ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.527
Committed: Wed Jan 22 22:38:19 2020 UTC (4 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.526: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130 # ifndef EV_USE_IOURING
131 # define EV_USE_IOURING EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_IOURING
135 # define EV_USE_IOURING 0
136 # endif
137
138 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139 # ifndef EV_USE_KQUEUE
140 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_KQUEUE
144 # define EV_USE_KQUEUE 0
145 # endif
146
147 # if HAVE_PORT_H && HAVE_PORT_CREATE
148 # ifndef EV_USE_PORT
149 # define EV_USE_PORT EV_FEATURE_BACKENDS
150 # endif
151 # else
152 # undef EV_USE_PORT
153 # define EV_USE_PORT 0
154 # endif
155
156 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157 # ifndef EV_USE_INOTIFY
158 # define EV_USE_INOTIFY EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_INOTIFY
162 # define EV_USE_INOTIFY 0
163 # endif
164
165 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166 # ifndef EV_USE_SIGNALFD
167 # define EV_USE_SIGNALFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_SIGNALFD
171 # define EV_USE_SIGNALFD 0
172 # endif
173
174 # if HAVE_EVENTFD
175 # ifndef EV_USE_EVENTFD
176 # define EV_USE_EVENTFD EV_FEATURE_OS
177 # endif
178 # else
179 # undef EV_USE_EVENTFD
180 # define EV_USE_EVENTFD 0
181 # endif
182
183 # if HAVE_SYS_TIMERFD_H
184 # ifndef EV_USE_TIMERFD
185 # define EV_USE_TIMERFD EV_FEATURE_OS
186 # endif
187 # else
188 # undef EV_USE_TIMERFD
189 # define EV_USE_TIMERFD 0
190 # endif
191
192 #endif
193
194 /* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202 #define _DARWIN_UNLIMITED_SELECT 1
203
204 #include <stdlib.h>
205 #include <string.h>
206 #include <fcntl.h>
207 #include <stddef.h>
208
209 #include <stdio.h>
210
211 #include <assert.h>
212 #include <errno.h>
213 #include <sys/types.h>
214 #include <time.h>
215 #include <limits.h>
216
217 #include <signal.h>
218
219 #ifdef EV_H
220 # include EV_H
221 #else
222 # include "ev.h"
223 #endif
224
225 #if EV_NO_THREADS
226 # undef EV_NO_SMP
227 # define EV_NO_SMP 1
228 # undef ECB_NO_THREADS
229 # define ECB_NO_THREADS 1
230 #endif
231 #if EV_NO_SMP
232 # undef EV_NO_SMP
233 # define ECB_NO_SMP 1
234 #endif
235
236 #ifndef _WIN32
237 # include <sys/time.h>
238 # include <sys/wait.h>
239 # include <unistd.h>
240 #else
241 # include <io.h>
242 # define WIN32_LEAN_AND_MEAN
243 # include <winsock2.h>
244 # include <windows.h>
245 # ifndef EV_SELECT_IS_WINSOCKET
246 # define EV_SELECT_IS_WINSOCKET 1
247 # endif
248 # undef EV_AVOID_STDIO
249 #endif
250
251 /* this block tries to deduce configuration from header-defined symbols and defaults */
252
253 /* try to deduce the maximum number of signals on this platform */
254 #if defined EV_NSIG
255 /* use what's provided */
256 #elif defined NSIG
257 # define EV_NSIG (NSIG)
258 #elif defined _NSIG
259 # define EV_NSIG (_NSIG)
260 #elif defined SIGMAX
261 # define EV_NSIG (SIGMAX+1)
262 #elif defined SIG_MAX
263 # define EV_NSIG (SIG_MAX+1)
264 #elif defined _SIG_MAX
265 # define EV_NSIG (_SIG_MAX+1)
266 #elif defined MAXSIG
267 # define EV_NSIG (MAXSIG+1)
268 #elif defined MAX_SIG
269 # define EV_NSIG (MAX_SIG+1)
270 #elif defined SIGARRAYSIZE
271 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272 #elif defined _sys_nsig
273 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274 #else
275 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
276 #endif
277
278 #ifndef EV_USE_FLOOR
279 # define EV_USE_FLOOR 0
280 #endif
281
282 #ifndef EV_USE_CLOCK_SYSCALL
283 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285 # else
286 # define EV_USE_CLOCK_SYSCALL 0
287 # endif
288 #endif
289
290 #if !(_POSIX_TIMERS > 0)
291 # ifndef EV_USE_MONOTONIC
292 # define EV_USE_MONOTONIC 0
293 # endif
294 # ifndef EV_USE_REALTIME
295 # define EV_USE_REALTIME 0
296 # endif
297 #endif
298
299 #ifndef EV_USE_MONOTONIC
300 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301 # define EV_USE_MONOTONIC EV_FEATURE_OS
302 # else
303 # define EV_USE_MONOTONIC 0
304 # endif
305 #endif
306
307 #ifndef EV_USE_REALTIME
308 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309 #endif
310
311 #ifndef EV_USE_NANOSLEEP
312 # if _POSIX_C_SOURCE >= 199309L
313 # define EV_USE_NANOSLEEP EV_FEATURE_OS
314 # else
315 # define EV_USE_NANOSLEEP 0
316 # endif
317 #endif
318
319 #ifndef EV_USE_SELECT
320 # define EV_USE_SELECT EV_FEATURE_BACKENDS
321 #endif
322
323 #ifndef EV_USE_POLL
324 # ifdef _WIN32
325 # define EV_USE_POLL 0
326 # else
327 # define EV_USE_POLL EV_FEATURE_BACKENDS
328 # endif
329 #endif
330
331 #ifndef EV_USE_EPOLL
332 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
334 # else
335 # define EV_USE_EPOLL 0
336 # endif
337 #endif
338
339 #ifndef EV_USE_KQUEUE
340 # define EV_USE_KQUEUE 0
341 #endif
342
343 #ifndef EV_USE_PORT
344 # define EV_USE_PORT 0
345 #endif
346
347 #ifndef EV_USE_LINUXAIO
348 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349 # define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350 # else
351 # define EV_USE_LINUXAIO 0
352 # endif
353 #endif
354
355 #ifndef EV_USE_IOURING
356 # if __linux /* later checks might disable again */
357 # define EV_USE_IOURING 1
358 # else
359 # define EV_USE_IOURING 0
360 # endif
361 #endif
362
363 #ifndef EV_USE_INOTIFY
364 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365 # define EV_USE_INOTIFY EV_FEATURE_OS
366 # else
367 # define EV_USE_INOTIFY 0
368 # endif
369 #endif
370
371 #ifndef EV_PID_HASHSIZE
372 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373 #endif
374
375 #ifndef EV_INOTIFY_HASHSIZE
376 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377 #endif
378
379 #ifndef EV_USE_EVENTFD
380 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381 # define EV_USE_EVENTFD EV_FEATURE_OS
382 # else
383 # define EV_USE_EVENTFD 0
384 # endif
385 #endif
386
387 #ifndef EV_USE_SIGNALFD
388 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389 # define EV_USE_SIGNALFD EV_FEATURE_OS
390 # else
391 # define EV_USE_SIGNALFD 0
392 # endif
393 #endif
394
395 #ifndef EV_USE_TIMERFD
396 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397 # define EV_USE_TIMERFD EV_FEATURE_OS
398 # else
399 # define EV_USE_TIMERFD 0
400 # endif
401 #endif
402
403 #if 0 /* debugging */
404 # define EV_VERIFY 3
405 # define EV_USE_4HEAP 1
406 # define EV_HEAP_CACHE_AT 1
407 #endif
408
409 #ifndef EV_VERIFY
410 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411 #endif
412
413 #ifndef EV_USE_4HEAP
414 # define EV_USE_4HEAP EV_FEATURE_DATA
415 #endif
416
417 #ifndef EV_HEAP_CACHE_AT
418 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419 #endif
420
421 #ifdef __ANDROID__
422 /* supposedly, android doesn't typedef fd_mask */
423 # undef EV_USE_SELECT
424 # define EV_USE_SELECT 0
425 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426 # undef EV_USE_CLOCK_SYSCALL
427 # define EV_USE_CLOCK_SYSCALL 0
428 #endif
429
430 /* aix's poll.h seems to cause lots of trouble */
431 #ifdef _AIX
432 /* AIX has a completely broken poll.h header */
433 # undef EV_USE_POLL
434 # define EV_USE_POLL 0
435 #endif
436
437 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438 /* which makes programs even slower. might work on other unices, too. */
439 #if EV_USE_CLOCK_SYSCALL
440 # include <sys/syscall.h>
441 # ifdef SYS_clock_gettime
442 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443 # undef EV_USE_MONOTONIC
444 # define EV_USE_MONOTONIC 1
445 # define EV_NEED_SYSCALL 1
446 # else
447 # undef EV_USE_CLOCK_SYSCALL
448 # define EV_USE_CLOCK_SYSCALL 0
449 # endif
450 #endif
451
452 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
453
454 #ifndef CLOCK_MONOTONIC
455 # undef EV_USE_MONOTONIC
456 # define EV_USE_MONOTONIC 0
457 #endif
458
459 #ifndef CLOCK_REALTIME
460 # undef EV_USE_REALTIME
461 # define EV_USE_REALTIME 0
462 #endif
463
464 #if !EV_STAT_ENABLE
465 # undef EV_USE_INOTIFY
466 # define EV_USE_INOTIFY 0
467 #endif
468
469 #if __linux && EV_USE_IOURING
470 # include <linux/version.h>
471 # if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472 # undef EV_USE_IOURING
473 # define EV_USE_IOURING 0
474 # endif
475 #endif
476
477 #if !EV_USE_NANOSLEEP
478 /* hp-ux has it in sys/time.h, which we unconditionally include above */
479 # if !defined _WIN32 && !defined __hpux
480 # include <sys/select.h>
481 # endif
482 #endif
483
484 #if EV_USE_LINUXAIO
485 # include <sys/syscall.h>
486 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487 # define EV_NEED_SYSCALL 1
488 # else
489 # undef EV_USE_LINUXAIO
490 # define EV_USE_LINUXAIO 0
491 # endif
492 #endif
493
494 #if EV_USE_IOURING
495 # include <sys/syscall.h>
496 # if !SYS_io_uring_setup && __linux && !__alpha
497 # define SYS_io_uring_setup 425
498 # define SYS_io_uring_enter 426
499 # define SYS_io_uring_wregister 427
500 # endif
501 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502 # define EV_NEED_SYSCALL 1
503 # else
504 # undef EV_USE_IOURING
505 # define EV_USE_IOURING 0
506 # endif
507 #endif
508
509 #if EV_USE_INOTIFY
510 # include <sys/statfs.h>
511 # include <sys/inotify.h>
512 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513 # ifndef IN_DONT_FOLLOW
514 # undef EV_USE_INOTIFY
515 # define EV_USE_INOTIFY 0
516 # endif
517 #endif
518
519 #if EV_USE_EVENTFD
520 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521 # include <stdint.h>
522 # ifndef EFD_NONBLOCK
523 # define EFD_NONBLOCK O_NONBLOCK
524 # endif
525 # ifndef EFD_CLOEXEC
526 # ifdef O_CLOEXEC
527 # define EFD_CLOEXEC O_CLOEXEC
528 # else
529 # define EFD_CLOEXEC 02000000
530 # endif
531 # endif
532 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533 #endif
534
535 #if EV_USE_SIGNALFD
536 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537 # include <stdint.h>
538 # ifndef SFD_NONBLOCK
539 # define SFD_NONBLOCK O_NONBLOCK
540 # endif
541 # ifndef SFD_CLOEXEC
542 # ifdef O_CLOEXEC
543 # define SFD_CLOEXEC O_CLOEXEC
544 # else
545 # define SFD_CLOEXEC 02000000
546 # endif
547 # endif
548 EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550 struct signalfd_siginfo
551 {
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554 };
555 #endif
556
557 /* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558 #if EV_USE_TIMERFD
559 # include <sys/timerfd.h>
560 /* timerfd is only used for periodics */
561 # if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562 # undef EV_USE_TIMERFD
563 # define EV_USE_TIMERFD 0
564 # endif
565 #endif
566
567 /*****************************************************************************/
568
569 #if EV_VERIFY >= 3
570 # define EV_FREQUENT_CHECK ev_verify (EV_A)
571 #else
572 # define EV_FREQUENT_CHECK do { } while (0)
573 #endif
574
575 /*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584 #define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
585
586 /* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589 #define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594 #ifndef EV_TS_CONST
595 # define EV_TS_CONST(nv) nv
596 # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597 # define EV_TS_FROM_USEC(us) us * 1e-6
598 # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599 # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600 # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601 # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602 #endif
603
604 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605 /* ECB.H BEGIN */
606 /*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646 #ifndef ECB_H
647 #define ECB_H
648
649 /* 16 bits major, 16 bits minor */
650 #define ECB_VERSION 0x00010008
651
652 #include <string.h> /* for memcpy */
653
654 #ifdef _WIN32
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
667 #if __GNUC__
668 typedef signed long long int64_t;
669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
685 #else
686 #include <inttypes.h>
687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
688 #define ECB_PTRSIZE 8
689 #else
690 #define ECB_PTRSIZE 4
691 #endif
692 #endif
693
694 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697 #ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
702 #endif
703 #endif
704
705 /* work around x32 idiocy by defining proper macros */
706 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712 #endif
713
714 /* many compilers define _GNUC_ to some versions but then only implement
715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
723 #else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725 #endif
726
727 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729 #if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731 #else
732 #define ECB_CLANG_BUILTIN(x) 0
733 #endif
734
735 #if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737 #else
738 #define ECB_CLANG_EXTENSION(x) 0
739 #endif
740
741 #define ECB_CPP (__cplusplus+0)
742 #define ECB_CPP11 (__cplusplus >= 201103L)
743 #define ECB_CPP14 (__cplusplus >= 201402L)
744 #define ECB_CPP17 (__cplusplus >= 201703L)
745
746 #if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749 #else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752 #endif
753
754 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758 #if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762 #else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766 #endif
767
768 /*****************************************************************************/
769
770 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773 #if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775 #endif
776
777 #if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779 #endif
780
781 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782 #if __xlC__ && ECB_CPP
783 #include <builtins.h>
784 #endif
785
786 #if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788 #endif
789
790 #ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844 #endif
845
846 #ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886 #endif
887
888 #ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897 #endif
898
899 #ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915 #endif
916
917 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919 #endif
920
921 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923 #endif
924
925 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927 #endif
928
929 /*****************************************************************************/
930
931 #if ECB_CPP
932 #define ecb_inline static inline
933 #elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935 #elif ECB_C99
936 #define ecb_inline static inline
937 #else
938 #define ecb_inline static
939 #endif
940
941 #if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943 #elif ECB_C99
944 #define ecb_restrict restrict
945 #else
946 #define ecb_restrict
947 #endif
948
949 typedef int ecb_bool;
950
951 #define ECB_CONCAT_(a, b) a ## b
952 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953 #define ECB_STRINGIFY_(a) # a
954 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957 #define ecb_function_ ecb_inline
958
959 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961 #else
962 #define ecb_attribute(attrlist)
963 #endif
964
965 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967 #else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973 #endif
974
975 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977 #else
978 #define ecb_expect(expr,value) (expr)
979 #endif
980
981 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983 #else
984 #define ecb_prefetch(addr,rw,locality)
985 #endif
986
987 /* no emulation for ecb_decltype */
988 #if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994 #endif
995
996 #if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998 #else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000 #endif
1001
1002 #if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004 #elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006 #else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008 #endif
1009
1010 #if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012 #else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014 #endif
1015
1016 #define ecb_unused ecb_attribute ((__unused__))
1017 #define ecb_const ecb_attribute ((__const__))
1018 #define ecb_pure ecb_attribute ((__pure__))
1019
1020 #if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023 #elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025 #elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028 #else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030 #endif
1031
1032 #if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036 #else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040 #endif
1041
1042 /* put around conditional expressions if you are very sure that the */
1043 /* expression is mostly true or mostly false. note that these return */
1044 /* booleans, not the expression. */
1045 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1046 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047 /* for compatibility to the rest of the world */
