ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.537
Committed: Sun May 14 19:02:31 2023 UTC (11 months, 2 weeks ago) by sf-exg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 1.536: +2 -2 lines
Log Message:
Fix typos.

Patch by Al Chu11.

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2020 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #pragma clang diagnostic ignored "-Wunused-value"
41 #pragma clang diagnostic ignored "-Wcomment"
42 #pragma clang diagnostic ignored "-Wextern-initializer"
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_FLOOR
53 # ifndef EV_USE_FLOOR
54 # define EV_USE_FLOOR 1
55 # endif
56 # endif
57
58 # if HAVE_CLOCK_SYSCALL
59 # ifndef EV_USE_CLOCK_SYSCALL
60 # define EV_USE_CLOCK_SYSCALL 1
61 # ifndef EV_USE_REALTIME
62 # define EV_USE_REALTIME 0
63 # endif
64 # ifndef EV_USE_MONOTONIC
65 # define EV_USE_MONOTONIC 1
66 # endif
67 # endif
68 # elif !defined EV_USE_CLOCK_SYSCALL
69 # define EV_USE_CLOCK_SYSCALL 0
70 # endif
71
72 # if HAVE_CLOCK_GETTIME
73 # ifndef EV_USE_MONOTONIC
74 # define EV_USE_MONOTONIC 1
75 # endif
76 # ifndef EV_USE_REALTIME
77 # define EV_USE_REALTIME 0
78 # endif
79 # else
80 # ifndef EV_USE_MONOTONIC
81 # define EV_USE_MONOTONIC 0
82 # endif
83 # ifndef EV_USE_REALTIME
84 # define EV_USE_REALTIME 0
85 # endif
86 # endif
87
88 # if HAVE_NANOSLEEP
89 # ifndef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP EV_FEATURE_OS
91 # endif
92 # else
93 # undef EV_USE_NANOSLEEP
94 # define EV_USE_NANOSLEEP 0
95 # endif
96
97 # if HAVE_SELECT && HAVE_SYS_SELECT_H
98 # ifndef EV_USE_SELECT
99 # define EV_USE_SELECT EV_FEATURE_BACKENDS
100 # endif
101 # else
102 # undef EV_USE_SELECT
103 # define EV_USE_SELECT 0
104 # endif
105
106 # if HAVE_POLL && HAVE_POLL_H
107 # ifndef EV_USE_POLL
108 # define EV_USE_POLL EV_FEATURE_BACKENDS
109 # endif
110 # else
111 # undef EV_USE_POLL
112 # define EV_USE_POLL 0
113 # endif
114
115 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
116 # ifndef EV_USE_EPOLL
117 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
118 # endif
119 # else
120 # undef EV_USE_EPOLL
121 # define EV_USE_EPOLL 0
122 # endif
123
124 # if HAVE_LINUX_AIO_ABI_H
125 # ifndef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
127 # endif
128 # else
129 # undef EV_USE_LINUXAIO
130 # define EV_USE_LINUXAIO 0
131 # endif
132
133 # if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
134 # ifndef EV_USE_IOURING
135 # define EV_USE_IOURING EV_FEATURE_BACKENDS
136 # endif
137 # else
138 # undef EV_USE_IOURING
139 # define EV_USE_IOURING 0
140 # endif
141
142 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
143 # ifndef EV_USE_KQUEUE
144 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
145 # endif
146 # else
147 # undef EV_USE_KQUEUE
148 # define EV_USE_KQUEUE 0
149 # endif
150
151 # if HAVE_PORT_H && HAVE_PORT_CREATE
152 # ifndef EV_USE_PORT
153 # define EV_USE_PORT EV_FEATURE_BACKENDS
154 # endif
155 # else
156 # undef EV_USE_PORT
157 # define EV_USE_PORT 0
158 # endif
159
160 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
161 # ifndef EV_USE_INOTIFY
162 # define EV_USE_INOTIFY EV_FEATURE_OS
163 # endif
164 # else
165 # undef EV_USE_INOTIFY
166 # define EV_USE_INOTIFY 0
167 # endif
168
169 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
170 # ifndef EV_USE_SIGNALFD
171 # define EV_USE_SIGNALFD EV_FEATURE_OS
172 # endif
173 # else
174 # undef EV_USE_SIGNALFD
175 # define EV_USE_SIGNALFD 0
176 # endif
177
178 # if HAVE_EVENTFD
179 # ifndef EV_USE_EVENTFD
180 # define EV_USE_EVENTFD EV_FEATURE_OS
181 # endif
182 # else
183 # undef EV_USE_EVENTFD
184 # define EV_USE_EVENTFD 0
185 # endif
186
187 # if HAVE_SYS_TIMERFD_H
188 # ifndef EV_USE_TIMERFD
189 # define EV_USE_TIMERFD EV_FEATURE_OS
190 # endif
191 # else
192 # undef EV_USE_TIMERFD
193 # define EV_USE_TIMERFD 0
194 # endif
195
196 #endif
197
198 /* OS X, in its infinite idiocy, actually HARDCODES
199 * a limit of 1024 into their select. Where people have brains,
200 * OS X engineers apparently have a vacuum. Or maybe they were
201 * ordered to have a vacuum, or they do anything for money.
202 * This might help. Or not.
203 * Note that this must be defined early, as other include files
204 * will rely on this define as well.
205 */
206 #define _DARWIN_UNLIMITED_SELECT 1
207
208 #include <stdlib.h>
209 #include <string.h>
210 #include <fcntl.h>
211 #include <stddef.h>
212
213 #include <stdio.h>
214
215 #include <assert.h>
216 #include <errno.h>
217 #include <sys/types.h>
218 #include <time.h>
219 #include <limits.h>
220
221 #include <signal.h>
222
223 #ifdef EV_H
224 # include EV_H
225 #else
226 # include "ev.h"
227 #endif
228
229 #if EV_NO_THREADS
230 # undef EV_NO_SMP
231 # define EV_NO_SMP 1
232 # undef ECB_NO_THREADS
233 # define ECB_NO_THREADS 1
234 #endif
235 #if EV_NO_SMP
236 # undef EV_NO_SMP
237 # define ECB_NO_SMP 1
238 #endif
239
240 #ifndef _WIN32
241 # include <sys/time.h>
242 # include <sys/wait.h>
243 # include <unistd.h>
244 #else
245 # include <io.h>
246 # define WIN32_LEAN_AND_MEAN
247 # include <winsock2.h>
248 # include <windows.h>
249 # ifndef EV_SELECT_IS_WINSOCKET
250 # define EV_SELECT_IS_WINSOCKET 1
251 # endif
252 # undef EV_AVOID_STDIO
253 #endif
254
255 /* this block tries to deduce configuration from header-defined symbols and defaults */
256
257 /* try to deduce the maximum number of signals on this platform */
258 #if defined EV_NSIG
259 /* use what's provided */
260 #elif defined NSIG
261 # define EV_NSIG (NSIG)
262 #elif defined _NSIG
263 # define EV_NSIG (_NSIG)
264 #elif defined SIGMAX
265 # define EV_NSIG (SIGMAX+1)
266 #elif defined SIG_MAX
267 # define EV_NSIG (SIG_MAX+1)
268 #elif defined _SIG_MAX
269 # define EV_NSIG (_SIG_MAX+1)
270 #elif defined MAXSIG
271 # define EV_NSIG (MAXSIG+1)
272 #elif defined MAX_SIG
273 # define EV_NSIG (MAX_SIG+1)
274 #elif defined SIGARRAYSIZE
275 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
276 #elif defined _sys_nsig
277 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
278 #else
279 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
280 #endif
281
282 #ifndef EV_USE_FLOOR
283 # define EV_USE_FLOOR 0
284 #endif
285
286 #ifndef EV_USE_CLOCK_SYSCALL
287 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
288 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
289 # else
290 # define EV_USE_CLOCK_SYSCALL 0
291 # endif
292 #endif
293
294 #if !(_POSIX_TIMERS > 0)
295 # ifndef EV_USE_MONOTONIC
296 # define EV_USE_MONOTONIC 0
297 # endif
298 # ifndef EV_USE_REALTIME
299 # define EV_USE_REALTIME 0
300 # endif
301 #endif
302
303 #ifndef EV_USE_MONOTONIC
304 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
305 # define EV_USE_MONOTONIC EV_FEATURE_OS
306 # else
307 # define EV_USE_MONOTONIC 0
308 # endif
309 #endif
310
311 #ifndef EV_USE_REALTIME
312 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
313 #endif
314
315 #ifndef EV_USE_NANOSLEEP
316 # if _POSIX_C_SOURCE >= 199309L
317 # define EV_USE_NANOSLEEP EV_FEATURE_OS
318 # else
319 # define EV_USE_NANOSLEEP 0
320 # endif
321 #endif
322
323 #ifndef EV_USE_SELECT
324 # define EV_USE_SELECT EV_FEATURE_BACKENDS
325 #endif
326
327 #ifndef EV_USE_POLL
328 # ifdef _WIN32
329 # define EV_USE_POLL 0
330 # else
331 # define EV_USE_POLL EV_FEATURE_BACKENDS
332 # endif
333 #endif
334
335 #ifndef EV_USE_EPOLL
336 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
337 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
338 # else
339 # define EV_USE_EPOLL 0
340 # endif
341 #endif
342
343 #ifndef EV_USE_KQUEUE
344 # define EV_USE_KQUEUE 0
345 #endif
346
347 #ifndef EV_USE_PORT
348 # define EV_USE_PORT 0
349 #endif
350
351 #ifndef EV_USE_LINUXAIO
352 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
353 # define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
354 # else
355 # define EV_USE_LINUXAIO 0
356 # endif
357 #endif
358
359 #ifndef EV_USE_IOURING
360 # if __linux /* later checks might disable again */
361 # define EV_USE_IOURING 1
362 # else
363 # define EV_USE_IOURING 0
364 # endif
365 #endif
366
367 #ifndef EV_USE_INOTIFY
368 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
369 # define EV_USE_INOTIFY EV_FEATURE_OS
370 # else
371 # define EV_USE_INOTIFY 0
372 # endif
373 #endif
374
375 #ifndef EV_PID_HASHSIZE
376 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377 #endif
378
379 #ifndef EV_INOTIFY_HASHSIZE
380 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
381 #endif
382
383 #ifndef EV_USE_EVENTFD
384 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
385 # define EV_USE_EVENTFD EV_FEATURE_OS
386 # else
387 # define EV_USE_EVENTFD 0
388 # endif
389 #endif
390
391 #ifndef EV_USE_SIGNALFD
392 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
393 # define EV_USE_SIGNALFD EV_FEATURE_OS
394 # else
395 # define EV_USE_SIGNALFD 0
396 # endif
397 #endif
398
399 #ifndef EV_USE_TIMERFD
400 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
401 # define EV_USE_TIMERFD EV_FEATURE_OS
402 # else
403 # define EV_USE_TIMERFD 0
404 # endif
405 #endif
406
407 #if 0 /* debugging */
408 # define EV_VERIFY 3
409 # define EV_USE_4HEAP 1
410 # define EV_HEAP_CACHE_AT 1
411 #endif
412
413 #ifndef EV_VERIFY
414 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
415 #endif
416
417 #ifndef EV_USE_4HEAP
418 # define EV_USE_4HEAP EV_FEATURE_DATA
419 #endif
420
421 #ifndef EV_HEAP_CACHE_AT
422 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
423 #endif
424
425 #ifdef __ANDROID__
426 /* supposedly, android doesn't typedef fd_mask */
427 # undef EV_USE_SELECT
428 # define EV_USE_SELECT 0
429 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
430 # undef EV_USE_CLOCK_SYSCALL
431 # define EV_USE_CLOCK_SYSCALL 0
432 #endif
433
434 /* aix's poll.h seems to cause lots of trouble */
435 #ifdef _AIX
436 /* AIX has a completely broken poll.h header */
437 # undef EV_USE_POLL
438 # define EV_USE_POLL 0
439 #endif
440
441 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
442 /* which makes programs even slower. might work on other unices, too. */
443 #if EV_USE_CLOCK_SYSCALL
444 # include <sys/syscall.h>
445 # ifdef SYS_clock_gettime
446 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
447 # undef EV_USE_MONOTONIC
448 # define EV_USE_MONOTONIC 1
449 # define EV_NEED_SYSCALL 1
450 # else
451 # undef EV_USE_CLOCK_SYSCALL
452 # define EV_USE_CLOCK_SYSCALL 0
453 # endif
454 #endif
455
456 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
457
458 #ifndef CLOCK_MONOTONIC
459 # undef EV_USE_MONOTONIC
460 # define EV_USE_MONOTONIC 0
461 #endif
462
463 #ifndef CLOCK_REALTIME
464 # undef EV_USE_REALTIME
465 # define EV_USE_REALTIME 0
466 #endif
467
468 #if !EV_STAT_ENABLE
469 # undef EV_USE_INOTIFY
470 # define EV_USE_INOTIFY 0
471 #endif
472
473 #if __linux && EV_USE_IOURING
474 # include <linux/version.h>
475 # if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
476 # undef EV_USE_IOURING
477 # define EV_USE_IOURING 0
478 # endif
479 #endif
480
481 #if !EV_USE_NANOSLEEP
482 /* hp-ux has it in sys/time.h, which we unconditionally include above */
483 # if !defined _WIN32 && !defined __hpux
484 # include <sys/select.h>
485 # endif
486 #endif
487
488 #if EV_USE_LINUXAIO
489 # include <sys/syscall.h>
490 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
491 # define EV_NEED_SYSCALL 1
492 # else
493 # undef EV_USE_LINUXAIO
494 # define EV_USE_LINUXAIO 0
495 # endif
496 #endif
497
498 #if EV_USE_IOURING
499 # include <sys/syscall.h>
500 # if !SYS_io_uring_register && __linux && !__alpha
501 # define SYS_io_uring_setup 425
502 # define SYS_io_uring_enter 426
503 # define SYS_io_uring_register 427
504 # endif
505 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
506 # define EV_NEED_SYSCALL 1
507 # else
508 # undef EV_USE_IOURING
509 # define EV_USE_IOURING 0
510 # endif
511 #endif
512
513 #if EV_USE_INOTIFY
514 # include <sys/statfs.h>
515 # include <sys/inotify.h>
516 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
517 # ifndef IN_DONT_FOLLOW
518 # undef EV_USE_INOTIFY
519 # define EV_USE_INOTIFY 0
520 # endif
521 #endif
522
523 #if EV_USE_EVENTFD
524 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
525 # include <stdint.h>
526 # ifndef EFD_NONBLOCK
527 # define EFD_NONBLOCK O_NONBLOCK
528 # endif
529 # ifndef EFD_CLOEXEC
530 # ifdef O_CLOEXEC
531 # define EFD_CLOEXEC O_CLOEXEC
532 # else
533 # define EFD_CLOEXEC 02000000
534 # endif
535 # endif
536 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
537 #endif
538
539 #if EV_USE_SIGNALFD
540 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
541 # include <stdint.h>
542 # ifndef SFD_NONBLOCK
543 # define SFD_NONBLOCK O_NONBLOCK
544 # endif
545 # ifndef SFD_CLOEXEC
546 # ifdef O_CLOEXEC
547 # define SFD_CLOEXEC O_CLOEXEC
548 # else
549 # define SFD_CLOEXEC 02000000
550 # endif
551 # endif
552 EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
553
554 struct signalfd_siginfo
555 {
556 uint32_t ssi_signo;
557 char pad[128 - sizeof (uint32_t)];
558 };
559 #endif
560
561 /* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
562 #if EV_USE_TIMERFD
563 # include <sys/timerfd.h>
564 /* timerfd is only used for periodics */
565 # if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
566 # undef EV_USE_TIMERFD
567 # define EV_USE_TIMERFD 0
568 # endif
569 #endif
570
571 /*****************************************************************************/
572
573 #if EV_VERIFY >= 3
574 # define EV_FREQUENT_CHECK ev_verify (EV_A)
575 #else
576 # define EV_FREQUENT_CHECK do { } while (0)
577 #endif
578
579 /*
580 * This is used to work around floating point rounding problems.
581 * This value is good at least till the year 4000.
582 */
583 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
584 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
585
586 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
587 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
588 #define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
589
590 /* find a portable timestamp that is "always" in the future but fits into time_t.
591 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
592 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
593 #define EV_TSTAMP_HUGE \
594 (sizeof (time_t) >= 8 ? 10000000000000. \
595 : 0 < (time_t)4294967295 ? 4294967295. \
596 : 2147483647.) \
597
598 #ifndef EV_TS_CONST
599 # define EV_TS_CONST(nv) nv
600 # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
601 # define EV_TS_FROM_USEC(us) us * 1e-6
602 # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
603 # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
604 # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
605 # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
606 #endif
607
608 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
609 /* ECB.H BEGIN */
610 /*
611 * libecb - http://software.schmorp.de/pkg/libecb
612 *
613 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
614 * Copyright (©) 2011 Emanuele Giaquinta
615 * All rights reserved.
616 *
617 * Redistribution and use in source and binary forms, with or without modifica-
618 * tion, are permitted provided that the following conditions are met:
619 *
620 * 1. Redistributions of source code must retain the above copyright notice,
621 * this list of conditions and the following disclaimer.
622 *
623 * 2. Redistributions in binary form must reproduce the above copyright
624 * notice, this list of conditions and the following disclaimer in the
625 * documentation and/or other materials provided with the distribution.
626 *
627 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
628 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
629 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
630 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
631 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
632 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
633 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
634 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
635 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
636 * OF THE POSSIBILITY OF SUCH DAMAGE.
637 *
638 * Alternatively, the contents of this file may be used under the terms of
639 * the GNU General Public License ("GPL") version 2 or any later version,
640 * in which case the provisions of the GPL are applicable instead of
641 * the above. If you wish to allow the use of your version of this file
642 * only under the terms of the GPL and not to allow others to use your
643 * version of this file under the BSD license, indicate your decision
644 * by deleting the provisions above and replace them with the notice
645 * and other provisions required by the GPL. If you do not delete the
646 * provisions above, a recipient may use your version of this file under
647 * either the BSD or the GPL.
