /* put around conditional expressions if you are very sure that the */
1024 /* expression is mostly true or mostly false. note that these return */
1025 /* booleans, not the expression. */
1026 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028 /* for compatibility to the rest of the world */
1029 #define ecb_likely(expr) ecb_expect_true (expr)
1030 #define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032 /* count trailing zero bits and count # of one bits */
1033 #if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044 #else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053 #else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058 #if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064 #else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070 #endif
1071
1072 return r;
1073 #endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084 #else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087 #endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109 #else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119 #endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129 #else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135 #endif
1136 }
1137 #endif
1138
1139 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146 {
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149 }
1150
1151 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153 {
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160 }
1161
1162 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164 {
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172 }
1173
1174 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1175 /* so for this version we are lazy */
1176 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177 ecb_function_ ecb_const int
1178 ecb_popcount64 (uint64_t x)
1179 {
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181 }
1182
1183 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209 #elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214 #else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235 #endif
1236
1237 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239 #else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243 #endif
1244
1245 /* try to tell the compiler that some condition is definitely true */
1246 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249 ecb_inline ecb_const uint32_t
1250 ecb_byteorder_helper (void)
1251 {
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266 #else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273 #endif
1274 }
1275
1276 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281 #if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283 #else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285 #endif
1286
1287 #if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298 #else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301 #endif
1302
1303 #if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310 #else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312 #endif
1313
1314 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315 ecb_function_ ecb_const uint32_t
1316 ecb_binary16_to_binary32 (uint32_t x)
1317 {
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344 }
1345
1346 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347 ecb_function_ ecb_const uint16_t
1348 ecb_binary32_to_binary16 (uint32_t x)
1349 {
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408 }
1409
1410 /*******************************************************************************/
1411 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413 /* basically, everything uses "ieee pure-endian" floating point numbers */
1414 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415 #if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432 #else
1433 #define ECB_STDFP 0
1434 #endif
1435
1436 #ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617 #endif
1618
1619 #endif
1620
1621 /* ECB.H END */
1622
1623 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624 /* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631 # error "memory fences not defined for your architecture, please report"
1632 #endif
1633
1634 #ifndef ECB_MEMORY_FENCE
1635 # define ECB_MEMORY_FENCE do { } while (0)
1636 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638 #endif
1639
1640 #define inline_size ecb_inline
1641
1642 #if EV_FEATURE_CODE
1643 # define inline_speed ecb_inline
1644 #else
1645 # define inline_speed ecb_noinline static
1646 #endif
1647
1648 /*****************************************************************************/
1649 /* raw syscall wrappers */
1650
1651 #if EV_NEED_SYSCALL
1652
1653 #include <sys/syscall.h>
1654
1655 /*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663 #if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690 #endif
1691
1692 #ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700 #else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708 #endif
1709
1710 #endif
1711
1712 /*****************************************************************************/
1713
1714 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716 #if EV_MINPRI == EV_MAXPRI
1717 # define ABSPRI(w) (((W)w), 0)
1718 #else
1719 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720 #endif
1721
1722 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1723
1724 typedef ev_watcher *W;
1725 typedef ev_watcher_list *WL;
1726 typedef ev_watcher_time *WT;
1727
1728 #define ev_active(w) ((W)(w))->active
1729 #define ev_at(w) ((WT)(w))->at
1730
1731 #if EV_USE_REALTIME
1732 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733 /* giving it a reasonably high chance of working on typical architectures */
1734 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735 #endif
1736
1737 #if EV_USE_MONOTONIC
1738 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739 #endif
1740
1741 #ifndef EV_FD_TO_WIN32_HANDLE
1742 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743 #endif
1744 #ifndef EV_WIN32_HANDLE_TO_FD
1745 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746 #endif
1747 #ifndef EV_WIN32_CLOSE_FD
1748 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1749 #endif
1750
1751 #ifdef _WIN32
1752 # include "ev_win32.c"
1753 #endif
1754
1755 /*****************************************************************************/
1756
1757 #if EV_USE_LINUXAIO
1758 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759 #endif
1760
1761 /* define a suitable floor function (only used by periodics atm) */
1762
1763 #if EV_USE_FLOOR
1764 # include <math.h>
1765 # define ev_floor(v) floor (v)
1766 #else
1767
1768 #include <float.h>
1769
1770 /* a floor() replacement function, should be independent of ev_tstamp type */
1771 ecb_noinline
1772 static ev_tstamp
1773 ev_floor (ev_tstamp v)
1774 {
1775 /* the choice of shift factor is not terribly important */
1776 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778 #else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780 #endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804 }
1805
1806 #endif
1807
1808 /*****************************************************************************/
1809
1810 #ifdef __linux
1811 # include <sys/utsname.h>
1812 #endif
1813
1814 ecb_noinline ecb_cold
1815 static unsigned int
1816 ev_linux_version (void)
1817 {
1818 #ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846 #else
1847 return 0;
1848 #endif
1849 }
1850
1851 /*****************************************************************************/
1852
1853 #if EV_AVOID_STDIO
1854 ecb_noinline ecb_cold
1855 static void
1856 ev_printerr (const char *msg)
1857 {
1858 write (STDERR_FILENO, msg, strlen (msg));
1859 }
1860 #endif
1861
1862 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1863
1864 ecb_cold
1865 void
1866 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1867 {
1868 syserr_cb = cb;
1869 }
1870
1871 ecb_noinline ecb_cold
1872 static void
1873 ev_syserr (const char *msg)
1874 {
1875 if (!msg)
1876 msg = "(libev) system error";
1877
1878 if (syserr_cb)
1879 syserr_cb (msg);
1880 else
1881 {
1882 #if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887 #else
1888 perror (msg);
1889 #endif
1890 abort ();
1891 }
1892 }
1893
1894 static void *
1895 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1896 {
1897 /* some systems, notably openbsd and darwin, fail to properly
1898 * implement realloc (x, 0) (as required by both ansi c-89 and
1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
1902 */
1903
1904 if (size)
1905 return realloc (ptr, size);
1906
1907 free (ptr);
1908 return 0;
1909 }
1910
1911 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1912
1913 ecb_cold
1914 void
1915 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1916 {
1917 alloc = cb;
1918 }
1919
1920 inline_speed void *
1921 ev_realloc (void *ptr, long size)
1922 {
1923 ptr = alloc (ptr, size);
1924
1925 if (!ptr && size)
1926 {
1927 #if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929 #else
1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931 #endif
1932 abort ();
1933 }
1934
1935 return ptr;
1936 }
1937
1938 #define ev_malloc(size) ev_realloc (0, (size))
1939 #define ev_free(ptr) ev_realloc ((ptr), 0)
1940
1941 /*****************************************************************************/
1942
1943 /* set in reify when reification needed */
1944 #define EV_ANFD_REIFY 1
1945
1946 /* file descriptor info structure */
1947 typedef struct
1948 {
1949 WL head;
1950 unsigned char events; /* the events watched for */
1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954 #if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956 #endif
1957 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1958 SOCKET handle;
1959 #endif
1960 #if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962 #endif
1963 } ANFD;
1964
1965 /* stores the pending event set for a given watcher */
1966 typedef struct
1967 {
1968 W w;
1969 int events; /* the pending event set for the given watcher */
1970 } ANPENDING;
1971
1972 #if EV_USE_INOTIFY
1973 /* hash table entry per inotify-id */
1974 typedef struct
1975 {
1976 WL head;
1977 } ANFS;
1978 #endif
1979
1980 /* Heap Entry */
1981 #if EV_HEAP_CACHE_AT
1982 /* a heap element */
1983 typedef struct {
1984 ev_tstamp at;
1985 WT w;
1986 } ANHE;
1987
1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1991 #else
1992 /* a heap element */
1993 typedef WT ANHE;
1994
1995 #define ANHE_w(he) (he)
1996 #define ANHE_at(he) (he)->at
1997 #define ANHE_at_cache(he)
1998 #endif
1999
2000 #if EV_MULTIPLICITY
2001
2002 struct ev_loop
2003 {
2004 ev_tstamp ev_rt_now;
2005 #define ev_rt_now ((loop)->ev_rt_now)
2006 #define VAR(name,decl) decl;
2007 #include "ev_vars.h"
2008 #undef VAR
2009 };
2010 #include "ev_wrap.h"
2011
2012 static struct ev_loop default_loop_struct;
2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2014
2015 #else
2016
2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2018 #define VAR(name,decl) static decl;
2019 #include "ev_vars.h"
2020 #undef VAR
2021
2022 static int ev_default_loop_ptr;
2023
2024 #endif
2025
2026 #if EV_FEATURE_API
2027 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029 # define EV_INVOKE_PENDING invoke_cb (EV_A)
2030 #else
2031 # define EV_RELEASE_CB (void)0
2032 # define EV_ACQUIRE_CB (void)0
2033 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034 #endif
2035
2036 #define EVBREAK_RECURSE 0x80
2037
2038 /*****************************************************************************/
2039
2040 #ifndef EV_HAVE_EV_TIME
2041 ev_tstamp
2042 ev_time (void) EV_NOEXCEPT
2043 {
2044 #if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
2047 struct timespec ts;
2048 clock_gettime (CLOCK_REALTIME, &ts);
2049 return EV_TS_GET (ts);
2050 }
2051 #endif
2052
2053 {
2054 struct timeval tv;
2055 gettimeofday (&tv, 0);
2056 return EV_TV_GET (tv);
2057 }
2058 }
2059 #endif
2060
2061 inline_size ev_tstamp
2062 get_clock (void)
2063 {
2064 #if EV_USE_MONOTONIC
2065 if (ecb_expect_true (have_monotonic))
2066 {
2067 struct timespec ts;
2068 clock_gettime (CLOCK_MONOTONIC, &ts);
2069 return EV_TS_GET (ts);
2070 }
2071 #endif
2072
2073 return ev_time ();
2074 }
2075
2076 #if EV_MULTIPLICITY
2077 ev_tstamp
2078 ev_now (EV_P) EV_NOEXCEPT
2079 {
2080 return ev_rt_now;
2081 }
2082 #endif
2083
2084 void
2085 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2086 {
2087 if (delay > EV_TS_CONST (0.))
2088 {
2089 #if EV_USE_NANOSLEEP
2090 struct timespec ts;
2091
2092 EV_TS_SET (ts, delay);
2093 nanosleep (&ts, 0);
2094 #elif defined _WIN32
2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2098 #else
2099 struct timeval tv;
2100
2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2102 /* something not guaranteed by newer posix versions, but guaranteed */
2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
2105 select (0, 0, 0, 0, &tv);
2106 #endif
2107 }
2108 }
2109
2110 /*****************************************************************************/
2111
2112 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2113
2114 /* find a suitable new size for the given array, */
2115 /* hopefully by rounding to a nice-to-malloc size */
2116 inline_size int
2117 array_nextsize (int elem, int cur, int cnt)
2118 {
2119 int ncur = cur + 1;
2120
2121 do
2122 ncur <<= 1;
2123 while (cnt > ncur);
2124
2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2127 {
2128 ncur *= elem;
2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2130 ncur = ncur - sizeof (void *) * 4;
2131 ncur /= elem;
2132 }
2133
2134 return ncur;
2135 }
2136
2137 ecb_noinline ecb_cold
2138 static void *
2139 array_realloc (int elem, void *base, int *cur, int cnt)
2140 {
2141 *cur = array_nextsize (elem, *cur, cnt);
2142 return ev_realloc (base, elem * *cur);
2143 }
2144
2145 #define array_needsize_noinit(base,offset,count)
2146
2147 #define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
2150 #define array_needsize(type,base,cur,cnt,init) \
2151 if (ecb_expect_false ((cnt) > (cur))) \
2152 { \
2153 ecb_unused int ocur_ = (cur); \
2154 (base) = (type *)array_realloc \
2155 (sizeof (type), (base), &(cur), (cnt)); \
2156 init ((base), ocur_, ((cur) - ocur_)); \
2157 }
2158
2159 #if 0
2160 #define array_slim(type,stem) \
2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2162 { \
2163 stem ## max = array_roundsize (stem ## cnt >> 1); \
2164 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2166 }
2167 #endif
2168
2169 #define array_free(stem, idx) \
2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2171
2172 /*****************************************************************************/
2173
2174 /* dummy callback for pending events */
2175 ecb_noinline
2176 static void
2177 pendingcb (EV_P_ ev_prepare *w, int revents)
2178 {
2179 }
2180
2181 ecb_noinline
2182 void
2183 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2184 {
2185 W w_ = (W)w;
2186 int pri = ABSPRI (w_);
2187
2188 if (ecb_expect_false (w_->pending))
2189 pendings [pri][w_->pending - 1].events |= revents;
2190 else
2191 {
2192 w_->pending = ++pendingcnt [pri];
2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2194 pendings [pri][w_->pending - 1].w = w_;
2195 pendings [pri][w_->pending - 1].events = revents;
2196 }
2197
2198 pendingpri = NUMPRI - 1;
2199 }
2200
2201 inline_speed void
2202 feed_reverse (EV_P_ W w)
2203 {
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206 }
2207
2208 inline_size void
2209 feed_reverse_done (EV_P_ int revents)
2210 {
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214 }
2215
2216 inline_speed void
2217 queue_events (EV_P_ W *events, int eventcnt, int type)
2218 {
2219 int i;
2220
2221 for (i = 0; i < eventcnt; ++i)
2222 ev_feed_event (EV_A_ events [i], type);
2223 }
2224
2225 /*****************************************************************************/
2226
2227 inline_speed void
2228 fd_event_nocheck (EV_P_ int fd, int revents)
2229 {
2230 ANFD *anfd = anfds + fd;
2231 ev_io *w;
2232
2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2234 {
2235 int ev = w->events & revents;
2236
2237 if (ev)
2238 ev_feed_event (EV_A_ (W)w, ev);
2239 }
2240 }
2241
2242 /* do not submit kernel events for fds that have reify set */
2243 /* because that means they changed while we were polling for new events */
2244 inline_speed void
2245 fd_event (EV_P_ int fd, int revents)
2246 {
2247 ANFD *anfd = anfds + fd;
2248
2249 if (ecb_expect_true (!anfd->reify))
2250 fd_event_nocheck (EV_A_ fd, revents);
2251 }
2252
2253 void
2254 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2255 {
2256 if (fd >= 0 && fd < anfdmax)
2257 fd_event_nocheck (EV_A_ fd, revents);
2258 }
2259
2260 /* make sure the external fd watch events are in-sync */
2261 /* with the kernel/libev internal state */
2262 inline_size void
2263 fd_reify (EV_P)
2264 {
2265 int i;
2266
2267 /* most backends do not modify the fdchanges list in backend_modfiy.