1048 #define ecb_likely(expr) ecb_expect_true (expr)
1049 #define ecb_unlikely(expr) ecb_expect_false (expr)
1050
1051 /* count trailing zero bits and count # of one bits */
1052 #if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063 #else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072 #else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077 #if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083 #else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089 #endif
1090
1091 return r;
1092 #endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103 #else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106 #endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128 #else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138 #endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148 #else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154 #endif
1155 }
1156 #endif
1157
1158 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165 {
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168 }
1169
1170 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172 {
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179 }
1180
1181 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183 {
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191 }
1192
1193 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1194 /* so for this version we are lazy */
1195 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196 ecb_function_ ecb_const int
1197 ecb_popcount64 (uint64_t x)
1198 {
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200 }
1201
1202 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220 #if ECB_CPP
1221
1222 inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223 inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224 inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225 inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227 inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228 inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229 inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230 inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232 inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233 inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234 inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235 inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237 inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238 inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239 inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240 inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242 inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243 inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244 inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246 inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247 inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248 inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249 inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251 inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252 inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253 inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254 inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256 #endif
1257
1258 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266 #elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271 #else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292 #endif
1293
1294 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296 #else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300 #endif
1301
1302 /* try to tell the compiler that some condition is definitely true */
1303 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306 ecb_inline ecb_const uint32_t
1307 ecb_byteorder_helper (void)
1308 {
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323 #else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330 #endif
1331 }
1332
1333 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338 /*****************************************************************************/
1339 /* unaligned load/store */
1340
1341 ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342 ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343 ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345 ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346 ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347 ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349 ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350 ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351 ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353 ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354 ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355 ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357 ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358 ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359 ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361 ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362 ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363 ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365 ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366 ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367 ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369 ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370 ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371 ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373 ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374 ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375 ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377 ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378 ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379 ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381 #if ECB_CPP
1382
1383 inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384 inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385 inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386 inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388 template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389 template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390 template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391 template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392 template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393 template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394 template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395 template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397 template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398 template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399 template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400 template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401 template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402 template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403 template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404 template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406 #endif
1407
1408 /*****************************************************************************/
1409
1410 #if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412 #else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414 #endif
1415
1416 #if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427 #else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430 #endif
1431
1432 #if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439 #else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441 #endif
1442
1443 /*****************************************************************************/
1444
1445 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446 ecb_function_ ecb_const uint32_t
1447 ecb_binary16_to_binary32 (uint32_t x)
1448 {
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475 }
1476
1477 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478 ecb_function_ ecb_const uint16_t
1479 ecb_binary32_to_binary16 (uint32_t x)
1480 {
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539 }
1540
1541 /*******************************************************************************/
1542 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544 /* basically, everything uses "ieee pure-endian" floating point numbers */
1545 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546 #if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562 #else
1563 #define ECB_STDFP 0
1564 #endif
1565
1566 #ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747 #endif
1748
1749 #endif
1750
1751 /* ECB.H END */
1752
1753 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754 /* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761 # error "memory fences not defined for your architecture, please report"
1762 #endif
1763
1764 #ifndef ECB_MEMORY_FENCE
1765 # define ECB_MEMORY_FENCE do { } while (0)
1766 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768 #endif
1769
1770 #define inline_size ecb_inline
1771
1772 #if EV_FEATURE_CODE
1773 # define inline_speed ecb_inline
1774 #else
1775 # define inline_speed ecb_noinline static
1776 #endif
1777
1778 /*****************************************************************************/
1779 /* raw syscall wrappers */
1780
1781 #if EV_NEED_SYSCALL
1782
1783 #include <sys/syscall.h>
1784
1785 /*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793 #if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820 #endif
1821
1822 #ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830 #else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838 #endif
1839
1840 #endif
1841
1842 /*****************************************************************************/
1843
1844 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846 #if EV_MINPRI == EV_MAXPRI
1847 # define ABSPRI(w) (((W)w), 0)
1848 #else
1849 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850 #endif
1851
1852 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1853
1854 typedef ev_watcher *W;
1855 typedef ev_watcher_list *WL;
1856 typedef ev_watcher_time *WT;
1857
1858 #define ev_active(w) ((W)(w))->active
1859 #define ev_at(w) ((WT)(w))->at
1860
1861 #if EV_USE_REALTIME
1862 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863 /* giving it a reasonably high chance of working on typical architectures */
1864 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865 #endif
1866
1867 #if EV_USE_MONOTONIC
1868 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869 #endif
1870
1871 #ifndef EV_FD_TO_WIN32_HANDLE
1872 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873 #endif
1874 #ifndef EV_WIN32_HANDLE_TO_FD
1875 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876 #endif
1877 #ifndef EV_WIN32_CLOSE_FD
1878 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1879 #endif
1880
1881 #ifdef _WIN32
1882 # include "ev_win32.c"
1883 #endif
1884
1885 /*****************************************************************************/
1886
1887 #if EV_USE_LINUXAIO
1888 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889 #endif
1890
1891 /* define a suitable floor function (only used by periodics atm) */
1892
1893 #if EV_USE_FLOOR
1894 # include <math.h>
1895 # define ev_floor(v) floor (v)
1896 #else
1897
1898 #include <float.h>
1899
1900 /* a floor() replacement function, should be independent of ev_tstamp type */
1901 ecb_noinline
1902 static ev_tstamp
1903 ev_floor (ev_tstamp v)
1904 {
1905 /* the choice of shift factor is not terribly important */
1906 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908 #else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910 #endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934 }
1935
1936 #endif
1937
1938 /*****************************************************************************/
1939
1940 #ifdef __linux
1941 # include <sys/utsname.h>
1942 #endif
1943
1944 ecb_noinline ecb_cold
1945 static unsigned int
1946 ev_linux_version (void)
1947 {
1948 #ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976 #else
1977 return 0;
1978 #endif
1979 }
1980
1981 /*****************************************************************************/
1982
1983 #if EV_AVOID_STDIO
1984 ecb_noinline ecb_cold
1985 static void
1986 ev_printerr (const char *msg)
1987 {
1988 write (STDERR_FILENO, msg, strlen (msg));
1989 }
1990 #endif
1991
1992 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1993
1994 ecb_cold
1995 void
1996 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1997 {
1998 syserr_cb = cb;
1999 }
2000
2001 ecb_noinline ecb_cold
2002 static void
2003 ev_syserr (const char *msg)
2004 {
2005 if (!msg)
2006 msg = "(libev) system error";
2007
2008 if (syserr_cb)
2009 syserr_cb (msg);
2010 else
2011 {
2012 #if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017 #else
2018 perror (msg);
2019 #endif
2020 abort ();
2021 }
2022 }
2023
2024 static void *
2025 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2026 {
2027 /* some systems, notably openbsd and darwin, fail to properly
2028 * implement realloc (x, 0) (as required by both ansi c-89 and
2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
2032 */
2033
2034 if (size)
2035 return realloc (ptr, size);
2036
2037 free (ptr);
2038 return 0;
2039 }
2040
2041 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
2042
2043 ecb_cold
2044 void
2045 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
2046 {
2047 alloc = cb;
2048 }
2049
2050 inline_speed void *
2051 ev_realloc (void *ptr, long size)
2052 {
2053 ptr = alloc (ptr, size);
2054
2055 if (!ptr && size)
2056 {
2057 #if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059 #else
2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061 #endif
2062 abort ();
2063 }
2064
2065 return ptr;
2066 }
2067
2068 #define ev_malloc(size) ev_realloc (0, (size))
2069 #define ev_free(ptr) ev_realloc ((ptr), 0)
2070
2071 /*****************************************************************************/
2072
2073 /* set in reify when reification needed */
2074 #define EV_ANFD_REIFY 1
2075
2076 /* file descriptor info structure */
2077 typedef struct
2078 {
2079 WL head;
2080 unsigned char events; /* the events watched for */
2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084 #if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086 #endif
2087 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2088 SOCKET handle;
2089 #endif
2090 #if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092 #endif
2093 } ANFD;
2094
2095 /* stores the pending event set for a given watcher */
2096 typedef struct
2097 {
2098 W w;
2099 int events; /* the pending event set for the given watcher */
2100 } ANPENDING;
2101
2102 #if EV_USE_INOTIFY
2103 /* hash table entry per inotify-id */
2104 typedef struct
2105 {
2106 WL head;
2107 } ANFS;
2108 #endif
2109
2110 /* Heap Entry */
2111 #if EV_HEAP_CACHE_AT
2112 /* a heap element */
2113 typedef struct {
2114 ev_tstamp at;
2115 WT w;
2116 } ANHE;
2117
2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2121 #else
2122 /* a heap element */
2123 typedef WT ANHE;
2124
2125 #define ANHE_w(he) (he)
2126 #define ANHE_at(he) (he)->at
2127 #define ANHE_at_cache(he)
2128 #endif
2129
2130 #if EV_MULTIPLICITY
2131
2132 struct ev_loop
2133 {
2134 ev_tstamp ev_rt_now;
2135 #define ev_rt_now ((loop)->ev_rt_now)
2136 #define VAR(name,decl) decl;
2137 #include "ev_vars.h"
2138 #undef VAR
2139 };
2140 #include "ev_wrap.h"
2141
2142 static struct ev_loop default_loop_struct;
2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2144
2145 #else
2146
2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2148 #define VAR(name,decl) static decl;
2149 #include "ev_vars.h"
2150 #undef VAR
2151
2152 static int ev_default_loop_ptr;
2153
2154 #endif
2155
2156 #if EV_FEATURE_API
2157 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159 # define EV_INVOKE_PENDING invoke_cb (EV_A)
2160 #else
2161 # define EV_RELEASE_CB (void)0
2162 # define EV_ACQUIRE_CB (void)0
2163 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164 #endif
2165
2166 #define EVBREAK_RECURSE 0x80
2167
2168 /*****************************************************************************/
2169
2170 #ifndef EV_HAVE_EV_TIME
2171 ev_tstamp
2172 ev_time (void) EV_NOEXCEPT
2173 {
2174 #if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
2177 struct timespec ts;
2178 clock_gettime (CLOCK_REALTIME, &ts);
2179 return EV_TS_GET (ts);
2180 }
2181 #endif
2182
2183 {
2184 struct timeval tv;
2185 gettimeofday (&tv, 0);
2186 return EV_TV_GET (tv);
2187 }
2188 }
2189 #endif
2190
2191 inline_size ev_tstamp
2192 get_clock (void)
2193 {
2194 #if EV_USE_MONOTONIC
2195 if (ecb_expect_true (have_monotonic))
2196 {
2197 struct timespec ts;
2198 clock_gettime (CLOCK_MONOTONIC, &ts);
2199 return EV_TS_GET (ts);
2200 }
2201 #endif
2202
2203 return ev_time ();
2204 }
2205
2206 #if EV_MULTIPLICITY
2207 ev_tstamp
2208 ev_now (EV_P) EV_NOEXCEPT
2209 {
2210 return ev_rt_now;
2211 }
2212 #endif
2213
2214 void
2215 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2216 {
2217 if (delay > EV_TS_CONST (0.))