648 */
649
650 #ifndef ECB_H
651 #define ECB_H
652
653 /* 16 bits major, 16 bits minor */
654 #define ECB_VERSION 0x00010008
655
656 #include <string.h> /* for memcpy */
657
658 #if defined (_WIN32) && !defined (__MINGW32__)
659 typedef signed char int8_t;
660 typedef unsigned char uint8_t;
661 typedef signed char int_fast8_t;
662 typedef unsigned char uint_fast8_t;
663 typedef signed short int16_t;
664 typedef unsigned short uint16_t;
665 typedef signed int int_fast16_t;
666 typedef unsigned int uint_fast16_t;
667 typedef signed int int32_t;
668 typedef unsigned int uint32_t;
669 typedef signed int int_fast32_t;
670 typedef unsigned int uint_fast32_t;
671 #if __GNUC__
672 typedef signed long long int64_t;
673 typedef unsigned long long uint64_t;
674 #else /* _MSC_VER || __BORLANDC__ */
675 typedef signed __int64 int64_t;
676 typedef unsigned __int64 uint64_t;
677 #endif
678 typedef int64_t int_fast64_t;
679 typedef uint64_t uint_fast64_t;
680 #ifdef _WIN64
681 #define ECB_PTRSIZE 8
682 typedef uint64_t uintptr_t;
683 typedef int64_t intptr_t;
684 #else
685 #define ECB_PTRSIZE 4
686 typedef uint32_t uintptr_t;
687 typedef int32_t intptr_t;
688 #endif
689 #else
690 #include <inttypes.h>
691 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
692 #define ECB_PTRSIZE 8
693 #else
694 #define ECB_PTRSIZE 4
695 #endif
696 #endif
697
698 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
699 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
700
701 #ifndef ECB_OPTIMIZE_SIZE
702 #if __OPTIMIZE_SIZE__
703 #define ECB_OPTIMIZE_SIZE 1
704 #else
705 #define ECB_OPTIMIZE_SIZE 0
706 #endif
707 #endif
708
709 /* work around x32 idiocy by defining proper macros */
710 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
711 #if _ILP32
712 #define ECB_AMD64_X32 1
713 #else
714 #define ECB_AMD64 1
715 #endif
716 #endif
717
718 /* many compilers define _GNUC_ to some versions but then only implement
719 * what their idiot authors think are the "more important" extensions,
720 * causing enormous grief in return for some better fake benchmark numbers.
721 * or so.
722 * we try to detect these and simply assume they are not gcc - if they have
723 * an issue with that they should have done it right in the first place.
724 */
725 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
726 #define ECB_GCC_VERSION(major,minor) 0
727 #else
728 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
729 #endif
730
731 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
732
733 #if __clang__ && defined __has_builtin
734 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
735 #else
736 #define ECB_CLANG_BUILTIN(x) 0
737 #endif
738
739 #if __clang__ && defined __has_extension
740 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
741 #else
742 #define ECB_CLANG_EXTENSION(x) 0
743 #endif
744
745 #define ECB_CPP (__cplusplus+0)
746 #define ECB_CPP11 (__cplusplus >= 201103L)
747 #define ECB_CPP14 (__cplusplus >= 201402L)
748 #define ECB_CPP17 (__cplusplus >= 201703L)
749
750 #if ECB_CPP
751 #define ECB_C 0
752 #define ECB_STDC_VERSION 0
753 #else
754 #define ECB_C 1
755 #define ECB_STDC_VERSION __STDC_VERSION__
756 #endif
757
758 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
759 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
760 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
761
762 #if ECB_CPP
763 #define ECB_EXTERN_C extern "C"
764 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
765 #define ECB_EXTERN_C_END }
766 #else
767 #define ECB_EXTERN_C extern
768 #define ECB_EXTERN_C_BEG
769 #define ECB_EXTERN_C_END
770 #endif
771
772 /*****************************************************************************/
773
774 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
775 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
776
777 #if ECB_NO_THREADS
778 #define ECB_NO_SMP 1
779 #endif
780
781 #if ECB_NO_SMP
782 #define ECB_MEMORY_FENCE do { } while (0)
783 #endif
784
785 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
786 #if __xlC__ && ECB_CPP
787 #include <builtins.h>
788 #endif
789
790 #if 1400 <= _MSC_VER
791 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
792 #endif
793
794 #ifndef ECB_MEMORY_FENCE
795 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
796 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
797 #if __i386 || __i386__
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif ECB_GCC_AMD64
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
803 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
804 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
805 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
806 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
807 #elif defined __ARM_ARCH_2__ \
808 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
809 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
810 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
811 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
812 || defined __ARM_ARCH_5TEJ__
813 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
814 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
815 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
816 || defined __ARM_ARCH_6T2__
817 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
818 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
819 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
821 #elif __aarch64__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
823 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
825 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
826 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
827 #elif defined __s390__ || defined __s390x__
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
829 #elif defined __mips__
830 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
831 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
833 #elif defined __alpha__
834 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
835 #elif defined __hppa__
836 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
837 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
838 #elif defined __ia64__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
840 #elif defined __m68k__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #elif defined __m88k__
843 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
844 #elif defined __sh__
845 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
846 #endif
847 #endif
848 #endif
849
850 #ifndef ECB_MEMORY_FENCE
851 #if ECB_GCC_VERSION(4,7)
852 /* see comment below (stdatomic.h) about the C11 memory model. */
853 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
854 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
855 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
856 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
857
858 #elif ECB_CLANG_EXTENSION(c_atomic)
859 /* see comment below (stdatomic.h) about the C11 memory model. */
860 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
861 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
862 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
863 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
864
865 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
866 #define ECB_MEMORY_FENCE __sync_synchronize ()
867 #elif _MSC_VER >= 1500 /* VC++ 2008 */
868 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
869 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
870 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
871 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
872 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
873 #elif _MSC_VER >= 1400 /* VC++ 2005 */
874 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
875 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
876 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
877 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
878 #elif defined _WIN32
879 #include <WinNT.h>
880 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
881 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
882 #include <mbarrier.h>
883 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
884 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
885 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
886 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
887 #elif __xlC__
888 #define ECB_MEMORY_FENCE __sync ()
889 #endif
890 #endif
891
892 #ifndef ECB_MEMORY_FENCE
893 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
894 /* we assume that these memory fences work on all variables/all memory accesses, */
895 /* not just C11 atomics and atomic accesses */
896 #include <stdatomic.h>
897 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
898 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
899 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
900 #endif
901 #endif
902
903 #ifndef ECB_MEMORY_FENCE
904 #if !ECB_AVOID_PTHREADS
905 /*
906 * if you get undefined symbol references to pthread_mutex_lock,
907 * or failure to find pthread.h, then you should implement
908 * the ECB_MEMORY_FENCE operations for your cpu/compiler
909 * OR provide pthread.h and link against the posix thread library
910 * of your system.
911 */
912 #include <pthread.h>
913 #define ECB_NEEDS_PTHREADS 1
914 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
915
916 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
917 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
918 #endif
919 #endif
920
921 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
923 #endif
924
925 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
927 #endif
928
929 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
930 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
931 #endif
932
933 /*****************************************************************************/
934
935 #if ECB_CPP
936 #define ecb_inline static inline
937 #elif ECB_GCC_VERSION(2,5)
938 #define ecb_inline static __inline__
939 #elif ECB_C99
940 #define ecb_inline static inline
941 #else
942 #define ecb_inline static
943 #endif
944
945 #if ECB_GCC_VERSION(3,3)
946 #define ecb_restrict __restrict__
947 #elif ECB_C99
948 #define ecb_restrict restrict
949 #else
950 #define ecb_restrict
951 #endif
952
953 typedef int ecb_bool;
954
955 #define ECB_CONCAT_(a, b) a ## b
956 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
957 #define ECB_STRINGIFY_(a) # a
958 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
959 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
960
961 #define ecb_function_ ecb_inline
962
963 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
964 #define ecb_attribute(attrlist) __attribute__ (attrlist)
965 #else
966 #define ecb_attribute(attrlist)
967 #endif
968
969 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
970 #define ecb_is_constant(expr) __builtin_constant_p (expr)
971 #else
972 /* possible C11 impl for integral types
973 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
974 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
975
976 #define ecb_is_constant(expr) 0
977 #endif
978
979 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
980 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
981 #else
982 #define ecb_expect(expr,value) (expr)
983 #endif
984
985 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
986 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
987 #else
988 #define ecb_prefetch(addr,rw,locality)
989 #endif
990
991 /* no emulation for ecb_decltype */
992 #if ECB_CPP11
993 // older implementations might have problems with decltype(x)::type, work around it
994 template<class T> struct ecb_decltype_t { typedef T type; };
995 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
996 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
997 #define ecb_decltype(x) __typeof__ (x)
998 #endif
999
1000 #if _MSC_VER >= 1300
1001 #define ecb_deprecated __declspec (deprecated)
1002 #else
1003 #define ecb_deprecated ecb_attribute ((__deprecated__))
1004 #endif
1005
1006 #if _MSC_VER >= 1500
1007 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1008 #elif ECB_GCC_VERSION(4,5)
1009 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1010 #else
1011 #define ecb_deprecated_message(msg) ecb_deprecated
1012 #endif
1013
1014 #if _MSC_VER >= 1400
1015 #define ecb_noinline __declspec (noinline)
1016 #else
1017 #define ecb_noinline ecb_attribute ((__noinline__))
1018 #endif
1019
1020 #define ecb_unused ecb_attribute ((__unused__))
1021 #define ecb_const ecb_attribute ((__const__))
1022 #define ecb_pure ecb_attribute ((__pure__))
1023
1024 #if ECB_C11 || __IBMC_NORETURN
1025 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1026 #define ecb_noreturn _Noreturn
1027 #elif ECB_CPP11
1028 #define ecb_noreturn [[noreturn]]
1029 #elif _MSC_VER >= 1200
1030 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1031 #define ecb_noreturn __declspec (noreturn)
1032 #else
1033 #define ecb_noreturn ecb_attribute ((__noreturn__))
1034 #endif
1035
1036 #if ECB_GCC_VERSION(4,3)
1037 #define ecb_artificial ecb_attribute ((__artificial__))
1038 #define ecb_hot ecb_attribute ((__hot__))
1039 #define ecb_cold ecb_attribute ((__cold__))
1040 #else
1041 #define ecb_artificial
1042 #define ecb_hot
1043 #define ecb_cold
1044 #endif
1045
1046 /* put around conditional expressions if you are very sure that the */
1047 /* expression is mostly true or mostly false. note that these return */
1048 /* booleans, not the expression. */
1049 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1050 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1051 /* for compatibility to the rest of the world */
1052 #define ecb_likely(expr) ecb_expect_true (expr)
1053 #define ecb_unlikely(expr) ecb_expect_false (expr)
1054
1055 /* count trailing zero bits and count # of one bits */
1056 #if ECB_GCC_VERSION(3,4) \
1057 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1058 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1059 && ECB_CLANG_BUILTIN(__builtin_popcount))
1060 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1061 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1062 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1063 #define ecb_ctz32(x) __builtin_ctz (x)
1064 #define ecb_ctz64(x) __builtin_ctzll (x)
1065 #define ecb_popcount32(x) __builtin_popcount (x)
1066 /* no popcountll */
1067 #else
1068 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1069 ecb_function_ ecb_const int
1070 ecb_ctz32 (uint32_t x)
1071 {
1072 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1073 unsigned long r;
1074 _BitScanForward (&r, x);
1075 return (int)r;
1076 #else
1077 int r = 0;
1078
1079 x &= ~x + 1; /* this isolates the lowest bit */
1080
1081 #if ECB_branchless_on_i386
1082 r += !!(x & 0xaaaaaaaa) << 0;
1083 r += !!(x & 0xcccccccc) << 1;
1084 r += !!(x & 0xf0f0f0f0) << 2;
1085 r += !!(x & 0xff00ff00) << 3;
1086 r += !!(x & 0xffff0000) << 4;
1087 #else
1088 if (x & 0xaaaaaaaa) r += 1;
1089 if (x & 0xcccccccc) r += 2;
1090 if (x & 0xf0f0f0f0) r += 4;
1091 if (x & 0xff00ff00) r += 8;
1092 if (x & 0xffff0000) r += 16;
1093 #endif
1094
1095 return r;
1096 #endif
1097 }
1098
1099 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1100 ecb_function_ ecb_const int
1101 ecb_ctz64 (uint64_t x)
1102 {
1103 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1104 unsigned long r;
1105 _BitScanForward64 (&r, x);
1106 return (int)r;
1107 #else
1108 int shift = x & 0xffffffff ? 0 : 32;
1109 return ecb_ctz32 (x >> shift) + shift;
1110 #endif
1111 }
1112
1113 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1114 ecb_function_ ecb_const int
1115 ecb_popcount32 (uint32_t x)
1116 {
1117 x -= (x >> 1) & 0x55555555;
1118 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1119 x = ((x >> 4) + x) & 0x0f0f0f0f;
1120 x *= 0x01010101;
1121
1122 return x >> 24;
1123 }
1124
1125 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1126 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1127 {
1128 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1129 unsigned long r;
1130 _BitScanReverse (&r, x);
1131 return (int)r;
1132 #else
1133 int r = 0;
1134
1135 if (x >> 16) { x >>= 16; r += 16; }
1136 if (x >> 8) { x >>= 8; r += 8; }
1137 if (x >> 4) { x >>= 4; r += 4; }
1138 if (x >> 2) { x >>= 2; r += 2; }
1139 if (x >> 1) { r += 1; }
1140
1141 return r;
1142 #endif
1143 }
1144
1145 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1146 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1147 {
1148 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1149 unsigned long r;
1150 _BitScanReverse64 (&r, x);
1151 return (int)r;
1152 #else
1153 int r = 0;
1154
1155 if (x >> 32) { x >>= 32; r += 32; }
1156
1157 return r + ecb_ld32 (x);
1158 #endif
1159 }
1160 #endif
1161
1162 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1163 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1164 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1165 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1166
1167 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1168 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1169 {
1170 return ( (x * 0x0802U & 0x22110U)
1171 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1172 }
1173
1174 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1175 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1176 {
1177 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1178 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1179 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1180 x = ( x >> 8 ) | ( x << 8);
1181
1182 return x;
1183 }
1184
1185 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1186 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1187 {
1188 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1189 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1190 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1191 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1192 x = ( x >> 16 ) | ( x << 16);
1193
1194 return x;
1195 }
1196
1197 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1198 /* so for this version we are lazy */
1199 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1200 ecb_function_ ecb_const int
1201 ecb_popcount64 (uint64_t x)
1202 {
1203 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1204 }
1205
1206 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1207 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1208 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1209 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1210 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1211 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1212 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1213 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1214
1215 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1216 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1217 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1218 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1219 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1220 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1221 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1222 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1223
1224 #if ECB_CPP
1225
1226 inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1227 inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1228 inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1229 inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1230
1231 inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1232 inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1233 inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1234 inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1235
1236 inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1237 inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1238 inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1239 inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1240
1241 inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1242 inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1243 inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1244 inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1245
1246 inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1247 inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1248 inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1249
1250 inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1251 inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1252 inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1253 inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1254
1255 inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1256 inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1257 inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1258 inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1259
1260 #endif
1261
1262 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1263 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1264 #define ecb_bswap16(x) __builtin_bswap16 (x)
1265 #else
1266 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1267 #endif
1268 #define ecb_bswap32(x) __builtin_bswap32 (x)
1269 #define ecb_bswap64(x) __builtin_bswap64 (x)
1270 #elif _MSC_VER
1271 #include <stdlib.h>
1272 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1273 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1274 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1275 #else
1276 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1277 ecb_function_ ecb_const uint16_t
1278 ecb_bswap16 (uint16_t x)
1279 {
1280 return ecb_rotl16 (x, 8);
1281 }
1282
1283 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1284 ecb_function_ ecb_const uint32_t
1285 ecb_bswap32 (uint32_t x)
1286 {
1287 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1288 }
1289
1290 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1291 ecb_function_ ecb_const uint64_t
1292 ecb_bswap64 (uint64_t x)
1293 {
1294 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1295 }
1296 #endif
1297
1298 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1299 #define ecb_unreachable() __builtin_unreachable ()
1300 #else
1301 /* this seems to work fine, but gcc always emits a warning for it :/ */
1302 ecb_inline ecb_noreturn void ecb_unreachable (void);
1303 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1304 #endif
1305
1306 /* try to tell the compiler that some condition is definitely true */
1307 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1308
1309 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1310 ecb_inline ecb_const uint32_t
1311 ecb_byteorder_helper (void)
1312 {
1313 /* the union code still generates code under pressure in gcc, */
1314 /* but less than using pointers, and always seems to */
1315 /* successfully return a constant. */
1316 /* the reason why we have this horrible preprocessor mess */
1317 /* is to avoid it in all cases, at least on common architectures */
1318 /* or when using a recent enough gcc version (>= 4.6) */
1319 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1320 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1321 #define ECB_LITTLE_ENDIAN 1
1322 return 0x44332211;
1323 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1324 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1325 #define ECB_BIG_ENDIAN 1
1326 return 0x11223344;
1327 #else
1328 union
1329 {
1330 uint8_t c[4];
1331 uint32_t u;
1332 } u = { 0x11, 0x22, 0x33, 0x44 };
1333 return u.u;
1334 #endif
1335 }
1336
1337 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1338 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1339 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1340 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1341
1342 /*****************************************************************************/
1343 /* unaligned load/store */
1344
1345 ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1346 ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1347 ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1348
1349 ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1350 ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1351 ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1352