2268 * except io_uring, which has fixed-size buffers which might force us
2269 * to handle events in backend_modify, causing fdchangesd to be amended,
2270 * which could result in an endless loop.
2271 * to avoid this, we do not dynamically handle fds that were added
2272 * during fd_reify. that menas thast for those backends, fdchangecnt
2273 * might be non-zero during poll, which must cause them to not block.
2274 * to not put too much of a burden on other backends, this detail
2275 * needs to be handled in the backend.
2276 */
2277 int changecnt = fdchangecnt;
2278
2279 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2280 for (i = 0; i < changecnt; ++i)
2281 {
2282 int fd = fdchanges [i];
2283 ANFD *anfd = anfds + fd;
2284
2285 if (anfd->reify & EV__IOFDSET && anfd->head)
2286 {
2287 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2288
2289 if (handle != anfd->handle)
2290 {
2291 unsigned long arg;
2292
2293 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2294
2295 /* handle changed, but fd didn't - we need to do it in two steps */
2296 backend_modify (EV_A_ fd, anfd->events, 0);
2297 anfd->events = 0;
2298 anfd->handle = handle;
2299 }
2300 }
2301 }
2302 #endif
2303
2304 for (i = 0; i < changecnt; ++i)
2305 {
2306 int fd = fdchanges [i];
2307 ANFD *anfd = anfds + fd;
2308 ev_io *w;
2309
2310 unsigned char o_events = anfd->events;
2311 unsigned char o_reify = anfd->reify;
2312
2313 anfd->reify = 0;
2314
2315 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2316 {
2317 anfd->events = 0;
2318
2319 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2320 anfd->events |= (unsigned char)w->events;
2321
2322 if (o_events != anfd->events)
2323 o_reify = EV__IOFDSET; /* actually |= */
2324 }
2325
2326 if (o_reify & EV__IOFDSET)
2327 backend_modify (EV_A_ fd, o_events, anfd->events);
2328 }
2329
2330 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2331 * this is a rare case (see beginning comment in this function), so we copy them to the
2332 * front and hope the backend handles this case.
2333 */
2334 if (ecb_expect_false (fdchangecnt != changecnt))
2335 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2336
2337 fdchangecnt -= changecnt;
2338 }
2339
2340 /* something about the given fd changed */
2341 inline_size
2342 void
2343 fd_change (EV_P_ int fd, int flags)
2344 {
2345 unsigned char reify = anfds [fd].reify;
2346 anfds [fd].reify |= flags;
2347
2348 if (ecb_expect_true (!reify))
2349 {
2350 ++fdchangecnt;
2351 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2352 fdchanges [fdchangecnt - 1] = fd;
2353 }
2354 }
2355
2356 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2357 inline_speed ecb_cold void
2358 fd_kill (EV_P_ int fd)
2359 {
2360 ev_io *w;
2361
2362 while ((w = (ev_io *)anfds [fd].head))
2363 {
2364 ev_io_stop (EV_A_ w);
2365 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2366 }
2367 }
2368
2369 /* check whether the given fd is actually valid, for error recovery */
2370 inline_size ecb_cold int
2371 fd_valid (int fd)
2372 {
2373 #ifdef _WIN32
2374 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2375 #else
2376 return fcntl (fd, F_GETFD) != -1;
2377 #endif
2378 }
2379
2380 /* called on EBADF to verify fds */
2381 ecb_noinline ecb_cold
2382 static void
2383 fd_ebadf (EV_P)
2384 {
2385 int fd;
2386
2387 for (fd = 0; fd < anfdmax; ++fd)
2388 if (anfds [fd].events)
2389 if (!fd_valid (fd) && errno == EBADF)
2390 fd_kill (EV_A_ fd);
2391 }
2392
2393 /* called on ENOMEM in select/poll to kill some fds and retry */
2394 ecb_noinline ecb_cold
2395 static void
2396 fd_enomem (EV_P)
2397 {
2398 int fd;
2399
2400 for (fd = anfdmax; fd--; )
2401 if (anfds [fd].events)
2402 {
2403 fd_kill (EV_A_ fd);
2404 break;
2405 }
2406 }
2407
2408 /* usually called after fork if backend needs to re-arm all fds from scratch */
2409 ecb_noinline
2410 static void
2411 fd_rearm_all (EV_P)
2412 {
2413 int fd;
2414
2415 for (fd = 0; fd < anfdmax; ++fd)
2416 if (anfds [fd].events)
2417 {
2418 anfds [fd].events = 0;
2419 anfds [fd].emask = 0;
2420 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2421 }
2422 }
2423
2424 /* used to prepare libev internal fd's */
2425 /* this is not fork-safe */
2426 inline_speed void
2427 fd_intern (int fd)
2428 {
2429 #ifdef _WIN32
2430 unsigned long arg = 1;
2431 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2432 #else
2433 fcntl (fd, F_SETFD, FD_CLOEXEC);
2434 fcntl (fd, F_SETFL, O_NONBLOCK);
2435 #endif
2436 }
2437
2438 /*****************************************************************************/
2439
2440 /*
2441 * the heap functions want a real array index. array index 0 is guaranteed to not
2442 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2443 * the branching factor of the d-tree.
2444 */
2445
2446 /*
2447 * at the moment we allow libev the luxury of two heaps,
2448 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2449 * which is more cache-efficient.
2450 * the difference is about 5% with 50000+ watchers.
2451 */
2452 #if EV_USE_4HEAP
2453
2454 #define DHEAP 4
2455 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2456 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2457 #define UPHEAP_DONE(p,k) ((p) == (k))
2458
2459 /* away from the root */
2460 inline_speed void
2461 downheap (ANHE *heap, int N, int k)
2462 {
2463 ANHE he = heap [k];
2464 ANHE *E = heap + N + HEAP0;
2465
2466 for (;;)
2467 {
2468 ev_tstamp minat;
2469 ANHE *minpos;
2470 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2471
2472 /* find minimum child */
2473 if (ecb_expect_true (pos + DHEAP - 1 < E))
2474 {
2475 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2476 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2477 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2478 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2479 }
2480 else if (pos < E)
2481 {
2482 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2483 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2484 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2485 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2486 }
2487 else
2488 break;
2489
2490 if (ANHE_at (he) <= minat)
2491 break;
2492
2493 heap [k] = *minpos;
2494 ev_active (ANHE_w (*minpos)) = k;
2495
2496 k = minpos - heap;
2497 }
2498
2499 heap [k] = he;
2500 ev_active (ANHE_w (he)) = k;
2501 }
2502
2503 #else /* not 4HEAP */
2504
2505 #define HEAP0 1
2506 #define HPARENT(k) ((k) >> 1)
2507 #define UPHEAP_DONE(p,k) (!(p))
2508
2509 /* away from the root */
2510 inline_speed void
2511 downheap (ANHE *heap, int N, int k)
2512 {
2513 ANHE he = heap [k];
2514
2515 for (;;)
2516 {
2517 int c = k << 1;
2518
2519 if (c >= N + HEAP0)
2520 break;
2521
2522 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2523 ? 1 : 0;
2524
2525 if (ANHE_at (he) <= ANHE_at (heap [c]))
2526 break;
2527
2528 heap [k] = heap [c];
2529 ev_active (ANHE_w (heap [k])) = k;
2530
2531 k = c;
2532 }
2533
2534 heap [k] = he;
2535 ev_active (ANHE_w (he)) = k;
2536 }
2537 #endif
2538
2539 /* towards the root */
2540 inline_speed void
2541 upheap (ANHE *heap, int k)
2542 {
2543 ANHE he = heap [k];
2544
2545 for (;;)
2546 {
2547 int p = HPARENT (k);
2548
2549 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2550 break;
2551
2552 heap [k] = heap [p];
2553 ev_active (ANHE_w (heap [k])) = k;
2554 k = p;
2555 }
2556
2557 heap [k] = he;
2558 ev_active (ANHE_w (he)) = k;
2559 }
2560
2561 /* move an element suitably so it is in a correct place */
2562 inline_size void
2563 adjustheap (ANHE *heap, int N, int k)
2564 {
2565 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2566 upheap (heap, k);
2567 else
2568 downheap (heap, N, k);
2569 }
2570
2571 /* rebuild the heap: this function is used only once and executed rarely */
2572 inline_size void
2573 reheap (ANHE *heap, int N)
2574 {
2575 int i;
2576
2577 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2578 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2579 for (i = 0; i < N; ++i)
2580 upheap (heap, i + HEAP0);
2581 }
2582
2583 /*****************************************************************************/
2584
2585 /* associate signal watchers to a signal signal */
2586 typedef struct
2587 {
2588 EV_ATOMIC_T pending;
2589 #if EV_MULTIPLICITY
2590 EV_P;
2591 #endif
2592 WL head;
2593 } ANSIG;
2594
2595 static ANSIG signals [EV_NSIG - 1];
2596
2597 /*****************************************************************************/
2598
2599 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2600
2601 ecb_noinline ecb_cold
2602 static void
2603 evpipe_init (EV_P)
2604 {
2605 if (!ev_is_active (&pipe_w))
2606 {
2607 int fds [2];
2608
2609 # if EV_USE_EVENTFD
2610 fds [0] = -1;
2611 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2612 if (fds [1] < 0 && errno == EINVAL)
2613 fds [1] = eventfd (0, 0);
2614
2615 if (fds [1] < 0)
2616 # endif
2617 {
2618 while (pipe (fds))
2619 ev_syserr ("(libev) error creating signal/async pipe");
2620
2621 fd_intern (fds [0]);
2622 }
2623
2624 evpipe [0] = fds [0];
2625
2626 if (evpipe [1] < 0)
2627 evpipe [1] = fds [1]; /* first call, set write fd */
2628 else
2629 {
2630 /* on subsequent calls, do not change evpipe [1] */
2631 /* so that evpipe_write can always rely on its value. */
2632 /* this branch does not do anything sensible on windows, */
2633 /* so must not be executed on windows */
2634
2635 dup2 (fds [1], evpipe [1]);
2636 close (fds [1]);
2637 }
2638
2639 fd_intern (evpipe [1]);
2640
2641 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2642 ev_io_start (EV_A_ &pipe_w);
2643 ev_unref (EV_A); /* watcher should not keep loop alive */
2644 }
2645 }
2646
2647 inline_speed void
2648 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2649 {
2650 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2651
2652 if (ecb_expect_true (*flag))
2653 return;
2654
2655 *flag = 1;
2656 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2657
2658 pipe_write_skipped = 1;
2659
2660 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2661
2662 if (pipe_write_wanted)
2663 {
2664 int old_errno;
2665
2666 pipe_write_skipped = 0;
2667 ECB_MEMORY_FENCE_RELEASE;
2668
2669 old_errno = errno; /* save errno because write will clobber it */
2670
2671 #if EV_USE_EVENTFD
2672 if (evpipe [0] < 0)
2673 {
2674 uint64_t counter = 1;
2675 write (evpipe [1], &counter, sizeof (uint64_t));
2676 }
2677 else
2678 #endif
2679 {
2680 #ifdef _WIN32
2681 WSABUF buf;
2682 DWORD sent;
2683 buf.buf = (char *)&buf;
2684 buf.len = 1;