2218 {
2219 #if EV_USE_NANOSLEEP
2220 struct timespec ts;
2221
2222 EV_TS_SET (ts, delay);
2223 nanosleep (&ts, 0);
2224 #elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2228 #else
2229 struct timeval tv;
2230
2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2232 /* something not guaranteed by newer posix versions, but guaranteed */
2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
2235 select (0, 0, 0, 0, &tv);
2236 #endif
2237 }
2238 }
2239
2240 /*****************************************************************************/
2241
2242 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2243
2244 /* find a suitable new size for the given array, */
2245 /* hopefully by rounding to a nice-to-malloc size */
2246 inline_size int
2247 array_nextsize (int elem, int cur, int cnt)
2248 {
2249 int ncur = cur + 1;
2250
2251 do
2252 ncur <<= 1;
2253 while (cnt > ncur);
2254
2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2257 {
2258 ncur *= elem;
2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2260 ncur = ncur - sizeof (void *) * 4;
2261 ncur /= elem;
2262 }
2263
2264 return ncur;
2265 }
2266
2267 ecb_noinline ecb_cold
2268 static void *
2269 array_realloc (int elem, void *base, int *cur, int cnt)
2270 {
2271 *cur = array_nextsize (elem, *cur, cnt);
2272 return ev_realloc (base, elem * *cur);
2273 }
2274
2275 #define array_needsize_noinit(base,offset,count)
2276
2277 #define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2279
2280 #define array_needsize(type,base,cur,cnt,init) \
2281 if (ecb_expect_false ((cnt) > (cur))) \
2282 { \
2283 ecb_unused int ocur_ = (cur); \
2284 (base) = (type *)array_realloc \
2285 (sizeof (type), (base), &(cur), (cnt)); \
2286 init ((base), ocur_, ((cur) - ocur_)); \
2287 }
2288
2289 #if 0
2290 #define array_slim(type,stem) \
2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2292 { \
2293 stem ## max = array_roundsize (stem ## cnt >> 1); \
2294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2296 }
2297 #endif
2298
2299 #define array_free(stem, idx) \
2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2301
2302 /*****************************************************************************/
2303
2304 /* dummy callback for pending events */
2305 ecb_noinline
2306 static void
2307 pendingcb (EV_P_ ev_prepare *w, int revents)
2308 {
2309 }
2310
2311 ecb_noinline
2312 void
2313 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2314 {
2315 W w_ = (W)w;
2316 int pri = ABSPRI (w_);
2317
2318 if (ecb_expect_false (w_->pending))
2319 pendings [pri][w_->pending - 1].events |= revents;
2320 else
2321 {
2322 w_->pending = ++pendingcnt [pri];
2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2324 pendings [pri][w_->pending - 1].w = w_;
2325 pendings [pri][w_->pending - 1].events = revents;
2326 }
2327
2328 pendingpri = NUMPRI - 1;
2329 }
2330
2331 inline_speed void
2332 feed_reverse (EV_P_ W w)
2333 {
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336 }
2337
2338 inline_size void
2339 feed_reverse_done (EV_P_ int revents)
2340 {
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344 }
2345
2346 inline_speed void
2347 queue_events (EV_P_ W *events, int eventcnt, int type)
2348 {
2349 int i;
2350
2351 for (i = 0; i < eventcnt; ++i)
2352 ev_feed_event (EV_A_ events [i], type);
2353 }
2354
2355 /*****************************************************************************/
2356
2357 inline_speed void
2358 fd_event_nocheck (EV_P_ int fd, int revents)
2359 {
2360 ANFD *anfd = anfds + fd;
2361 ev_io *w;
2362
2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2364 {
2365 int ev = w->events & revents;
2366
2367 if (ev)
2368 ev_feed_event (EV_A_ (W)w, ev);
2369 }
2370 }
2371
2372 /* do not submit kernel events for fds that have reify set */
2373 /* because that means they changed while we were polling for new events */
2374 inline_speed void
2375 fd_event (EV_P_ int fd, int revents)
2376 {
2377 ANFD *anfd = anfds + fd;
2378
2379 if (ecb_expect_true (!anfd->reify))
2380 fd_event_nocheck (EV_A_ fd, revents);
2381 }
2382
2383 void
2384 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2385 {
2386 if (fd >= 0 && fd < anfdmax)
2387 fd_event_nocheck (EV_A_ fd, revents);
2388 }
2389
2390 /* make sure the external fd watch events are in-sync */
2391 /* with the kernel/libev internal state */
2392 inline_size void
2393 fd_reify (EV_P)
2394 {
2395 int i;
2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2410 for (i = 0; i < changecnt; ++i)
2411 {
2412 int fd = fdchanges [i];
2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432 #endif
2433
2434 for (i = 0; i < changecnt; ++i)
2435 {
2436 int fd = fdchanges [i];
2437 ANFD *anfd = anfds + fd;
2438 ev_io *w;
2439
2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
2442
2443 anfd->reify = 0;
2444
2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2446 {
2447 anfd->events = 0;
2448
2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2450 anfd->events |= (unsigned char)w->events;
2451
2452 if (o_events != anfd->events)
2453 o_reify = EV__IOFDSET; /* actually |= */
2454 }
2455
2456 if (o_reify & EV__IOFDSET)
2457 backend_modify (EV_A_ fd, o_events, anfd->events);
2458 }
2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
2467 fdchangecnt -= changecnt;
2468 }
2469
2470 /* something about the given fd changed */
2471 inline_size
2472 void
2473 fd_change (EV_P_ int fd, int flags)
2474 {
2475 unsigned char reify = anfds [fd].reify;
2476 anfds [fd].reify = reify | flags;
2477
2478 if (ecb_expect_true (!reify))
2479 {
2480 ++fdchangecnt;
2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2482 fdchanges [fdchangecnt - 1] = fd;
2483 }
2484 }
2485
2486 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487 inline_speed ecb_cold void
2488 fd_kill (EV_P_ int fd)
2489 {
2490 ev_io *w;
2491
2492 while ((w = (ev_io *)anfds [fd].head))
2493 {
2494 ev_io_stop (EV_A_ w);
2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2496 }
2497 }
2498
2499 /* check whether the given fd is actually valid, for error recovery */
2500 inline_size ecb_cold int
2501 fd_valid (int fd)
2502 {
2503 #ifdef _WIN32
2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2505 #else
2506 return fcntl (fd, F_GETFD) != -1;
2507 #endif
2508 }
2509
2510 /* called on EBADF to verify fds */
2511 ecb_noinline ecb_cold
2512 static void
2513 fd_ebadf (EV_P)
2514 {
2515 int fd;
2516
2517 for (fd = 0; fd < anfdmax; ++fd)
2518 if (anfds [fd].events)
2519 if (!fd_valid (fd) && errno == EBADF)
2520 fd_kill (EV_A_ fd);
2521 }
2522
2523 /* called on ENOMEM in select/poll to kill some fds and retry */
2524 ecb_noinline ecb_cold
2525 static void
2526 fd_enomem (EV_P)
2527 {
2528 int fd;
2529
2530 for (fd = anfdmax; fd--; )
2531 if (anfds [fd].events)
2532 {
2533 fd_kill (EV_A_ fd);
2534 break;
2535 }
2536 }
2537
2538 /* usually called after fork if backend needs to re-arm all fds from scratch */
2539 ecb_noinline
2540 static void
2541 fd_rearm_all (EV_P)
2542 {
2543 int fd;
2544
2545 for (fd = 0; fd < anfdmax; ++fd)
2546 if (anfds [fd].events)
2547 {
2548 anfds [fd].events = 0;
2549 anfds [fd].emask = 0;
2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2551 }
2552 }
2553
2554 /* used to prepare libev internal fd's */
2555 /* this is not fork-safe */
2556 inline_speed void
2557 fd_intern (int fd)
2558 {
2559 #ifdef _WIN32
2560 unsigned long arg = 1;
2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2562 #else
2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
2564 fcntl (fd, F_SETFL, O_NONBLOCK);
2565 #endif
2566 }
2567
2568 /*****************************************************************************/
2569
2570 /*
2571 * the heap functions want a real array index. array index 0 is guaranteed to not
2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2573 * the branching factor of the d-tree.
2574 */
2575
2576 /*
2577 * at the moment we allow libev the luxury of two heaps,
2578 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2579 * which is more cache-efficient.
2580 * the difference is about 5% with 50000+ watchers.