1353 ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1354 ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1355 ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1356
1357 ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1358 ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1359 ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361 ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1362 ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1363 ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1364
1365 ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1366 ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1367 ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1368
1369 ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1370 ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1371 ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1372
1373 ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1374 ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1375 ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1376
1377 ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1378 ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1379 ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1380
1381 ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1382 ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1383 ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1384
1385 #if ECB_CPP
1386
1387 inline uint8_t ecb_bswap (uint8_t v) { return v; }
1388 inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1389 inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1390 inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1391
1392 template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1393 template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1394 template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1395 template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1396 template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1397 template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1398 template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1399 template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1400
1401 template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1402 template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1403 template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1404 template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1405 template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1406 template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1407 template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1408 template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1409
1410 #endif
1411
1412 /*****************************************************************************/
1413
1414 #if ECB_GCC_VERSION(3,0) || ECB_C99
1415 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1416 #else
1417 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1418 #endif
1419
1420 #if ECB_CPP
1421 template<typename T>
1422 static inline T ecb_div_rd (T val, T div)
1423 {
1424 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1425 }
1426 template<typename T>
1427 static inline T ecb_div_ru (T val, T div)
1428 {
1429 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1430 }
1431 #else
1432 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1433 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1434 #endif
1435
1436 #if ecb_cplusplus_does_not_suck
1437 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1438 template<typename T, int N>
1439 static inline int ecb_array_length (const T (&arr)[N])
1440 {
1441 return N;
1442 }
1443 #else
1444 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1445 #endif
1446
1447 /*****************************************************************************/
1448
1449 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1450 ecb_function_ ecb_const uint32_t
1451 ecb_binary16_to_binary32 (uint32_t x)
1452 {
1453 unsigned int s = (x & 0x8000) << (31 - 15);
1454 int e = (x >> 10) & 0x001f;
1455 unsigned int m = x & 0x03ff;
1456
1457 if (ecb_expect_false (e == 31))
1458 /* infinity or NaN */
1459 e = 255 - (127 - 15);
1460 else if (ecb_expect_false (!e))
1461 {
1462 if (ecb_expect_true (!m))
1463 /* zero, handled by code below by forcing e to 0 */
1464 e = 0 - (127 - 15);
1465 else
1466 {
1467 /* subnormal, renormalise */
1468 unsigned int s = 10 - ecb_ld32 (m);
1469
1470 m = (m << s) & 0x3ff; /* mask implicit bit */
1471 e -= s - 1;
1472 }
1473 }
1474
1475 /* e and m now are normalised, or zero, (or inf or nan) */
1476 e += 127 - 15;
1477
1478 return s | (e << 23) | (m << (23 - 10));
1479 }
1480
1481 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1482 ecb_function_ ecb_const uint16_t
1483 ecb_binary32_to_binary16 (uint32_t x)
1484 {
1485 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1486 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1487 unsigned int m = x & 0x007fffff;
1488
1489 x &= 0x7fffffff;
1490
1491 /* if it's within range of binary16 normals, use fast path */
1492 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1493 {
1494 /* mantissa round-to-even */
1495 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1496
1497 /* handle overflow */
1498 if (ecb_expect_false (m >= 0x00800000))
1499 {
1500 m >>= 1;
1501 e += 1;
1502 }
1503
1504 return s | (e << 10) | (m >> (23 - 10));
1505 }
1506
1507 /* handle large numbers and infinity */
1508 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1509 return s | 0x7c00;
1510
1511 /* handle zero, subnormals and small numbers */
1512 if (ecb_expect_true (x < 0x38800000))
1513 {
1514 /* zero */
1515 if (ecb_expect_true (!x))
1516 return s;
1517
1518 /* handle subnormals */
1519
1520 /* too small, will be zero */
1521 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1522 return s;
1523
1524 m |= 0x00800000; /* make implicit bit explicit */
1525
1526 /* very tricky - we need to round to the nearest e (+10) bit value */
1527 {
1528 unsigned int bits = 14 - e;
1529 unsigned int half = (1 << (bits - 1)) - 1;
1530 unsigned int even = (m >> bits) & 1;
1531
1532 /* if this overflows, we will end up with a normalised number */
1533 m = (m + half + even) >> bits;
1534 }
1535
1536 return s | m;
1537 }
1538
1539 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1540 m >>= 13;
1541
1542 return s | 0x7c00 | m | !m;
1543 }
1544
1545 /*******************************************************************************/
1546 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1547
1548 /* basically, everything uses "ieee pure-endian" floating point numbers */
1549 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1550 #if 0 \
1551 || __i386 || __i386__ \
1552 || ECB_GCC_AMD64 \
1553 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1554 || defined __s390__ || defined __s390x__ \
1555 || defined __mips__ \
1556 || defined __alpha__ \
1557 || defined __hppa__ \
1558 || defined __ia64__ \
1559 || defined __m68k__ \
1560 || defined __m88k__ \
1561 || defined __sh__ \
1562 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1563 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1564 || defined __aarch64__
1565 #define ECB_STDFP 1
1566 #else
1567 #define ECB_STDFP 0
1568 #endif
1569
1570 #ifndef ECB_NO_LIBM
1571
1572 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1573
1574 /* only the oldest of old doesn't have this one. solaris. */
1575 #ifdef INFINITY
1576 #define ECB_INFINITY INFINITY
1577 #else
1578 #define ECB_INFINITY HUGE_VAL
1579 #endif
1580
1581 #ifdef NAN
1582 #define ECB_NAN NAN
1583 #else
1584 #define ECB_NAN ECB_INFINITY
1585 #endif
1586
1587 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1588 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1589 #define ecb_frexpf(x,e) frexpf ((x), (e))
1590 #else
1591 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1592 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1593 #endif
1594
1595 /* convert a float to ieee single/binary32 */
1596 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1597 ecb_function_ ecb_const uint32_t
1598 ecb_float_to_binary32 (float x)
1599 {
1600 uint32_t r;
1601
1602 #if ECB_STDFP
1603 memcpy (&r, &x, 4);
1604 #else
1605 /* slow emulation, works for anything but -0 */
1606 uint32_t m;
1607 int e;
1608
1609 if (x == 0e0f ) return 0x00000000U;
1610 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1611 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1612 if (x != x ) return 0x7fbfffffU;
1613
1614 m = ecb_frexpf (x, &e) * 0x1000000U;
1615
1616 r = m & 0x80000000U;
1617
1618 if (r)
1619 m = -m;
1620
1621 if (e <= -126)
1622 {
1623 m &= 0xffffffU;
1624 m >>= (-125 - e);
1625 e = -126;
1626 }
1627
1628 r |= (e + 126) << 23;
1629 r |= m & 0x7fffffU;
1630 #endif
1631
1632 return r;
1633 }
1634
1635 /* converts an ieee single/binary32 to a float */
1636 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1637 ecb_function_ ecb_const float
1638 ecb_binary32_to_float (uint32_t x)
1639 {
1640 float r;
1641
1642 #if ECB_STDFP
1643 memcpy (&r, &x, 4);
1644 #else
1645 /* emulation, only works for normals and subnormals and +0 */
1646 int neg = x >> 31;
1647 int e = (x >> 23) & 0xffU;
1648
1649 x &= 0x7fffffU;
1650
1651 if (e)
1652 x |= 0x800000U;
1653 else
1654 e = 1;
1655
1656 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1657 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1658
1659 r = neg ? -r : r;
1660 #endif
1661
1662 return r;
1663 }
1664
1665 /* convert a double to ieee double/binary64 */
1666 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1667 ecb_function_ ecb_const uint64_t
1668 ecb_double_to_binary64 (double x)
1669 {
1670 uint64_t r;
1671
1672 #if ECB_STDFP
1673 memcpy (&r, &x, 8);
1674 #else
1675 /* slow emulation, works for anything but -0 */
1676 uint64_t m;
1677 int e;
1678
1679 if (x == 0e0 ) return 0x0000000000000000U;
1680 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1681 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1682 if (x != x ) return 0X7ff7ffffffffffffU;
1683
1684 m = frexp (x, &e) * 0x20000000000000U;
1685
1686 r = m & 0x8000000000000000;;
1687
1688 if (r)
1689 m = -m;
1690
1691 if (e <= -1022)
1692 {
1693 m &= 0x1fffffffffffffU;
1694 m >>= (-1021 - e);
1695 e = -1022;
1696 }
1697
1698 r |= ((uint64_t)(e + 1022)) << 52;
1699 r |= m & 0xfffffffffffffU;
1700 #endif
1701
1702 return r;
1703 }
1704
1705 /* converts an ieee double/binary64 to a double */
1706 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1707 ecb_function_ ecb_const double
1708 ecb_binary64_to_double (uint64_t x)
1709 {
1710 double r;
1711
1712 #if ECB_STDFP
1713 memcpy (&r, &x, 8);
1714 #else
1715 /* emulation, only works for normals and subnormals and +0 */
1716 int neg = x >> 63;
1717 int e = (x >> 52) & 0x7ffU;
1718
1719 x &= 0xfffffffffffffU;
1720
1721 if (e)
1722 x |= 0x10000000000000U;
1723 else
1724 e = 1;
1725
1726 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1727 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1728
1729 r = neg ? -r : r;
1730 #endif
1731
1732 return r;
1733 }
1734
1735 /* convert a float to ieee half/binary16 */
1736 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1737 ecb_function_ ecb_const uint16_t
1738 ecb_float_to_binary16 (float x)
1739 {
1740 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1741 }
1742
1743 /* convert an ieee half/binary16 to float */
1744 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1745 ecb_function_ ecb_const float
1746 ecb_binary16_to_float (uint16_t x)
1747 {
1748 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1749 }
1750
1751 #endif
1752
1753 #endif
1754
1755 /* ECB.H END */
1756
1757 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1758 /* if your architecture doesn't need memory fences, e.g. because it is
1759 * single-cpu/core, or if you use libev in a project that doesn't use libev
1760 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1761 * libev, in which cases the memory fences become nops.
1762 * alternatively, you can remove this #error and link against libpthread,
1763 * which will then provide the memory fences.
1764 */
1765 # error "memory fences not defined for your architecture, please report"
1766 #endif
1767
1768 #ifndef ECB_MEMORY_FENCE
1769 # define ECB_MEMORY_FENCE do { } while (0)
1770 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1771 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1772 #endif
1773
1774 #define inline_size ecb_inline
1775
1776 #if EV_FEATURE_CODE
1777 # define inline_speed ecb_inline
1778 #else
1779 # define inline_speed ecb_noinline static
1780 #endif
1781
1782 /*****************************************************************************/
1783 /* raw syscall wrappers */
1784
1785 #if EV_NEED_SYSCALL
1786
1787 #include <sys/syscall.h>
1788
1789 /*
1790 * define some syscall wrappers for common architectures
1791 * this is mostly for nice looks during debugging, not performance.
1792 * our syscalls return < 0, not == -1, on error. which is good
1793 * enough for linux aio.
1794 * TODO: arm is also common nowadays, maybe even mips and x86
1795 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1796 */
1797 #if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1798 /* the costly errno access probably kills this for size optimisation */
1799
1800 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1801 ({ \
1802 long res; \
1803 register unsigned long r6 __asm__ ("r9" ); \
1804 register unsigned long r5 __asm__ ("r8" ); \
1805 register unsigned long r4 __asm__ ("r10"); \
1806 register unsigned long r3 __asm__ ("rdx"); \
1807 register unsigned long r2 __asm__ ("rsi"); \
1808 register unsigned long r1 __asm__ ("rdi"); \
1809 if (narg >= 6) r6 = (unsigned long)(arg6); \
1810 if (narg >= 5) r5 = (unsigned long)(arg5); \
1811 if (narg >= 4) r4 = (unsigned long)(arg4); \
1812 if (narg >= 3) r3 = (unsigned long)(arg3); \
1813 if (narg >= 2) r2 = (unsigned long)(arg2); \
1814 if (narg >= 1) r1 = (unsigned long)(arg1); \
1815 __asm__ __volatile__ ( \
1816 "syscall\n\t" \
1817 : "=a" (res) \
1818 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1819 : "cc", "r11", "cx", "memory"); \
1820 errno = -res; \
1821 res; \
1822 })
1823
1824 #endif
1825
1826 #ifdef ev_syscall
1827 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1828 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1829 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1830 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1831 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1832 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1833 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1834 #else
1835 #define ev_syscall0(nr) syscall (nr)
1836 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1837 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1838 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1839 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1840 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1841 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1842 #endif
1843
1844 #endif
1845
1846 /*****************************************************************************/
1847
1848 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1849
1850 #if EV_MINPRI == EV_MAXPRI
1851 # define ABSPRI(w) (((W)w), 0)
1852 #else
1853 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1854 #endif
1855
1856 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1857
1858 typedef ev_watcher *W;
1859 typedef ev_watcher_list *WL;
1860 typedef ev_watcher_time *WT;
1861
1862 #define ev_active(w) ((W)(w))->active
1863 #define ev_at(w) ((WT)(w))->at
1864
1865 #if EV_USE_REALTIME
1866 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1867 /* giving it a reasonably high chance of working on typical architectures */
1868 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1869 #endif
1870
1871 #if EV_USE_MONOTONIC
1872 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1873 #endif
1874
1875 #ifndef EV_FD_TO_WIN32_HANDLE
1876 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1877 #endif
1878 #ifndef EV_WIN32_HANDLE_TO_FD
1879 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1880 #endif
1881 #ifndef EV_WIN32_CLOSE_FD
1882 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1883 #endif
1884
1885 #ifdef _WIN32
1886 # include "ev_win32.c"
1887 #endif
1888
1889 /*****************************************************************************/
1890
1891 #if EV_USE_LINUXAIO
1892 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1893 #endif
1894
1895 /* define a suitable floor function (only used by periodics atm) */
1896
1897 #if EV_USE_FLOOR
1898 # include <math.h>
1899 # define ev_floor(v) floor (v)
1900 #else
1901
1902 #include <float.h>
1903
1904 /* a floor() replacement function, should be independent of ev_tstamp type */
1905 ecb_noinline
1906 static ev_tstamp
1907 ev_floor (ev_tstamp v)
1908 {
1909 /* the choice of shift factor is not terribly important */
1910 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1911 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1912 #else
1913 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1914 #endif
1915
1916 /* special treatment for negative arguments */
1917 if (ecb_expect_false (v < 0.))
1918 {
1919 ev_tstamp f = -ev_floor (-v);
1920
1921 return f - (f == v ? 0 : 1);
1922 }
1923
1924 /* argument too large for an unsigned long? then reduce it */
1925 if (ecb_expect_false (v >= shift))
1926 {
1927 ev_tstamp f;
1928
1929 if (v == v - 1.)
1930 return v; /* very large numbers are assumed to be integer */
1931
1932 f = shift * ev_floor (v * (1. / shift));
1933 return f + ev_floor (v - f);
1934 }
1935
1936 /* fits into an unsigned long */
1937 return (unsigned long)v;
1938 }
1939
1940 #endif
1941
1942 /*****************************************************************************/
1943
1944 #ifdef __linux
1945 # include <sys/utsname.h>
1946 #endif
1947
1948 ecb_noinline ecb_cold
1949 static unsigned int
1950 ev_linux_version (void)
1951 {
1952 #ifdef __linux
1953 unsigned int v = 0;
1954 struct utsname buf;
1955 int i;
1956 char *p = buf.release;
1957
1958 if (uname (&buf))
1959 return 0;
1960
1961 for (i = 3+1; --i; )
1962 {
1963 unsigned int c = 0;
1964
1965 for (;;)
1966 {
1967 if (*p >= '0' && *p <= '9')
1968 c = c * 10 + *p++ - '0';
1969 else
1970 {
1971 p += *p == '.';
1972 break;
1973 }
1974 }
1975
1976 v = (v << 8) | c;
1977 }
1978
1979 return v;
1980 #else
1981 return 0;
1982 #endif
1983 }
1984
1985 /*****************************************************************************/
1986
1987 #if EV_AVOID_STDIO
1988 ecb_noinline ecb_cold
1989 static void
1990 ev_printerr (const char *msg)
1991 {
1992 write (STDERR_FILENO, msg, strlen (msg));
1993 }
1994 #endif
1995
1996 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1997
1998 ecb_cold
1999 void
2000 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
2001 {
2002 syserr_cb = cb;
2003 }
2004
2005 ecb_noinline ecb_cold
2006 static void
2007 ev_syserr (const char *msg)
2008 {
2009 if (!msg)
2010 msg = "(libev) system error";
2011
2012 if (syserr_cb)
2013 syserr_cb (msg);
2014 else
2015 {
2016 #if EV_AVOID_STDIO
2017 ev_printerr (msg);
2018 ev_printerr (": ");
2019 ev_printerr (strerror (errno));
2020 ev_printerr ("\n");
2021 #else
2022 perror (msg);
2023 #endif
2024 abort ();
2025 }
2026 }
2027
2028 static void *
2029 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2030 {
2031 /* some systems, notably openbsd and darwin, fail to properly
2032 * implement realloc (x, 0) (as required by both ansi c-89 and
2033 * the single unix specification, so work around them here.
2034 * recently, also (at least) fedora and debian started breaking it,
2035 * despite documenting it otherwise.
2036 */
2037
2038 if (size)
2039 return realloc (ptr, size);
2040
2041 free (ptr);
2042 return 0;
2043 }
2044
2045 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
2046
2047 ecb_cold
2048 void
2049 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
2050 {
2051 alloc = cb;
2052 }
2053
2054 inline_speed void *
2055 ev_realloc (void *ptr, long size)
2056 {
2057 ptr = alloc (ptr, size);
2058
2059 if (!ptr && size)
2060 {
2061 #if EV_AVOID_STDIO
2062 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2063 #else
2064 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2065 #endif
2066 abort ();
2067 }
2068
2069 return ptr;
2070 }
2071
2072 #define ev_malloc(size) ev_realloc (0, (size))
2073 #define ev_free(ptr) ev_realloc ((ptr), 0)
2074
2075 /*****************************************************************************/
2076
2077 /* set in reify when reification needed */
2078 #define EV_ANFD_REIFY 1
2079
2080 /* file descriptor info structure */
2081 typedef struct
2082 {
2083 WL head;
2084 unsigned char events; /* the events watched for */
2085 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2086 unsigned char emask; /* some backends store the actual kernel mask in here */
2087 unsigned char eflags; /* flags field for use by backends */
2088 #if EV_USE_EPOLL
2089 unsigned int egen; /* generation counter to counter epoll bugs */
2090 #endif
2091 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2092 SOCKET handle;
2093 #endif
2094 #if EV_USE_IOCP
2095 OVERLAPPED or, ow;
2096 #endif
2097 } ANFD;
2098
2099 /* stores the pending event set for a given watcher */
2100 typedef struct
2101 {
2102 W w;
2103 int events; /* the pending event set for the given watcher */
2104 } ANPENDING;
2105
2106 #if EV_USE_INOTIFY
2107 /* hash table entry per inotify-id */
2108 typedef struct
2109 {
2110 WL head;
2111 } ANFS;
2112 #endif
2113
2114 /* Heap Entry */
2115 #if EV_HEAP_CACHE_AT
2116 /* a heap element */
2117 typedef struct {
2118 ev_tstamp at;
2119 WT w;
2120 } ANHE;
2121
2122 #define ANHE_w(he) (he).w /* access watcher, read-write */
2123 #define ANHE_at(he) (he).at /* access cached at, read-only */
2124 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2125 #else
2126 /* a heap element */
2127 typedef WT ANHE;
2128
2129 #define ANHE_w(he) (he)
2130 #define ANHE_at(he) (he)->at
2131 #define ANHE_at_cache(he)
2132 #endif
2133
2134 #if EV_MULTIPLICITY
2135
2136 struct ev_loop
2137 {
2138 ev_tstamp ev_rt_now;
2139 #define ev_rt_now ((loop)->ev_rt_now)
2140 #define VAR(name,decl) decl;
2141 #include "ev_vars.h"
2142 #undef VAR
2143 };
2144 #include "ev_wrap.h"
2145
2146 static struct ev_loop default_loop_struct;
2147 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2148
2149 #else
2150
2151 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2152 #define VAR(name,decl) static decl;
2153 #include "ev_vars.h"
2154 #undef VAR
2155
2156 static int ev_default_loop_ptr;
2157
2158 #endif
2159
2160 #if EV_FEATURE_API
2161 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2162 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2163 # define EV_INVOKE_PENDING invoke_cb (EV_A)
2164 #else
2165 # define EV_RELEASE_CB (void)0
2166 # define EV_ACQUIRE_CB (void)0
2167 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2168 #endif
2169
2170 #define EVBREAK_RECURSE 0x80
2171
2172 /*****************************************************************************/
2173
2174 #ifndef EV_HAVE_EV_TIME
2175 ev_tstamp
2176 ev_time (void) EV_NOEXCEPT
2177 {
2178 #if EV_USE_REALTIME
2179 if (ecb_expect_true (have_realtime))
2180 {
2181 struct timespec ts;
2182 clock_gettime (CLOCK_REALTIME, &ts);
2183 return EV_TS_GET (ts);
2184 }
2185 #endif
2186
2187 {
2188 struct timeval tv;
2189 gettimeofday (&tv, 0);
2190 return EV_TV_GET (tv);
2191 }
2192 }
2193 #endif
2194
2195 inline_size ev_tstamp
2196 get_clock (void)
2197 {
2198 #if EV_USE_MONOTONIC
2199 if (ecb_expect_true (have_monotonic))
2200 {
2201 struct timespec ts;
2202 clock_gettime (CLOCK_MONOTONIC, &ts);
2203 return EV_TS_GET (ts);
2204 }
2205 #endif
2206
2207 return ev_time ();
2208 }
2209
2210 #if EV_MULTIPLICITY
2211 ev_tstamp
2212 ev_now (EV_P) EV_NOEXCEPT
2213 {
2214 return ev_rt_now;
2215 }
2216 #endif
2217
2218 void
2219 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2220 {
2221 if (delay > EV_TS_CONST (0.))
