/* * libev event processing core, watcher management * * Copyright (c) 2007 Marc Alexander Lehmann * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef EV_EMBED # include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #ifndef WIN32 # include #endif #include #include /**/ #ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 #endif #ifndef EV_USE_SELECT # define EV_USE_SELECT 1 #endif #ifndef EV_USEV_POLL # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ #endif #ifndef EV_USE_EPOLL # define EV_USE_EPOLL 0 #endif #ifndef EV_USE_KQUEUE # define EV_USE_KQUEUE 0 #endif #ifndef EV_USE_REALTIME # define EV_USE_REALTIME 1 #endif /**/ #ifndef CLOCK_MONOTONIC # undef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 #endif #ifndef CLOCK_REALTIME # undef EV_USE_REALTIME # define EV_USE_REALTIME 0 #endif /**/ #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ #ifndef EV_EMBED # include "ev.h" #endif #if __GNUC__ >= 3 # define expect(expr,value) __builtin_expect ((expr),(value)) # define inline inline #else # define expect(expr,value) (expr) # define inline static #endif #define expect_false(expr) expect ((expr) != 0, 0) #define expect_true(expr) expect ((expr) != 0, 1) #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) #define ABSPRI(w) ((w)->priority - EV_MINPRI) typedef struct ev_watcher *W; typedef struct ev_watcher_list *WL; typedef struct ev_watcher_time *WT; static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ /*****************************************************************************/ typedef struct { struct ev_watcher_list *head; unsigned char events; unsigned char reify; } ANFD; typedef struct { W w; int events; } ANPENDING; #if EV_MULTIPLICITY struct ev_loop { # define VAR(name,decl) decl; # include "ev_vars.h" }; # undef VAR # include "ev_wrap.h" #else # define VAR(name,decl) static decl; # include "ev_vars.h" # undef VAR #endif /*****************************************************************************/ inline ev_tstamp ev_time (void) { #if EV_USE_REALTIME struct timespec ts; clock_gettime (CLOCK_REALTIME, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; #else struct timeval tv; gettimeofday (&tv, 0); return tv.tv_sec + tv.tv_usec * 1e-6; #endif } inline ev_tstamp get_clock (void) { #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { struct timespec ts; clock_gettime (CLOCK_MONOTONIC, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif return ev_time (); } ev_tstamp ev_now (EV_P) { return rt_now; } #define array_roundsize(base,n) ((n) | 4 & ~3) #define array_needsize(base,cur,cnt,init) \ if (expect_false ((cnt) > cur)) \ { \ int newcnt = cur; \ do \ { \ newcnt = array_roundsize (base, newcnt << 1); \ } \ while ((cnt) > newcnt); \ \ base = realloc (base, sizeof (*base) * (newcnt)); \ init (base + cur, newcnt - cur); \ cur = newcnt; \ } /*****************************************************************************/ static void anfds_init (ANFD *base, int count) { while (count--) { base->head = 0; base->events = EV_NONE; base->reify = 0; ++base; } } static void event (EV_P_ W w, int events) { if (w->pending) { pendings [ABSPRI (w)][w->pending - 1].events |= events; return; } w->pending = ++pendingcnt [ABSPRI (w)]; array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); pendings [ABSPRI (w)][w->pending - 1].w = w; pendings [ABSPRI (w)][w->pending - 1].events = events; } static void queue_events (EV_P_ W *events, int eventcnt, int type) { int i; for (i = 0; i < eventcnt; ++i) event (EV_A_ events [i], type); } static void fd_event (EV_P_ int fd, int events) { ANFD *anfd = anfds + fd; struct ev_io *w; for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) { int ev = w->events & events; if (ev) event (EV_A_ (W)w, ev); } } /*****************************************************************************/ static void fd_reify (EV_P) { int i; for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; struct ev_io *w; int events = 0; for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) events |= w->events; anfd->reify = 0; if (anfd->events != events) { method_modify (EV_A_ fd, anfd->events, events); anfd->events = events; } } fdchangecnt = 0; } static void fd_change (EV_P_ int fd) { if (anfds [fd].reify || fdchangecnt < 0) return; anfds [fd].reify = 1; ++fdchangecnt; array_needsize (fdchanges, fdchangemax, fdchangecnt, ); fdchanges [fdchangecnt - 1] = fd; } static void fd_kill (EV_P_ int fd) { struct ev_io *w; while ((w = (struct ev_io *)anfds [fd].head)) { ev_io_stop (EV_A_ w); event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); } } /* called