2581 */
2582 #if EV_USE_4HEAP
2583
2584 #define DHEAP 4
2585 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2586 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2587 #define UPHEAP_DONE(p,k) ((p) == (k))
2588
2589 /* away from the root */
2590 inline_speed void
2591 downheap (ANHE *heap, int N, int k)
2592 {
2593 ANHE he = heap [k];
2594 ANHE *E = heap + N + HEAP0;
2595
2596 for (;;)
2597 {
2598 ev_tstamp minat;
2599 ANHE *minpos;
2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2601
2602 /* find minimum child */
2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
2604 {
2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2609 }
2610 else if (pos < E)
2611 {
2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2616 }
2617 else
2618 break;
2619
2620 if (ANHE_at (he) <= minat)
2621 break;
2622
2623 heap [k] = *minpos;
2624 ev_active (ANHE_w (*minpos)) = k;
2625
2626 k = minpos - heap;
2627 }
2628
2629 heap [k] = he;
2630 ev_active (ANHE_w (he)) = k;
2631 }
2632
2633 #else /* not 4HEAP */
2634
2635 #define HEAP0 1
2636 #define HPARENT(k) ((k) >> 1)
2637 #define UPHEAP_DONE(p,k) (!(p))
2638
2639 /* away from the root */
2640 inline_speed void
2641 downheap (ANHE *heap, int N, int k)
2642 {
2643 ANHE he = heap [k];
2644
2645 for (;;)
2646 {
2647 int c = k << 1;
2648
2649 if (c >= N + HEAP0)
2650 break;
2651
2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2653 ? 1 : 0;
2654
2655 if (ANHE_at (he) <= ANHE_at (heap [c]))
2656 break;
2657
2658 heap [k] = heap [c];
2659 ev_active (ANHE_w (heap [k])) = k;
2660
2661 k = c;
2662 }
2663
2664 heap [k] = he;
2665 ev_active (ANHE_w (he)) = k;
2666 }
2667 #endif
2668
2669 /* towards the root */
2670 inline_speed void
2671 upheap (ANHE *heap, int k)
2672 {
2673 ANHE he = heap [k];
2674
2675 for (;;)
2676 {
2677 int p = HPARENT (k);
2678
2679 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 break;
2681
2682 heap [k] = heap [p];
2683 ev_active (ANHE_w (heap [k])) = k;
2684 k = p;
2685 }
2686
2687 heap [k] = he;
2688 ev_active (ANHE_w (he)) = k;
2689 }
2690
2691 /* move an element suitably so it is in a correct place */
2692 inline_size void
2693 adjustheap (ANHE *heap, int N, int k)
2694 {
2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2696 upheap (heap, k);
2697 else
2698 downheap (heap, N, k);
2699 }
2700
2701 /* rebuild the heap: this function is used only once and executed rarely */
2702 inline_size void
2703 reheap (ANHE *heap, int N)
2704 {
2705 int i;
2706
2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709 for (i = 0; i < N; ++i)
2710 upheap (heap, i + HEAP0);
2711 }
2712
2713 /*****************************************************************************/
2714
2715 /* associate signal watchers to a signal */
2716 typedef struct
2717 {
2718 EV_ATOMIC_T pending;
2719 #if EV_MULTIPLICITY
2720 EV_P;
2721 #endif
2722 WL head;
2723 } ANSIG;
2724
2725 static ANSIG signals [EV_NSIG - 1];
2726
2727 /*****************************************************************************/
2728
2729 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2730
2731 ecb_noinline ecb_cold
2732 static void
2733 evpipe_init (EV_P)
2734 {
2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739 # if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746 # endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 ev_io_start (EV_A_ &pipe_w);
2773 ev_unref (EV_A); /* watcher should not keep loop alive */
2774 }
2775 }
2776
2777 inline_speed void
2778 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779 {
2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
2801 #if EV_USE_EVENTFD
2802 if (evpipe [0] < 0)
2803 {
2804 uint64_t counter = 1;
2805 write (evpipe [1], &counter, sizeof (uint64_t));
2806 }
2807 else
2808 #endif
2809 {
2810 #ifdef _WIN32
2811 WSABUF buf;
2812 DWORD sent;
2813 buf.buf = (char *)&buf;
2814 buf.len = 1;
2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816 #else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818 #endif
2819 }
2820
2821 errno = old_errno;
2822 }
2823 }
2824
2825 /* called whenever the libev signal pipe */
2826 /* got some events (signal, async) */
2827 static void
2828 pipecb (EV_P_ ev_io *iow, int revents)
2829 {
2830 int i;
2831
2832 if (revents & EV_READ)
2833 {
2834 #if EV_USE_EVENTFD
2835 if (evpipe [0] < 0)
2836 {
2837 uint64_t counter;
2838 read (evpipe [1], &counter, sizeof (uint64_t));
2839 }
2840 else
2841 #endif
2842 {
2843 char dummy[4];
2844 #ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851 #else
2852 read (evpipe [0], &dummy, sizeof (dummy));
2853 #endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861 #if EV_SIGNAL_ENABLE
2862 if (sig_pending)
2863 {
2864 sig_pending = 0;
2865
2866 ECB_MEMORY_FENCE;
2867
2868 for (i = EV_NSIG - 1; i--; )
2869 if (ecb_expect_false (signals [i].pending))
2870 ev_feed_signal_event (EV_A_ i + 1);
2871 }
2872 #endif
2873
2874 #if EV_ASYNC_ENABLE
2875 if (async_pending)
2876 {
2877 async_pending = 0;
2878
2879 ECB_MEMORY_FENCE;
2880
2881 for (i = asynccnt; i--; )
2882 if (asyncs [i]->sent)
2883 {
2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2887 }
2888 }
2889 #endif
2890 }
2891
2892 /*****************************************************************************/
2893
2894 void
2895 ev_feed_signal (int signum) EV_NOEXCEPT
2896 {
2897 #if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
2901
2902 if (!EV_A)
2903 return;
2904 #endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908 }
2909
2910 static void
2911 ev_sighandler (int signum)
2912 {
2913 #ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915 #endif
2916
2917 ev_feed_signal (signum);
2918 }
2919
2920 ecb_noinline
2921 void
2922 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923 {
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
2931 #if EV_MULTIPLICITY
2932 /* it is permissible to try to feed a signal to the wrong loop */
2933 /* or, likely more useful, feeding a signal nobody is waiting for */
2934
2935 if (ecb_expect_false (signals [signum].loop != EV_A))
2936 return;
2937 #endif
2938
2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
2941
2942 for (w = signals [signum].head; w; w = w->next)
2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2944 }
2945
2946 #if EV_USE_SIGNALFD
2947 static void
2948 sigfdcb (EV_P_ ev_io *iow, int revents)
2949 {
2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951
2952 for (;;)
2953 {
2954 ssize_t res = read (sigfd, si, sizeof (si));
2955
2956 /* not ISO-C, as res might be -1, but works with SuS */
2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959
2960 if (res < (ssize_t)sizeof (si))
2961 break;
2962 }
2963 }
2964 #endif
2965
2966 #endif
2967
2968 /*****************************************************************************/
2969
2970 #if EV_CHILD_ENABLE
2971 static WL childs [EV_PID_HASHSIZE];
2972
2973 static ev_signal childev;
2974
2975 #ifndef WIFCONTINUED
2976 # define WIFCONTINUED(status) 0
2977 #endif
2978
2979 /* handle a single child status event */
2980 inline_speed void
2981 child_reap (EV_P_ int chain, int pid, int status)
2982 {
2983 ev_child *w;
2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2985
2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2987 {
2988 if ((w->pid == pid || !w->pid)
2989 && (!traced || (w->flags & 1)))
2990 {
2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2992 w->rpid = pid;
2993 w->rstatus = status;
2994 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2995 }
2996 }
2997 }
2998
2999 #ifndef WCONTINUED
3000 # define WCONTINUED 0
3001 #endif
3002
3003 /* called on sigchld etc., calls waitpid */
3004 static void
3005 childcb (EV_P_ ev_signal *sw, int revents)
3006 {
3007 int pid, status;
3008
3009 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
3010 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
3011 if (!WCONTINUED
3012 || errno != EINVAL
3013 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
3014 return;
3015
3016 /* make sure we are called again until all children have been reaped */
3017 /* we need to do it this way so that the callback gets called before we continue */
3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
3019
3020 child_reap (EV_A_ pid, pid, status);
3021 if ((EV_PID_HASHSIZE) > 1)
3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
3023 }
3024
3025 #endif
3026
3027 /*****************************************************************************/
3028
3029 #if EV_USE_TIMERFD
3030
3031 static void periodics_reschedule (EV_P);
3032
3033 static void
3034 timerfdcb (EV_P_ ev_io *iow, int revents)
3035 {
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048 #if EV_PERIODIC_ENABLE
3049 periodics_reschedule (EV_A);
3050 #endif
3051 }
3052
3053 ecb_noinline ecb_cold
3054 static void
3055 evtimerfd_init (EV_P)
3056 {
3057 if (!ev_is_active (&timerfd_w))
3058 {
3059 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3060
3061 if (timerfd >= 0)
3062 {
3063 fd_intern (timerfd); /* just to be sure */
3064
3065 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3066 ev_set_priority (&timerfd_w, EV_MINPRI);
3067 ev_io_start (EV_A_ &timerfd_w);
3068 ev_unref (EV_A); /* watcher should not keep loop alive */
3069
3070 /* (re-) arm timer */
3071 timerfdcb (EV_A_ 0, 0);
3072 }
3073 }
3074 }
3075
3076 #endif
3077
3078 /*****************************************************************************/
3079
3080 #if EV_USE_IOCP
3081 # include "ev_iocp.c"
3082 #endif
3083 #if EV_USE_PORT
3084 # include "ev_port.c"
3085 #endif
3086 #if EV_USE_KQUEUE
3087 # include "ev_kqueue.c"
3088 #endif
3089 #if EV_USE_EPOLL
3090 # include "ev_epoll.c"
3091 #endif
3092 #if EV_USE_LINUXAIO
3093 # include "ev_linuxaio.c"
3094 #endif
3095 #if EV_USE_IOURING
3096 # include "ev_iouring.c"
3097 #endif
3098 #if EV_USE_POLL
3099 # include "ev_poll.c"
3100 #endif
3101 #if EV_USE_SELECT
3102 # include "ev_select.c"
3103 #endif
3104
3105 ecb_cold int
3106 ev_version_major (void) EV_NOEXCEPT
3107 {
3108 return EV_VERSION_MAJOR;
3109 }
3110
3111 ecb_cold int
3112 ev_version_minor (void) EV_NOEXCEPT
3113 {
3114 return EV_VERSION_MINOR;
3115 }
3116
3117 /* return true if we are running with elevated privileges and should ignore env variables */
3118 inline_size ecb_cold int
3119 enable_secure (void)
3120 {
3121 #ifdef _WIN32
3122 return 0;
3123 #else
3124 return getuid () != geteuid ()
3125 || getgid () != getegid ();
3126 #endif
3127 }
3128
3129 ecb_cold
3130 unsigned int
3131 ev_supported_backends (void) EV_NOEXCEPT
3132 {
3133 unsigned int flags = 0;
3134
3135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
3136 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
3137 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
3138 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
3139 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
3140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3141 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3142
3143 return flags;
3144 }
3145
3146 ecb_cold
3147 unsigned int
3148 ev_recommended_backends (void) EV_NOEXCEPT
3149 {
3150 unsigned int flags = ev_supported_backends ();
3151
3152 #ifndef __NetBSD__
3153 /* kqueue is borked on everything but netbsd apparently */
3154 /* it usually doesn't work correctly on anything but sockets and pipes */
3155 flags &= ~EVBACKEND_KQUEUE;
3156 #endif
3157 #ifdef __APPLE__
3158 /* only select works correctly on that "unix-certified" platform */
3159 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3160 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3161 #endif
3162 #ifdef __FreeBSD__
3163 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3164 #endif