2222 {
2223 #if EV_USE_NANOSLEEP
2224 struct timespec ts;
2225
2226 EV_TS_SET (ts, delay);
2227 nanosleep (&ts, 0);
2228 #elif defined _WIN32
2229 /* maybe this should round up, as ms is very low resolution */
2230 /* compared to select (µs) or nanosleep (ns) */
2231 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2232 #else
2233 struct timeval tv;
2234
2235 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2236 /* something not guaranteed by newer posix versions, but guaranteed */
2237 /* by older ones */
2238 EV_TV_SET (tv, delay);
2239 select (0, 0, 0, 0, &tv);
2240 #endif
2241 }
2242 }
2243
2244 /*****************************************************************************/
2245
2246 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2247
2248 /* find a suitable new size for the given array, */
2249 /* hopefully by rounding to a nice-to-malloc size */
2250 inline_size int
2251 array_nextsize (int elem, int cur, int cnt)
2252 {
2253 int ncur = cur + 1;
2254
2255 do
2256 ncur <<= 1;
2257 while (cnt > ncur);
2258
2259 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2260 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2261 {
2262 ncur *= elem;
2263 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2264 ncur = ncur - sizeof (void *) * 4;
2265 ncur /= elem;
2266 }
2267
2268 return ncur;
2269 }
2270
2271 ecb_noinline ecb_cold
2272 static void *
2273 array_realloc (int elem, void *base, int *cur, int cnt)
2274 {
2275 *cur = array_nextsize (elem, *cur, cnt);
2276 return ev_realloc (base, elem * *cur);
2277 }
2278
2279 #define array_needsize_noinit(base,offset,count)
2280
2281 #define array_needsize_zerofill(base,offset,count) \
2282 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2283
2284 #define array_needsize(type,base,cur,cnt,init) \
2285 if (ecb_expect_false ((cnt) > (cur))) \
2286 { \
2287 ecb_unused int ocur_ = (cur); \
2288 (base) = (type *)array_realloc \
2289 (sizeof (type), (base), &(cur), (cnt)); \
2290 init ((base), ocur_, ((cur) - ocur_)); \
2291 }
2292
2293 #if 0
2294 #define array_slim(type,stem) \
2295 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2296 { \
2297 stem ## max = array_roundsize (stem ## cnt >> 1); \
2298 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2299 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2300 }
2301 #endif
2302
2303 #define array_free(stem, idx) \
2304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2305
2306 /*****************************************************************************/
2307
2308 /* dummy callback for pending events */
2309 ecb_noinline
2310 static void
2311 pendingcb (EV_P_ ev_prepare *w, int revents)
2312 {
2313 }
2314
2315 ecb_noinline
2316 void
2317 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2318 {
2319 W w_ = (W)w;
2320 int pri = ABSPRI (w_);
2321
2322 if (ecb_expect_false (w_->pending))
2323 pendings [pri][w_->pending - 1].events |= revents;
2324 else
2325 {
2326 w_->pending = ++pendingcnt [pri];
2327 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2328 pendings [pri][w_->pending - 1].w = w_;
2329 pendings [pri][w_->pending - 1].events = revents;
2330 }
2331
2332 pendingpri = NUMPRI - 1;
2333 }
2334
2335 inline_speed void
2336 feed_reverse (EV_P_ W w)
2337 {
2338 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2339 rfeeds [rfeedcnt++] = w;
2340 }
2341
2342 inline_size void
2343 feed_reverse_done (EV_P_ int revents)
2344 {
2345 do
2346 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2347 while (rfeedcnt);
2348 }
2349
2350 inline_speed void
2351 queue_events (EV_P_ W *events, int eventcnt, int type)
2352 {
2353 int i;
2354
2355 for (i = 0; i < eventcnt; ++i)
2356 ev_feed_event (EV_A_ events [i], type);
2357 }
2358
2359 /*****************************************************************************/
2360
2361 inline_speed void
2362 fd_event_nocheck (EV_P_ int fd, int revents)
2363 {
2364 ANFD *anfd = anfds + fd;
2365 ev_io *w;
2366
2367 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2368 {
2369 int ev = w->events & revents;
2370
2371 if (ev)
2372 ev_feed_event (EV_A_ (W)w, ev);
2373 }
2374 }
2375
2376 /* do not submit kernel events for fds that have reify set */
2377 /* because that means they changed while we were polling for new events */
2378 inline_speed void
2379 fd_event (EV_P_ int fd, int revents)
2380 {
2381 ANFD *anfd = anfds + fd;
2382
2383 if (ecb_expect_true (!anfd->reify))
2384 fd_event_nocheck (EV_A_ fd, revents);
2385 }
2386
2387 void
2388 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2389 {
2390 if (fd >= 0 && fd < anfdmax)
2391 fd_event_nocheck (EV_A_ fd, revents);
2392 }
2393
2394 /* make sure the external fd watch events are in-sync */
2395 /* with the kernel/libev internal state */
2396 inline_size void
2397 fd_reify (EV_P)
2398 {
2399 int i;
2400
2401 /* most backends do not modify the fdchanges list in backend_modify.
2402 * except io_uring, which has fixed-size buffers which might force us
2403 * to handle events in backend_modify, causing fdchanges to be amended,
2404 * which could result in an endless loop.
2405 * to avoid this, we do not dynamically handle fds that were added
2406 * during fd_reify. that means that for those backends, fdchangecnt
2407 * might be non-zero during poll, which must cause them to not block.
2408 * to not put too much of a burden on other backends, this detail
2409 * needs to be handled in the backend.
2410 */
2411 int changecnt = fdchangecnt;
2412
2413 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2414 for (i = 0; i < changecnt; ++i)
2415 {
2416 int fd = fdchanges [i];
2417 ANFD *anfd = anfds + fd;
2418
2419 if (anfd->reify & EV__IOFDSET && anfd->head)
2420 {
2421 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2422
2423 if (handle != anfd->handle)
2424 {
2425 unsigned long arg;
2426
2427 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2428
2429 /* handle changed, but fd didn't - we need to do it in two steps */
2430 backend_modify (EV_A_ fd, anfd->events, 0);
2431 anfd->events = 0;
2432 anfd->handle = handle;
2433 }
2434 }
2435 }
2436 #endif
2437
2438 for (i = 0; i < changecnt; ++i)
2439 {
2440 int fd = fdchanges [i];
2441 ANFD *anfd = anfds + fd;
2442 ev_io *w;
2443
2444 unsigned char o_events = anfd->events;
2445 unsigned char o_reify = anfd->reify;
2446
2447 anfd->reify = 0;
2448
2449 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2450 {
2451 anfd->events = 0;
2452
2453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2454 anfd->events |= (unsigned char)w->events;
2455
2456 if (o_events != anfd->events)
2457 o_reify = EV__IOFDSET; /* actually |= */
2458 }
2459
2460 if (o_reify & EV__IOFDSET)
2461 backend_modify (EV_A_ fd, o_events, anfd->events);
2462 }
2463
2464 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2465 * this is a rare case (see beginning comment in this function), so we copy them to the
2466 * front and hope the backend handles this case.
2467 */
2468 if (ecb_expect_false (fdchangecnt != changecnt))
2469 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2470
2471 fdchangecnt -= changecnt;
2472 }
2473
2474 /* something about the given fd changed */
2475 inline_size
2476 void
2477 fd_change (EV_P_ int fd, int flags)
2478 {
2479 unsigned char reify = anfds [fd].reify;
2480 anfds [fd].reify = reify | flags;
2481
2482 if (ecb_expect_true (!reify))
2483 {
2484 ++fdchangecnt;
2485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2486 fdchanges [fdchangecnt - 1] = fd;
2487 }
2488 }
2489
2490 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2491 inline_speed ecb_cold void
2492 fd_kill (EV_P_ int fd)
2493 {
2494 ev_io *w;
2495
2496 while ((w = (ev_io *)anfds [fd].head))
2497 {
2498 ev_io_stop (EV_A_ w);
2499 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2500 }
2501 }
2502
2503 /* check whether the given fd is actually valid, for error recovery */
2504 inline_size ecb_cold int
2505 fd_valid (int fd)
2506 {
2507 #ifdef _WIN32
2508 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2509 #else
2510 return fcntl (fd, F_GETFD) != -1;
2511 #endif
2512 }
2513
2514 /* called on EBADF to verify fds */
2515 ecb_noinline ecb_cold
2516 static void
2517 fd_ebadf (EV_P)
2518 {
2519 int fd;
2520
2521 for (fd = 0; fd < anfdmax; ++fd)
2522 if (anfds [fd].events)
2523 if (!fd_valid (fd) && errno == EBADF)
2524 fd_kill (EV_A_ fd);
2525 }
2526
2527 /* called on ENOMEM in select/poll to kill some fds and retry */
2528 ecb_noinline ecb_cold
2529 static void
2530 fd_enomem (EV_P)
2531 {
2532 int fd;
2533
2534 for (fd = anfdmax; fd--; )
2535 if (anfds [fd].events)
2536 {
2537 fd_kill (EV_A_ fd);
2538 break;
2539 }
2540 }
2541
2542 /* usually called after fork if backend needs to re-arm all fds from scratch */
2543 ecb_noinline
2544 static void
2545 fd_rearm_all (EV_P)
2546 {
2547 int fd;
2548
2549 for (fd = 0; fd < anfdmax; ++fd)
2550 if (anfds [fd].events)
2551 {
2552 anfds [fd].events = 0;
2553 anfds [fd].emask = 0;
2554 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2555 }
2556 }
2557
2558 /* used to prepare libev internal fd's */
2559 /* this is not fork-safe */
2560 inline_speed void
2561 fd_intern (int fd)
2562 {
2563 #ifdef _WIN32
2564 unsigned long arg = 1;
2565 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2566 #else
2567 fcntl (fd, F_SETFD, FD_CLOEXEC);
2568 fcntl (fd, F_SETFL, O_NONBLOCK);
2569 #endif
2570 }
2571
2572 /*****************************************************************************/
2573
2574 /*
2575 * the heap functions want a real array index. array index 0 is guaranteed to not
2576 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2577 * the branching factor of the d-tree.
2578 */
2579
2580 /*
2581 * at the moment we allow libev the luxury of two heaps,
2582 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2583 * which is more cache-efficient.
2584 * the difference is about 5% with 50000+ watchers.
2585 */
2586 #if EV_USE_4HEAP
2587
2588 #define DHEAP 4
2589 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2590 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2591 #define UPHEAP_DONE(p,k) ((p) == (k))
2592
2593 /* away from the root */
2594 inline_speed void
2595 downheap (ANHE *heap, int N, int k)
2596 {
2597 ANHE he = heap [k];
2598 ANHE *E = heap + N + HEAP0;
2599
2600 for (;;)
2601 {
2602 ev_tstamp minat;
2603 ANHE *minpos;
2604 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2605
2606 /* find minimum child */
2607 if (ecb_expect_true (pos + DHEAP - 1 < E))
2608 {
2609 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2610 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2611 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2612 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2613 }
2614 else if (pos < E)
2615 {
2616 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2617 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2618 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2619 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2620 }
2621 else
2622 break;
2623
2624 if (ANHE_at (he) <= minat)
2625 break;
2626
2627 heap [k] = *minpos;
2628 ev_active (ANHE_w (*minpos)) = k;
2629
2630 k = minpos - heap;
2631 }
2632
2633 heap [k] = he;
2634 ev_active (ANHE_w (he)) = k;
2635 }
2636
2637 #else /* not 4HEAP */
2638
2639 #define HEAP0 1
2640 #define HPARENT(k) ((k) >> 1)
2641 #define UPHEAP_DONE(p,k) (!(p))
2642
2643 /* away from the root */
2644 inline_speed void
2645 downheap (ANHE *heap, int N, int k)
2646 {
2647 ANHE he = heap [k];
2648
2649 for (;;)
2650 {
2651 int c = k << 1;
2652
2653 if (c >= N + HEAP0)
2654 break;
2655
2656 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2657 ? 1 : 0;
2658
2659 if (ANHE_at (he) <= ANHE_at (heap [c]))
2660 break;
2661
2662 heap [k] = heap [c];
2663 ev_active (ANHE_w (heap [k])) = k;
2664
2665 k = c;
2666 }
2667
2668 heap [k] = he;
2669 ev_active (ANHE_w (he)) = k;
2670 }
2671 #endif
2672
2673 /* towards the root */
2674 inline_speed void
2675 upheap (ANHE *heap, int k)
2676 {
2677 ANHE he = heap [k];
2678
2679 for (;;)
2680 {
2681 int p = HPARENT (k);
2682
2683 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2684 break;
2685
2686 heap [k] = heap [p];
2687 ev_active (ANHE_w (heap [k])) = k;
2688 k = p;
2689 }
2690
2691 heap [k] = he;
2692 ev_active (ANHE_w (he)) = k;
2693 }
2694
2695 /* move an element suitably so it is in a correct place */
2696 inline_size void
2697 adjustheap (ANHE *heap, int N, int k)
2698 {
2699 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2700 upheap (heap, k);
2701 else
2702 downheap (heap, N, k);
2703 }
2704
2705 /* rebuild the heap: this function is used only once and executed rarely */
2706 inline_size void
2707 reheap (ANHE *heap, int N)
2708 {
2709 int i;
2710
2711 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2712 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2713 for (i = 0; i < N; ++i)
2714 upheap (heap, i + HEAP0);
2715 }
2716
2717 /*****************************************************************************/
2718
2719 /* associate signal watchers to a signal */
2720 typedef struct
2721 {
2722 EV_ATOMIC_T pending;
2723 #if EV_MULTIPLICITY
2724 EV_P;
2725 #endif
2726 WL head;
2727 } ANSIG;
2728
2729 static ANSIG signals [EV_NSIG - 1];
2730
2731 /*****************************************************************************/
2732
2733 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2734
2735 ecb_noinline ecb_cold
2736 static void
2737 evpipe_init (EV_P)
2738 {
2739 if (!ev_is_active (&pipe_w))
2740 {
2741 int fds [2];
2742
2743 # if EV_USE_EVENTFD
2744 fds [0] = -1;
2745 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2746 if (fds [1] < 0 && errno == EINVAL)
2747 fds [1] = eventfd (0, 0);
2748
2749 if (fds [1] < 0)
2750 # endif
2751 {
2752 while (pipe (fds))
2753 ev_syserr ("(libev) error creating signal/async pipe");
2754
2755 fd_intern (fds [0]);
2756 }
2757
2758 evpipe [0] = fds [0];
2759
2760 if (evpipe [1] < 0)
2761 evpipe [1] = fds [1]; /* first call, set write fd */
2762 else
2763 {
2764 /* on subsequent calls, do not change evpipe [1] */
2765 /* so that evpipe_write can always rely on its value. */
2766 /* this branch does not do anything sensible on windows, */
2767 /* so must not be executed on windows */
2768
2769 dup2 (fds [1], evpipe [1]);
2770 close (fds [1]);
2771 }
2772
2773 fd_intern (evpipe [1]);
2774
2775 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2776 ev_io_start (EV_A_ &pipe_w);
2777 ev_unref (EV_A); /* watcher should not keep loop alive */
2778 }
2779 }
2780
2781 inline_speed void
2782 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2783 {
2784 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2785
2786 if (ecb_expect_true (*flag))
2787 return;
2788
2789 *flag = 1;
2790 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2791
2792 pipe_write_skipped = 1;
2793
2794 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2795
2796 if (pipe_write_wanted)
2797 {
2798 int old_errno;
2799
2800 pipe_write_skipped = 0;
2801 ECB_MEMORY_FENCE_RELEASE;
2802
2803 old_errno = errno; /* save errno because write will clobber it */
2804
2805 #if EV_USE_EVENTFD
2806 if (evpipe [0] < 0)
2807 {
2808 uint64_t counter = 1;
2809 write (evpipe [1], &counter, sizeof (uint64_t));
2810 }
2811 else
2812 #endif
2813 {
2814 #ifdef _WIN32
2815 WSABUF buf;
2816 DWORD sent;
2817 buf.buf = (char *)&buf;
2818 buf.len = 1;
2819 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2820 #else
2821 write (evpipe [1], &(evpipe [1]), 1);
2822 #endif
2823 }
2824
2825 errno = old_errno;
2826 }
2827 }
2828
2829 /* called whenever the libev signal pipe */
2830 /* got some events (signal, async) */
2831 static void
2832 pipecb (EV_P_ ev_io *iow, int revents)
2833 {
2834 int i;
2835
2836 if (revents & EV_READ)
2837 {
2838 #if EV_USE_EVENTFD
2839 if (evpipe [0] < 0)