2685 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2686 #else
2687 write (evpipe [1], &(evpipe [1]), 1);
2688 #endif
2689 }
2690
2691 errno = old_errno;
2692 }
2693 }
2694
2695 /* called whenever the libev signal pipe */
2696 /* got some events (signal, async) */
2697 static void
2698 pipecb (EV_P_ ev_io *iow, int revents)
2699 {
2700 int i;
2701
2702 if (revents & EV_READ)
2703 {
2704 #if EV_USE_EVENTFD
2705 if (evpipe [0] < 0)
2706 {
2707 uint64_t counter;
2708 read (evpipe [1], &counter, sizeof (uint64_t));
2709 }
2710 else
2711 #endif
2712 {
2713 char dummy[4];
2714 #ifdef _WIN32
2715 WSABUF buf;
2716 DWORD recvd;
2717 DWORD flags = 0;
2718 buf.buf = dummy;
2719 buf.len = sizeof (dummy);
2720 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2721 #else
2722 read (evpipe [0], &dummy, sizeof (dummy));
2723 #endif
2724 }
2725 }
2726
2727 pipe_write_skipped = 0;
2728
2729 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2730
2731 #if EV_SIGNAL_ENABLE
2732 if (sig_pending)
2733 {
2734 sig_pending = 0;
2735
2736 ECB_MEMORY_FENCE;
2737
2738 for (i = EV_NSIG - 1; i--; )
2739 if (ecb_expect_false (signals [i].pending))
2740 ev_feed_signal_event (EV_A_ i + 1);
2741 }
2742 #endif
2743
2744 #if EV_ASYNC_ENABLE
2745 if (async_pending)
2746 {
2747 async_pending = 0;
2748
2749 ECB_MEMORY_FENCE;
2750
2751 for (i = asynccnt; i--; )
2752 if (asyncs [i]->sent)
2753 {
2754 asyncs [i]->sent = 0;
2755 ECB_MEMORY_FENCE_RELEASE;
2756 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2757 }
2758 }
2759 #endif
2760 }
2761
2762 /*****************************************************************************/
2763
2764 void
2765 ev_feed_signal (int signum) EV_NOEXCEPT
2766 {
2767 #if EV_MULTIPLICITY
2768 EV_P;
2769 ECB_MEMORY_FENCE_ACQUIRE;
2770 EV_A = signals [signum - 1].loop;
2771
2772 if (!EV_A)
2773 return;
2774 #endif
2775
2776 signals [signum - 1].pending = 1;
2777 evpipe_write (EV_A_ &sig_pending);
2778 }
2779
2780 static void
2781 ev_sighandler (int signum)
2782 {
2783 #ifdef _WIN32
2784 signal (signum, ev_sighandler);
2785 #endif
2786
2787 ev_feed_signal (signum);
2788 }
2789
2790 ecb_noinline
2791 void
2792 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2793 {
2794 WL w;
2795
2796 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2797 return;
2798
2799 --signum;
2800
2801 #if EV_MULTIPLICITY
2802 /* it is permissible to try to feed a signal to the wrong loop */
2803 /* or, likely more useful, feeding a signal nobody is waiting for */
2804
2805 if (ecb_expect_false (signals [signum].loop != EV_A))
2806 return;
2807 #endif
2808
2809 signals [signum].pending = 0;
2810 ECB_MEMORY_FENCE_RELEASE;
2811
2812 for (w = signals [signum].head; w; w = w->next)
2813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2814 }
2815
2816 #if EV_USE_SIGNALFD
2817 static void
2818 sigfdcb (EV_P_ ev_io *iow, int revents)
2819 {
2820 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2821
2822 for (;;)
2823 {
2824 ssize_t res = read (sigfd, si, sizeof (si));
2825
2826 /* not ISO-C, as res might be -1, but works with SuS */
2827 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2828 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2829
2830 if (res < (ssize_t)sizeof (si))
2831 break;
2832 }
2833 }
2834 #endif
2835
2836 #endif
2837
2838 /*****************************************************************************/
2839
2840 #if EV_CHILD_ENABLE
2841 static WL childs [EV_PID_HASHSIZE];
2842
2843 static ev_signal childev;
2844
2845 #ifndef WIFCONTINUED
2846 # define WIFCONTINUED(status) 0
2847 #endif
2848
2849 /* handle a single child status event */
2850 inline_speed void
2851 child_reap (EV_P_ int chain, int pid, int status)
2852 {
2853 ev_child *w;
2854 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2855
2856 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2857 {
2858 if ((w->pid == pid || !w->pid)
2859 && (!traced || (w->flags & 1)))
2860 {
2861 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2862 w->rpid = pid;
2863 w->rstatus = status;
2864 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2865 }
2866 }
2867 }
2868
2869 #ifndef WCONTINUED
2870 # define WCONTINUED 0
2871 #endif
2872
2873 /* called on sigchld etc., calls waitpid */
2874 static void
2875 childcb (EV_P_ ev_signal *sw, int revents)
2876 {
2877 int pid, status;
2878
2879 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2880 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2881 if (!WCONTINUED
2882 || errno != EINVAL
2883 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2884 return;
2885
2886 /* make sure we are called again until all children have been reaped */
2887 /* we need to do it this way so that the callback gets called before we continue */
2888 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2889
2890 child_reap (EV_A_ pid, pid, status);
2891 if ((EV_PID_HASHSIZE) > 1)
2892 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2893 }
2894
2895 #endif
2896
2897 /*****************************************************************************/
2898
2899 #if EV_USE_TIMERFD
2900
2901 static void periodics_reschedule (EV_P);
2902
2903 static void
2904 timerfdcb (EV_P_ ev_io *iow, int revents)
2905 {
2906 struct itimerspec its = { 0 };
2907
2908 /* since we can't easily come zup with a (portable) maximum value of time_t,
2909 * we wake up once per month, which hopefully is rare enough to not
2910 * be a problem. */
2911 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2912 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2913
2914 ev_rt_now = ev_time ();
2915 /* periodics_reschedule only needs ev_rt_now */
2916 /* but maybe in the future we want the full treatment. */
2917 /*
2918 now_floor = EV_TS_CONST (0.);
2919 time_update (EV_A_ EV_TSTAMP_HUGE);
2920 */
2921 periodics_reschedule (EV_A);
2922 }
2923
2924 ecb_noinline ecb_cold
2925 static void
2926 evtimerfd_init (EV_P)
2927 {
2928 if (!ev_is_active (&timerfd_w))
2929 {
2930 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2931
2932 if (timerfd >= 0)
2933 {
2934 fd_intern (timerfd); /* just to be sure */
2935
2936 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2937 ev_set_priority (&timerfd_w, EV_MINPRI);
2938 ev_io_start (EV_A_ &timerfd_w);
2939 ev_unref (EV_A); /* watcher should not keep loop alive */
2940
2941 /* (re-) arm timer */
2942 timerfdcb (EV_A_ 0, 0);
2943 }
2944 }
2945 }
2946
2947 #endif
2948
2949 /*****************************************************************************/
2950
2951 #if EV_USE_IOCP
2952 # include "ev_iocp.c"
2953 #endif
2954 #if EV_USE_PORT
2955 # include "ev_port.c"
2956 #endif
2957 #if EV_USE_KQUEUE
2958 # include "ev_kqueue.c"
2959 #endif
2960 #if EV_USE_EPOLL
2961 # include "ev_epoll.c"
2962 #endif
2963 #if EV_USE_LINUXAIO
2964 # include "ev_linuxaio.c"
2965 #endif
2966 #if EV_USE_IOURING
2967 # include "ev_iouring.c"
2968 #endif
2969 #if EV_USE_POLL
2970 # include "ev_poll.c"
2971 #endif
2972 #if EV_USE_SELECT
2973 # include "ev_select.c"
2974 #endif
2975
2976 ecb_cold int
2977 ev_version_major (void) EV_NOEXCEPT
2978 {
2979 return EV_VERSION_MAJOR;
2980 }
2981
2982 ecb_cold int
2983 ev_version_minor (void) EV_NOEXCEPT
2984 {
2985 return EV_VERSION_MINOR;
2986 }
2987
2988 /* return true if we are running with elevated privileges and should ignore env variables */
2989 inline_size ecb_cold int
2990 enable_secure (void)
2991 {
2992 #ifdef _WIN32
2993 return 0;
2994 #else
2995 return getuid () != geteuid ()
2996 || getgid () != getegid ();
2997 #endif
2998 }
2999
3000 ecb_cold
3001 unsigned int
3002 ev_supported_backends (void) EV_NOEXCEPT
3003 {
3004 unsigned int flags = 0;
3005
3006 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
3007 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
3008 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
3009 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
3010 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
3011 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3012 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3013
3014 return flags;
3015 }
3016
3017 ecb_cold
3018 unsigned int
3019 ev_recommended_backends (void) EV_NOEXCEPT
3020 {
3021 unsigned int flags = ev_supported_backends ();
3022
3023 #ifndef __NetBSD__
3024 /* kqueue is borked on everything but netbsd apparently */
3025 /* it usually doesn't work correctly on anything but sockets and pipes */
3026 flags &= ~EVBACKEND_KQUEUE;
3027 #endif
3028 #ifdef __APPLE__
3029 /* only select works correctly on that "unix-certified" platform */
3030 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3031 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3032 #endif
3033 #ifdef __FreeBSD__
3034 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3035 #endif
3036
3037 /* TODO: linuxaio is very experimental */
3038 #if !EV_RECOMMEND_LINUXAIO
3039 flags &= ~EVBACKEND_LINUXAIO;
3040 #endif
3041 /* TODO: linuxaio is super experimental */
3042 #if !EV_RECOMMEND_IOURING
3043 flags &= ~EVBACKEND_IOURING;
3044 #endif
3045
3046 return flags;
3047 }
3048
3049 ecb_cold
3050 unsigned int
3051 ev_embeddable_backends (void) EV_NOEXCEPT
3052 {
3053 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
3054
3055 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3056 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3057 flags &= ~EVBACKEND_EPOLL;
3058
3059 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3060
3061 return flags;
3062 }
3063
3064 unsigned int
3065 ev_backend (EV_P) EV_NOEXCEPT
3066 {
3067 return backend;
3068 }
3069
3070 #if EV_FEATURE_API
3071 unsigned int
3072 ev_iteration (EV_P) EV_NOEXCEPT
3073 {
3074 return loop_count;
3075 }
3076
3077 unsigned int
3078 ev_depth (EV_P) EV_NOEXCEPT
3079 {
3080 return loop_depth;
3081 }
3082
3083 void
3084 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3085 {
3086 io_blocktime = interval;
3087 }
3088
3089 void
3090 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3091 {
3092 timeout_blocktime = interval;
3093 }
3094
3095 void
3096 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3097 {
3098 userdata = data;
3099 }
3100
3101 void *
3102 ev_userdata (EV_P) EV_NOEXCEPT
3103 {
3104 return userdata;
3105 }
3106
3107 void
3108 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3109 {
3110 invoke_cb = invoke_pending_cb;
3111 }
3112
3113 void
3114 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3115 {
3116 release_cb = release;
3117 acquire_cb = acquire;
3118 }
3119 #endif
3120
3121 /* initialise a loop structure, must be zero-initialised */