3165
3166 /* TODO: linuxaio is very experimental */
3167 #if !EV_RECOMMEND_LINUXAIO
3168 flags &= ~EVBACKEND_LINUXAIO;
3169 #endif
3170 /* TODO: linuxaio is super experimental */
3171 #if !EV_RECOMMEND_IOURING
3172 flags &= ~EVBACKEND_IOURING;
3173 #endif
3174
3175 return flags;
3176 }
3177
3178 ecb_cold
3179 unsigned int
3180 ev_embeddable_backends (void) EV_NOEXCEPT
3181 {
3182 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
3183
3184 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3185 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3186 flags &= ~EVBACKEND_EPOLL;
3187
3188 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3189
3190 return flags;
3191 }
3192
3193 unsigned int
3194 ev_backend (EV_P) EV_NOEXCEPT
3195 {
3196 return backend;
3197 }
3198
3199 #if EV_FEATURE_API
3200 unsigned int
3201 ev_iteration (EV_P) EV_NOEXCEPT
3202 {
3203 return loop_count;
3204 }
3205
3206 unsigned int
3207 ev_depth (EV_P) EV_NOEXCEPT
3208 {
3209 return loop_depth;
3210 }
3211
3212 void
3213 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3214 {
3215 io_blocktime = interval;
3216 }
3217
3218 void
3219 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3220 {
3221 timeout_blocktime = interval;
3222 }
3223
3224 void
3225 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3226 {
3227 userdata = data;
3228 }
3229
3230 void *
3231 ev_userdata (EV_P) EV_NOEXCEPT
3232 {
3233 return userdata;
3234 }
3235
3236 void
3237 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3238 {
3239 invoke_cb = invoke_pending_cb;
3240 }
3241
3242 void
3243 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3244 {
3245 release_cb = release;
3246 acquire_cb = acquire;
3247 }
3248 #endif
3249
3250 /* initialise a loop structure, must be zero-initialised */
3251 ecb_noinline ecb_cold
3252 static void
3253 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3254 {
3255 if (!backend)
3256 {
3257 origflags = flags;
3258
3259 #if EV_USE_REALTIME
3260 if (!have_realtime)
3261 {
3262 struct timespec ts;
3263
3264 if (!clock_gettime (CLOCK_REALTIME, &ts))
3265 have_realtime = 1;
3266 }
3267 #endif
3268
3269 #if EV_USE_MONOTONIC
3270 if (!have_monotonic)
3271 {
3272 struct timespec ts;
3273
3274 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3275 have_monotonic = 1;
3276 }
3277 #endif
3278
3279 /* pid check not overridable via env */
3280 #ifndef _WIN32
3281 if (flags & EVFLAG_FORKCHECK)
3282 curpid = getpid ();
3283 #endif
3284
3285 if (!(flags & EVFLAG_NOENV)
3286 && !enable_secure ()
3287 && getenv ("LIBEV_FLAGS"))
3288 flags = atoi (getenv ("LIBEV_FLAGS"));
3289
3290 ev_rt_now = ev_time ();
3291 mn_now = get_clock ();
3292 now_floor = mn_now;
3293 rtmn_diff = ev_rt_now - mn_now;
3294 #if EV_FEATURE_API
3295 invoke_cb = ev_invoke_pending;
3296 #endif
3297
3298 io_blocktime = 0.;
3299 timeout_blocktime = 0.;
3300 backend = 0;
3301 backend_fd = -1;
3302 sig_pending = 0;
3303 #if EV_ASYNC_ENABLE
3304 async_pending = 0;
3305 #endif
3306 pipe_write_skipped = 0;
3307 pipe_write_wanted = 0;
3308 evpipe [0] = -1;
3309 evpipe [1] = -1;
3310 #if EV_USE_INOTIFY
3311 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3312 #endif
3313 #if EV_USE_SIGNALFD
3314 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3315 #endif
3316 #if EV_USE_TIMERFD
3317 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3318 #endif
3319
3320 if (!(flags & EVBACKEND_MASK))
3321 flags |= ev_recommended_backends ();
3322
3323 #if EV_USE_IOCP
3324 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3325 #endif
3326 #if EV_USE_PORT
3327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3328 #endif
3329 #if EV_USE_KQUEUE
3330 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3331 #endif
3332 #if EV_USE_IOURING
3333 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3334 #endif
3335 #if EV_USE_LINUXAIO
3336 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3337 #endif
3338 #if EV_USE_EPOLL
3339 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3340 #endif
3341 #if EV_USE_POLL
3342 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3343 #endif
3344 #if EV_USE_SELECT
3345 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3346 #endif
3347
3348 ev_prepare_init (&pending_w, pendingcb);
3349
3350 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3351 ev_init (&pipe_w, pipecb);
3352 ev_set_priority (&pipe_w, EV_MAXPRI);
3353 #endif
3354 }
3355 }
3356
3357 /* free up a loop structure */
3358 ecb_cold
3359 void
3360 ev_loop_destroy (EV_P)
3361 {
3362 int i;
3363
3364 #if EV_MULTIPLICITY
3365 /* mimic free (0) */
3366 if (!EV_A)
3367 return;
3368 #endif
3369
3370 #if EV_CLEANUP_ENABLE
3371 /* queue cleanup watchers (and execute them) */
3372 if (ecb_expect_false (cleanupcnt))
3373 {
3374 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3375 EV_INVOKE_PENDING;
3376 }
3377 #endif
3378
3379 #if EV_CHILD_ENABLE
3380 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3381 {
3382 ev_ref (EV_A); /* child watcher */
3383 ev_signal_stop (EV_A_ &childev);
3384 }
3385 #endif
3386
3387 if (ev_is_active (&pipe_w))
3388 {
3389 /*ev_ref (EV_A);*/
3390 /*ev_io_stop (EV_A_ &pipe_w);*/
3391
3392 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3393 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3394 }
3395
3396 #if EV_USE_SIGNALFD
3397 if (ev_is_active (&sigfd_w))
3398 close (sigfd);
3399 #endif
3400
3401 #if EV_USE_TIMERFD
3402 if (ev_is_active (&timerfd_w))
3403 close (timerfd);
3404 #endif
3405
3406 #if EV_USE_INOTIFY
3407 if (fs_fd >= 0)
3408 close (fs_fd);
3409 #endif
3410
3411 if (backend_fd >= 0)
3412 close (backend_fd);
3413
3414 #if EV_USE_IOCP
3415 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3416 #endif
3417 #if EV_USE_PORT
3418 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3419 #endif
3420 #if EV_USE_KQUEUE
3421 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3422 #endif
3423 #if EV_USE_IOURING
3424 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3425 #endif
3426 #if EV_USE_LINUXAIO
3427 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3428 #endif
3429 #if EV_USE_EPOLL
3430 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3431 #endif
3432 #if EV_USE_POLL
3433 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3434 #endif
3435 #if EV_USE_SELECT
3436 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3437 #endif
3438
3439 for (i = NUMPRI; i--; )
3440 {
3441 array_free (pending, [i]);
3442 #if EV_IDLE_ENABLE
3443 array_free (idle, [i]);
3444 #endif
3445 }
3446
3447 ev_free (anfds); anfds = 0; anfdmax = 0;
3448
3449 /* have to use the microsoft-never-gets-it-right macro */
3450 array_free (rfeed, EMPTY);
3451 array_free (fdchange, EMPTY);
3452 array_free (timer, EMPTY);
3453 #if EV_PERIODIC_ENABLE
3454 array_free (periodic, EMPTY);
3455 #endif
3456 #if EV_FORK_ENABLE
3457 array_free (fork, EMPTY);
3458 #endif
3459 #if EV_CLEANUP_ENABLE
3460 array_free (cleanup, EMPTY);
3461 #endif
3462 array_free (prepare, EMPTY);
3463 array_free (check, EMPTY);
3464 #if EV_ASYNC_ENABLE
3465 array_free (async, EMPTY);
3466 #endif
3467
3468 backend = 0;
3469
3470 #if EV_MULTIPLICITY
3471 if (ev_is_default_loop (EV_A))
3472 #endif
3473 ev_default_loop_ptr = 0;
3474 #if EV_MULTIPLICITY
3475 else
3476 ev_free (EV_A);
3477 #endif
3478 }
3479
3480 #if EV_USE_INOTIFY
3481 inline_size void infy_fork (EV_P);
3482 #endif
3483
3484 inline_size void
3485 loop_fork (EV_P)
3486 {
3487 #if EV_USE_PORT
3488 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3489 #endif
3490 #if EV_USE_KQUEUE
3491 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3492 #endif
3493 #if EV_USE_IOURING
3494 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3495 #endif
3496 #if EV_USE_LINUXAIO
3497 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3498 #endif
3499 #if EV_USE_EPOLL
3500 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3501 #endif
3502 #if EV_USE_INOTIFY
3503 infy_fork (EV_A);
3504 #endif
3505
3506 if (postfork != 2)
3507 {
3508 #if EV_USE_SIGNALFD
3509 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3510 #endif
3511
3512 #if EV_USE_TIMERFD
3513 if (ev_is_active (&timerfd_w))
3514 {
3515 ev_ref (EV_A);
3516 ev_io_stop (EV_A_ &timerfd_w);
3517
3518 close (timerfd);
3519 timerfd = -2;
3520
3521 evtimerfd_init (EV_A);
3522 /* reschedule periodics, in case we missed something */
3523 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3524 }
3525 #endif
3526
3527 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3528 if (ev_is_active (&pipe_w))
3529 {
3530 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3531
3532 ev_ref (EV_A);
3533 ev_io_stop (EV_A_ &pipe_w);
3534
3535 if (evpipe [0] >= 0)
3536 EV_WIN32_CLOSE_FD (evpipe [0]);
3537
3538 evpipe_init (EV_A);
3539 /* iterate over everything, in case we missed something before */
3540 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3541 }
3542 #endif
3543 }
3544
3545 postfork = 0;
3546 }
3547
3548 #if EV_MULTIPLICITY
3549
3550 ecb_cold
3551 struct ev_loop *
3552 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3553 {
3554 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3555
3556 memset (EV_A, 0, sizeof (struct ev_loop));
3557 loop_init (EV_A_ flags);
3558
3559 if (ev_backend (EV_A))
3560 return EV_A;
3561
3562 ev_free (EV_A);
3563 return 0;
3564 }
3565
3566 #endif /* multiplicity */
3567
3568 #if EV_VERIFY
3569 ecb_noinline ecb_cold
3570 static void
3571 verify_watcher (EV_P_ W w)
3572 {
3573 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3574
3575 if (w->pending)
3576 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3577 }
3578
3579 ecb_noinline ecb_cold
3580 static void
3581 verify_heap (EV_P_ ANHE *heap, int N)
3582 {
3583 int i;
3584
3585 for (i = HEAP0; i < N + HEAP0; ++i)
3586 {
3587 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3588 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3589 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3590
3591 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3592 }
3593 }
3594
3595 ecb_noinline ecb_cold
3596 static void
3597 array_verify (EV_P_ W *ws, int cnt)
3598 {
3599 while (cnt--)
3600 {
3601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3602 verify_watcher (EV_A_ ws [cnt]);
3603 }
3604 }
3605 #endif
3606
3607 #if EV_FEATURE_API
3608 void ecb_cold
3609 ev_verify (EV_P) EV_NOEXCEPT
3610 {
3611 #if EV_VERIFY
3612 int i;
3613 WL w, w2;
3614
3615 assert (activecnt >= -1);
3616
3617 assert (fdchangemax >= fdchangecnt);
3618 for (i = 0; i < fdchangecnt; ++i)
3619 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3620
3621 assert (anfdmax >= 0);
3622 for (i = 0; i < anfdmax; ++i)
3623 {
3624 int j = 0;
3625
3626 for (w = w2 = anfds [i].head; w; w = w->next)
3627 {
3628 verify_watcher (EV_A_ (W)w);
3629
3630 if (j++ & 1)
3631 {
3632 assert (("libev: io watcher list contains a loop", w != w2));
3633 w2 = w2->next;
3634 }
3635
3636 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3637 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3638 }
3639 }
3640
3641 assert (timermax >= timercnt);
3642 verify_heap (EV_A_ timers, timercnt);
3643
3644 #if EV_PERIODIC_ENABLE
3645 assert (periodicmax >= periodiccnt);
3646 verify_heap (EV_A_ periodics, periodiccnt);
3647 #endif
3648
3649 for (i = NUMPRI; i--; )
3650 {
3651 assert (pendingmax [i] >= pendingcnt [i]);
3652 #if EV_IDLE_ENABLE
3653 assert (idleall >= 0);
3654 assert (idlemax [i] >= idlecnt [i]);
3655 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3656 #endif
3657 }
3658
3659 #if EV_FORK_ENABLE
3660 assert (forkmax >= forkcnt);
3661 array_verify (EV_A_ (W *)forks, forkcnt);
3662 #endif