2840 {
2841 uint64_t counter;
2842 read (evpipe [1], &counter, sizeof (uint64_t));
2843 }
2844 else
2845 #endif
2846 {
2847 char dummy[4];
2848 #ifdef _WIN32
2849 WSABUF buf;
2850 DWORD recvd;
2851 DWORD flags = 0;
2852 buf.buf = dummy;
2853 buf.len = sizeof (dummy);
2854 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2855 #else
2856 read (evpipe [0], &dummy, sizeof (dummy));
2857 #endif
2858 }
2859 }
2860
2861 pipe_write_skipped = 0;
2862
2863 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2864
2865 #if EV_SIGNAL_ENABLE
2866 if (sig_pending)
2867 {
2868 sig_pending = 0;
2869
2870 ECB_MEMORY_FENCE;
2871
2872 for (i = EV_NSIG - 1; i--; )
2873 if (ecb_expect_false (signals [i].pending))
2874 ev_feed_signal_event (EV_A_ i + 1);
2875 }
2876 #endif
2877
2878 #if EV_ASYNC_ENABLE
2879 if (async_pending)
2880 {
2881 async_pending = 0;
2882
2883 ECB_MEMORY_FENCE;
2884
2885 for (i = asynccnt; i--; )
2886 if (asyncs [i]->sent)
2887 {
2888 asyncs [i]->sent = 0;
2889 ECB_MEMORY_FENCE_RELEASE;
2890 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2891 }
2892 }
2893 #endif
2894 }
2895
2896 /*****************************************************************************/
2897
2898 void
2899 ev_feed_signal (int signum) EV_NOEXCEPT
2900 {
2901 #if EV_MULTIPLICITY
2902 EV_P;
2903 ECB_MEMORY_FENCE_ACQUIRE;
2904 EV_A = signals [signum - 1].loop;
2905
2906 if (!EV_A)
2907 return;
2908 #endif
2909
2910 signals [signum - 1].pending = 1;
2911 evpipe_write (EV_A_ &sig_pending);
2912 }
2913
2914 static void
2915 ev_sighandler (int signum)
2916 {
2917 #ifdef _WIN32
2918 signal (signum, ev_sighandler);
2919 #endif
2920
2921 ev_feed_signal (signum);
2922 }
2923
2924 ecb_noinline
2925 void
2926 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2927 {
2928 WL w;
2929
2930 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2931 return;
2932
2933 --signum;
2934
2935 #if EV_MULTIPLICITY
2936 /* it is permissible to try to feed a signal to the wrong loop */
2937 /* or, likely more useful, feeding a signal nobody is waiting for */
2938
2939 if (ecb_expect_false (signals [signum].loop != EV_A))
2940 return;
2941 #endif
2942
2943 signals [signum].pending = 0;
2944 ECB_MEMORY_FENCE_RELEASE;
2945
2946 for (w = signals [signum].head; w; w = w->next)
2947 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2948 }
2949
2950 #if EV_USE_SIGNALFD
2951 static void
2952 sigfdcb (EV_P_ ev_io *iow, int revents)
2953 {
2954 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2955
2956 for (;;)
2957 {
2958 ssize_t res = read (sigfd, si, sizeof (si));
2959
2960 /* not ISO-C, as res might be -1, but works with SuS */
2961 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2962 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2963
2964 if (res < (ssize_t)sizeof (si))
2965 break;
2966 }
2967 }
2968 #endif
2969
2970 #endif
2971
2972 /*****************************************************************************/
2973
2974 #if EV_CHILD_ENABLE
2975 static WL childs [EV_PID_HASHSIZE];
2976
2977 static ev_signal childev;
2978
2979 #ifndef WIFCONTINUED
2980 # define WIFCONTINUED(status) 0
2981 #endif
2982
2983 /* handle a single child status event */
2984 inline_speed void
2985 child_reap (EV_P_ int chain, int pid, int status)
2986 {
2987 ev_child *w;
2988 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2989
2990 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2991 {
2992 if ((w->pid == pid || !w->pid)
2993 && (!traced || (w->flags & 1)))
2994 {
2995 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2996 w->rpid = pid;
2997 w->rstatus = status;
2998 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2999 }
3000 }
3001 }
3002
3003 #ifndef WCONTINUED
3004 # define WCONTINUED 0
3005 #endif
3006
3007 /* called on sigchld etc., calls waitpid */
3008 static void
3009 childcb (EV_P_ ev_signal *sw, int revents)
3010 {
3011 int pid, status;
3012
3013 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
3014 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
3015 if (!WCONTINUED
3016 || errno != EINVAL
3017 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
3018 return;
3019
3020 /* make sure we are called again until all children have been reaped */
3021 /* we need to do it this way so that the callback gets called before we continue */
3022 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
3023
3024 child_reap (EV_A_ pid, pid, status);
3025 if ((EV_PID_HASHSIZE) > 1)
3026 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
3027 }
3028
3029 #endif
3030
3031 /*****************************************************************************/
3032
3033 #if EV_USE_TIMERFD
3034
3035 static void periodics_reschedule (EV_P);
3036
3037 static void
3038 timerfdcb (EV_P_ ev_io *iow, int revents)
3039 {
3040 struct itimerspec its = { 0 };
3041
3042 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3043 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3044
3045 ev_rt_now = ev_time ();
3046 /* periodics_reschedule only needs ev_rt_now */
3047 /* but maybe in the future we want the full treatment. */
3048 /*
3049 now_floor = EV_TS_CONST (0.);
3050 time_update (EV_A_ EV_TSTAMP_HUGE);
3051 */
3052 #if EV_PERIODIC_ENABLE
3053 periodics_reschedule (EV_A);
3054 #endif
3055 }
3056
3057 ecb_noinline ecb_cold
3058 static void
3059 evtimerfd_init (EV_P)
3060 {
3061 if (!ev_is_active (&timerfd_w))
3062 {
3063 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3064
3065 if (timerfd >= 0)
3066 {
3067 fd_intern (timerfd); /* just to be sure */
3068
3069 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3070 ev_set_priority (&timerfd_w, EV_MINPRI);
3071 ev_io_start (EV_A_ &timerfd_w);
3072 ev_unref (EV_A); /* watcher should not keep loop alive */
3073
3074 /* (re-) arm timer */
3075 timerfdcb (EV_A_ 0, 0);
3076 }
3077 }
3078 }
3079
3080 #endif
3081
3082 /*****************************************************************************/
3083
3084 #if EV_USE_IOCP
3085 # include "ev_iocp.c"
3086 #endif
3087 #if EV_USE_PORT
3088 # include "ev_port.c"
3089 #endif
3090 #if EV_USE_KQUEUE
3091 # include "ev_kqueue.c"
3092 #endif
3093 #if EV_USE_EPOLL
3094 # include "ev_epoll.c"
3095 #endif
3096 #if EV_USE_LINUXAIO
3097 # include "ev_linuxaio.c"
3098 #endif
3099 #if EV_USE_IOURING
3100 # include "ev_iouring.c"
3101 #endif
3102 #if EV_USE_POLL
3103 # include "ev_poll.c"
3104 #endif
3105 #if EV_USE_SELECT
3106 # include "ev_select.c"
3107 #endif
3108
3109 ecb_cold int
3110 ev_version_major (void) EV_NOEXCEPT
3111 {
3112 return EV_VERSION_MAJOR;
3113 }
3114
3115 ecb_cold int
3116 ev_version_minor (void) EV_NOEXCEPT
3117 {
3118 return EV_VERSION_MINOR;
3119 }
3120
3121 /* return true if we are running with elevated privileges and should ignore env variables */
3122 inline_size ecb_cold int
3123 enable_secure (void)
3124 {
3125 #ifdef _WIN32
3126 return 0;
3127 #else
3128 return getuid () != geteuid ()
3129 || getgid () != getegid ();
3130 #endif
3131 }
3132
3133 ecb_cold
3134 unsigned int
3135 ev_supported_backends (void) EV_NOEXCEPT
3136 {
3137 unsigned int flags = 0;
3138
3139 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
3140 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
3141 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
3142 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
3143 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
3144 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3145 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3146
3147 return flags;
3148 }
3149
3150 ecb_cold
3151 unsigned int
3152 ev_recommended_backends (void) EV_NOEXCEPT
3153 {
3154 unsigned int flags = ev_supported_backends ();
3155
3156 #ifndef __NetBSD__
3157 /* kqueue is borked on everything but netbsd apparently */
3158 /* it usually doesn't work correctly on anything but sockets and pipes */
3159 flags &= ~EVBACKEND_KQUEUE;
3160 #endif
3161 #ifdef __APPLE__
3162 /* only select works correctly on that "unix-certified" platform */
3163 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3164 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3165 #endif
3166 #ifdef __FreeBSD__
3167 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3168 #endif
3169
3170 /* TODO: linuxaio is very experimental */
3171 #if !EV_RECOMMEND_LINUXAIO
3172 flags &= ~EVBACKEND_LINUXAIO;
3173 #endif
3174 /* TODO: iouring is super experimental */
3175 #if !EV_RECOMMEND_IOURING
3176 flags &= ~EVBACKEND_IOURING;
3177 #endif
3178
3179 return flags;
3180 }
3181
3182 ecb_cold
3183 unsigned int
3184 ev_embeddable_backends (void) EV_NOEXCEPT
3185 {
3186 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
3187
3188 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3189 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3190 flags &= ~EVBACKEND_EPOLL;
3191
3192 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3193
3194 return flags;
3195 }
3196
3197 unsigned int
3198 ev_backend (EV_P) EV_NOEXCEPT
3199 {
3200 return backend;
3201 }
3202
3203 #if EV_FEATURE_API
3204 unsigned int
3205 ev_iteration (EV_P) EV_NOEXCEPT
3206 {
3207 return loop_count;
3208 }
3209
3210 unsigned int
3211 ev_depth (EV_P) EV_NOEXCEPT
3212 {
3213 return loop_depth;
3214 }
3215
3216 void
3217 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3218 {
3219 io_blocktime = interval;
3220 }
3221
3222 void
3223 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3224 {
3225 timeout_blocktime = interval;
3226 }
3227
3228 void
3229 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3230 {
3231 userdata = data;
3232 }
3233
3234 void *
3235 ev_userdata (EV_P) EV_NOEXCEPT
3236 {
3237 return userdata;
3238 }
3239
3240 void
3241 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3242 {
3243 invoke_cb = invoke_pending_cb;
3244 }
3245
3246 void
3247 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3248 {
3249 release_cb = release;
3250 acquire_cb = acquire;
3251 }
3252 #endif
3253
3254 /* initialise a loop structure, must be zero-initialised */
3255 ecb_noinline ecb_cold
3256 static void
3257 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3258 {
3259 if (!backend)
3260 {
3261 origflags = flags;
3262
3263 #if EV_USE_REALTIME
3264 if (!have_realtime)
3265 {
3266 struct timespec ts;
3267
3268 if (!clock_gettime (CLOCK_REALTIME, &ts))
3269 have_realtime = 1;
3270 }
3271 #endif
3272
3273 #if EV_USE_MONOTONIC
3274 if (!have_monotonic)
3275 {
3276 struct timespec ts;
3277
3278 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3279 have_monotonic = 1;
3280 }
3281 #endif
3282
3283 /* pid check not overridable via env */
3284 #ifndef _WIN32
3285 if (flags & EVFLAG_FORKCHECK)
3286 curpid = getpid ();
3287 #endif
3288
3289 if (!(flags & EVFLAG_NOENV)
3290 && !enable_secure ()
3291 && getenv ("LIBEV_FLAGS"))
3292 flags = atoi (getenv ("LIBEV_FLAGS"));
3293
3294 ev_rt_now = ev_time ();
3295 mn_now = get_clock ();
3296 now_floor = mn_now;
3297 rtmn_diff = ev_rt_now - mn_now;
3298 #if EV_FEATURE_API
3299 invoke_cb = ev_invoke_pending;
3300 #endif
3301
3302 io_blocktime = 0.;
3303 timeout_blocktime = 0.;
3304 backend = 0;
3305 backend_fd = -1;
3306 sig_pending = 0;
3307 #if EV_ASYNC_ENABLE
3308 async_pending = 0;
3309 #endif
3310 pipe_write_skipped = 0;
3311 pipe_write_wanted = 0;
3312 evpipe [0] = -1;
3313 evpipe [1] = -1;
3314 #if EV_USE_INOTIFY
3315 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3316 #endif
3317 #if EV_USE_SIGNALFD
3318 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3319 #endif
3320 #if EV_USE_TIMERFD
3321 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3322 #endif
3323
3324 if (!(flags & EVBACKEND_MASK))
3325 flags |= ev_recommended_backends ();
3326
3327 #if EV_USE_IOCP
3328 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3329 #endif
3330 #if EV_USE_PORT
3331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3332 #endif
3333 #if EV_USE_KQUEUE
3334 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3335 #endif
3336 #if EV_USE_IOURING
3337 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3338 #endif
3339 #if EV_USE_LINUXAIO
3340 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3341 #endif
3342 #if EV_USE_EPOLL
3343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3344 #endif
3345 #if EV_USE_POLL
3346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3347 #endif
3348 #if EV_USE_SELECT
3349 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3350 #endif
3351
3352 ev_prepare_init (&pending_w, pendingcb);
3353
3354 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3355 ev_init (&pipe_w, pipecb);
3356 ev_set_priority (&pipe_w, EV_MAXPRI);
3357 #endif
3358 }
3359 }
3360
3361 /* free up a loop structure */
3362 ecb_cold
3363 void
3364 ev_loop_destroy (EV_P)
3365 {
3366 int i;
3367
3368 #if EV_MULTIPLICITY
3369 /* mimic free (0) */
3370 if (!EV_A)
3371 return;
3372 #endif
3373
3374 #if EV_CLEANUP_ENABLE
3375 /* queue cleanup watchers (and execute them) */
3376 if (ecb_expect_false (cleanupcnt))
3377 {
3378 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3379 EV_INVOKE_PENDING;
3380 }
3381 #endif
3382
3383 #if EV_CHILD_ENABLE
3384 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3385 {
3386 ev_ref (EV_A); /* child watcher */
3387 ev_signal_stop (EV_A_ &childev);
3388 }
3389 #endif
3390
3391 if (ev_is_active (&pipe_w))
3392 {
3393 /*ev_ref (EV_A);*/
3394 /*ev_io_stop (EV_A_ &pipe_w);*/
3395
3396 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3397 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3398 }
3399
3400 #if EV_USE_SIGNALFD
3401 if (ev_is_active (&sigfd_w))
3402 close (sigfd);
3403 #endif
3404
3405 #if EV_USE_TIMERFD
3406 if (ev_is_active (&timerfd_w))
3407 close (timerfd);
3408 #endif
3409
3410 #if EV_USE_INOTIFY
3411 if (fs_fd >= 0)
3412 close (fs_fd);
3413 #endif
3414
3415 if (backend_fd >= 0)
3416 close (backend_fd);
3417
3418 #if EV_USE_IOCP
3419 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3420 #endif
3421 #if EV_USE_PORT
3422 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3423 #endif
3424 #if EV_USE_KQUEUE
3425 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3426 #endif
3427 #if EV_USE_IOURING
3428 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3429 #endif
3430 #if EV_USE_LINUXAIO
3431 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3432 #endif
3433 #if EV_USE_EPOLL
3434 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3435 #endif
3436 #if EV_USE_POLL
3437 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3438 #endif
3439 #if EV_USE_SELECT
3440 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3441 #endif
3442
3443 for (i = NUMPRI; i--; )
3444 {
3445 array_free (pending, [i]);
3446 #if EV_IDLE_ENABLE
3447 array_free (idle, [i]);
3448 #endif
3449 }
3450
3451 ev_free (anfds); anfds = 0; anfdmax = 0;
3452
3453 /* have to use the microsoft-never-gets-it-right macro */
3454 array_free (rfeed, EMPTY);
3455 array_free (fdchange, EMPTY);
3456 array_free (timer, EMPTY);
3457 #if EV_PERIODIC_ENABLE
3458 array_free (periodic, EMPTY);
3459 #endif
3460 #if EV_FORK_ENABLE
3461 array_free (fork, EMPTY);
3462 #endif
3463 #if EV_CLEANUP_ENABLE
3464 array_free (cleanup, EMPTY);
3465 #endif
3466 array_free (prepare, EMPTY);
3467 array_free (check, EMPTY);
3468 #if EV_ASYNC_ENABLE
3469 array_free (async, EMPTY);
3470 #endif
3471
3472 backend = 0;
3473
3474 #if EV_MULTIPLICITY
3475 if (ev_is_default_loop (EV_A))
3476 #endif
3477 ev_default_loop_ptr = 0;
3478 #if EV_MULTIPLICITY
3479 else
3480 ev_free (EV_A);
3481 #endif
3482 }
3483
3484 #if EV_USE_INOTIFY
3485 inline_size void infy_fork (EV_P);
3486 #endif
3487
3488 inline_size void
3489 loop_fork (EV_P)
3490 {
3491 #if EV_USE_PORT
3492 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3493 #endif
3494 #if EV_USE_KQUEUE
3495 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3496 #endif
3497 #if EV_USE_IOURING