3122 ecb_noinline ecb_cold
3123 static void
3124 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3125 {
3126 if (!backend)
3127 {
3128 origflags = flags;
3129
3130 #if EV_USE_REALTIME
3131 if (!have_realtime)
3132 {
3133 struct timespec ts;
3134
3135 if (!clock_gettime (CLOCK_REALTIME, &ts))
3136 have_realtime = 1;
3137 }
3138 #endif
3139
3140 #if EV_USE_MONOTONIC
3141 if (!have_monotonic)
3142 {
3143 struct timespec ts;
3144
3145 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3146 have_monotonic = 1;
3147 }
3148 #endif
3149
3150 /* pid check not overridable via env */
3151 #ifndef _WIN32
3152 if (flags & EVFLAG_FORKCHECK)
3153 curpid = getpid ();
3154 #endif
3155
3156 if (!(flags & EVFLAG_NOENV)
3157 && !enable_secure ()
3158 && getenv ("LIBEV_FLAGS"))
3159 flags = atoi (getenv ("LIBEV_FLAGS"));
3160
3161 ev_rt_now = ev_time ();
3162 mn_now = get_clock ();
3163 now_floor = mn_now;
3164 rtmn_diff = ev_rt_now - mn_now;
3165 #if EV_FEATURE_API
3166 invoke_cb = ev_invoke_pending;
3167 #endif
3168
3169 io_blocktime = 0.;
3170 timeout_blocktime = 0.;
3171 backend = 0;
3172 backend_fd = -1;
3173 sig_pending = 0;
3174 #if EV_ASYNC_ENABLE
3175 async_pending = 0;
3176 #endif
3177 pipe_write_skipped = 0;
3178 pipe_write_wanted = 0;
3179 evpipe [0] = -1;
3180 evpipe [1] = -1;
3181 #if EV_USE_INOTIFY
3182 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3183 #endif
3184 #if EV_USE_SIGNALFD
3185 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3186 #endif
3187 #if EV_USE_TIMERFD
3188 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3189 #endif
3190
3191 if (!(flags & EVBACKEND_MASK))
3192 flags |= ev_recommended_backends ();
3193
3194 #if EV_USE_IOCP
3195 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3196 #endif
3197 #if EV_USE_PORT
3198 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3199 #endif
3200 #if EV_USE_KQUEUE
3201 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3202 #endif
3203 #if EV_USE_IOURING
3204 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3205 #endif
3206 #if EV_USE_LINUXAIO
3207 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3208 #endif
3209 #if EV_USE_EPOLL
3210 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3211 #endif
3212 #if EV_USE_POLL
3213 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3214 #endif
3215 #if EV_USE_SELECT
3216 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3217 #endif
3218
3219 ev_prepare_init (&pending_w, pendingcb);
3220
3221 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3222 ev_init (&pipe_w, pipecb);
3223 ev_set_priority (&pipe_w, EV_MAXPRI);
3224 #endif
3225 }
3226 }
3227
3228 /* free up a loop structure */
3229 ecb_cold
3230 void
3231 ev_loop_destroy (EV_P)
3232 {
3233 int i;
3234
3235 #if EV_MULTIPLICITY
3236 /* mimic free (0) */
3237 if (!EV_A)
3238 return;
3239 #endif
3240
3241 #if EV_CLEANUP_ENABLE
3242 /* queue cleanup watchers (and execute them) */
3243 if (ecb_expect_false (cleanupcnt))
3244 {
3245 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3246 EV_INVOKE_PENDING;
3247 }
3248 #endif
3249
3250 #if EV_CHILD_ENABLE
3251 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3252 {
3253 ev_ref (EV_A); /* child watcher */
3254 ev_signal_stop (EV_A_ &childev);
3255 }
3256 #endif
3257
3258 if (ev_is_active (&pipe_w))
3259 {
3260 /*ev_ref (EV_A);*/
3261 /*ev_io_stop (EV_A_ &pipe_w);*/
3262
3263 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3264 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3265 }
3266
3267 #if EV_USE_SIGNALFD
3268 if (ev_is_active (&sigfd_w))
3269 close (sigfd);
3270 #endif
3271
3272 #if EV_USE_TIMERFD
3273 if (ev_is_active (&timerfd_w))
3274 close (timerfd);
3275 #endif
3276
3277 #if EV_USE_INOTIFY
3278 if (fs_fd >= 0)
3279 close (fs_fd);
3280 #endif
3281
3282 if (backend_fd >= 0)
3283 close (backend_fd);
3284
3285 #if EV_USE_IOCP
3286 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3287 #endif
3288 #if EV_USE_PORT
3289 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3290 #endif
3291 #if EV_USE_KQUEUE
3292 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3293 #endif
3294 #if EV_USE_IOURING
3295 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3296 #endif
3297 #if EV_USE_LINUXAIO
3298 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3299 #endif
3300 #if EV_USE_EPOLL
3301 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3302 #endif
3303 #if EV_USE_POLL
3304 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3305 #endif
3306 #if EV_USE_SELECT
3307 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3308 #endif
3309
3310 for (i = NUMPRI; i--; )
3311 {
3312 array_free (pending, [i]);
3313 #if EV_IDLE_ENABLE
3314 array_free (idle, [i]);
3315 #endif
3316 }
3317
3318 ev_free (anfds); anfds = 0; anfdmax = 0;
3319
3320 /* have to use the microsoft-never-gets-it-right macro */
3321 array_free (rfeed, EMPTY);
3322 array_free (fdchange, EMPTY);
3323 array_free (timer, EMPTY);
3324 #if EV_PERIODIC_ENABLE
3325 array_free (periodic, EMPTY);
3326 #endif
3327 #if EV_FORK_ENABLE
3328 array_free (fork, EMPTY);
3329 #endif
3330 #if EV_CLEANUP_ENABLE
3331 array_free (cleanup, EMPTY);
3332 #endif
3333 array_free (prepare, EMPTY);
3334 array_free (check, EMPTY);
3335 #if EV_ASYNC_ENABLE
3336 array_free (async, EMPTY);
3337 #endif
3338
3339 backend = 0;
3340
3341 #if EV_MULTIPLICITY
3342 if (ev_is_default_loop (EV_A))
3343 #endif
3344 ev_default_loop_ptr = 0;
3345 #if EV_MULTIPLICITY
3346 else
3347 ev_free (EV_A);
3348 #endif
3349 }
3350
3351 #if EV_USE_INOTIFY
3352 inline_size void infy_fork (EV_P);
3353 #endif
3354
3355 inline_size void
3356 loop_fork (EV_P)
3357 {
3358 #if EV_USE_PORT
3359 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3360 #endif
3361 #if EV_USE_KQUEUE
3362 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3363 #endif
3364 #if EV_USE_IOURING
3365 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3366 #endif
3367 #if EV_USE_LINUXAIO
3368 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3369 #endif
3370 #if EV_USE_EPOLL
3371 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3372 #endif
3373 #if EV_USE_INOTIFY
3374 infy_fork (EV_A);
3375 #endif
3376
3377 if (postfork != 2)
3378 {
3379 #if EV_USE_SIGNALFD
3380 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3381 #endif
3382
3383 #if EV_USE_TIMERFD
3384 if (ev_is_active (&timerfd_w))
3385 {
3386 ev_ref (EV_A);
3387 ev_io_stop (EV_A_ &timerfd_w);
3388
3389 close (timerfd);
3390 timerfd = -2;
3391
3392 evtimerfd_init (EV_A);
3393 /* reschedule periodics, in case we missed something */
3394 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3395 }
3396 #endif
3397
3398 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3399 if (ev_is_active (&pipe_w))
3400 {
3401 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3402
3403 ev_ref (EV_A);
3404 ev_io_stop (EV_A_ &pipe_w);
3405
3406 if (evpipe [0] >= 0)
3407 EV_WIN32_CLOSE_FD (evpipe [0]);
3408
3409 evpipe_init (EV_A);
3410 /* iterate over everything, in case we missed something before */
3411 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3412 }
3413 #endif
3414 }
3415
3416 postfork = 0;
3417 }
3418
3419 #if EV_MULTIPLICITY
3420
3421 ecb_cold
3422 struct ev_loop *
3423 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3424 {
3425 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3426
3427 memset (EV_A, 0, sizeof (struct ev_loop));
3428 loop_init (EV_A_ flags);
3429
3430 if (ev_backend (EV_A))
3431 return EV_A;
3432
3433 ev_free (EV_A);
3434 return 0;
3435 }
3436
3437 #endif /* multiplicity */
3438
3439 #if EV_VERIFY
3440 ecb_noinline ecb_cold
3441 static void
3442 verify_watcher (EV_P_ W w)
3443 {
3444 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3445
3446 if (w->pending)
3447 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3448 }
3449
3450 ecb_noinline ecb_cold
3451 static void
3452 verify_heap (EV_P_ ANHE *heap, int N)
3453 {
3454 int i;
3455
3456 for (i = HEAP0; i < N + HEAP0; ++i)
3457 {
3458 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3459 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3460 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3461
3462 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3463 }
3464 }
3465
3466 ecb_noinline ecb_cold
3467 static void
3468 array_verify (EV_P_ W *ws, int cnt)
3469 {
3470 while (cnt--)
3471 {
3472 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3473 verify_watcher (EV_A_ ws [cnt]);
3474 }
3475 }
3476 #endif
3477
3478 #if EV_FEATURE_API
3479 void ecb_cold
3480 ev_verify (EV_P) EV_NOEXCEPT
3481 {
3482 #if EV_VERIFY
3483 int i;
3484 WL w, w2;
3485
3486 assert (activecnt >= -1);
3487
3488 assert (fdchangemax >= fdchangecnt);
3489 for (i = 0; i < fdchangecnt; ++i)
3490 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3491
3492 assert (anfdmax >= 0);
3493 for (i = 0; i < anfdmax; ++i)
3494 {
3495 int j = 0;
3496
3497 for (w = w2 = anfds [i].head; w; w = w->next)
3498 {
3499 verify_watcher (EV_A_ (W)w);
3500
3501 if (j++ & 1)
3502 {
3503 assert (("libev: io watcher list contains a loop", w != w2));
3504 w2 = w2->next;
3505 }
3506
3507 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3508 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3509 }
3510 }
3511
3512 assert (timermax >= timercnt);
3513 verify_heap (EV_A_ timers, timercnt);
3514
3515 #if EV_PERIODIC_ENABLE
3516 assert (periodicmax >= periodiccnt);
3517 verify_heap (EV_A_ periodics, periodiccnt);
3518 #endif
3519
3520 for (i = NUMPRI; i--; )
3521 {
3522 assert (pendingmax [i] >= pendingcnt [i]);
3523 #if EV_IDLE_ENABLE
3524 assert (idleall >= 0);
3525 assert (idlemax [i] >= idlecnt [i]);
3526 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3527 #endif
3528 }
3529
3530 #if EV_FORK_ENABLE
3531 assert (forkmax >= forkcnt);
3532 array_verify (EV_A_ (W *)forks, forkcnt);
3533 #endif
3534
3535 #if EV_CLEANUP_ENABLE
3536 assert (cleanupmax >= cleanupcnt);
3537 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3538 #endif
3539
3540 #if EV_ASYNC_ENABLE
3541 assert (asyncmax >= asynccnt);
3542 array_verify (EV_A_ (W *)asyncs, asynccnt);
3543 #endif
3544
3545 #if EV_PREPARE_ENABLE
3546 assert (preparemax >= preparecnt);
3547 array_verify (EV_A_ (W *)prepares, preparecnt);
3548 #endif
3549
3550 #if EV_CHECK_ENABLE
3551 assert (checkmax >= checkcnt);
3552 array_verify (EV_A_ (W *)checks, checkcnt);
3553 #endif
3554
3555 # if 0
3556 #if EV_CHILD_ENABLE
3557 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3558 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3559 #endif