3663
3664 #if EV_CLEANUP_ENABLE
3665 assert (cleanupmax >= cleanupcnt);
3666 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3667 #endif
3668
3669 #if EV_ASYNC_ENABLE
3670 assert (asyncmax >= asynccnt);
3671 array_verify (EV_A_ (W *)asyncs, asynccnt);
3672 #endif
3673
3674 #if EV_PREPARE_ENABLE
3675 assert (preparemax >= preparecnt);
3676 array_verify (EV_A_ (W *)prepares, preparecnt);
3677 #endif
3678
3679 #if EV_CHECK_ENABLE
3680 assert (checkmax >= checkcnt);
3681 array_verify (EV_A_ (W *)checks, checkcnt);
3682 #endif
3683
3684 # if 0
3685 #if EV_CHILD_ENABLE
3686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3687 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3688 #endif
3689 # endif
3690 #endif
3691 }
3692 #endif
3693
3694 #if EV_MULTIPLICITY
3695 ecb_cold
3696 struct ev_loop *
3697 #else
3698 int
3699 #endif
3700 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3701 {
3702 if (!ev_default_loop_ptr)
3703 {
3704 #if EV_MULTIPLICITY
3705 EV_P = ev_default_loop_ptr = &default_loop_struct;
3706 #else
3707 ev_default_loop_ptr = 1;
3708 #endif
3709
3710 loop_init (EV_A_ flags);
3711
3712 if (ev_backend (EV_A))
3713 {
3714 #if EV_CHILD_ENABLE
3715 ev_signal_init (&childev, childcb, SIGCHLD);
3716 ev_set_priority (&childev, EV_MAXPRI);
3717 ev_signal_start (EV_A_ &childev);
3718 ev_unref (EV_A); /* child watcher should not keep loop alive */
3719 #endif
3720 }
3721 else
3722 ev_default_loop_ptr = 0;
3723 }
3724
3725 return ev_default_loop_ptr;
3726 }
3727
3728 void
3729 ev_loop_fork (EV_P) EV_NOEXCEPT
3730 {
3731 postfork = 1;
3732 }
3733
3734 /*****************************************************************************/
3735
3736 void
3737 ev_invoke (EV_P_ void *w, int revents)
3738 {
3739 EV_CB_INVOKE ((W)w, revents);
3740 }
3741
3742 unsigned int
3743 ev_pending_count (EV_P) EV_NOEXCEPT
3744 {
3745 int pri;
3746 unsigned int count = 0;
3747
3748 for (pri = NUMPRI; pri--; )
3749 count += pendingcnt [pri];
3750
3751 return count;
3752 }
3753
3754 ecb_noinline
3755 void
3756 ev_invoke_pending (EV_P)
3757 {
3758 pendingpri = NUMPRI;
3759
3760 do
3761 {
3762 --pendingpri;
3763
3764 /* pendingpri possibly gets modified in the inner loop */
3765 while (pendingcnt [pendingpri])
3766 {
3767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3768
3769 p->w->pending = 0;
3770 EV_CB_INVOKE (p->w, p->events);
3771 EV_FREQUENT_CHECK;
3772 }
3773 }
3774 while (pendingpri);
3775 }
3776
3777 #if EV_IDLE_ENABLE
3778 /* make idle watchers pending. this handles the "call-idle */
3779 /* only when higher priorities are idle" logic */
3780 inline_size void
3781 idle_reify (EV_P)
3782 {
3783 if (ecb_expect_false (idleall))
3784 {
3785 int pri;
3786
3787 for (pri = NUMPRI; pri--; )
3788 {
3789 if (pendingcnt [pri])
3790 break;
3791
3792 if (idlecnt [pri])
3793 {
3794 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3795 break;
3796 }
3797 }
3798 }
3799 }
3800 #endif
3801
3802 /* make timers pending */
3803 inline_size void
3804 timers_reify (EV_P)
3805 {
3806 EV_FREQUENT_CHECK;
3807
3808 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3809 {
3810 do
3811 {
3812 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3813
3814 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3815
3816 /* first reschedule or stop timer */
3817 if (w->repeat)
3818 {
3819 ev_at (w) += w->repeat;
3820 if (ev_at (w) < mn_now)
3821 ev_at (w) = mn_now;
3822
3823 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3824
3825 ANHE_at_cache (timers [HEAP0]);
3826 downheap (timers, timercnt, HEAP0);
3827 }
3828 else
3829 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3830
3831 EV_FREQUENT_CHECK;
3832 feed_reverse (EV_A_ (W)w);
3833 }
3834 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3835
3836 feed_reverse_done (EV_A_ EV_TIMER);
3837 }
3838 }
3839
3840 #if EV_PERIODIC_ENABLE
3841
3842 ecb_noinline
3843 static void
3844 periodic_recalc (EV_P_ ev_periodic *w)
3845 {
3846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3848
3849 /* the above almost always errs on the low side */
3850 while (at <= ev_rt_now)
3851 {
3852 ev_tstamp nat = at + w->interval;
3853
3854 /* when resolution fails us, we use ev_rt_now */
3855 if (ecb_expect_false (nat == at))
3856 {
3857 at = ev_rt_now;
3858 break;
3859 }
3860
3861 at = nat;
3862 }
3863
3864 ev_at (w) = at;
3865 }
3866
3867 /* make periodics pending */
3868 inline_size void
3869 periodics_reify (EV_P)
3870 {
3871 EV_FREQUENT_CHECK;
3872
3873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3874 {
3875 do
3876 {
3877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3878
3879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3880
3881 /* first reschedule or stop timer */
3882 if (w->reschedule_cb)
3883 {
3884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3885
3886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3887
3888 ANHE_at_cache (periodics [HEAP0]);
3889 downheap (periodics, periodiccnt, HEAP0);
3890 }
3891 else if (w->interval)
3892 {
3893 periodic_recalc (EV_A_ w);
3894 ANHE_at_cache (periodics [HEAP0]);
3895 downheap (periodics, periodiccnt, HEAP0);
3896 }
3897 else
3898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3899
3900 EV_FREQUENT_CHECK;
3901 feed_reverse (EV_A_ (W)w);
3902 }
3903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3904
3905 feed_reverse_done (EV_A_ EV_PERIODIC);
3906 }
3907 }
3908
3909 /* simply recalculate all periodics */
3910 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3911 ecb_noinline ecb_cold
3912 static void
3913 periodics_reschedule (EV_P)
3914 {
3915 int i;
3916
3917 /* adjust periodics after time jump */
3918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3919 {
3920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3921
3922 if (w->reschedule_cb)
3923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3924 else if (w->interval)
3925 periodic_recalc (EV_A_ w);
3926
3927 ANHE_at_cache (periodics [i]);
3928 }
3929
3930 reheap (periodics, periodiccnt);
3931 }
3932 #endif
3933
3934 /* adjust all timers by a given offset */
3935 ecb_noinline ecb_cold
3936 static void
3937 timers_reschedule (EV_P_ ev_tstamp adjust)
3938 {
3939 int i;
3940
3941 for (i = 0; i < timercnt; ++i)
3942 {
3943 ANHE *he = timers + i + HEAP0;
3944 ANHE_w (*he)->at += adjust;
3945 ANHE_at_cache (*he);
3946 }
3947 }
3948
3949 /* fetch new monotonic and realtime times from the kernel */
3950 /* also detect if there was a timejump, and act accordingly */
3951 inline_speed void
3952 time_update (EV_P_ ev_tstamp max_block)
3953 {
3954 #if EV_USE_MONOTONIC
3955 if (ecb_expect_true (have_monotonic))
3956 {
3957 int i;
3958 ev_tstamp odiff = rtmn_diff;
3959
3960 mn_now = get_clock ();
3961
3962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3963 /* interpolate in the meantime */
3964 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3965 {
3966 ev_rt_now = rtmn_diff + mn_now;
3967 return;
3968 }
3969
3970 now_floor = mn_now;
3971 ev_rt_now = ev_time ();
3972
3973 /* loop a few times, before making important decisions.
3974 * on the choice of "4": one iteration isn't enough,
3975 * in case we get preempted during the calls to
3976 * ev_time and get_clock. a second call is almost guaranteed
3977 * to succeed in that case, though. and looping a few more times
3978 * doesn't hurt either as we only do this on time-jumps or
3979 * in the unlikely event of having been preempted here.
3980 */
3981 for (i = 4; --i; )
3982 {
3983 ev_tstamp diff;
3984 rtmn_diff = ev_rt_now - mn_now;
3985
3986 diff = odiff - rtmn_diff;
3987
3988 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3989 return; /* all is well */
3990
3991 ev_rt_now = ev_time ();
3992 mn_now = get_clock ();
3993 now_floor = mn_now;
3994 }
3995
3996 /* no timer adjustment, as the monotonic clock doesn't jump */
3997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3998 # if EV_PERIODIC_ENABLE
3999 periodics_reschedule (EV_A);
4000 # endif
4001 }
4002 else
4003 #endif
4004 {
4005 ev_rt_now = ev_time ();
4006
4007 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
4008 {
4009 /* adjust timers. this is easy, as the offset is the same for all of them */
4010 timers_reschedule (EV_A_ ev_rt_now - mn_now);
4011 #if EV_PERIODIC_ENABLE
4012 periodics_reschedule (EV_A);
4013 #endif
4014 }
4015
4016 mn_now = ev_rt_now;
4017 }
4018 }
4019
4020 int
4021 ev_run (EV_P_ int flags)
4022 {
4023 #if EV_FEATURE_API
4024 ++loop_depth;
4025 #endif
4026
4027 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4028
4029 loop_done = EVBREAK_CANCEL;
4030
4031 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
4032
4033 do
4034 {
4035 #if EV_VERIFY >= 2
4036 ev_verify (EV_A);
4037 #endif
4038
4039 #ifndef _WIN32
4040 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
4041 if (ecb_expect_false (getpid () != curpid))
4042 {
4043 curpid = getpid ();
4044 postfork = 1;
4045 }
4046 #endif
4047
4048 #if EV_FORK_ENABLE
4049 /* we might have forked, so queue fork handlers */
4050 if (ecb_expect_false (postfork))
4051 if (forkcnt)
4052 {
4053 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
4054 EV_INVOKE_PENDING;
4055 }
4056 #endif
4057
4058 #if EV_PREPARE_ENABLE
4059 /* queue prepare watchers (and execute them) */
4060 if (ecb_expect_false (preparecnt))
4061 {
4062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
4063 EV_INVOKE_PENDING;
4064 }
4065 #endif
4066
4067 if (ecb_expect_false (loop_done))
4068 break;
4069
4070 /* we might have forked, so reify kernel state if necessary */
4071 if (ecb_expect_false (postfork))
4072 loop_fork (EV_A);
4073
4074 /* update fd-related kernel structures */
4075 fd_reify (EV_A);
4076
4077 /* calculate blocking time */
4078 {
4079 ev_tstamp waittime = 0.;
4080 ev_tstamp sleeptime = 0.;
4081
4082 /* remember old timestamp for io_blocktime calculation */
4083 ev_tstamp prev_mn_now = mn_now;
4084
4085 /* update time to cancel out callback processing overhead */
4086 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4087
4088 /* from now on, we want a pipe-wake-up */
4089 pipe_write_wanted = 1;
4090
4091 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4092
4093 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
4094 {
4095 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4096
4097 #if EV_USE_TIMERFD
4098 /* sleep a lot longer when we can reliably detect timejumps */
4099 if (ecb_expect_true (timerfd >= 0))
4100 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4101 #endif
4102 #if !EV_PERIODIC_ENABLE
4103 /* without periodics but with monotonic clock there is no need */
4104 /* for any time jump detection, so sleep longer */
4105 if (ecb_expect_true (have_monotonic))
4106 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4107 #endif
4108
4109 if (timercnt)
4110 {
4111 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
4112 if (waittime > to) waittime = to;
4113 }
4114
4115 #if EV_PERIODIC_ENABLE
4116 if (periodiccnt)
4117 {
4118 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
4119 if (waittime > to) waittime = to;
4120 }
4121 #endif
4122
4123 /* don't let timeouts decrease the waittime below timeout_blocktime */
4124 if (ecb_expect_false (waittime < timeout_blocktime))
4125 waittime = timeout_blocktime;
4126
4127 /* now there are two more special cases left, either we have
4128 * already-expired timers, so we should not sleep, or we have timers
4129 * that expire very soon, in which case we need to wait for a minimum
4130 * amount of time for some event loop backends.
4131 */
4132 if (ecb_expect_false (waittime < backend_mintime))
4133 waittime = waittime <= EV_TS_CONST (0.)
4134 ? EV_TS_CONST (0.)