3498 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3499 #endif
3500 #if EV_USE_LINUXAIO
3501 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3502 #endif
3503 #if EV_USE_EPOLL
3504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3505 #endif
3506 #if EV_USE_INOTIFY
3507 infy_fork (EV_A);
3508 #endif
3509
3510 if (postfork != 2)
3511 {
3512 #if EV_USE_SIGNALFD
3513 /* surprisingly, nothing needs to be done for signalfd, according to docs, it does the right thing on fork */
3514 #endif
3515
3516 #if EV_USE_TIMERFD
3517 if (ev_is_active (&timerfd_w))
3518 {
3519 ev_ref (EV_A);
3520 ev_io_stop (EV_A_ &timerfd_w);
3521
3522 close (timerfd);
3523 timerfd = -2;
3524
3525 evtimerfd_init (EV_A);
3526 /* reschedule periodics, in case we missed something */
3527 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3528 }
3529 #endif
3530
3531 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3532 if (ev_is_active (&pipe_w))
3533 {
3534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3535
3536 ev_ref (EV_A);
3537 ev_io_stop (EV_A_ &pipe_w);
3538
3539 if (evpipe [0] >= 0)
3540 EV_WIN32_CLOSE_FD (evpipe [0]);
3541
3542 evpipe_init (EV_A);
3543 /* iterate over everything, in case we missed something before */
3544 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3545 }
3546 #endif
3547 }
3548
3549 postfork = 0;
3550 }
3551
3552 #if EV_MULTIPLICITY
3553
3554 ecb_cold
3555 struct ev_loop *
3556 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3557 {
3558 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3559
3560 memset (EV_A, 0, sizeof (struct ev_loop));
3561 loop_init (EV_A_ flags);
3562
3563 if (ev_backend (EV_A))
3564 return EV_A;
3565
3566 ev_free (EV_A);
3567 return 0;
3568 }
3569
3570 #endif /* multiplicity */
3571
3572 #if EV_VERIFY
3573 ecb_noinline ecb_cold
3574 static void
3575 verify_watcher (EV_P_ W w)
3576 {
3577 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3578
3579 if (w->pending)
3580 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3581 }
3582
3583 ecb_noinline ecb_cold
3584 static void
3585 verify_heap (EV_P_ ANHE *heap, int N)
3586 {
3587 int i;
3588
3589 for (i = HEAP0; i < N + HEAP0; ++i)
3590 {
3591 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3592 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3593 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3594
3595 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3596 }
3597 }
3598
3599 ecb_noinline ecb_cold
3600 static void
3601 array_verify (EV_P_ W *ws, int cnt)
3602 {
3603 while (cnt--)
3604 {
3605 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3606 verify_watcher (EV_A_ ws [cnt]);
3607 }
3608 }
3609 #endif
3610
3611 #if EV_FEATURE_API
3612 void ecb_cold
3613 ev_verify (EV_P) EV_NOEXCEPT
3614 {
3615 #if EV_VERIFY
3616 int i;
3617 WL w, w2;
3618
3619 assert (activecnt >= -1);
3620
3621 assert (fdchangemax >= fdchangecnt);
3622 for (i = 0; i < fdchangecnt; ++i)
3623 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3624
3625 assert (anfdmax >= 0);
3626 for (i = 0; i < anfdmax; ++i)
3627 {
3628 int j = 0;
3629
3630 for (w = w2 = anfds [i].head; w; w = w->next)
3631 {
3632 verify_watcher (EV_A_ (W)w);
3633
3634 if (j++ & 1)
3635 {
3636 assert (("libev: io watcher list contains a loop", w != w2));
3637 w2 = w2->next;
3638 }
3639
3640 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3641 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3642 }
3643 }
3644
3645 assert (timermax >= timercnt);
3646 verify_heap (EV_A_ timers, timercnt);
3647
3648 #if EV_PERIODIC_ENABLE
3649 assert (periodicmax >= periodiccnt);
3650 verify_heap (EV_A_ periodics, periodiccnt);
3651 #endif
3652
3653 for (i = NUMPRI; i--; )
3654 {
3655 assert (pendingmax [i] >= pendingcnt [i]);
3656 #if EV_IDLE_ENABLE
3657 assert (idleall >= 0);
3658 assert (idlemax [i] >= idlecnt [i]);
3659 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3660 #endif
3661 }
3662
3663 #if EV_FORK_ENABLE
3664 assert (forkmax >= forkcnt);
3665 array_verify (EV_A_ (W *)forks, forkcnt);
3666 #endif
3667
3668 #if EV_CLEANUP_ENABLE
3669 assert (cleanupmax >= cleanupcnt);
3670 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3671 #endif
3672
3673 #if EV_ASYNC_ENABLE
3674 assert (asyncmax >= asynccnt);
3675 array_verify (EV_A_ (W *)asyncs, asynccnt);
3676 #endif
3677
3678 #if EV_PREPARE_ENABLE
3679 assert (preparemax >= preparecnt);
3680 array_verify (EV_A_ (W *)prepares, preparecnt);
3681 #endif
3682
3683 #if EV_CHECK_ENABLE
3684 assert (checkmax >= checkcnt);
3685 array_verify (EV_A_ (W *)checks, checkcnt);
3686 #endif
3687
3688 # if 0
3689 #if EV_CHILD_ENABLE
3690 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3691 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3692 #endif
3693 # endif
3694 #endif
3695 }
3696 #endif
3697
3698 #if EV_MULTIPLICITY
3699 ecb_cold
3700 struct ev_loop *
3701 #else
3702 int
3703 #endif
3704 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3705 {
3706 if (!ev_default_loop_ptr)
3707 {
3708 #if EV_MULTIPLICITY
3709 EV_P = ev_default_loop_ptr = &default_loop_struct;
3710 #else
3711 ev_default_loop_ptr = 1;
3712 #endif
3713
3714 loop_init (EV_A_ flags);
3715
3716 if (ev_backend (EV_A))
3717 {
3718 #if EV_CHILD_ENABLE
3719 ev_signal_init (&childev, childcb, SIGCHLD);
3720 ev_set_priority (&childev, EV_MAXPRI);
3721 ev_signal_start (EV_A_ &childev);
3722 ev_unref (EV_A); /* child watcher should not keep loop alive */
3723 #endif
3724 }
3725 else
3726 ev_default_loop_ptr = 0;
3727 }
3728
3729 return ev_default_loop_ptr;
3730 }
3731
3732 void
3733 ev_loop_fork (EV_P) EV_NOEXCEPT
3734 {
3735 postfork = 1;
3736 }
3737
3738 /*****************************************************************************/
3739
3740 void
3741 ev_invoke (EV_P_ void *w, int revents)
3742 {
3743 EV_CB_INVOKE ((W)w, revents);
3744 }
3745
3746 unsigned int
3747 ev_pending_count (EV_P) EV_NOEXCEPT
3748 {
3749 int pri;
3750 unsigned int count = 0;
3751
3752 for (pri = NUMPRI; pri--; )
3753 count += pendingcnt [pri];
3754
3755 return count;
3756 }
3757
3758 ecb_noinline
3759 void
3760 ev_invoke_pending (EV_P)
3761 {
3762 pendingpri = NUMPRI;
3763
3764 do
3765 {
3766 --pendingpri;
3767
3768 /* pendingpri possibly gets modified in the inner loop */
3769 while (pendingcnt [pendingpri])
3770 {
3771 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3772
3773 p->w->pending = 0;
3774 EV_CB_INVOKE (p->w, p->events);
3775 EV_FREQUENT_CHECK;
3776 }
3777 }
3778 while (pendingpri);
3779 }
3780
3781 #if EV_IDLE_ENABLE
3782 /* make idle watchers pending. this handles the "call-idle */
3783 /* only when higher priorities are idle" logic */
3784 inline_size void
3785 idle_reify (EV_P)
3786 {
3787 if (ecb_expect_false (idleall))
3788 {
3789 int pri;
3790
3791 for (pri = NUMPRI; pri--; )
3792 {
3793 if (pendingcnt [pri])
3794 break;
3795
3796 if (idlecnt [pri])
3797 {
3798 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3799 break;
3800 }
3801 }
3802 }
3803 }
3804 #endif
3805
3806 /* make timers pending */
3807 inline_size void
3808 timers_reify (EV_P)
3809 {
3810 EV_FREQUENT_CHECK;
3811
3812 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3813 {
3814 do
3815 {
3816 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3817
3818 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3819
3820 /* first reschedule or stop timer */
3821 if (w->repeat)
3822 {
3823 ev_at (w) += w->repeat;
3824 if (ev_at (w) < mn_now)
3825 ev_at (w) = mn_now;
3826
3827 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3828
3829 ANHE_at_cache (timers [HEAP0]);
3830 downheap (timers, timercnt, HEAP0);
3831 }
3832 else
3833 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3834
3835 EV_FREQUENT_CHECK;
3836 feed_reverse (EV_A_ (W)w);
3837 }
3838 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3839
3840 feed_reverse_done (EV_A_ EV_TIMER);
3841 }
3842 }
3843
3844 #if EV_PERIODIC_ENABLE
3845
3846 ecb_noinline
3847 static void
3848 periodic_recalc (EV_P_ ev_periodic *w)
3849 {
3850 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3851 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3852
3853 /* the above almost always errs on the low side */
3854 while (at <= ev_rt_now)
3855 {
3856 ev_tstamp nat = at + w->interval;
3857
3858 /* when resolution fails us, we use ev_rt_now */
3859 if (ecb_expect_false (nat == at))
3860 {
3861 at = ev_rt_now;
3862 break;
3863 }
3864
3865 at = nat;
3866 }
3867
3868 ev_at (w) = at;
3869 }
3870
3871 /* make periodics pending */
3872 inline_size void
3873 periodics_reify (EV_P)
3874 {
3875 EV_FREQUENT_CHECK;
3876
3877 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3878 {
3879 do
3880 {
3881 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3882
3883 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3884
3885 /* first reschedule or stop timer */
3886 if (w->reschedule_cb)
3887 {
3888 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3889
3890 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3891
3892 ANHE_at_cache (periodics [HEAP0]);
3893 downheap (periodics, periodiccnt, HEAP0);
3894 }
3895 else if (w->interval)
3896 {
3897 periodic_recalc (EV_A_ w);
3898 ANHE_at_cache (periodics [HEAP0]);
3899 downheap (periodics, periodiccnt, HEAP0);
3900 }
3901 else
3902 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3903
3904 EV_FREQUENT_CHECK;
3905 feed_reverse (EV_A_ (W)w);
3906 }
3907 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3908
3909 feed_reverse_done (EV_A_ EV_PERIODIC);
3910 }
3911 }
3912
3913 /* simply recalculate all periodics */
3914 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3915 ecb_noinline ecb_cold
3916 static void
3917 periodics_reschedule (EV_P)
3918 {
3919 int i;
3920
3921 /* adjust periodics after time jump */
3922 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3923 {
3924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3925
3926 if (w->reschedule_cb)
3927 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3928 else if (w->interval)
3929 periodic_recalc (EV_A_ w);
3930
3931 ANHE_at_cache (periodics [i]);
3932 }
3933
3934 reheap (periodics, periodiccnt);
3935 }
3936 #endif
3937
3938 /* adjust all timers by a given offset */
3939 ecb_noinline ecb_cold
3940 static void
3941 timers_reschedule (EV_P_ ev_tstamp adjust)
3942 {
3943 int i;
3944
3945 for (i = 0; i < timercnt; ++i)
3946 {
3947 ANHE *he = timers + i + HEAP0;
3948 ANHE_w (*he)->at += adjust;
3949 ANHE_at_cache (*he);
3950 }
3951 }
3952
3953 /* fetch new monotonic and realtime times from the kernel */
3954 /* also detect if there was a timejump, and act accordingly */
3955 inline_speed void
3956 time_update (EV_P_ ev_tstamp max_block)
3957 {
3958 #if EV_USE_MONOTONIC
3959 if (ecb_expect_true (have_monotonic))
3960 {
3961 int i;
3962 ev_tstamp odiff = rtmn_diff;
3963
3964 mn_now = get_clock ();
3965
3966 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3967 /* interpolate in the meantime */
3968 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3969 {
3970 ev_rt_now = rtmn_diff + mn_now;
3971 return;
3972 }
3973
3974 now_floor = mn_now;
3975 ev_rt_now = ev_time ();
3976
3977 /* loop a few times, before making important decisions.
3978 * on the choice of "4": one iteration isn't enough,
3979 * in case we get preempted during the calls to
3980 * ev_time and get_clock. a second call is almost guaranteed
3981 * to succeed in that case, though. and looping a few more times
3982 * doesn't hurt either as we only do this on time-jumps or
3983 * in the unlikely event of having been preempted here.
3984 */
3985 for (i = 4; --i; )
3986 {
3987 ev_tstamp diff;
3988 rtmn_diff = ev_rt_now - mn_now;
3989
3990 diff = odiff - rtmn_diff;
3991
3992 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3993 return; /* all is well */
3994
3995 ev_rt_now = ev_time ();
3996 mn_now = get_clock ();
3997 now_floor = mn_now;
3998 }
3999
4000 /* no timer adjustment, as the monotonic clock doesn't jump */
4001 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
4002 # if EV_PERIODIC_ENABLE
4003 periodics_reschedule (EV_A);
4004 # endif
4005 }
4006 else
4007 #endif
4008 {
4009 ev_rt_now = ev_time ();
4010
4011 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
4012 {
4013 /* adjust timers. this is easy, as the offset is the same for all of them */
4014 timers_reschedule (EV_A_ ev_rt_now - mn_now);
4015 #if EV_PERIODIC_ENABLE
4016 periodics_reschedule (EV_A);
4017 #endif
4018 }
4019
4020 mn_now = ev_rt_now;
4021 }
4022 }
4023
4024 int
4025 ev_run (EV_P_ int flags)
4026 {
4027 #if EV_FEATURE_API
4028 ++loop_depth;
4029 #endif
4030
4031 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4032
4033 loop_done = EVBREAK_CANCEL;
4034
4035 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
4036
4037 do
4038 {
4039 #if EV_VERIFY >= 2
4040 ev_verify (EV_A);
4041 #endif
4042
4043 #ifndef _WIN32
4044 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
4045 if (ecb_expect_false (getpid () != curpid))
4046 {
4047 curpid = getpid ();
4048 postfork = 1;
4049 }
4050 #endif
4051
4052 #if EV_FORK_ENABLE
4053 /* we might have forked, so queue fork handlers */
4054 if (ecb_expect_false (postfork))
4055 if (forkcnt)
4056 {
4057 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
4058 EV_INVOKE_PENDING;
4059 }
4060 #endif
4061
4062 #if EV_PREPARE_ENABLE
4063 /* queue prepare watchers (and execute them) */
4064 if (ecb_expect_false (preparecnt))
4065 {
4066 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
4067 EV_INVOKE_PENDING;
4068 }
4069 #endif
4070
4071 if (ecb_expect_false (loop_done))
4072 break;
4073
4074 /* we might have forked, so reify kernel state if necessary */
4075 if (ecb_expect_false (postfork))
4076 loop_fork (EV_A);
4077
4078 /* update fd-related kernel structures */
4079 fd_reify (EV_A);
4080
4081 /* calculate blocking time */
4082 {
4083 ev_tstamp waittime = 0.;
4084 ev_tstamp sleeptime = 0.;
4085
4086 /* remember old timestamp for io_blocktime calculation */
4087 ev_tstamp prev_mn_now = mn_now;
4088
4089 /* update time to cancel out callback processing overhead */
4090 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4091
4092 /* from now on, we want a pipe-wake-up */
4093 pipe_write_wanted = 1;
4094
4095 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4096
4097 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
4098 {
4099 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4100
4101 #if EV_USE_MONOTONIC
4102 if (ecb_expect_true (have_monotonic))
4103 {
4104 #if EV_USE_TIMERFD
4105 /* sleep a lot longer when we can reliably detect timejumps */
4106 if (ecb_expect_true (timerfd != -1))
4107 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4108 #endif
4109 #if !EV_PERIODIC_ENABLE
4110 /* without periodics but with monotonic clock there is no need */
4111 /* for any time jump detection, so sleep longer */
4112 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4113 #endif
4114 }
4115 #endif
4116
4117 if (timercnt)
4118 {
4119 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
4120 if (waittime > to) waittime = to;
4121 }
4122
4123 #if EV_PERIODIC_ENABLE
4124 if (periodiccnt)
4125 {
4126 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
4127 if (waittime > to) waittime = to;
4128 }
4129 #endif
4130
4131 /* don't let timeouts decrease the waittime below timeout_blocktime */
4132 if (ecb_expect_false (waittime < timeout_blocktime))
4133 waittime = timeout_blocktime;
4134
4135 /* now there are two more special cases left, either we have
4136 * already-expired timers, so we should not sleep, or we have timers
4137 * that expire very soon, in which case we need to wait for a minimum
4138 * amount of time for some event loop backends.
4139 */
4140 if (ecb_expect_false (waittime < backend_mintime))
4141 waittime = waittime <= EV_TS_CONST (0.)
4142 ? EV_TS_CONST (0.)