3560 # endif
3561 #endif
3562 }
3563 #endif
3564
3565 #if EV_MULTIPLICITY
3566 ecb_cold
3567 struct ev_loop *
3568 #else
3569 int
3570 #endif
3571 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3572 {
3573 if (!ev_default_loop_ptr)
3574 {
3575 #if EV_MULTIPLICITY
3576 EV_P = ev_default_loop_ptr = &default_loop_struct;
3577 #else
3578 ev_default_loop_ptr = 1;
3579 #endif
3580
3581 loop_init (EV_A_ flags);
3582
3583 if (ev_backend (EV_A))
3584 {
3585 #if EV_CHILD_ENABLE
3586 ev_signal_init (&childev, childcb, SIGCHLD);
3587 ev_set_priority (&childev, EV_MAXPRI);
3588 ev_signal_start (EV_A_ &childev);
3589 ev_unref (EV_A); /* child watcher should not keep loop alive */
3590 #endif
3591 }
3592 else
3593 ev_default_loop_ptr = 0;
3594 }
3595
3596 return ev_default_loop_ptr;
3597 }
3598
3599 void
3600 ev_loop_fork (EV_P) EV_NOEXCEPT
3601 {
3602 postfork = 1;
3603 }
3604
3605 /*****************************************************************************/
3606
3607 void
3608 ev_invoke (EV_P_ void *w, int revents)
3609 {
3610 EV_CB_INVOKE ((W)w, revents);
3611 }
3612
3613 unsigned int
3614 ev_pending_count (EV_P) EV_NOEXCEPT
3615 {
3616 int pri;
3617 unsigned int count = 0;
3618
3619 for (pri = NUMPRI; pri--; )
3620 count += pendingcnt [pri];
3621
3622 return count;
3623 }
3624
3625 ecb_noinline
3626 void
3627 ev_invoke_pending (EV_P)
3628 {
3629 pendingpri = NUMPRI;
3630
3631 do
3632 {
3633 --pendingpri;
3634
3635 /* pendingpri possibly gets modified in the inner loop */
3636 while (pendingcnt [pendingpri])
3637 {
3638 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3639
3640 p->w->pending = 0;
3641 EV_CB_INVOKE (p->w, p->events);
3642 EV_FREQUENT_CHECK;
3643 }
3644 }
3645 while (pendingpri);
3646 }
3647
3648 #if EV_IDLE_ENABLE
3649 /* make idle watchers pending. this handles the "call-idle */
3650 /* only when higher priorities are idle" logic */
3651 inline_size void
3652 idle_reify (EV_P)
3653 {
3654 if (ecb_expect_false (idleall))
3655 {
3656 int pri;
3657
3658 for (pri = NUMPRI; pri--; )
3659 {
3660 if (pendingcnt [pri])
3661 break;
3662
3663 if (idlecnt [pri])
3664 {
3665 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3666 break;
3667 }
3668 }
3669 }
3670 }
3671 #endif
3672
3673 /* make timers pending */
3674 inline_size void
3675 timers_reify (EV_P)
3676 {
3677 EV_FREQUENT_CHECK;
3678
3679 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3680 {
3681 do
3682 {
3683 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3684
3685 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3686
3687 /* first reschedule or stop timer */
3688 if (w->repeat)
3689 {
3690 ev_at (w) += w->repeat;
3691 if (ev_at (w) < mn_now)
3692 ev_at (w) = mn_now;
3693
3694 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3695
3696 ANHE_at_cache (timers [HEAP0]);
3697 downheap (timers, timercnt, HEAP0);
3698 }
3699 else
3700 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3701
3702 EV_FREQUENT_CHECK;
3703 feed_reverse (EV_A_ (W)w);
3704 }
3705 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3706
3707 feed_reverse_done (EV_A_ EV_TIMER);
3708 }
3709 }
3710
3711 #if EV_PERIODIC_ENABLE
3712
3713 ecb_noinline
3714 static void
3715 periodic_recalc (EV_P_ ev_periodic *w)
3716 {
3717 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3718 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3719
3720 /* the above almost always errs on the low side */
3721 while (at <= ev_rt_now)
3722 {
3723 ev_tstamp nat = at + w->interval;
3724
3725 /* when resolution fails us, we use ev_rt_now */
3726 if (ecb_expect_false (nat == at))
3727 {
3728 at = ev_rt_now;
3729 break;
3730 }
3731
3732 at = nat;
3733 }
3734
3735 ev_at (w) = at;
3736 }
3737
3738 /* make periodics pending */
3739 inline_size void
3740 periodics_reify (EV_P)
3741 {
3742 EV_FREQUENT_CHECK;
3743
3744 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3745 {
3746 do
3747 {
3748 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3749
3750 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3751
3752 /* first reschedule or stop timer */
3753 if (w->reschedule_cb)
3754 {
3755 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3756
3757 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3758
3759 ANHE_at_cache (periodics [HEAP0]);
3760 downheap (periodics, periodiccnt, HEAP0);
3761 }
3762 else if (w->interval)
3763 {
3764 periodic_recalc (EV_A_ w);
3765 ANHE_at_cache (periodics [HEAP0]);
3766 downheap (periodics, periodiccnt, HEAP0);
3767 }
3768 else
3769 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3770
3771 EV_FREQUENT_CHECK;
3772 feed_reverse (EV_A_ (W)w);
3773 }
3774 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3775
3776 feed_reverse_done (EV_A_ EV_PERIODIC);
3777 }
3778 }
3779
3780 /* simply recalculate all periodics */
3781 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3782 ecb_noinline ecb_cold
3783 static void
3784 periodics_reschedule (EV_P)
3785 {
3786 int i;
3787
3788 /* adjust periodics after time jump */
3789 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3790 {
3791 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3792
3793 if (w->reschedule_cb)
3794 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3795 else if (w->interval)
3796 periodic_recalc (EV_A_ w);
3797
3798 ANHE_at_cache (periodics [i]);
3799 }
3800
3801 reheap (periodics, periodiccnt);
3802 }
3803 #endif
3804
3805 /* adjust all timers by a given offset */
3806 ecb_noinline ecb_cold
3807 static void
3808 timers_reschedule (EV_P_ ev_tstamp adjust)
3809 {
3810 int i;
3811
3812 for (i = 0; i < timercnt; ++i)
3813 {
3814 ANHE *he = timers + i + HEAP0;
3815 ANHE_w (*he)->at += adjust;
3816 ANHE_at_cache (*he);
3817 }
3818 }
3819
3820 /* fetch new monotonic and realtime times from the kernel */
3821 /* also detect if there was a timejump, and act accordingly */
3822 inline_speed void
3823 time_update (EV_P_ ev_tstamp max_block)
3824 {
3825 #if EV_USE_MONOTONIC
3826 if (ecb_expect_true (have_monotonic))
3827 {
3828 int i;
3829 ev_tstamp odiff = rtmn_diff;
3830
3831 mn_now = get_clock ();
3832
3833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3834 /* interpolate in the meantime */
3835 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3836 {
3837 ev_rt_now = rtmn_diff + mn_now;
3838 return;
3839 }
3840
3841 now_floor = mn_now;
3842 ev_rt_now = ev_time ();
3843
3844 /* loop a few times, before making important decisions.
3845 * on the choice of "4": one iteration isn't enough,
3846 * in case we get preempted during the calls to
3847 * ev_time and get_clock. a second call is almost guaranteed
3848 * to succeed in that case, though. and looping a few more times
3849 * doesn't hurt either as we only do this on time-jumps or
3850 * in the unlikely event of having been preempted here.
3851 */
3852 for (i = 4; --i; )
3853 {
3854 ev_tstamp diff;
3855 rtmn_diff = ev_rt_now - mn_now;
3856
3857 diff = odiff - rtmn_diff;
3858
3859 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3860 return; /* all is well */
3861
3862 ev_rt_now = ev_time ();
3863 mn_now = get_clock ();
3864 now_floor = mn_now;
3865 }
3866
3867 /* no timer adjustment, as the monotonic clock doesn't jump */
3868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3869 # if EV_PERIODIC_ENABLE
3870 periodics_reschedule (EV_A);
3871 # endif
3872 }
3873 else
3874 #endif
3875 {
3876 ev_rt_now = ev_time ();
3877
3878 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3879 {
3880 /* adjust timers. this is easy, as the offset is the same for all of them */
3881 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3882 #if EV_PERIODIC_ENABLE
3883 periodics_reschedule (EV_A);
3884 #endif
3885 }
3886
3887 mn_now = ev_rt_now;
3888 }
3889 }
3890
3891 int
3892 ev_run (EV_P_ int flags)
3893 {
3894 #if EV_FEATURE_API
3895 ++loop_depth;
3896 #endif
3897
3898 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3899
3900 loop_done = EVBREAK_CANCEL;
3901
3902 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3903
3904 do
3905 {
3906 #if EV_VERIFY >= 2
3907 ev_verify (EV_A);
3908 #endif
3909
3910 #ifndef _WIN32
3911 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3912 if (ecb_expect_false (getpid () != curpid))
3913 {
3914 curpid = getpid ();
3915 postfork = 1;
3916 }
3917 #endif
3918
3919 #if EV_FORK_ENABLE
3920 /* we might have forked, so queue fork handlers */
3921 if (ecb_expect_false (postfork))
3922 if (forkcnt)
3923 {
3924 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3925 EV_INVOKE_PENDING;
3926 }
3927 #endif
3928
3929 #if EV_PREPARE_ENABLE
3930 /* queue prepare watchers (and execute them) */
3931 if (ecb_expect_false (preparecnt))
3932 {
3933 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3934 EV_INVOKE_PENDING;
3935 }
3936 #endif
3937
3938 if (ecb_expect_false (loop_done))
3939 break;
3940
3941 /* we might have forked, so reify kernel state if necessary */
3942 if (ecb_expect_false (postfork))
3943 loop_fork (EV_A);
3944
3945 /* update fd-related kernel structures */
3946 fd_reify (EV_A);
3947
3948 /* calculate blocking time */
3949 {
3950 ev_tstamp waittime = 0.;
3951 ev_tstamp sleeptime = 0.;
3952
3953 /* remember old timestamp for io_blocktime calculation */
3954 ev_tstamp prev_mn_now = mn_now;
3955
3956 /* update time to cancel out callback processing overhead */
3957 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3958
3959 /* from now on, we want a pipe-wake-up */
3960 pipe_write_wanted = 1;
3961
3962 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3963
3964 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3965 {
3966 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3967
3968 if (timercnt)
3969 {
3970 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3971 if (waittime > to) waittime = to;
3972 }
3973
3974 #if EV_PERIODIC_ENABLE
3975 if (periodiccnt)
3976 {
3977 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3978 if (waittime > to) waittime = to;
3979 }
3980 #endif
3981
3982 /* don't let timeouts decrease the waittime below timeout_blocktime */
3983 if (ecb_expect_false (waittime < timeout_blocktime))
3984 waittime = timeout_blocktime;
3985
3986 /* now there are two more special cases left, either we have
3987 * already-expired timers, so we should not sleep, or we have timers
3988 * that expire very soon, in which case we need to wait for a minimum
3989 * amount of time for some event loop backends.
3990 */
3991 if (ecb_expect_false (waittime < backend_mintime))
3992 waittime = waittime <= EV_TS_CONST (0.)
3993 ? EV_TS_CONST (0.)