4135 : backend_mintime;
4136
4137 /* extra check because io_blocktime is commonly 0 */
4138 if (ecb_expect_false (io_blocktime))
4139 {
4140 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4141
4142 if (sleeptime > waittime - backend_mintime)
4143 sleeptime = waittime - backend_mintime;
4144
4145 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4146 {
4147 ev_sleep (sleeptime);
4148 waittime -= sleeptime;
4149 }
4150 }
4151 }
4152
4153 #if EV_FEATURE_API
4154 ++loop_count;
4155 #endif
4156 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4157 backend_poll (EV_A_ waittime);
4158 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4159
4160 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4161
4162 ECB_MEMORY_FENCE_ACQUIRE;
4163 if (pipe_write_skipped)
4164 {
4165 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4166 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4167 }
4168
4169 /* update ev_rt_now, do magic */
4170 time_update (EV_A_ waittime + sleeptime);
4171 }
4172
4173 /* queue pending timers and reschedule them */
4174 timers_reify (EV_A); /* relative timers called last */
4175 #if EV_PERIODIC_ENABLE
4176 periodics_reify (EV_A); /* absolute timers called first */
4177 #endif
4178
4179 #if EV_IDLE_ENABLE
4180 /* queue idle watchers unless other events are pending */
4181 idle_reify (EV_A);
4182 #endif
4183
4184 #if EV_CHECK_ENABLE
4185 /* queue check watchers, to be executed first */
4186 if (ecb_expect_false (checkcnt))
4187 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4188 #endif
4189
4190 EV_INVOKE_PENDING;
4191 }
4192 while (ecb_expect_true (
4193 activecnt
4194 && !loop_done
4195 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4196 ));
4197
4198 if (loop_done == EVBREAK_ONE)
4199 loop_done = EVBREAK_CANCEL;
4200
4201 #if EV_FEATURE_API
4202 --loop_depth;
4203 #endif
4204
4205 return activecnt;
4206 }
4207
4208 void
4209 ev_break (EV_P_ int how) EV_NOEXCEPT
4210 {
4211 loop_done = how;
4212 }
4213
4214 void
4215 ev_ref (EV_P) EV_NOEXCEPT
4216 {
4217 ++activecnt;
4218 }
4219
4220 void
4221 ev_unref (EV_P) EV_NOEXCEPT
4222 {
4223 --activecnt;
4224 }
4225
4226 void
4227 ev_now_update (EV_P) EV_NOEXCEPT
4228 {
4229 time_update (EV_A_ EV_TSTAMP_HUGE);
4230 }
4231
4232 void
4233 ev_suspend (EV_P) EV_NOEXCEPT
4234 {
4235 ev_now_update (EV_A);
4236 }
4237
4238 void
4239 ev_resume (EV_P) EV_NOEXCEPT
4240 {
4241 ev_tstamp mn_prev = mn_now;
4242
4243 ev_now_update (EV_A);
4244 timers_reschedule (EV_A_ mn_now - mn_prev);
4245 #if EV_PERIODIC_ENABLE
4246 /* TODO: really do this? */
4247 periodics_reschedule (EV_A);
4248 #endif
4249 }
4250
4251 /*****************************************************************************/
4252 /* singly-linked list management, used when the expected list length is short */
4253
4254 inline_size void
4255 wlist_add (WL *head, WL elem)
4256 {
4257 elem->next = *head;
4258 *head = elem;
4259 }
4260
4261 inline_size void
4262 wlist_del (WL *head, WL elem)
4263 {
4264 while (*head)
4265 {
4266 if (ecb_expect_true (*head == elem))
4267 {
4268 *head = elem->next;
4269 break;
4270 }
4271
4272 head = &(*head)->next;
4273 }
4274 }
4275
4276 /* internal, faster, version of ev_clear_pending */
4277 inline_speed void
4278 clear_pending (EV_P_ W w)
4279 {
4280 if (w->pending)
4281 {
4282 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4283 w->pending = 0;
4284 }
4285 }
4286
4287 int
4288 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4289 {
4290 W w_ = (W)w;
4291 int pending = w_->pending;
4292
4293 if (ecb_expect_true (pending))
4294 {
4295 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4296 p->w = (W)&pending_w;
4297 w_->pending = 0;
4298 return p->events;
4299 }
4300 else
4301 return 0;
4302 }
4303
4304 inline_size void
4305 pri_adjust (EV_P_ W w)
4306 {
4307 int pri = ev_priority (w);
4308 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4309 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4310 ev_set_priority (w, pri);
4311 }
4312
4313 inline_speed void
4314 ev_start (EV_P_ W w, int active)
4315 {
4316 pri_adjust (EV_A_ w);
4317 w->active = active;
4318 ev_ref (EV_A);
4319 }
4320
4321 inline_size void
4322 ev_stop (EV_P_ W w)
4323 {
4324 ev_unref (EV_A);
4325 w->active = 0;
4326 }
4327
4328 /*****************************************************************************/
4329
4330 ecb_noinline
4331 void
4332 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4333 {
4334 int fd = w->fd;
4335
4336 if (ecb_expect_false (ev_is_active (w)))
4337 return;
4338
4339 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4340 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4341
4342 #if EV_VERIFY >= 2
4343 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4344 #endif
4345 EV_FREQUENT_CHECK;
4346
4347 ev_start (EV_A_ (W)w, 1);
4348 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4349 wlist_add (&anfds[fd].head, (WL)w);
4350
4351 /* common bug, apparently */
4352 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4353
4354 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4355 w->events &= ~EV__IOFDSET;
4356
4357 EV_FREQUENT_CHECK;
4358 }
4359
4360 ecb_noinline
4361 void
4362 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4363 {
4364 clear_pending (EV_A_ (W)w);
4365 if (ecb_expect_false (!ev_is_active (w)))
4366 return;
4367
4368 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4369
4370 #if EV_VERIFY >= 2
4371 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4372 #endif
4373 EV_FREQUENT_CHECK;
4374
4375 wlist_del (&anfds[w->fd].head, (WL)w);
4376 ev_stop (EV_A_ (W)w);
4377
4378 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4379
4380 EV_FREQUENT_CHECK;
4381 }
4382
4383 ecb_noinline
4384 void
4385 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4386 {
4387 if (ecb_expect_false (ev_is_active (w)))
4388 return;
4389
4390 ev_at (w) += mn_now;
4391
4392 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4393
4394 EV_FREQUENT_CHECK;
4395
4396 ++timercnt;
4397 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4398 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4399 ANHE_w (timers [ev_active (w)]) = (WT)w;
4400 ANHE_at_cache (timers [ev_active (w)]);
4401 upheap (timers, ev_active (w));
4402
4403 EV_FREQUENT_CHECK;
4404
4405 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4406 }
4407
4408 ecb_noinline
4409 void
4410 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4411 {
4412 clear_pending (EV_A_ (W)w);
4413 if (ecb_expect_false (!ev_is_active (w)))
4414 return;
4415
4416 EV_FREQUENT_CHECK;
4417
4418 {
4419 int active = ev_active (w);
4420
4421 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4422
4423 --timercnt;
4424
4425 if (ecb_expect_true (active < timercnt + HEAP0))
4426 {
4427 timers [active] = timers [timercnt + HEAP0];
4428 adjustheap (timers, timercnt, active);
4429 }
4430 }
4431
4432 ev_at (w) -= mn_now;
4433
4434 ev_stop (EV_A_ (W)w);
4435
4436 EV_FREQUENT_CHECK;
4437 }
4438
4439 ecb_noinline
4440 void
4441 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4442 {
4443 EV_FREQUENT_CHECK;
4444
4445 clear_pending (EV_A_ (W)w);
4446
4447 if (ev_is_active (w))
4448 {
4449 if (w->repeat)
4450 {
4451 ev_at (w) = mn_now + w->repeat;
4452 ANHE_at_cache (timers [ev_active (w)]);
4453 adjustheap (timers, timercnt, ev_active (w));
4454 }
4455 else
4456 ev_timer_stop (EV_A_ w);
4457 }
4458 else if (w->repeat)
4459 {
4460 ev_at (w) = w->repeat;
4461 ev_timer_start (EV_A_ w);
4462 }
4463
4464 EV_FREQUENT_CHECK;
4465 }
4466
4467 ev_tstamp
4468 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4469 {
4470 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4471 }
4472
4473 #if EV_PERIODIC_ENABLE
4474 ecb_noinline
4475 void
4476 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4477 {
4478 if (ecb_expect_false (ev_is_active (w)))
4479 return;
4480
4481 #if EV_USE_TIMERFD
4482 if (timerfd == -2)
4483 evtimerfd_init (EV_A);
4484 #endif
4485
4486 if (w->reschedule_cb)
4487 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4488 else if (w->interval)
4489 {
4490 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4491 periodic_recalc (EV_A_ w);
4492 }
4493 else
4494 ev_at (w) = w->offset;
4495
4496 EV_FREQUENT_CHECK;
4497
4498 ++periodiccnt;
4499 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4500 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4501 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4502 ANHE_at_cache (periodics [ev_active (w)]);
4503 upheap (periodics, ev_active (w));
4504
4505 EV_FREQUENT_CHECK;
4506
4507 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4508 }
4509
4510 ecb_noinline
4511 void
4512 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4513 {
4514 clear_pending (EV_A_ (W)w);
4515 if (ecb_expect_false (!ev_is_active (w)))
4516 return;
4517
4518 EV_FREQUENT_CHECK;
4519
4520 {
4521 int active = ev_active (w);
4522
4523 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4524
4525 --periodiccnt;
4526
4527 if (ecb_expect_true (active < periodiccnt + HEAP0))
4528 {
4529 periodics [active] = periodics [periodiccnt + HEAP0];
4530 adjustheap (periodics, periodiccnt, active);
4531 }
4532 }
4533
4534 ev_stop (EV_A_ (W)w);
4535
4536 EV_FREQUENT_CHECK;
4537 }
4538
4539 ecb_noinline
4540 void
4541 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4542 {
4543 /* TODO: use adjustheap and recalculation */
4544 ev_periodic_stop (EV_A_ w);
4545 ev_periodic_start (EV_A_ w);
4546 }
4547 #endif
4548
4549 #ifndef SA_RESTART
4550 # define SA_RESTART 0
4551 #endif
4552
4553 #if EV_SIGNAL_ENABLE
4554
4555 ecb_noinline
4556 void
4557 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4558 {
4559 if (ecb_expect_false (ev_is_active (w)))
4560 return;
4561
4562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4563
4564 #if EV_MULTIPLICITY
4565 assert (("libev: a signal must not be attached to two different loops",
4566 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4567
4568 signals [w->signum - 1].loop = EV_A;
4569 ECB_MEMORY_FENCE_RELEASE;
4570 #endif
4571
4572 EV_FREQUENT_CHECK;
4573
4574 #if EV_USE_SIGNALFD
4575 if (sigfd == -2)
4576 {
4577 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4578 if (sigfd < 0 && errno == EINVAL)
4579 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4580
4581 if (sigfd >= 0)
4582 {
4583 fd_intern (sigfd); /* doing it twice will not hurt */
4584
4585 sigemptyset (&sigfd_set);
4586
4587 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4588 ev_set_priority (&sigfd_w, EV_MAXPRI);
4589 ev_io_start (EV_A_ &sigfd_w);
4590 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4591 }
4592 }
4593
4594 if (sigfd >= 0)
4595 {
4596 /* TODO: check .head */
4597 sigaddset (&sigfd_set, w->signum);
4598 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4599
4600 signalfd (sigfd, &sigfd_set, 0);
4601 }
4602 #endif
4603
4604 ev_start (EV_A_ (W)w, 1);
4605 wlist_add (&signals [w->signum - 1].head, (WL)w);
4606
4607 if (!((WL)w)->next)
4608 # if EV_USE_SIGNALFD
4609 if (sigfd < 0) /*TODO*/
4610 # endif
4611 {
4612 # ifdef _WIN32
4613 evpipe_init (EV_A);
4614
4615 signal (w->signum, ev_sighandler);
4616 # else
4617 struct sigaction sa;
4618
4619 evpipe_init (EV_A);
4620
4621 sa.sa_handler = ev_sighandler;
4622 sigfillset (&sa.sa_mask);
4623 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4624 sigaction (w->signum, &sa, 0);
4625
4626 if (origflags & EVFLAG_NOSIGMASK)
4627 {
4628 sigemptyset (&sa.sa_mask);
4629 sigaddset (&sa.sa_mask, w->signum);
4630 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4631 }
4632 #endif
4633 }
4634
4635 EV_FREQUENT_CHECK;
4636 }
4637
4638 ecb_noinline
4639 void
4640 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4641 {
4642 clear_pending (EV_A_ (W)w);
4643 if (ecb_expect_false (!ev_is_active (w)))
4644 return;
4645
4646 EV_FREQUENT_CHECK;
4647
4648 wlist_del (&signals [w->signum - 1].head, (WL)w);
4649 ev_stop (EV_A_ (W)w);
4650
4651 if (!signals [w->signum - 1].head)
4652 {
4653 #if EV_MULTIPLICITY
4654 signals [w->signum - 1].loop = 0; /* unattach from signal */
4655 #endif
4656 #if EV_USE_SIGNALFD
4657 if (sigfd >= 0)
4658 {
4659 sigset_t ss;
4660
4661 sigemptyset (&ss);
4662 sigaddset (&ss, w->signum);
4663 sigdelset (&sigfd_set, w->signum);
4664
4665 signalfd (sigfd, &sigfd_set, 0);
4666 sigprocmask (SIG_UNBLOCK, &ss, 0);
4667 }
4668 else
4669 #endif
4670 signal (w->signum, SIG_DFL);
4671 }
4672
4673 EV_FREQUENT_CHECK;
4674 }
4675
4676 #endif
4677
4678 #if EV_CHILD_ENABLE
4679
4680 void
4681 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4682 {
4683 #if EV_MULTIPLICITY
4684 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4685 #endif
4686 if (ecb_expect_false (ev_is_active (w)))
4687 return;
4688
4689 EV_FREQUENT_CHECK;
4690
4691 ev_start (EV_A_ (W)w, 1);
4692 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4693
4694 EV_FREQUENT_CHECK;
4695 }
4696
4697 void
4698 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4699 {
4700 clear_pending (EV_A_ (W)w);
4701 if (ecb_expect_false (!ev_is_active (w)))
4702 return;
4703
4704 EV_FREQUENT_CHECK;
4705
4706 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4707 ev_stop (EV_A_ (W)w);
4708
4709 EV_FREQUENT_CHECK;
4710 }
4711
4712 #endif