4143 : backend_mintime;
4144
4145 /* extra check because io_blocktime is commonly 0 */
4146 if (ecb_expect_false (io_blocktime))
4147 {
4148 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4149
4150 if (sleeptime > waittime - backend_mintime)
4151 sleeptime = waittime - backend_mintime;
4152
4153 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4154 {
4155 ev_sleep (sleeptime);
4156 waittime -= sleeptime;
4157 }
4158 }
4159 }
4160
4161 #if EV_FEATURE_API
4162 ++loop_count;
4163 #endif
4164 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4165 backend_poll (EV_A_ waittime);
4166 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4167
4168 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4169
4170 ECB_MEMORY_FENCE_ACQUIRE;
4171 if (pipe_write_skipped)
4172 {
4173 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4174 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4175 }
4176
4177 /* update ev_rt_now, do magic */
4178 time_update (EV_A_ waittime + sleeptime);
4179 }
4180
4181 /* queue pending timers and reschedule them */
4182 timers_reify (EV_A); /* relative timers called last */
4183 #if EV_PERIODIC_ENABLE
4184 periodics_reify (EV_A); /* absolute timers called first */
4185 #endif
4186
4187 #if EV_IDLE_ENABLE
4188 /* queue idle watchers unless other events are pending */
4189 idle_reify (EV_A);
4190 #endif
4191
4192 #if EV_CHECK_ENABLE
4193 /* queue check watchers, to be executed first */
4194 if (ecb_expect_false (checkcnt))
4195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4196 #endif
4197
4198 EV_INVOKE_PENDING;
4199 }
4200 while (ecb_expect_true (
4201 activecnt
4202 && !loop_done
4203 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4204 ));
4205
4206 if (loop_done == EVBREAK_ONE)
4207 loop_done = EVBREAK_CANCEL;
4208
4209 #if EV_FEATURE_API
4210 --loop_depth;
4211 #endif
4212
4213 return activecnt;
4214 }
4215
4216 void
4217 ev_break (EV_P_ int how) EV_NOEXCEPT
4218 {
4219 loop_done = how;
4220 }
4221
4222 void
4223 ev_ref (EV_P) EV_NOEXCEPT
4224 {
4225 ++activecnt;
4226 }
4227
4228 void
4229 ev_unref (EV_P) EV_NOEXCEPT
4230 {
4231 --activecnt;
4232 }
4233
4234 void
4235 ev_now_update (EV_P) EV_NOEXCEPT
4236 {
4237 time_update (EV_A_ EV_TSTAMP_HUGE);
4238 }
4239
4240 void
4241 ev_suspend (EV_P) EV_NOEXCEPT
4242 {
4243 ev_now_update (EV_A);
4244 }
4245
4246 void
4247 ev_resume (EV_P) EV_NOEXCEPT
4248 {
4249 ev_tstamp mn_prev = mn_now;
4250
4251 ev_now_update (EV_A);
4252 timers_reschedule (EV_A_ mn_now - mn_prev);
4253 #if EV_PERIODIC_ENABLE
4254 /* TODO: really do this? */
4255 periodics_reschedule (EV_A);
4256 #endif
4257 }
4258
4259 /*****************************************************************************/
4260 /* singly-linked list management, used when the expected list length is short */
4261
4262 inline_size void
4263 wlist_add (WL *head, WL elem)
4264 {
4265 elem->next = *head;
4266 *head = elem;
4267 }
4268
4269 inline_size void
4270 wlist_del (WL *head, WL elem)
4271 {
4272 while (*head)
4273 {
4274 if (ecb_expect_true (*head == elem))
4275 {
4276 *head = elem->next;
4277 break;
4278 }
4279
4280 head = &(*head)->next;
4281 }
4282 }
4283
4284 /* internal, faster, version of ev_clear_pending */
4285 inline_speed void
4286 clear_pending (EV_P_ W w)
4287 {
4288 if (w->pending)
4289 {
4290 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4291 w->pending = 0;
4292 }
4293 }
4294
4295 int
4296 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4297 {
4298 W w_ = (W)w;
4299 int pending = w_->pending;
4300
4301 if (ecb_expect_true (pending))
4302 {
4303 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4304 p->w = (W)&pending_w;
4305 w_->pending = 0;
4306 return p->events;
4307 }
4308 else
4309 return 0;
4310 }
4311
4312 inline_size void
4313 pri_adjust (EV_P_ W w)
4314 {
4315 int pri = ev_priority (w);
4316 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4317 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4318 ev_set_priority (w, pri);
4319 }
4320
4321 inline_speed void
4322 ev_start (EV_P_ W w, int active)
4323 {
4324 pri_adjust (EV_A_ w);
4325 w->active = active;
4326 ev_ref (EV_A);
4327 }
4328
4329 inline_size void
4330 ev_stop (EV_P_ W w)
4331 {
4332 ev_unref (EV_A);
4333 w->active = 0;
4334 }
4335
4336 /*****************************************************************************/
4337
4338 ecb_noinline
4339 void
4340 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4341 {
4342 int fd = w->fd;
4343
4344 if (ecb_expect_false (ev_is_active (w)))
4345 return;
4346
4347 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4348 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4349
4350 #if EV_VERIFY >= 2
4351 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4352 #endif
4353 EV_FREQUENT_CHECK;
4354
4355 ev_start (EV_A_ (W)w, 1);
4356 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4357 wlist_add (&anfds[fd].head, (WL)w);
4358
4359 /* common bug, apparently */
4360 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4361
4362 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4363 w->events &= ~EV__IOFDSET;
4364
4365 EV_FREQUENT_CHECK;
4366 }
4367
4368 ecb_noinline
4369 void
4370 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4371 {
4372 clear_pending (EV_A_ (W)w);
4373 if (ecb_expect_false (!ev_is_active (w)))
4374 return;
4375
4376 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4377
4378 #if EV_VERIFY >= 2
4379 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4380 #endif
4381 EV_FREQUENT_CHECK;
4382
4383 wlist_del (&anfds[w->fd].head, (WL)w);
4384 ev_stop (EV_A_ (W)w);
4385
4386 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4387
4388 EV_FREQUENT_CHECK;
4389 }
4390
4391 ecb_noinline
4392 void
4393 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4394 {
4395 if (ecb_expect_false (ev_is_active (w)))
4396 return;
4397
4398 ev_at (w) += mn_now;
4399
4400 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4401
4402 EV_FREQUENT_CHECK;
4403
4404 ++timercnt;
4405 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4406 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4407 ANHE_w (timers [ev_active (w)]) = (WT)w;
4408 ANHE_at_cache (timers [ev_active (w)]);
4409 upheap (timers, ev_active (w));
4410
4411 EV_FREQUENT_CHECK;
4412
4413 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4414 }
4415
4416 ecb_noinline
4417 void
4418 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4419 {
4420 clear_pending (EV_A_ (W)w);
4421 if (ecb_expect_false (!ev_is_active (w)))
4422 return;
4423
4424 EV_FREQUENT_CHECK;
4425
4426 {
4427 int active = ev_active (w);
4428
4429 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4430
4431 --timercnt;
4432
4433 if (ecb_expect_true (active < timercnt + HEAP0))
4434 {
4435 timers [active] = timers [timercnt + HEAP0];
4436 adjustheap (timers, timercnt, active);
4437 }
4438 }
4439
4440 ev_at (w) -= mn_now;
4441
4442 ev_stop (EV_A_ (W)w);
4443
4444 EV_FREQUENT_CHECK;
4445 }
4446
4447 ecb_noinline
4448 void
4449 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4450 {
4451 EV_FREQUENT_CHECK;
4452
4453 clear_pending (EV_A_ (W)w);
4454
4455 if (ev_is_active (w))
4456 {
4457 if (w->repeat)
4458 {
4459 ev_at (w) = mn_now + w->repeat;
4460 ANHE_at_cache (timers [ev_active (w)]);
4461 adjustheap (timers, timercnt, ev_active (w));
4462 }
4463 else
4464 ev_timer_stop (EV_A_ w);
4465 }
4466 else if (w->repeat)
4467 {
4468 ev_at (w) = w->repeat;
4469 ev_timer_start (EV_A_ w);
4470 }
4471
4472 EV_FREQUENT_CHECK;
4473 }
4474
4475 ev_tstamp
4476 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4477 {
4478 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4479 }
4480
4481 #if EV_PERIODIC_ENABLE
4482 ecb_noinline
4483 void
4484 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4485 {
4486 if (ecb_expect_false (ev_is_active (w)))
4487 return;
4488
4489 #if EV_USE_TIMERFD
4490 if (timerfd == -2)
4491 evtimerfd_init (EV_A);
4492 #endif
4493
4494 if (w->reschedule_cb)
4495 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4496 else if (w->interval)
4497 {
4498 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4499 periodic_recalc (EV_A_ w);
4500 }
4501 else
4502 ev_at (w) = w->offset;
4503
4504 EV_FREQUENT_CHECK;
4505
4506 ++periodiccnt;
4507 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4508 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4509 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4510 ANHE_at_cache (periodics [ev_active (w)]);
4511 upheap (periodics, ev_active (w));
4512
4513 EV_FREQUENT_CHECK;
4514
4515 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4516 }
4517
4518 ecb_noinline
4519 void
4520 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4521 {
4522 clear_pending (EV_A_ (W)w);
4523 if (ecb_expect_false (!ev_is_active (w)))
4524 return;
4525
4526 EV_FREQUENT_CHECK;
4527
4528 {
4529 int active = ev_active (w);
4530
4531 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4532
4533 --periodiccnt;
4534
4535 if (ecb_expect_true (active < periodiccnt + HEAP0))
4536 {
4537 periodics [active] = periodics [periodiccnt + HEAP0];
4538 adjustheap (periodics, periodiccnt, active);
4539 }
4540 }
4541
4542 ev_stop (EV_A_ (W)w);
4543
4544 EV_FREQUENT_CHECK;
4545 }
4546
4547 ecb_noinline
4548 void
4549 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4550 {
4551 /* TODO: use adjustheap and recalculation */
4552 ev_periodic_stop (EV_A_ w);
4553 ev_periodic_start (EV_A_ w);
4554 }
4555 #endif
4556
4557 #ifndef SA_RESTART
4558 # define SA_RESTART 0
4559 #endif
4560
4561 #if EV_SIGNAL_ENABLE
4562
4563 ecb_noinline
4564 void
4565 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4566 {
4567 if (ecb_expect_false (ev_is_active (w)))
4568 return;
4569
4570 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4571
4572 #if EV_MULTIPLICITY
4573 assert (("libev: a signal must not be attached to two different loops",
4574 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4575
4576 signals [w->signum - 1].loop = EV_A;
4577 ECB_MEMORY_FENCE_RELEASE;
4578 #endif
4579
4580 EV_FREQUENT_CHECK;
4581
4582 #if EV_USE_SIGNALFD
4583 if (sigfd == -2)
4584 {
4585 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4586 if (sigfd < 0 && errno == EINVAL)
4587 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4588
4589 if (sigfd >= 0)
4590 {
4591 fd_intern (sigfd); /* doing it twice will not hurt */
4592
4593 sigemptyset (&sigfd_set);
4594
4595 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4596 ev_set_priority (&sigfd_w, EV_MAXPRI);
4597 ev_io_start (EV_A_ &sigfd_w);
4598 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4599 }
4600 }
4601
4602 if (sigfd >= 0)
4603 {
4604 /* TODO: check .head */
4605 sigaddset (&sigfd_set, w->signum);
4606 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4607
4608 signalfd (sigfd, &sigfd_set, 0);
4609 }
4610 #endif
4611
4612 ev_start (EV_A_ (W)w, 1);
4613 wlist_add (&signals [w->signum - 1].head, (WL)w);
4614
4615 if (!((WL)w)->next)
4616 # if EV_USE_SIGNALFD
4617 if (sigfd < 0) /*TODO*/
4618 # endif
4619 {
4620 # ifdef _WIN32
4621 evpipe_init (EV_A);
4622
4623 signal (w->signum, ev_sighandler);
4624 # else
4625 struct sigaction sa;
4626
4627 evpipe_init (EV_A);
4628
4629 sa.sa_handler = ev_sighandler;
4630 sigfillset (&sa.sa_mask);
4631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4632 sigaction (w->signum, &sa, 0);
4633
4634 if (origflags & EVFLAG_NOSIGMASK)
4635 {
4636 sigemptyset (&sa.sa_mask);
4637 sigaddset (&sa.sa_mask, w->signum);
4638 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4639 }
4640 #endif
4641 }
4642
4643 EV_FREQUENT_CHECK;
4644 }
4645
4646 ecb_noinline
4647 void
4648 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4649 {
4650 clear_pending (EV_A_ (W)w);
4651 if (ecb_expect_false (!ev_is_active (w)))
4652 return;
4653
4654 EV_FREQUENT_CHECK;
4655
4656 wlist_del (&signals [w->signum - 1].head, (WL)w);
4657 ev_stop (EV_A_ (W)w);
4658
4659 if (!signals [w->signum - 1].head)
4660 {
4661 #if EV_MULTIPLICITY
4662 signals [w->signum - 1].loop = 0; /* unattach from signal */
4663 #endif
4664 #if EV_USE_SIGNALFD
4665 if (sigfd >= 0)
4666 {
4667 sigset_t ss;
4668
4669 sigemptyset (&ss);
4670 sigaddset (&ss, w->signum);
4671 sigdelset (&sigfd_set, w->signum);
4672
4673 signalfd (sigfd, &sigfd_set, 0);
4674 sigprocmask (SIG_UNBLOCK, &ss, 0);
4675 }
4676 else
4677 #endif
4678 signal (w->signum, SIG_DFL);
4679 }
4680
4681 EV_FREQUENT_CHECK;
4682 }
4683
4684 #endif
4685
4686 #if EV_CHILD_ENABLE
4687
4688 void
4689 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4690 {
4691 #if EV_MULTIPLICITY
4692 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4693 #endif
4694 if (ecb_expect_false (ev_is_active (w)))
4695 return;
4696
4697 EV_FREQUENT_CHECK;
4698
4699 ev_start (EV_A_ (W)w, 1);
4700 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4701
4702 EV_FREQUENT_CHECK;
4703 }
4704
4705 void
4706 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4707 {
4708 clear_pending (EV_A_ (W)w);
4709 if (ecb_expect_false (!ev_is_active (w)))
4710 return;
4711
4712 EV_FREQUENT_CHECK;
4713
4714 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4715 ev_stop (EV_A_ (W)w);
4716
4717 EV_FREQUENT_CHECK;
4718 }
4719
4720 #endif
4721
4722 #if EV_STAT_ENABLE
4723
4724 # ifdef _WIN32
4725 # undef lstat
4726 # define lstat(a,b) _stati64 (a,b)
4727 # endif
4728
4729 #define DEF_STAT_INTERVAL 5.0074891
4730 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4731 #define MIN_STAT_INTERVAL 0.1074891
4732
4733 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4734
4735 #if EV_USE_INOTIFY
4736
4737 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4738 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4739
4740 ecb_noinline
4741 static void
4742 infy_add (EV_P_ ev_stat *w)
4743 {
4744 w->wd = inotify_add_watch (fs_fd, w->path,
4745 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4746 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4747 | IN_DONT_FOLLOW | IN_MASK_ADD);
4748
4749 if (w->wd >= 0)
4750 {
4751 struct statfs sfs;
4752
4753 /* now local changes will be tracked by inotify, but remote changes won't */
4754 /* unless the filesystem is known to be local, we therefore still poll */
4755 /* also do poll on <2.6.25, but with normal frequency */
4756
4757 if (!fs_2625)
4758 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4759 else if (!statfs (w->path, &sfs)
4760 && (sfs.f_type == 0x1373 /* devfs */
4761 || sfs.f_type == 0x4006 /* fat */
4762 || sfs.f_type == 0x4d44 /* msdos */
4763 || sfs.f_type == 0xEF53 /* ext2/3 */
4764 || sfs.f_type == 0x72b6 /* jffs2 */
4765 || sfs.f_type == 0x858458f6 /* ramfs */
4766 || sfs.f_type == 0x5346544e /* ntfs */
4767 || sfs.f_type == 0x3153464a /* jfs */
4768 || sfs.f_type == 0x9123683e /* btrfs */
4769 || sfs.f_type == 0x52654973 /* reiser3 */
4770 || sfs.f_type == 0x01021994 /* tmpfs */
4771 || sfs.f_type == 0x58465342 /* xfs */))
4772 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4773 else
4774 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4775 }
4776 else
4777 {
4778 /* can't use inotify, continue to stat */
4779 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4780
4781 /* if path is not there, monitor some parent directory for speedup hints */
4782 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4783 /* but an efficiency issue only */
4784 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4785 {
4786 char path [4096];
4787 strcpy (path, w->path);
4788
4789 do
4790 {
4791 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4792 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4793
4794 char *pend = strrchr (path, '/');
4795
4796 if (!pend || pend == path)
4797 break;
4798
4799 *pend = 0;
4800 w->wd = inotify_add_watch (fs_fd, path, mask);
4801 }
4802 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4803 }
4804 }
4805
4806 if (w->wd >= 0)
4807 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4808
4809 /* now re-arm timer, if required */
4810 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4811 ev_timer_again (EV_A_ &w->timer);
4812 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4813 }
4814
4815 ecb_noinline
4816 static void
4817 infy_del (EV_P_ ev_stat *w)
4818 {
4819 int slot;
4820 int wd = w->wd;
4821
4822 if (wd < 0)
4823 return;
4824
4825 w->wd = -2;
4826 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4827 wlist_del (&fs_hash [slot].head, (WL)w);
4828
4829 /* remove this watcher, if others are watching it, they will rearm */
4830 inotify_rm_watch (fs_fd, wd);
4831 }
4832
4833 ecb_noinline
4834 static void
4835 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4836 {
4837 if (slot < 0)
4838 /* overflow, need to check for all hash slots */
4839 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4840 infy_wd (EV_A_ slot, wd, ev);
4841 else
4842 {
4843 WL w_;
4844
4845 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4846 {
4847 ev_stat *w = (ev_stat *)w_;
4848 w_ = w_->next; /* lets us remove this watcher and all before it */
4849
4850 if (w->wd == wd || wd == -1)
4851 {
4852 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4853 {
4854 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4855 w->wd = -1;
4856 infy_add (EV_A_ w); /* re-add, no matter what */