3994 : backend_mintime;
3995
3996 /* extra check because io_blocktime is commonly 0 */
3997 if (ecb_expect_false (io_blocktime))
3998 {
3999 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4000
4001 if (sleeptime > waittime - backend_mintime)
4002 sleeptime = waittime - backend_mintime;
4003
4004 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4005 {
4006 ev_sleep (sleeptime);
4007 waittime -= sleeptime;
4008 }
4009 }
4010 }
4011
4012 #if EV_FEATURE_API
4013 ++loop_count;
4014 #endif
4015 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4016 backend_poll (EV_A_ waittime);
4017 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4018
4019 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4020
4021 ECB_MEMORY_FENCE_ACQUIRE;
4022 if (pipe_write_skipped)
4023 {
4024 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4025 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4026 }
4027
4028 /* update ev_rt_now, do magic */
4029 time_update (EV_A_ waittime + sleeptime);
4030 }
4031
4032 /* queue pending timers and reschedule them */
4033 timers_reify (EV_A); /* relative timers called last */
4034 #if EV_PERIODIC_ENABLE
4035 periodics_reify (EV_A); /* absolute timers called first */
4036 #endif
4037
4038 #if EV_IDLE_ENABLE
4039 /* queue idle watchers unless other events are pending */
4040 idle_reify (EV_A);
4041 #endif
4042
4043 #if EV_CHECK_ENABLE
4044 /* queue check watchers, to be executed first */
4045 if (ecb_expect_false (checkcnt))
4046 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4047 #endif
4048
4049 EV_INVOKE_PENDING;
4050 }
4051 while (ecb_expect_true (
4052 activecnt
4053 && !loop_done
4054 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4055 ));
4056
4057 if (loop_done == EVBREAK_ONE)
4058 loop_done = EVBREAK_CANCEL;
4059
4060 #if EV_FEATURE_API
4061 --loop_depth;
4062 #endif
4063
4064 return activecnt;
4065 }
4066
4067 void
4068 ev_break (EV_P_ int how) EV_NOEXCEPT
4069 {
4070 loop_done = how;
4071 }
4072
4073 void
4074 ev_ref (EV_P) EV_NOEXCEPT
4075 {
4076 ++activecnt;
4077 }
4078
4079 void
4080 ev_unref (EV_P) EV_NOEXCEPT
4081 {
4082 --activecnt;
4083 }
4084
4085 void
4086 ev_now_update (EV_P) EV_NOEXCEPT
4087 {
4088 time_update (EV_A_ EV_TSTAMP_HUGE);
4089 }
4090
4091 void
4092 ev_suspend (EV_P) EV_NOEXCEPT
4093 {
4094 ev_now_update (EV_A);
4095 }
4096
4097 void
4098 ev_resume (EV_P) EV_NOEXCEPT
4099 {
4100 ev_tstamp mn_prev = mn_now;
4101
4102 ev_now_update (EV_A);
4103 timers_reschedule (EV_A_ mn_now - mn_prev);
4104 #if EV_PERIODIC_ENABLE
4105 /* TODO: really do this? */
4106 periodics_reschedule (EV_A);
4107 #endif
4108 }
4109
4110 /*****************************************************************************/
4111 /* singly-linked list management, used when the expected list length is short */
4112
4113 inline_size void
4114 wlist_add (WL *head, WL elem)
4115 {
4116 elem->next = *head;
4117 *head = elem;
4118 }
4119
4120 inline_size void
4121 wlist_del (WL *head, WL elem)
4122 {
4123 while (*head)
4124 {
4125 if (ecb_expect_true (*head == elem))
4126 {
4127 *head = elem->next;
4128 break;
4129 }
4130
4131 head = &(*head)->next;
4132 }
4133 }
4134
4135 /* internal, faster, version of ev_clear_pending */
4136 inline_speed void
4137 clear_pending (EV_P_ W w)
4138 {
4139 if (w->pending)
4140 {
4141 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4142 w->pending = 0;
4143 }
4144 }
4145
4146 int
4147 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4148 {
4149 W w_ = (W)w;
4150 int pending = w_->pending;
4151
4152 if (ecb_expect_true (pending))
4153 {
4154 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4155 p->w = (W)&pending_w;
4156 w_->pending = 0;
4157 return p->events;
4158 }
4159 else
4160 return 0;
4161 }
4162
4163 inline_size void
4164 pri_adjust (EV_P_ W w)
4165 {
4166 int pri = ev_priority (w);
4167 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4168 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4169 ev_set_priority (w, pri);
4170 }
4171
4172 inline_speed void
4173 ev_start (EV_P_ W w, int active)
4174 {
4175 pri_adjust (EV_A_ w);
4176 w->active = active;
4177 ev_ref (EV_A);
4178 }
4179
4180 inline_size void
4181 ev_stop (EV_P_ W w)
4182 {
4183 ev_unref (EV_A);
4184 w->active = 0;
4185 }
4186
4187 /*****************************************************************************/
4188
4189 ecb_noinline
4190 void
4191 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4192 {
4193 int fd = w->fd;
4194
4195 if (ecb_expect_false (ev_is_active (w)))
4196 return;
4197
4198 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4199 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4200
4201 #if EV_VERIFY >= 2
4202 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4203 #endif
4204 EV_FREQUENT_CHECK;
4205
4206 ev_start (EV_A_ (W)w, 1);
4207 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4208 wlist_add (&anfds[fd].head, (WL)w);
4209
4210 /* common bug, apparently */
4211 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4212
4213 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4214 w->events &= ~EV__IOFDSET;
4215
4216 EV_FREQUENT_CHECK;
4217 }
4218
4219 ecb_noinline
4220 void
4221 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4222 {
4223 clear_pending (EV_A_ (W)w);
4224 if (ecb_expect_false (!ev_is_active (w)))
4225 return;
4226
4227 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4228
4229 #if EV_VERIFY >= 2
4230 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4231 #endif
4232 EV_FREQUENT_CHECK;
4233
4234 wlist_del (&anfds[w->fd].head, (WL)w);
4235 ev_stop (EV_A_ (W)w);
4236
4237 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4238
4239 EV_FREQUENT_CHECK;
4240 }
4241
4242 ecb_noinline
4243 void
4244 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4245 {
4246 if (ecb_expect_false (ev_is_active (w)))
4247 return;
4248
4249 ev_at (w) += mn_now;
4250
4251 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4252
4253 EV_FREQUENT_CHECK;
4254
4255 ++timercnt;
4256 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4257 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4258 ANHE_w (timers [ev_active (w)]) = (WT)w;
4259 ANHE_at_cache (timers [ev_active (w)]);
4260 upheap (timers, ev_active (w));
4261
4262 EV_FREQUENT_CHECK;
4263
4264 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4265 }
4266
4267 ecb_noinline
4268 void
4269 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4270 {
4271 clear_pending (EV_A_ (W)w);
4272 if (ecb_expect_false (!ev_is_active (w)))
4273 return;
4274
4275 EV_FREQUENT_CHECK;
4276
4277 {
4278 int active = ev_active (w);
4279
4280 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4281
4282 --timercnt;
4283
4284 if (ecb_expect_true (active < timercnt + HEAP0))
4285 {
4286 timers [active] = timers [timercnt + HEAP0];
4287 adjustheap (timers, timercnt, active);
4288 }
4289 }
4290
4291 ev_at (w) -= mn_now;
4292
4293 ev_stop (EV_A_ (W)w);
4294
4295 EV_FREQUENT_CHECK;
4296 }
4297
4298 ecb_noinline
4299 void
4300 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4301 {
4302 EV_FREQUENT_CHECK;
4303
4304 clear_pending (EV_A_ (W)w);
4305
4306 if (ev_is_active (w))
4307 {
4308 if (w->repeat)
4309 {
4310 ev_at (w) = mn_now + w->repeat;
4311 ANHE_at_cache (timers [ev_active (w)]);
4312 adjustheap (timers, timercnt, ev_active (w));
4313 }
4314 else
4315 ev_timer_stop (EV_A_ w);
4316 }
4317 else if (w->repeat)
4318 {
4319 ev_at (w) = w->repeat;
4320 ev_timer_start (EV_A_ w);
4321 }
4322
4323 EV_FREQUENT_CHECK;
4324 }
4325
4326 ev_tstamp
4327 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4328 {
4329 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4330 }
4331
4332 #if EV_PERIODIC_ENABLE
4333 ecb_noinline
4334 void
4335 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4336 {
4337 if (ecb_expect_false (ev_is_active (w)))
4338 return;
4339
4340 #if EV_USE_TIMERFD
4341 if (timerfd == -2)
4342 evtimerfd_init (EV_A);
4343 #endif
4344
4345 if (w->reschedule_cb)
4346 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4347 else if (w->interval)
4348 {
4349 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4350 periodic_recalc (EV_A_ w);
4351 }
4352 else
4353 ev_at (w) = w->offset;
4354
4355 EV_FREQUENT_CHECK;
4356
4357 ++periodiccnt;
4358 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4359 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4360 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4361 ANHE_at_cache (periodics [ev_active (w)]);
4362 upheap (periodics, ev_active (w));
4363
4364 EV_FREQUENT_CHECK;
4365
4366 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4367 }
4368
4369 ecb_noinline
4370 void
4371 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4372 {
4373 clear_pending (EV_A_ (W)w);
4374 if (ecb_expect_false (!ev_is_active (w)))
4375 return;
4376
4377 EV_FREQUENT_CHECK;
4378
4379 {
4380 int active = ev_active (w);
4381
4382 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4383
4384 --periodiccnt;
4385
4386 if (ecb_expect_true (active < periodiccnt + HEAP0))
4387 {
4388 periodics [active] = periodics [periodiccnt + HEAP0];
4389 adjustheap (periodics, periodiccnt, active);
4390 }
4391 }
4392
4393 ev_stop (EV_A_ (W)w);
4394
4395 EV_FREQUENT_CHECK;
4396 }
4397
4398 ecb_noinline
4399 void
4400 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4401 {
4402 /* TODO: use adjustheap and recalculation */
4403 ev_periodic_stop (EV_A_ w);
4404 ev_periodic_start (EV_A_ w);
4405 }
4406 #endif
4407
4408 #ifndef SA_RESTART
4409 # define SA_RESTART 0
4410 #endif
4411
4412 #if EV_SIGNAL_ENABLE
4413
4414 ecb_noinline
4415 void
4416 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4417 {
4418 if (ecb_expect_false (ev_is_active (w)))
4419 return;
4420
4421 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4422
4423 #if EV_MULTIPLICITY
4424 assert (("libev: a signal must not be attached to two different loops",
4425 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4426
4427 signals [w->signum - 1].loop = EV_A;
4428 ECB_MEMORY_FENCE_RELEASE;
4429 #endif
4430
4431 EV_FREQUENT_CHECK;
4432
4433 #if EV_USE_SIGNALFD
4434 if (sigfd == -2)
4435 {
4436 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4437 if (sigfd < 0 && errno == EINVAL)
4438 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4439
4440 if (sigfd >= 0)
4441 {
4442 fd_intern (sigfd); /* doing it twice will not hurt */
4443
4444 sigemptyset (&sigfd_set);
4445
4446 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4447 ev_set_priority (&sigfd_w, EV_MAXPRI);
4448 ev_io_start (EV_A_ &sigfd_w);
4449 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4450 }
4451 }
4452
4453 if (sigfd >= 0)
4454 {
4455 /* TODO: check .head */
4456 sigaddset (&sigfd_set, w->signum);
4457 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4458
4459 signalfd (sigfd, &sigfd_set, 0);
4460 }
4461 #endif
4462
4463 ev_start (EV_A_ (W)w, 1);
4464 wlist_add (&signals [w->signum - 1].head, (WL)w);
4465
4466 if (!((WL)w)->next)
4467 # if EV_USE_SIGNALFD
4468 if (sigfd < 0) /*TODO*/
4469 # endif
4470 {
4471 # ifdef _WIN32
4472 evpipe_init (EV_A);
4473
4474 signal (w->signum, ev_sighandler);
4475 # else
4476 struct sigaction sa;
4477
4478 evpipe_init (EV_A);
4479
4480 sa.sa_handler = ev_sighandler;
4481 sigfillset (&sa.sa_mask);
4482 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4483 sigaction (w->signum, &sa, 0);
4484
4485 if (origflags & EVFLAG_NOSIGMASK)
4486 {
4487 sigemptyset (&sa.sa_mask);
4488 sigaddset (&sa.sa_mask, w->signum);