4713
4714 #if EV_STAT_ENABLE
4715
4716 # ifdef _WIN32
4717 # undef lstat
4718 # define lstat(a,b) _stati64 (a,b)
4719 # endif
4720
4721 #define DEF_STAT_INTERVAL 5.0074891
4722 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4723 #define MIN_STAT_INTERVAL 0.1074891
4724
4725 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4726
4727 #if EV_USE_INOTIFY
4728
4729 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4730 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4731
4732 ecb_noinline
4733 static void
4734 infy_add (EV_P_ ev_stat *w)
4735 {
4736 w->wd = inotify_add_watch (fs_fd, w->path,
4737 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4738 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4739 | IN_DONT_FOLLOW | IN_MASK_ADD);
4740
4741 if (w->wd >= 0)
4742 {
4743 struct statfs sfs;
4744
4745 /* now local changes will be tracked by inotify, but remote changes won't */
4746 /* unless the filesystem is known to be local, we therefore still poll */
4747 /* also do poll on <2.6.25, but with normal frequency */
4748
4749 if (!fs_2625)
4750 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4751 else if (!statfs (w->path, &sfs)
4752 && (sfs.f_type == 0x1373 /* devfs */
4753 || sfs.f_type == 0x4006 /* fat */
4754 || sfs.f_type == 0x4d44 /* msdos */
4755 || sfs.f_type == 0xEF53 /* ext2/3 */
4756 || sfs.f_type == 0x72b6 /* jffs2 */
4757 || sfs.f_type == 0x858458f6 /* ramfs */
4758 || sfs.f_type == 0x5346544e /* ntfs */
4759 || sfs.f_type == 0x3153464a /* jfs */
4760 || sfs.f_type == 0x9123683e /* btrfs */
4761 || sfs.f_type == 0x52654973 /* reiser3 */
4762 || sfs.f_type == 0x01021994 /* tmpfs */
4763 || sfs.f_type == 0x58465342 /* xfs */))
4764 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4765 else
4766 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4767 }
4768 else
4769 {
4770 /* can't use inotify, continue to stat */
4771 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4772
4773 /* if path is not there, monitor some parent directory for speedup hints */
4774 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4775 /* but an efficiency issue only */
4776 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4777 {
4778 char path [4096];
4779 strcpy (path, w->path);
4780
4781 do
4782 {
4783 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4784 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4785
4786 char *pend = strrchr (path, '/');
4787
4788 if (!pend || pend == path)
4789 break;
4790
4791 *pend = 0;
4792 w->wd = inotify_add_watch (fs_fd, path, mask);
4793 }
4794 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4795 }
4796 }
4797
4798 if (w->wd >= 0)
4799 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4800
4801 /* now re-arm timer, if required */
4802 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4803 ev_timer_again (EV_A_ &w->timer);
4804 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4805 }
4806
4807 ecb_noinline
4808 static void
4809 infy_del (EV_P_ ev_stat *w)
4810 {
4811 int slot;
4812 int wd = w->wd;
4813
4814 if (wd < 0)
4815 return;
4816
4817 w->wd = -2;
4818 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4819 wlist_del (&fs_hash [slot].head, (WL)w);
4820
4821 /* remove this watcher, if others are watching it, they will rearm */
4822 inotify_rm_watch (fs_fd, wd);
4823 }
4824
4825 ecb_noinline
4826 static void
4827 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4828 {
4829 if (slot < 0)
4830 /* overflow, need to check for all hash slots */
4831 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4832 infy_wd (EV_A_ slot, wd, ev);
4833 else
4834 {
4835 WL w_;
4836
4837 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4838 {
4839 ev_stat *w = (ev_stat *)w_;
4840 w_ = w_->next; /* lets us remove this watcher and all before it */
4841
4842 if (w->wd == wd || wd == -1)
4843 {
4844 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4845 {
4846 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4847 w->wd = -1;
4848 infy_add (EV_A_ w); /* re-add, no matter what */
4849 }
4850
4851 stat_timer_cb (EV_A_ &w->timer, 0);
4852 }
4853 }
4854 }
4855 }
4856
4857 static void
4858 infy_cb (EV_P_ ev_io *w, int revents)
4859 {
4860 char buf [EV_INOTIFY_BUFSIZE];
4861 int ofs;
4862 int len = read (fs_fd, buf, sizeof (buf));
4863
4864 for (ofs = 0; ofs < len; )
4865 {
4866 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4867 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4868 ofs += sizeof (struct inotify_event) + ev->len;
4869 }
4870 }
4871
4872 inline_size ecb_cold
4873 void
4874 ev_check_2625 (EV_P)
4875 {
4876 /* kernels < 2.6.25 are borked
4877 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4878 */
4879 if (ev_linux_version () < 0x020619)
4880 return;
4881
4882 fs_2625 = 1;
4883 }
4884
4885 inline_size int
4886 infy_newfd (void)
4887 {
4888 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4889 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4890 if (fd >= 0)
4891 return fd;
4892 #endif
4893 return inotify_init ();
4894 }
4895
4896 inline_size void
4897 infy_init (EV_P)
4898 {
4899 if (fs_fd != -2)
4900 return;
4901
4902 fs_fd = -1;
4903
4904 ev_check_2625 (EV_A);
4905
4906 fs_fd = infy_newfd ();
4907
4908 if (fs_fd >= 0)
4909 {
4910 fd_intern (fs_fd);
4911 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4912 ev_set_priority (&fs_w, EV_MAXPRI);
4913 ev_io_start (EV_A_ &fs_w);
4914 ev_unref (EV_A);
4915 }
4916 }
4917
4918 inline_size void
4919 infy_fork (EV_P)
4920 {
4921 int slot;
4922
4923 if (fs_fd < 0)
4924 return;
4925
4926 ev_ref (EV_A);
4927 ev_io_stop (EV_A_ &fs_w);
4928 close (fs_fd);
4929 fs_fd = infy_newfd ();
4930
4931 if (fs_fd >= 0)
4932 {
4933 fd_intern (fs_fd);
4934 ev_io_set (&fs_w, fs_fd, EV_READ);
4935 ev_io_start (EV_A_ &fs_w);
4936 ev_unref (EV_A);
4937 }
4938
4939 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4940 {
4941 WL w_ = fs_hash [slot].head;
4942 fs_hash [slot].head = 0;
4943
4944 while (w_)
4945 {
4946 ev_stat *w = (ev_stat *)w_;
4947 w_ = w_->next; /* lets us add this watcher */
4948
4949 w->wd = -1;
4950
4951 if (fs_fd >= 0)
4952 infy_add (EV_A_ w); /* re-add, no matter what */
4953 else
4954 {
4955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4956 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4957 ev_timer_again (EV_A_ &w->timer);
4958 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4959 }
4960 }
4961 }
4962 }
4963
4964 #endif
4965
4966 #ifdef _WIN32
4967 # define EV_LSTAT(p,b) _stati64 (p, b)
4968 #else
4969 # define EV_LSTAT(p,b) lstat (p, b)
4970 #endif
4971
4972 void
4973 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4974 {
4975 if (lstat (w->path, &w->attr) < 0)
4976 w->attr.st_nlink = 0;
4977 else if (!w->attr.st_nlink)
4978 w->attr.st_nlink = 1;
4979 }
4980
4981 ecb_noinline
4982 static void
4983 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4984 {
4985 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4986
4987 ev_statdata prev = w->attr;
4988 ev_stat_stat (EV_A_ w);
4989
4990 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4991 if (
4992 prev.st_dev != w->attr.st_dev
4993 || prev.st_ino != w->attr.st_ino
4994 || prev.st_mode != w->attr.st_mode
4995 || prev.st_nlink != w->attr.st_nlink
4996 || prev.st_uid != w->attr.st_uid
4997 || prev.st_gid != w->attr.st_gid
4998 || prev.st_rdev != w->attr.st_rdev
4999 || prev.st_size != w->attr.st_size
5000 || prev.st_atime != w->attr.st_atime
5001 || prev.st_mtime != w->attr.st_mtime
5002 || prev.st_ctime != w->attr.st_ctime
5003 ) {
5004 /* we only update w->prev on actual differences */
5005 /* in case we test more often than invoke the callback, */
5006 /* to ensure that prev is always different to attr */
5007 w->prev = prev;
5008
5009 #if EV_USE_INOTIFY
5010 if (fs_fd >= 0)
5011 {
5012 infy_del (EV_A_ w);
5013 infy_add (EV_A_ w);
5014 ev_stat_stat (EV_A_ w); /* avoid race... */
5015 }
5016 #endif
5017
5018 ev_feed_event (EV_A_ w, EV_STAT);
5019 }
5020 }
5021
5022 void
5023 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
5024 {
5025 if (ecb_expect_false (ev_is_active (w)))
5026 return;
5027
5028 ev_stat_stat (EV_A_ w);
5029
5030 if (w->interval < MIN_STAT_INTERVAL && w->interval)
5031 w->interval = MIN_STAT_INTERVAL;
5032
5033 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
5034 ev_set_priority (&w->timer, ev_priority (w));
5035
5036 #if EV_USE_INOTIFY
5037 infy_init (EV_A);
5038
5039 if (fs_fd >= 0)
5040 infy_add (EV_A_ w);
5041 else
5042 #endif
5043 {
5044 ev_timer_again (EV_A_ &w->timer);
5045 ev_unref (EV_A);
5046 }
5047
5048 ev_start (EV_A_ (W)w, 1);
5049
5050 EV_FREQUENT_CHECK;
5051 }
5052
5053 void
5054 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
5055 {
5056 clear_pending (EV_A_ (W)w);
5057 if (ecb_expect_false (!ev_is_active (w)))
5058 return;
5059
5060 EV_FREQUENT_CHECK;
5061
5062 #if EV_USE_INOTIFY
5063 infy_del (EV_A_ w);
5064 #endif
5065
5066 if (ev_is_active (&w->timer))
5067 {
5068 ev_ref (EV_A);
5069 ev_timer_stop (EV_A_ &w->timer);
5070 }
5071
5072 ev_stop (EV_A_ (W)w);
5073
5074 EV_FREQUENT_CHECK;
5075 }
5076 #endif
5077
5078 #if EV_IDLE_ENABLE
5079 void
5080 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
5081 {
5082 if (ecb_expect_false (ev_is_active (w)))
5083 return;
5084
5085 pri_adjust (EV_A_ (W)w);
5086
5087 EV_FREQUENT_CHECK;
5088
5089 {
5090 int active = ++idlecnt [ABSPRI (w)];
5091
5092 ++idleall;
5093 ev_start (EV_A_ (W)w, active);
5094
5095 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
5096 idles [ABSPRI (w)][active - 1] = w;
5097 }
5098
5099 EV_FREQUENT_CHECK;
5100 }
5101
5102 void
5103 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
5104 {
5105 clear_pending (EV_A_ (W)w);
5106 if (ecb_expect_false (!ev_is_active (w)))
5107 return;
5108
5109 EV_FREQUENT_CHECK;
5110
5111 {
5112 int active = ev_active (w);
5113
5114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
5115 ev_active (idles [ABSPRI (w)][active - 1]) = active;
5116
5117 ev_stop (EV_A_ (W)w);
5118 --idleall;
5119 }
5120
5121 EV_FREQUENT_CHECK;
5122 }
5123 #endif
5124
5125 #if EV_PREPARE_ENABLE
5126 void
5127 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
5128 {
5129 if (ecb_expect_false (ev_is_active (w)))
5130 return;
5131
5132 EV_FREQUENT_CHECK;
5133
5134 ev_start (EV_A_ (W)w, ++preparecnt);
5135 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5136 prepares [preparecnt - 1] = w;
5137
5138 EV_FREQUENT_CHECK;
5139 }
5140
5141 void
5142 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5143 {
5144 clear_pending (EV_A_ (W)w);
5145 if (ecb_expect_false (!ev_is_active (w)))
5146 return;
5147
5148 EV_FREQUENT_CHECK;
5149
5150 {
5151 int active = ev_active (w);
5152
5153 prepares [active - 1] = prepares [--preparecnt];
5154 ev_active (prepares [active - 1]) = active;
5155 }
5156
5157 ev_stop (EV_A_ (W)w);
5158
5159 EV_FREQUENT_CHECK;
5160 }
5161 #endif
5162
5163 #if EV_CHECK_ENABLE
5164 void
5165 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5166 {
5167 if (ecb_expect_false (ev_is_active (w)))
5168 return;
5169
5170 EV_FREQUENT_CHECK;
5171
5172 ev_start (EV_A_ (W)w, ++checkcnt);
5173 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5174 checks [checkcnt - 1] = w;
5175
5176 EV_FREQUENT_CHECK;
5177 }
5178
5179 void
5180 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5181 {
5182 clear_pending (EV_A_ (W)w);
5183 if (ecb_expect_false (!ev_is_active (w)))
5184 return;
5185
5186 EV_FREQUENT_CHECK;
5187
5188 {
5189 int active = ev_active (w);
5190
5191 checks [active - 1] = checks [--checkcnt];
5192 ev_active (checks [active - 1]) = active;
5193 }
5194
5195 ev_stop (EV_A_ (W)w);
5196
5197 EV_FREQUENT_CHECK;
5198 }
5199 #endif
5200
5201 #if EV_EMBED_ENABLE
5202 ecb_noinline
5203 void
5204 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5205 {
5206 ev_run (w->other, EVRUN_NOWAIT);
5207 }
5208
5209 static void
5210 embed_io_cb (EV_P_ ev_io *io, int revents)
5211 {
5212 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5213
5214 if (ev_cb (w))
5215 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5216 else
5217 ev_run (w->other, EVRUN_NOWAIT);
5218 }
5219
5220 static void
5221 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5222 {
5223 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5224
5225 {
5226 EV_P = w->other;
5227
5228 while (fdchangecnt)
5229 {
5230 fd_reify (EV_A);
5231 ev_run (EV_A_ EVRUN_NOWAIT);
5232 }
5233 }
5234 }
5235
5236 #if EV_FORK_ENABLE
5237 static void
5238 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5239 {
5240 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5241
5242 ev_embed_stop (EV_A_ w);
5243
5244 {
5245 EV_P = w->other;
5246
5247 ev_loop_fork (EV_A);
5248 ev_run (EV_A_ EVRUN_NOWAIT);
5249 }
5250
5251 ev_embed_start (EV_A_ w);
5252 }
5253 #endif
5254
5255 #if 0
5256 static void
5257 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5258 {
5259 ev_idle_stop (EV_A_ idle);
5260 }
5261 #endif
5262
5263 void
5264 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5265 {
5266 if (ecb_expect_false (ev_is_active (w)))
5267 return;
5268
5269 {
5270 EV_P = w->other;
5271 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5272 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5273 }
5274