4857 }
4858
4859 stat_timer_cb (EV_A_ &w->timer, 0);
4860 }
4861 }
4862 }
4863 }
4864
4865 static void
4866 infy_cb (EV_P_ ev_io *w, int revents)
4867 {
4868 char buf [EV_INOTIFY_BUFSIZE];
4869 int ofs;
4870 int len = read (fs_fd, buf, sizeof (buf));
4871
4872 for (ofs = 0; ofs < len; )
4873 {
4874 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4875 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4876 ofs += sizeof (struct inotify_event) + ev->len;
4877 }
4878 }
4879
4880 inline_size ecb_cold
4881 void
4882 ev_check_2625 (EV_P)
4883 {
4884 /* kernels < 2.6.25 are borked
4885 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4886 */
4887 if (ev_linux_version () < 0x020619)
4888 return;
4889
4890 fs_2625 = 1;
4891 }
4892
4893 inline_size int
4894 infy_newfd (void)
4895 {
4896 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4897 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4898 if (fd >= 0)
4899 return fd;
4900 #endif
4901 return inotify_init ();
4902 }
4903
4904 inline_size void
4905 infy_init (EV_P)
4906 {
4907 if (fs_fd != -2)
4908 return;
4909
4910 fs_fd = -1;
4911
4912 ev_check_2625 (EV_A);
4913
4914 fs_fd = infy_newfd ();
4915
4916 if (fs_fd >= 0)
4917 {
4918 fd_intern (fs_fd);
4919 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4920 ev_set_priority (&fs_w, EV_MAXPRI);
4921 ev_io_start (EV_A_ &fs_w);
4922 ev_unref (EV_A);
4923 }
4924 }
4925
4926 inline_size void
4927 infy_fork (EV_P)
4928 {
4929 int slot;
4930
4931 if (fs_fd < 0)
4932 return;
4933
4934 ev_ref (EV_A);
4935 ev_io_stop (EV_A_ &fs_w);
4936 close (fs_fd);
4937 fs_fd = infy_newfd ();
4938
4939 if (fs_fd >= 0)
4940 {
4941 fd_intern (fs_fd);
4942 ev_io_set (&fs_w, fs_fd, EV_READ);
4943 ev_io_start (EV_A_ &fs_w);
4944 ev_unref (EV_A);
4945 }
4946
4947 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4948 {
4949 WL w_ = fs_hash [slot].head;
4950 fs_hash [slot].head = 0;
4951
4952 while (w_)
4953 {
4954 ev_stat *w = (ev_stat *)w_;
4955 w_ = w_->next; /* lets us add this watcher */
4956
4957 w->wd = -1;
4958
4959 if (fs_fd >= 0)
4960 infy_add (EV_A_ w); /* re-add, no matter what */
4961 else
4962 {
4963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4964 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4965 ev_timer_again (EV_A_ &w->timer);
4966 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4967 }
4968 }
4969 }
4970 }
4971
4972 #endif
4973
4974 #ifdef _WIN32
4975 # define EV_LSTAT(p,b) _stati64 (p, b)
4976 #else
4977 # define EV_LSTAT(p,b) lstat (p, b)
4978 #endif
4979
4980 void
4981 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4982 {
4983 if (lstat (w->path, &w->attr) < 0)
4984 w->attr.st_nlink = 0;
4985 else if (!w->attr.st_nlink)
4986 w->attr.st_nlink = 1;
4987 }
4988
4989 ecb_noinline
4990 static void
4991 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4992 {
4993 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4994
4995 ev_statdata prev = w->attr;
4996 ev_stat_stat (EV_A_ w);
4997
4998 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4999 if (
5000 prev.st_dev != w->attr.st_dev
5001 || prev.st_ino != w->attr.st_ino
5002 || prev.st_mode != w->attr.st_mode
5003 || prev.st_nlink != w->attr.st_nlink
5004 || prev.st_uid != w->attr.st_uid
5005 || prev.st_gid != w->attr.st_gid
5006 || prev.st_rdev != w->attr.st_rdev
5007 || prev.st_size != w->attr.st_size
5008 || prev.st_atime != w->attr.st_atime
5009 || prev.st_mtime != w->attr.st_mtime
5010 || prev.st_ctime != w->attr.st_ctime
5011 ) {
5012 /* we only update w->prev on actual differences */
5013 /* in case we test more often than invoke the callback, */
5014 /* to ensure that prev is always different to attr */
5015 w->prev = prev;
5016
5017 #if EV_USE_INOTIFY
5018 if (fs_fd >= 0)
5019 {
5020 infy_del (EV_A_ w);
5021 infy_add (EV_A_ w);
5022 ev_stat_stat (EV_A_ w); /* avoid race... */
5023 }
5024 #endif
5025
5026 ev_feed_event (EV_A_ w, EV_STAT);
5027 }
5028 }
5029
5030 void
5031 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
5032 {
5033 if (ecb_expect_false (ev_is_active (w)))
5034 return;
5035
5036 ev_stat_stat (EV_A_ w);
5037
5038 if (w->interval < MIN_STAT_INTERVAL && w->interval)
5039 w->interval = MIN_STAT_INTERVAL;
5040
5041 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
5042 ev_set_priority (&w->timer, ev_priority (w));
5043
5044 #if EV_USE_INOTIFY
5045 infy_init (EV_A);
5046
5047 if (fs_fd >= 0)
5048 infy_add (EV_A_ w);
5049 else
5050 #endif
5051 {
5052 ev_timer_again (EV_A_ &w->timer);
5053 ev_unref (EV_A);
5054 }
5055
5056 ev_start (EV_A_ (W)w, 1);
5057
5058 EV_FREQUENT_CHECK;
5059 }
5060
5061 void
5062 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
5063 {
5064 clear_pending (EV_A_ (W)w);
5065 if (ecb_expect_false (!ev_is_active (w)))
5066 return;
5067
5068 EV_FREQUENT_CHECK;
5069
5070 #if EV_USE_INOTIFY
5071 infy_del (EV_A_ w);
5072 #endif
5073
5074 if (ev_is_active (&w->timer))
5075 {
5076 ev_ref (EV_A);
5077 ev_timer_stop (EV_A_ &w->timer);
5078 }
5079
5080 ev_stop (EV_A_ (W)w);
5081
5082 EV_FREQUENT_CHECK;
5083 }
5084 #endif
5085
5086 #if EV_IDLE_ENABLE
5087 void
5088 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
5089 {
5090 if (ecb_expect_false (ev_is_active (w)))
5091 return;
5092
5093 pri_adjust (EV_A_ (W)w);
5094
5095 EV_FREQUENT_CHECK;
5096
5097 {
5098 int active = ++idlecnt [ABSPRI (w)];
5099
5100 ++idleall;
5101 ev_start (EV_A_ (W)w, active);
5102
5103 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
5104 idles [ABSPRI (w)][active - 1] = w;
5105 }
5106
5107 EV_FREQUENT_CHECK;
5108 }
5109
5110 void
5111 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
5112 {
5113 clear_pending (EV_A_ (W)w);
5114 if (ecb_expect_false (!ev_is_active (w)))
5115 return;
5116
5117 EV_FREQUENT_CHECK;
5118
5119 {
5120 int active = ev_active (w);
5121
5122 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
5123 ev_active (idles [ABSPRI (w)][active - 1]) = active;
5124
5125 ev_stop (EV_A_ (W)w);
5126 --idleall;
5127 }
5128
5129 EV_FREQUENT_CHECK;
5130 }
5131 #endif
5132
5133 #if EV_PREPARE_ENABLE
5134 void
5135 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
5136 {
5137 if (ecb_expect_false (ev_is_active (w)))
5138 return;
5139
5140 EV_FREQUENT_CHECK;
5141
5142 ev_start (EV_A_ (W)w, ++preparecnt);
5143 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5144 prepares [preparecnt - 1] = w;
5145
5146 EV_FREQUENT_CHECK;
5147 }
5148
5149 void
5150 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5151 {
5152 clear_pending (EV_A_ (W)w);
5153 if (ecb_expect_false (!ev_is_active (w)))
5154 return;
5155
5156 EV_FREQUENT_CHECK;
5157
5158 {
5159 int active = ev_active (w);
5160
5161 prepares [active - 1] = prepares [--preparecnt];
5162 ev_active (prepares [active - 1]) = active;
5163 }
5164
5165 ev_stop (EV_A_ (W)w);
5166
5167 EV_FREQUENT_CHECK;
5168 }
5169 #endif
5170
5171 #if EV_CHECK_ENABLE
5172 void
5173 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5174 {
5175 if (ecb_expect_false (ev_is_active (w)))
5176 return;
5177
5178 EV_FREQUENT_CHECK;
5179
5180 ev_start (EV_A_ (W)w, ++checkcnt);
5181 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5182 checks [checkcnt - 1] = w;
5183
5184 EV_FREQUENT_CHECK;
5185 }
5186
5187 void
5188 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5189 {
5190 clear_pending (EV_A_ (W)w);
5191 if (ecb_expect_false (!ev_is_active (w)))
5192 return;
5193
5194 EV_FREQUENT_CHECK;
5195
5196 {
5197 int active = ev_active (w);
5198
5199 checks [active - 1] = checks [--checkcnt];
5200 ev_active (checks [active - 1]) = active;
5201 }
5202
5203 ev_stop (EV_A_ (W)w);
5204
5205 EV_FREQUENT_CHECK;
5206 }
5207 #endif
5208
5209 #if EV_EMBED_ENABLE
5210 ecb_noinline
5211 void
5212 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5213 {
5214 ev_run (w->other, EVRUN_NOWAIT);
5215 }
5216
5217 static void
5218 embed_io_cb (EV_P_ ev_io *io, int revents)
5219 {
5220 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5221
5222 if (ev_cb (w))
5223 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5224 else
5225 ev_run (w->other, EVRUN_NOWAIT);
5226 }
5227
5228 static void
5229 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5230 {
5231 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5232
5233 {
5234 EV_P = w->other;
5235
5236 while (fdchangecnt)
5237 {
5238 fd_reify (EV_A);
5239 ev_run (EV_A_ EVRUN_NOWAIT);
5240 }
5241 }
5242 }
5243
5244 #if EV_FORK_ENABLE
5245 static void
5246 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5247 {
5248 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5249
5250 ev_embed_stop (EV_A_ w);
5251
5252 {
5253 EV_P = w->other;
5254
5255 ev_loop_fork (EV_A);
5256 ev_run (EV_A_ EVRUN_NOWAIT);
5257 }
5258
5259 ev_embed_start (EV_A_ w);
5260 }
5261 #endif
5262
5263 #if 0
5264 static void
5265 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5266 {
5267 ev_idle_stop (EV_A_ idle);
5268 }
5269 #endif
5270
5271 void
5272 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5273 {
5274 if (ecb_expect_false (ev_is_active (w)))
5275 return;
5276
5277 {
5278 EV_P = w->other;
5279 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5280 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5281 }
5282
5283 EV_FREQUENT_CHECK;
5284
5285 ev_set_priority (&w->io, ev_priority (w));
5286 ev_io_start (EV_A_ &w->io);
5287
5288 ev_prepare_init (&w->prepare, embed_prepare_cb);
5289 ev_set_priority (&w->prepare, EV_MINPRI);
5290 ev_prepare_start (EV_A_ &w->prepare);
5291
5292 #if EV_FORK_ENABLE
5293 ev_fork_init (&w->fork, embed_fork_cb);
5294 ev_fork_start (EV_A_ &w->fork);
5295 #endif
5296
5297 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5298
5299 ev_start (EV_A_ (W)w, 1);
5300
5301 EV_FREQUENT_CHECK;
5302 }
5303
5304 void
5305 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5306 {
5307 clear_pending (EV_A_ (W)w);
5308 if (ecb_expect_false (!ev_is_active (w)))
5309 return;
5310
5311 EV_FREQUENT_CHECK;
5312
5313 ev_io_stop (EV_A_ &w->io);
5314 ev_prepare_stop (EV_A_ &w->prepare);
5315 #if EV_FORK_ENABLE
5316 ev_fork_stop (EV_A_ &w->fork);
5317 #endif
5318
5319 ev_stop (EV_A_ (W)w);
5320
5321 EV_FREQUENT_CHECK;
5322 }
5323 #endif
5324
5325 #if EV_FORK_ENABLE
5326 void
5327 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5328 {
5329 if (ecb_expect_false (ev_is_active (w)))
5330 return;
5331
5332 EV_FREQUENT_CHECK;
5333
5334 ev_start (EV_A_ (W)w, ++forkcnt);
5335 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5336 forks [forkcnt - 1] = w;
5337
5338 EV_FREQUENT_CHECK;
5339 }
5340
5341 void
5342 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5343 {
5344 clear_pending (EV_A_ (W)w);
5345 if (ecb_expect_false (!ev_is_active (w)))
5346 return;
5347
5348 EV_FREQUENT_CHECK;
5349
5350 {
5351 int active = ev_active (w);
5352
5353 forks [active - 1] = forks [--forkcnt];
5354 ev_active (forks [active - 1]) = active;
5355 }
5356
5357 ev_stop (EV_A_ (W)w);
5358
5359 EV_FREQUENT_CHECK;
5360 }
5361 #endif
5362
5363 #if EV_CLEANUP_ENABLE
5364 void
5365 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5366 {
5367 if (ecb_expect_false (ev_is_active (w)))
5368 return;
5369
5370 EV_FREQUENT_CHECK;
5371
5372 ev_start (EV_A_ (W)w, ++cleanupcnt);
5373 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5374 cleanups [cleanupcnt - 1] = w;
5375
5376 /* cleanup watchers should never keep a refcount on the loop */
5377 ev_unref (EV_A);
5378 EV_FREQUENT_CHECK;
5379 }
5380
5381 void
5382 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5383 {
5384 clear_pending (EV_A_ (W)w);
5385 if (ecb_expect_false (!ev_is_active (w)))
5386 return;
5387
5388 EV_FREQUENT_CHECK;
5389 ev_ref (EV_A);
5390
5391 {
5392 int active = ev_active (w);
5393
5394 cleanups [active - 1] = cleanups [--cleanupcnt];
5395 ev_active (cleanups [active - 1]) = active;
5396 }
5397
5398 ev_stop (EV_A_ (W)w);
5399
5400 EV_FREQUENT_CHECK;
5401 }
5402 #endif
5403
5404 #if EV_ASYNC_ENABLE
5405 void
5406 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5407 {
5408 if (ecb_expect_false (ev_is_active (w)))
5409 return;
5410
5411 w->sent = 0;
5412
5413 evpipe_init (EV_A);
5414
5415 EV_FREQUENT_CHECK;
5416
5417 ev_start (EV_A_ (W)w, ++asynccnt);
5418 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5419 asyncs [asynccnt - 1] = w;
5420
5421 EV_FREQUENT_CHECK;
5422 }
5423
5424 void
5425 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5426 {
5427 clear_pending (EV_A_ (W)w);
5428 if (ecb_expect_false (!ev_is_active (w)))
5429 return;
5430
5431 EV_FREQUENT_CHECK;
5432
5433 {
5434 int active = ev_active (w);
5435
5436 asyncs [active - 1] = asyncs [--asynccnt];
5437 ev_active (asyncs [active - 1]) = active;
5438 }
5439
5440 ev_stop (EV_A_ (W)w);
5441
5442 EV_FREQUENT_CHECK;
5443 }
5444
5445 void
5446 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5447 {
5448 w->sent = 1;
5449 evpipe_write (EV_A_ &async_pending);
5450 }
5451 #endif
5452
5453 /*****************************************************************************/
5454
5455 struct ev_once
5456 {
5457 ev_io io;
5458 ev_timer to;
5459 void (*cb)(int revents, void *arg);
5460 void *arg;
5461 };
5462
5463 static void
5464 once_cb (EV_P_ struct ev_once *once, int revents)
5465 {
5466 void (*cb)(int revents, void *arg) = once->cb;
5467 void *arg = once->arg;
5468
5469 ev_io_stop (EV_A_ &once->io);
5470 ev_timer_stop (EV_A_ &once->to);
5471 ev_free (once);
5472
5473 cb (revents, arg);
5474 }
5475
5476 static void
5477 once_cb_io (EV_P_ ev_io *w, int revents)
5478 {
5479 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5480
5481 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5482 }
5483
5484 static void
5485 once_cb_to (EV_P_ ev_timer *w, int revents)
5486 {
5487 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5488
5489 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5490 }
5491
5492 void
5493 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5494 {
5495 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5496
5497 once->cb = cb;
5498 once->arg = arg;
5499
5500 ev_init (&once->io, once_cb_io);
5501 if (fd >= 0)
5502 {
5503 ev_io_set (&once->io, fd, events);
5504 ev_io_start (EV_A_ &once->io);
5505 }
5506
5507 ev_init (&once->to, once_cb_to);
5508 if (timeout >= 0.)
5509 {
5510 ev_timer_set (&once->to, timeout, 0.);
5511 ev_timer_start (EV_A_ &once->to);
5512 }
5513 }
5514
5515 /*****************************************************************************/
5516
5517 #if EV_WALK_ENABLE
5518 ecb_cold
5519 void
5520 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5521 {
5522 int i, j;
5523 ev_watcher_list *wl, *wn;
5524
5525 if (types & (EV_IO | EV_EMBED))
5526 for (i = 0; i < anfdmax; ++i)
5527 for (wl = anfds [i].head; wl; )
5528 {
5529 wn = wl->next;
5530
5531 #if EV_EMBED_ENABLE
5532 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5533 {
5534 if (types & EV_EMBED)
5535 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5536 }
5537 else
5538 #endif
5539 #if EV_USE_INOTIFY
5540 if (ev_cb ((ev_io *)wl) == infy_cb)
5541 ;
5542 else
5543 #endif
5544 if ((ev_io *)wl != &pipe_w)
5545 if (types & EV_IO)
5546 cb (EV_A_ EV_IO, wl);
5547
5548 wl = wn;
5549 }
5550
5551 if (types & (EV_TIMER | EV_STAT))
5552 for (i = timercnt + HEAP0; i-- > HEAP0; )
5553 #if EV_STAT_ENABLE
5554 /*TODO: timer is not always active*/
5555 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5556 {
5557 if (types & EV_STAT)
5558 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5559 }
5560 else
5561 #endif
5562 if (types & EV_TIMER)
5563 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5564
5565 #if EV_PERIODIC_ENABLE
5566 if (types & EV_PERIODIC)
5567 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5568 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5569 #endif
5570
5571 #if EV_IDLE_ENABLE
5572 if (types & EV_IDLE)
5573 for (j = NUMPRI; j--; )
5574 for (i = idlecnt [j]; i--; )
5575 cb (EV_A_ EV_IDLE, idles [j][i]);
5576 #endif
5577
5578 #if EV_FORK_ENABLE
5579 if (types & EV_FORK)
5580 for (i = forkcnt; i--; )
5581 if (ev_cb (forks [i]) != embed_fork_cb)
5582 cb (EV_A_ EV_FORK, forks [i]);
5583 #endif
5584
5585 #if EV_ASYNC_ENABLE
5586 if (types & EV_ASYNC)
5587 for (i = asynccnt; i--; )
5588 cb (EV_A_ EV_ASYNC, asyncs [i]);
5589 #endif
5590
5591 #if EV_PREPARE_ENABLE
5592 if (types & EV_PREPARE)
5593 for (i = preparecnt; i--; )
5594 # if EV_EMBED_ENABLE
5595 if (ev_cb (prepares [i]) != embed_prepare_cb)
5596 # endif
5597 cb (EV_A_ EV_PREPARE, prepares [i]);
5598 #endif
5599
5600 #if EV_CHECK_ENABLE
5601 if (types & EV_CHECK)
5602 for (i = checkcnt; i--; )
5603 cb (EV_A_ EV_CHECK, checks [i]);
5604 #endif
5605
5606 #if EV_SIGNAL_ENABLE
5607 if (types & EV_SIGNAL)
5608 for (i = 0; i < EV_NSIG - 1; ++i)
5609 for (wl = signals [i].head; wl; )
5610 {
5611 wn = wl->next;
5612 cb (EV_A_ EV_SIGNAL, wl);
5613 wl = wn;
5614 }
5615 #endif
5616
5617 #if EV_CHILD_ENABLE
5618 if (types & EV_CHILD)
5619 for (i = (EV_PID_HASHSIZE); i--; )
5620 for (wl = childs [i]; wl; )
5621 {
5622 wn = wl->next;
5623 cb (EV_A_ EV_CHILD, wl);
5624 wl = wn;
5625 }
5626 #endif
5627 /* EV_STAT 0x00001000 /* stat data changed */
5628 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5629 }
5630 #endif
5631
5632 #if EV_MULTIPLICITY
5633 #include "ev_wrap.h"
5634 #endif
5635