4489 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4490 }
4491 #endif
4492 }
4493
4494 EV_FREQUENT_CHECK;
4495 }
4496
4497 ecb_noinline
4498 void
4499 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4500 {
4501 clear_pending (EV_A_ (W)w);
4502 if (ecb_expect_false (!ev_is_active (w)))
4503 return;
4504
4505 EV_FREQUENT_CHECK;
4506
4507 wlist_del (&signals [w->signum - 1].head, (WL)w);
4508 ev_stop (EV_A_ (W)w);
4509
4510 if (!signals [w->signum - 1].head)
4511 {
4512 #if EV_MULTIPLICITY
4513 signals [w->signum - 1].loop = 0; /* unattach from signal */
4514 #endif
4515 #if EV_USE_SIGNALFD
4516 if (sigfd >= 0)
4517 {
4518 sigset_t ss;
4519
4520 sigemptyset (&ss);
4521 sigaddset (&ss, w->signum);
4522 sigdelset (&sigfd_set, w->signum);
4523
4524 signalfd (sigfd, &sigfd_set, 0);
4525 sigprocmask (SIG_UNBLOCK, &ss, 0);
4526 }
4527 else
4528 #endif
4529 signal (w->signum, SIG_DFL);
4530 }
4531
4532 EV_FREQUENT_CHECK;
4533 }
4534
4535 #endif
4536
4537 #if EV_CHILD_ENABLE
4538
4539 void
4540 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4541 {
4542 #if EV_MULTIPLICITY
4543 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4544 #endif
4545 if (ecb_expect_false (ev_is_active (w)))
4546 return;
4547
4548 EV_FREQUENT_CHECK;
4549
4550 ev_start (EV_A_ (W)w, 1);
4551 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4552
4553 EV_FREQUENT_CHECK;
4554 }
4555
4556 void
4557 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4558 {
4559 clear_pending (EV_A_ (W)w);
4560 if (ecb_expect_false (!ev_is_active (w)))
4561 return;
4562
4563 EV_FREQUENT_CHECK;
4564
4565 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4566 ev_stop (EV_A_ (W)w);
4567
4568 EV_FREQUENT_CHECK;
4569 }
4570
4571 #endif
4572
4573 #if EV_STAT_ENABLE
4574
4575 # ifdef _WIN32
4576 # undef lstat
4577 # define lstat(a,b) _stati64 (a,b)
4578 # endif
4579
4580 #define DEF_STAT_INTERVAL 5.0074891
4581 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4582 #define MIN_STAT_INTERVAL 0.1074891
4583
4584 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4585
4586 #if EV_USE_INOTIFY
4587
4588 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4589 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4590
4591 ecb_noinline
4592 static void
4593 infy_add (EV_P_ ev_stat *w)
4594 {
4595 w->wd = inotify_add_watch (fs_fd, w->path,
4596 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4597 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4598 | IN_DONT_FOLLOW | IN_MASK_ADD);
4599
4600 if (w->wd >= 0)
4601 {
4602 struct statfs sfs;
4603
4604 /* now local changes will be tracked by inotify, but remote changes won't */
4605 /* unless the filesystem is known to be local, we therefore still poll */
4606 /* also do poll on <2.6.25, but with normal frequency */
4607
4608 if (!fs_2625)
4609 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4610 else if (!statfs (w->path, &sfs)
4611 && (sfs.f_type == 0x1373 /* devfs */
4612 || sfs.f_type == 0x4006 /* fat */
4613 || sfs.f_type == 0x4d44 /* msdos */
4614 || sfs.f_type == 0xEF53 /* ext2/3 */
4615 || sfs.f_type == 0x72b6 /* jffs2 */
4616 || sfs.f_type == 0x858458f6 /* ramfs */
4617 || sfs.f_type == 0x5346544e /* ntfs */
4618 || sfs.f_type == 0x3153464a /* jfs */
4619 || sfs.f_type == 0x9123683e /* btrfs */
4620 || sfs.f_type == 0x52654973 /* reiser3 */
4621 || sfs.f_type == 0x01021994 /* tmpfs */
4622 || sfs.f_type == 0x58465342 /* xfs */))
4623 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4624 else
4625 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4626 }
4627 else
4628 {
4629 /* can't use inotify, continue to stat */
4630 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4631
4632 /* if path is not there, monitor some parent directory for speedup hints */
4633 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4634 /* but an efficiency issue only */
4635 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4636 {
4637 char path [4096];
4638 strcpy (path, w->path);
4639
4640 do
4641 {
4642 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4643 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4644
4645 char *pend = strrchr (path, '/');
4646
4647 if (!pend || pend == path)
4648 break;
4649
4650 *pend = 0;
4651 w->wd = inotify_add_watch (fs_fd, path, mask);
4652 }
4653 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4654 }
4655 }
4656
4657 if (w->wd >= 0)
4658 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4659
4660 /* now re-arm timer, if required */
4661 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4662 ev_timer_again (EV_A_ &w->timer);
4663 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4664 }
4665
4666 ecb_noinline
4667 static void
4668 infy_del (EV_P_ ev_stat *w)
4669 {
4670 int slot;
4671 int wd = w->wd;
4672
4673 if (wd < 0)
4674 return;
4675
4676 w->wd = -2;
4677 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4678 wlist_del (&fs_hash [slot].head, (WL)w);
4679
4680 /* remove this watcher, if others are watching it, they will rearm */
4681 inotify_rm_watch (fs_fd, wd);
4682 }
4683
4684 ecb_noinline
4685 static void
4686 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4687 {
4688 if (slot < 0)
4689 /* overflow, need to check for all hash slots */
4690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4691 infy_wd (EV_A_ slot, wd, ev);
4692 else
4693 {
4694 WL w_;
4695
4696 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4697 {
4698 ev_stat *w = (ev_stat *)w_;
4699 w_ = w_->next; /* lets us remove this watcher and all before it */
4700
4701 if (w->wd == wd || wd == -1)
4702 {
4703 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4704 {
4705 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4706 w->wd = -1;
4707 infy_add (EV_A_ w); /* re-add, no matter what */
4708 }
4709
4710 stat_timer_cb (EV_A_ &w->timer, 0);
4711 }
4712 }
4713 }
4714 }
4715
4716 static void
4717 infy_cb (EV_P_ ev_io *w, int revents)
4718 {
4719 char buf [EV_INOTIFY_BUFSIZE];
4720 int ofs;
4721 int len = read (fs_fd, buf, sizeof (buf));
4722
4723 for (ofs = 0; ofs < len; )
4724 {
4725 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4726 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4727 ofs += sizeof (struct inotify_event) + ev->len;
4728 }
4729 }
4730
4731 inline_size ecb_cold
4732 void
4733 ev_check_2625 (EV_P)
4734 {
4735 /* kernels < 2.6.25 are borked
4736 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4737 */
4738 if (ev_linux_version () < 0x020619)
4739 return;
4740
4741 fs_2625 = 1;
4742 }
4743
4744 inline_size int
4745 infy_newfd (void)
4746 {
4747 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4748 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4749 if (fd >= 0)
4750 return fd;
4751 #endif
4752 return inotify_init ();
4753 }
4754
4755 inline_size void
4756 infy_init (EV_P)
4757 {
4758 if (fs_fd != -2)
4759 return;
4760
4761 fs_fd = -1;
4762
4763 ev_check_2625 (EV_A);
4764
4765 fs_fd = infy_newfd ();
4766
4767 if (fs_fd >= 0)
4768 {
4769 fd_intern (fs_fd);
4770 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4771 ev_set_priority (&fs_w, EV_MAXPRI);
4772 ev_io_start (EV_A_ &fs_w);
4773 ev_unref (EV_A);
4774 }
4775 }
4776
4777 inline_size void
4778 infy_fork (EV_P)
4779 {
4780 int slot;
4781
4782 if (fs_fd < 0)
4783 return;
4784
4785 ev_ref (EV_A);
4786 ev_io_stop (EV_A_ &fs_w);
4787 close (fs_fd);
4788 fs_fd = infy_newfd ();
4789
4790 if (fs_fd >= 0)
4791 {
4792 fd_intern (fs_fd);
4793 ev_io_set (&fs_w, fs_fd, EV_READ);
4794 ev_io_start (EV_A_ &fs_w);
4795 ev_unref (EV_A);
4796 }
4797
4798 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4799 {
4800 WL w_ = fs_hash [slot].head;
4801 fs_hash [slot].head = 0;
4802
4803 while (w_)
4804 {
4805 ev_stat *w = (ev_stat *)w_;
4806 w_ = w_->next; /* lets us add this watcher */
4807
4808 w->wd = -1;
4809
4810 if (fs_fd >= 0)
4811 infy_add (EV_A_ w); /* re-add, no matter what */
4812 else
4813 {
4814 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4815 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4816 ev_timer_again (EV_A_ &w->timer);
4817 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4818 }
4819 }
4820 }
4821 }
4822
4823 #endif
4824
4825 #ifdef _WIN32
4826 # define EV_LSTAT(p,b) _stati64 (p, b)
4827 #else
4828 # define EV_LSTAT(p,b) lstat (p, b)
4829 #endif
4830
4831 void
4832 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4833 {
4834 if (lstat (w->path, &w->attr) < 0)
4835 w->attr.st_nlink = 0;
4836 else if (!w->attr.st_nlink)
4837 w->attr.st_nlink = 1;
4838 }
4839
4840 ecb_noinline
4841 static void
4842 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4843 {
4844 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4845
4846 ev_statdata prev = w->attr;
4847 ev_stat_stat (EV_A_ w);
4848
4849 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4850 if (
4851 prev.st_dev != w->attr.st_dev
4852 || prev.st_ino != w->attr.st_ino
4853 || prev.st_mode != w->attr.st_mode
4854 || prev.st_nlink != w->attr.st_nlink
4855 || prev.st_uid != w->attr.st_uid
4856 || prev.st_gid != w->attr.st_gid
4857 || prev.st_rdev != w->attr.st_rdev
4858 || prev.st_size != w->attr.st_size
4859 || prev.st_atime != w->attr.st_atime
4860 || prev.st_mtime != w->attr.st_mtime
4861 || prev.st_ctime != w->attr.st_ctime
4862 ) {
4863 /* we only update w->prev on actual differences */
4864 /* in case we test more often than invoke the callback, */
4865 /* to ensure that prev is always different to attr */
4866 w->prev = prev;
4867
4868 #if EV_USE_INOTIFY
4869 if (fs_fd >= 0)
4870 {
4871 infy_del (EV_A_ w);
4872 infy_add (EV_A_ w);
4873 ev_stat_stat (EV_A_ w); /* avoid race... */
4874 }
4875 #endif
4876
4877 ev_feed_event (EV_A_ w, EV_STAT);
4878 }
4879 }
4880
4881 void
4882 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4883 {
4884 if (ecb_expect_false (ev_is_active (w)))
4885 return;
4886
4887 ev_stat_stat (EV_A_ w);
4888
4889 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4890 w->interval = MIN_STAT_INTERVAL;
4891
4892 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4893 ev_set_priority (&w->timer, ev_priority (w));
4894
4895 #if EV_USE_INOTIFY
4896 infy_init (EV_A);
4897
4898 if (fs_fd >= 0)
4899 infy_add (EV_A_ w);
4900 else
4901 #endif
4902 {
4903 ev_timer_again (EV_A_ &w->timer);
4904 ev_unref (EV_A);
4905 }
4906
4907 ev_start (EV_A_ (W)w, 1);
4908
4909 EV_FREQUENT_CHECK;
4910 }
4911
4912 void
4913 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4914 {
4915 clear_pending (EV_A_ (W)w);
4916 if (ecb_expect_false (!ev_is_active (w)))
4917 return;
4918
4919 EV_FREQUENT_CHECK;
4920
4921 #if EV_USE_INOTIFY
4922 infy_del (EV_A_ w);
4923 #endif
4924
4925 if (ev_is_active (&w->timer))
4926 {
4927 ev_ref (EV_A);
4928 ev_timer_stop (EV_A_ &w->timer);
4929 }
4930
4931 ev_stop (EV_A_ (W)w);
4932
4933 EV_FREQUENT_CHECK;
4934 }
4935 #endif
4936
4937 #if EV_IDLE_ENABLE
4938 void
4939 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4940 {
4941 if (ecb_expect_false (ev_is_active (w)))
4942 return;
4943
4944 pri_adjust (EV_A_ (W)w);
4945
4946 EV_FREQUENT_CHECK;
4947
4948 {
4949 int active = ++idlecnt [ABSPRI (w)];
4950
4951 ++idleall;
4952 ev_start (EV_A_ (W)w, active);
4953
4954 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4955 idles [ABSPRI (w)][active - 1] = w;
4956 }
4957
4958 EV_FREQUENT_CHECK;
4959 }
4960
4961 void
4962 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4963 {
4964 clear_pending (EV_A_ (W)w);
4965 if (ecb_expect_false (!ev_is_active (w)))
4966 return;
4967
4968 EV_FREQUENT_CHECK;
4969
4970 {
4971 int active = ev_active (w);
4972
4973 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4974 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4975
4976 ev_stop (EV_A_ (W)w);
4977 --idleall;
4978 }
4979
4980 EV_FREQUENT_CHECK;
4981 }
4982 #endif
4983
4984 #if EV_PREPARE_ENABLE
4985 void
4986 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4987 {
4988 if (ecb_expect_false (ev_is_active (w)))
4989 return;
4990
4991 EV_FREQUENT_CHECK;
4992
4993 ev_start (EV_A_ (W)w, ++preparecnt);
4994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4995 prepares [preparecnt - 1] = w;
4996
4997 EV_FREQUENT_CHECK;
4998 }
4999
5000 void
5001 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5002 {
5003 clear_pending (EV_A_ (W)w);
5004 if (ecb_expect_false (!ev_is_active (w)))
5005 return;
5006
5007 EV_FREQUENT_CHECK;
5008
5009 {
5010 int active = ev_active (w);
5011
5012 prepares [active - 1] = prepares [--preparecnt];
5013 ev_active (prepares [active - 1]) = active;
5014 }
5015
5016 ev_stop (EV_A_ (W)w);
5017
5018 EV_FREQUENT_CHECK;
5019 }
5020 #endif
5021
5022 #if EV_CHECK_ENABLE
5023 void
5024 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5025 {
5026 if (ecb_expect_false (ev_is_active (w)))
5027 return;
5028
5029 EV_FREQUENT_CHECK;
5030
5031 ev_start (EV_A_ (W)w, ++checkcnt);
5032 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5033 checks [checkcnt - 1] = w;
5034
5035 EV_FREQUENT_CHECK;
5036 }
5037
5038 void
5039 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5040 {
5041 clear_pending (EV_A_ (W)w);
5042 if (ecb_expect_false (!ev_is_active (w)))
5043 return;
5044
5045 EV_FREQUENT_CHECK;
5046
5047 {
5048 int active = ev_active (w);
5049
5050 checks [active - 1] = checks [--checkcnt];
5051 ev_active (checks [active - 1]) = active;
5052 }
5053
5054 ev_stop (EV_A_ (W)w);
5055
5056 EV_FREQUENT_CHECK;
5057 }
5058 #endif
5059
5060 #if EV_EMBED_ENABLE
5061 ecb_noinline
5062 void
5063 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5064 {
5065 ev_run (w->other, EVRUN_NOWAIT);
5066 }
5067
5068 static void
5069 embed_io_cb (EV_P_ ev_io *io, int revents)
5070 {
5071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5072
5073 if (ev_cb (w))
5074 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5075 else
5076 ev_run (w->other, EVRUN_NOWAIT);
5077 }
5078
5079 static void
5080 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5081 {
5082 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5083
5084 {
5085 EV_P = w->other;
5086
5087 while (fdchangecnt)
5088 {
5089 fd_reify (EV_A);
5090 ev_run (EV_A_ EVRUN_NOWAIT);
5091 }
5092 }
5093 }
5094
5095 #if EV_FORK_ENABLE
5096 static void
5097 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5098 {
5099 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5100
5101 ev_embed_stop (EV_A_ w);
5102
5103 {
5104 EV_P = w->other;
5105
5106 ev_loop_fork (EV_A);
5107 ev_run (EV_A_ EVRUN_NOWAIT);
5108 }
5109
5110 ev_embed_start (EV_A_ w);
5111 }
5112 #endif
5113
5114 #if 0
5115 static void
5116 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5117 {
5118 ev_idle_stop (EV_A_ idle);
5119 }
5120 #endif
5121
5122 void
5123 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5124 {
5125 if (ecb_expect_false (ev_is_active (w)))
5126 return;
5127
5128 {
5129 EV_P = w->other;
5130 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5131 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5132 }
5133
5134 EV_FREQUENT_CHECK;
5135
5136 ev_set_priority (&w->io, ev_priority (w));
5137 ev_io_start (EV_A_ &w->io);
5138
5139 ev_prepare_init (&w->prepare, embed_prepare_cb);
5140 ev_set_priority (&w->prepare, EV_MINPRI);
5141 ev_prepare_start (EV_A_ &w->prepare);
5142
5143 #if EV_FORK_ENABLE
5144 ev_fork_init (&w->fork, embed_fork_cb);
5145 ev_fork_start (EV_A_ &w->fork);
5146 #endif
5147
5148 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5149
5150 ev_start (EV_A_ (W)w, 1);
5151
5152 EV_FREQUENT_CHECK;
5153 }
5154
5155 void
5156 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5157 {
5158 clear_pending (EV_A_ (W)w);
5159 if (ecb_expect_false (!ev_is_active (w)))
5160 return;
5161
5162 EV_FREQUENT_CHECK;
5163
5164 ev_io_stop (EV_A_ &w->io);
5165 ev_prepare_stop (EV_A_ &w->prepare);
5166 #if EV_FORK_ENABLE
5167 ev_fork_stop (EV_A_ &w->fork);
5168 #endif
5169
5170 ev_stop (EV_A_ (W)w);
5171
5172 EV_FREQUENT_CHECK;
5173 }
5174 #endif
5175
5176 #if EV_FORK_ENABLE
5177 void
5178 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5179 {
5180 if (ecb_expect_false (ev_is_active (w)))
5181 return;
5182
5183 EV_FREQUENT_CHECK;
5184
5185 ev_start (EV_A_ (W)w, ++forkcnt);
5186 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5187 forks [forkcnt - 1] = w;
5188
5189 EV_FREQUENT_CHECK;
5190 }
5191
5192 void
5193 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5194 {
5195 clear_pending (EV_A_ (W)w);
5196 if (ecb_expect_false (!ev_is_active (w)))
5197 return;
5198
5199 EV_FREQUENT_CHECK;
5200
5201 {
5202 int active = ev_active (w);
5203
5204 forks [active - 1] = forks [--forkcnt];
5205 ev_active (forks [active - 1]) = active;
5206 }
5207
5208 ev_stop (EV_A_ (W)w);
5209
5210 EV_FREQUENT_CHECK;
5211 }
5212 #endif
5213
5214 #if EV_CLEANUP_ENABLE
5215 void
5216 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5217 {
5218 if (ecb_expect_false (ev_is_active (w)))
5219 return;
5220
5221 EV_FREQUENT_CHECK;
5222
5223 ev_start (EV_A_ (W)w, ++cleanupcnt);
5224 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5225 cleanups [cleanupcnt - 1] = w;
5226
5227 /* cleanup watchers should never keep a refcount on the loop */
5228 ev_unref (EV_A);
5229 EV_FREQUENT_CHECK;
5230 }
5231
5232 void
5233 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5234 {
5235 clear_pending (EV_A_ (W)w);
5236 if (ecb_expect_false (!ev_is_active (w)))
5237 return;
5238
5239 EV_FREQUENT_CHECK;
5240 ev_ref (EV_A);
5241
5242 {
5243 int active = ev_active (w);
5244
5245 cleanups [active - 1] = cleanups [--cleanupcnt];
5246 ev_active (cleanups [active - 1]) = active;
5247 }
5248
5249 ev_stop (EV_A_ (W)w);
5250
5251 EV_FREQUENT_CHECK;
5252 }
5253 #endif
5254
5255 #if EV_ASYNC_ENABLE
5256 void
5257 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5258 {
5259 if (ecb_expect_false (ev_is_active (w)))
5260 return;
5261
5262 w->sent = 0;
5263
5264 evpipe_init (EV_A);
5265
5266 EV_FREQUENT_CHECK;
5267
5268 ev_start (EV_A_ (W)w, ++asynccnt);
5269 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5270 asyncs [asynccnt - 1] = w;
5271
5272 EV_FREQUENT_CHECK;
5273 }
5274
5275 void
5276 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5277 {
5278 clear_pending (EV_A_ (W)w);
5279 if (ecb_expect_false (!ev_is_active (w)))
5280 return;
5281
5282 EV_FREQUENT_CHECK;
5283
5284 {
5285 int active = ev_active (w);
5286
5287 asyncs [active - 1] = asyncs [--asynccnt];
5288 ev_active (asyncs [active - 1]) = active;
5289 }
5290
5291 ev_stop (EV_A_ (W)w);
5292
5293 EV_FREQUENT_CHECK;
5294 }
5295
5296 void
5297 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5298 {
5299 w->sent = 1;
5300 evpipe_write (EV_A_ &async_pending);
5301 }
5302 #endif
5303
5304 /*****************************************************************************/
5305
5306 struct ev_once
5307 {
5308 ev_io io;
5309 ev_timer to;
5310 void (*cb)(int revents, void *arg);
5311 void *arg;
5312 };
5313
5314 static void
5315 once_cb (EV_P_ struct ev_once *once, int revents)
5316 {
5317 void (*cb)(int revents, void *arg) = once->cb;
5318 void *arg = once->arg;
5319
5320 ev_io_stop (EV_A_ &once->io);
5321 ev_timer_stop (EV_A_ &once->to);
5322 ev_free (once);
5323
5324 cb (revents, arg);
5325 }
5326
5327 static void
5328 once_cb_io (EV_P_ ev_io *w, int revents)
5329 {
5330 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5331
5332 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5333 }
5334
5335 static void
5336 once_cb_to (EV_P_ ev_timer *w, int revents)
5337 {
5338 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5339
5340 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5341 }
5342
5343 void
5344 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5345 {
5346 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5347
5348 once->cb = cb;
5349 once->arg = arg;
5350
5351 ev_init (&once->io, once_cb_io);
5352 if (fd >= 0)
5353 {
5354 ev_io_set (&once->io, fd, events);
5355 ev_io_start (EV_A_ &once->io);
5356 }
5357
5358 ev_init (&once->to, once_cb_to);
5359 if (timeout >= 0.)
5360 {
5361 ev_timer_set (&once->to, timeout, 0.);
5362 ev_timer_start (EV_A_ &once->to);
5363 }
5364 }
5365
5366 /*****************************************************************************/
5367
5368 #if EV_WALK_ENABLE
5369 ecb_cold
5370 void
5371 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5372 {
5373 int i, j;
5374 ev_watcher_list *wl, *wn;
5375
5376 if (types & (EV_IO | EV_EMBED))
5377 for (i = 0; i < anfdmax; ++i)
5378 for (wl = anfds [i].head; wl; )
5379 {
5380 wn = wl->next;
5381
5382 #if EV_EMBED_ENABLE
5383 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5384 {
5385 if (types & EV_EMBED)
5386 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5387 }
5388 else
5389 #endif
5390 #if EV_USE_INOTIFY
5391 if (ev_cb ((ev_io *)wl) == infy_cb)
5392 ;
5393 else
5394 #endif
5395 if ((ev_io *)wl != &pipe_w)
5396 if (types & EV_IO)
5397 cb (EV_A_ EV_IO, wl);
5398
5399 wl = wn;
5400 }
5401
5402 if (types & (EV_TIMER | EV_STAT))
5403 for (i = timercnt + HEAP0; i-- > HEAP0; )
5404 #if EV_STAT_ENABLE
5405 /*TODO: timer is not always active*/
5406 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5407 {
5408 if (types & EV_STAT)
5409 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5410 }
5411 else
5412 #endif
5413 if (types & EV_TIMER)
5414 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5415
5416 #if EV_PERIODIC_ENABLE
5417 if (types & EV_PERIODIC)
5418 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5419 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5420 #endif
5421
5422 #if EV_IDLE_ENABLE
5423 if (types & EV_IDLE)
5424 for (j = NUMPRI; j--; )
5425 for (i = idlecnt [j]; i--; )
5426 cb (EV_A_ EV_IDLE, idles [j][i]);
5427 #endif
5428
5429 #if EV_FORK_ENABLE
5430 if (types & EV_FORK)
5431 for (i = forkcnt; i--; )
5432 if (ev_cb (forks [i]) != embed_fork_cb)
5433 cb (EV_A_ EV_FORK, forks [i]);
5434 #endif
5435
5436 #if EV_ASYNC_ENABLE
5437 if (types & EV_ASYNC)
5438 for (i = asynccnt; i--; )
5439 cb (EV_A_ EV_ASYNC, asyncs [i]);
5440 #endif
5441
5442 #if EV_PREPARE_ENABLE
5443 if (types & EV_PREPARE)
5444 for (i = preparecnt; i--; )
5445 # if EV_EMBED_ENABLE
5446 if (ev_cb (prepares [i]) != embed_prepare_cb)
5447 # endif
5448 cb (EV_A_ EV_PREPARE, prepares [i]);
5449 #endif
5450
5451 #if EV_CHECK_ENABLE
5452 if (types & EV_CHECK)
5453 for (i = checkcnt; i--; )
5454 cb (EV_A_ EV_CHECK, checks [i]);
5455 #endif
5456
5457 #if EV_SIGNAL_ENABLE
5458 if (types & EV_SIGNAL)
5459 for (i = 0; i < EV_NSIG - 1; ++i)
5460 for (wl = signals [i].head; wl; )
5461 {
5462 wn = wl->next;
5463 cb (EV_A_ EV_SIGNAL, wl);
5464 wl = wn;
5465 }
5466 #endif
5467
5468 #if EV_CHILD_ENABLE
5469 if (types & EV_CHILD)
5470 for (i = (EV_PID_HASHSIZE); i--; )
5471 for (wl = childs [i]; wl; )
5472 {
5473 wn = wl->next;
5474 cb (EV_A_ EV_CHILD, wl);
5475 wl = wn;
5476 }
5477 #endif
5478 /* EV_STAT 0x00001000 /* stat data changed */
5479 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5480 }
5481 #endif
5482
5483 #if EV_MULTIPLICITY
5484 #include "ev_wrap.h"
5485 #endif
5486