on EBADF to verify fds */ static void fd_ebadf (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) fd_kill (EV_A_ fd); } /* called on ENOMEM in select/poll to kill some fds and retry */ static void fd_enomem (EV_P) { int fd = anfdmax; while (fd--) if (anfds [fd].events) { close (fd); fd_kill (EV_A_ fd); return; } } /* susually called after fork if method needs to re-arm all fds from scratch */ static void fd_rearm_all (EV_P) { int fd; /* this should be highly optimised to not do anything but set a flag */ for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) { anfds [fd].events = 0; fd_change (fd); } } /*****************************************************************************/ static void upheap (WT *heap, int k) { WT w = heap [k]; while (k && heap [k >> 1]->at > w->at) { heap [k] = heap [k >> 1]; heap [k]->active = k + 1; k >>= 1; } heap [k] = w; heap [k]->active = k + 1; } static void downheap (WT *heap, int N, int k) { WT w = heap [k]; while (k < (N >> 1)) { int j = k << 1; if (j + 1 < N && heap [j]->at > heap [j + 1]->at) ++j; if (w->at <= heap [j]->at) break; heap [k] = heap [j]; heap [k]->active = k + 1; k = j; } heap [k] = w; heap [k]->active = k + 1; } /*****************************************************************************/ typedef struct { struct ev_watcher_list *head; sig_atomic_t volatile gotsig; } ANSIG; static ANSIG *signals; static int signalmax; static int sigpipe [2]; static sig_atomic_t volatile gotsig; static void signals_init (ANSIG *base, int count) { while (count--) { base->head = 0; base->gotsig = 0; ++base; } } static void sighandler (int signum) { signals [signum - 1].gotsig = 1; if (!gotsig) { int old_errno = errno; gotsig = 1; write (sigpipe [1], &signum, 1); errno = old_errno; } } static void sigcb (EV_P_ struct ev_io *iow, int revents) { struct ev_watcher_list *w; int signum; read (sigpipe [0], &revents, 1); gotsig = 0; for (signum = signalmax; signum--; ) if (signals [signum].gotsig) { signals [signum].gotsig = 0; for (w = signals [signum].head; w; w = w->next) event (EV_A_ (W)w, EV_SIGNAL); } } static void siginit (EV_P) { #ifndef WIN32 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); /* rather than sort out wether we really need nb, set it */ fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); #endif ev_io_set (&sigev, sigpipe [0], EV_READ); ev_io_start (EV_A_ &sigev); ev_unref (EV_A); /* child watcher should not keep loop alive */ } /*****************************************************************************/ #ifndef WIN32 #ifndef WCONTINUED # define WCONTINUED 0 #endif static void child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) { struct ev_child *w; for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) if (w->pid == pid || !w->pid) { w->priority = sw->priority; /* need to do it *now* */ w->rpid = pid; w->rstatus = status; event (EV_A_ (W)w, EV_CHILD); } } static void childcb (EV_P_ struct ev_signal *sw, int revents) { int pid, status; if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) { /* make sure we are called again until all childs have been reaped */ event (EV_A_ (W)sw, EV_SIGNAL); child_reap (EV_A_ sw, pid, pid, status); child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ } } #endif /*****************************************************************************/ #if EV_USE_KQUEUE # include "ev_kqueue.c" #endif #if EV_USE_EPOLL # include "ev_epoll.c" #endif #if EV_USEV_POLL # include "ev_poll.c" #endif #if EV_USE_SELECT # include "ev_select.c" #endif int ev_version_major (void) { return EV_VERSION_MAJOR; } int ev_version_minor (void) { return EV_VERSION_MINOR; } /* return true if we are running with elevated privileges and should ignore env variables */ static int enable_secure (void) { #ifdef WIN32 return 0; #else return getuid () != geteuid () || getgid () != getegid (); #endif } int ev_method (EV_P) { return method; } static void loop_init (EV_P_ int methods) { if (!method) { #if EV_USE_MONOTONIC { struct timespec ts; if (!clock_gettime (CLOCK_MONOTONIC, &ts)) have_monotonic = 1; } #endif rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; rtmn_diff = rt_now - mn_now; if (methods == EVMETHOD_AUTO) if (!enable_secure () && getenv ("LIBEV_METHODS")) methods = atoi (getenv ("LIBEV_METHODS")); else methods = EVMETHOD_ANY; method = 0; #if EV_USE_KQUEUE if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); #endif #if EV_USE_EPOLL if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); #endif #if EV_USEV_POLL if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); #endif #if EV_USE_SELECT if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); #endif } } void loop_destroy (EV_P) { #if EV_USE_KQUEUE if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); #endif #if EV_USE_EPOLL if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); #endif #if EV_USEV_POLL if (method == EVMETHOD_POLL ) poll_destroy (EV_A); #endif #if EV_USE_SELECT if (method == EVMETHOD_SELECT) select_destroy (EV_A); #endif method = 0; /*TODO*/ } void loop_fork (EV_P) { /*TODO*/ #if EV_USE_EPOLL if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); #endif #if EV_USE_KQUEUE if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); #endif } #if EV_MULTIPLICITY struct ev_loop * ev_loop_new (int methods) { struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); loop_init (EV_A_ methods); if (ev_methods (EV_A)) return loop; return 0; } void ev_loop_destroy (EV_P) { loop_destroy (EV_A); free (loop); } void ev_loop_fork (EV_P) { loop_fork (EV_A); } #endif #if EV_MULTIPLICITY struct ev_loop default_loop_struct; static struct ev_loop *default_loop; struct ev_loop * #else static int default_loop; int #endif ev_default_loop (int methods) { if (sigpipe [0] == sigpipe [1]) if (pipe (sigpipe)) return 0; if (!default_loop) { #if EV_MULTIPLICITY struct ev_loop *loop = default_loop = &default_loop_struct; #else default_loop = 1; #endif loop_init (EV_A_ methods); if (ev_method (EV_A)) { ev_watcher_init (&sigev, sigcb); ev_set_priority (&sigev, EV_MAXPRI); siginit (EV_A); #ifndef WIN32 ev_signal_init (&childev, childcb, SIGCHLD); ev_set_priority (&childev, EV_MAXPRI); ev_signal_start (EV_A_ &childev); ev_unref (EV_A); /* child watcher should not keep loop alive */ #endif } else default_loop = 0; } return default_loop; } void ev_default_destroy (void) { #if EV_MULTIPLICITY struct ev_loop *loop = default_loop; #endif ev_ref (EV_A); /* child watcher */ ev_signal_stop (EV_A_ &childev); ev_ref (EV_A); /* signal watcher */ ev_io_stop (EV_A_ &sigev); close (sigpipe [0]); sigpipe [0] = 0; close (sigpipe [1]); sigpipe [1] = 0; loop_destroy (EV_A); } void ev_default_fork (EV_P) { loop_fork (EV_A); ev_io_stop (EV_A_ &sigev); close (sigpipe [0]); close (sigpipe [1]); pipe (sigpipe); ev_ref (EV_A); /* signal watcher */ siginit (EV_A); } /*****************************************************************************/ static void call_pending (EV_P) { int pri; for (pri = NUMPRI; pri--; ) while (pendingcnt [pri]) { ANPENDING *p = pendings [pri] + --pendingcnt [pri]; if (p->w) { p->w->pending = 0; p->w->cb (EV_A_ p->w, p->events); } } } static void timers_reify (EV_P) { while (timercnt && timers [0]->at <= mn_now) { struct ev_timer *w = timers [0]; /* first reschedule or stop timer */ if (w->repeat) { assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); w->at = mn_now + w->repeat; downheap ((WT *)timers, timercnt, 0); } else ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ event (EV_A_ (W)w, EV_TIMEOUT); } } static void periodics_reify (EV_P) { while (periodiccnt && periodics [0]->at <= rt_now) { struct ev_periodic *w = periodics [0]; /* first reschedule or stop timer */ if (w->interval) { w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); downheap ((WT *)periodics, periodiccnt, 0); } else ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ event (EV_A_ (W)w, EV_PERIODIC); } } static void periodics_reschedule (EV_P) { int i; /* adjust periodics after time jump */ for (i = 0; i < periodiccnt; ++i) { struct ev_periodic *w = periodics [i]; if (w->interval) { ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; if (fabs (diff) >= 1e-4) { ev_periodic_stop (EV_A_ w); ev_periodic_start (EV_A_ w); i = 0; /* restart loop, inefficient, but time jumps should be rare */ } } } } inline int time_update_monotonic (EV_P) { mn_now = get_clock (); if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) { rt_now = rtmn_diff + mn_now; return 0; } else { now_floor = mn_now; rt_now = ev_time (); return 1; } } static void time_update (EV_P) { int i; #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { if (time_update_monotonic (EV_A)) { ev_tstamp odiff = rtmn_diff; for (i = 4; --i; ) /* loop a few times, before making important decisions */ { rtmn_diff = rt_now - mn_now; if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) return; /* all is well */ rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; } periodics_reschedule (EV_A); /* no timer adjustment, as the monotonic clock doesn't jump */ /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ } } else #endif { rt_now = ev_time (); if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) { periodics_reschedule (EV_A); /* adjust timers. this is easy, as the offset is the same for all */ for (i = 0; i < timercnt; ++i) timers [i]->at += rt_now - mn_now; } mn_now = rt_now; } } void ev_ref (EV_P) { ++activecnt; } void ev_unref (EV_P) { --activecnt; } static int loop_done; void ev_loop (EV_P_ int flags) { double block; loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; do { /* queue check watchers (and execute them) */ if (expect_false (preparecnt)) { queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); call_pending (EV_A); } /* update fd-related kernel structures */ fd_reify (EV_A); /* calculate blocking time */ /* we only need this for !monotonic clockor timers, but as we basically always have timers, we just calculate it always */ #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) time_update_monotonic (EV_A); else #endif { rt_now = ev_time (); mn_now = rt_now; } if (flags & EVLOOP_NONBLOCK || idlecnt) block = 0.; else { block = MAX_BLOCKTIME; if (timercnt) { ev_tstamp to = timers [0]->at - mn_now + method_fudge; if (block > to) block = to; } if (periodiccnt) { ev_tstamp to = periodics [0]->at - rt_now + method_fudge; if (block > to) block = to; } if (block < 0.) block = 0.; } method_poll (EV_A_ block); /* update rt_now, do magic */ time_update (EV_A); /* queue pending timers and reschedule them */ timers_reify (EV_A); /* relative timers called last */ periodics_reify (EV_A); /* absolute timers called first */ /* queue idle watchers unless io or timers are pending */ if (!pendingcnt) queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); /* queue check watchers, to be executed first */ if (checkcnt) queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); call_pending (EV_A); } while (activecnt && !loop_done); if (loop_done != 2) loop_done = 0; } void ev_unloop (EV_P_ int how) { loop_done = how; } /*****************************************************************************/ inline void wlist_add (WL *head, WL elem) { elem->next = *head; *head = elem; } inline void wlist_del (WL *head, WL elem) { while (*head) { if (*head == elem) { *head = elem->next; return; } head = &(*head)->next; } } inline void ev_clear_pending (EV_P_ W w) { if (w->pending) { pendings [ABSPRI (w)][w->pending - 1].w = 0; w->pending = 0; } } inline void ev_start (EV_P_ W w, int active) { if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; w->active = active; ev_ref (EV_A); } inline void ev_stop (EV_P_ W w) { ev_unref (EV_A); w->active = 0; } /*****************************************************************************/ void ev_io_start (EV_P_ struct ev_io *w) { int fd = w->fd; if (ev_is_active (w)) return; assert (("ev_io_start called with negative fd", fd >= 0)); ev_start (EV_A_ (W)w, 1); array_needsize (anfds, anfdmax, fd + 1, anfds_init); wlist_add ((WL *)&anfds[fd].head, (WL)w); fd_change (EV_A_ fd); } void ev_io_stop (EV_P_ struct ev_io *w) { ev_clear_pending (EV_A_ (W)w); if (!ev_is_active (w)) return; wlist_del ((WL *)&anfds[w->fd].head, (WL)w); ev_stop (EV_A_ (W)w); fd_change (EV_A_ w->fd); } void ev_timer_start (EV_P_ struct ev_timer *w) { if (ev_is_active (w)) return; w->at += mn_now; assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); ev_start (EV_A_ (W)w, ++timercnt); array_needsize (timers, timermax, timercnt, ); timers [timercnt - 1] = w; upheap ((WT *)timers, timercnt - 1); } void ev_timer_stop (EV_P_ struct ev_timer *w) { ev_clear_pending (EV_A_ (W)w); if (!ev_is_active (w)) return; if (w->active < timercnt--) { timers [w->active - 1] = timers [timercnt]; downheap ((WT *)timers, timercnt, w->active - 1); } w->at = w->repeat; ev_stop (EV_A_ (W)w); } void ev_timer_again (EV_P_ struct ev_timer *w) { if (ev_is_active (w)) { if (w->repeat) { w->at = mn_now + w->repeat; downheap ((WT *)timers, timercnt, w->active - 1); } else ev_timer_stop (EV_A_ w); } else if (w->repeat) ev_timer_start (EV_A_ w); } void ev_periodic_start (EV_P_ struct ev_periodic *w) { if (ev_is_active (w)) return; assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); /* this formula differs from the one in periodic_reify because we do not always round up */ if (w->interval) w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; ev_start (EV_A_ (W)w, ++periodiccnt); array_needsize (periodics, periodicmax, periodiccnt, ); periodics [periodiccnt - 1] = w; upheap ((WT *)periodics, periodiccnt - 1); } void ev_periodic_stop (EV_P_ struct ev_periodic *w) { ev_clear_pending (EV_A_ (W)w); if (!ev_is_active (w)) return; if (w->active < periodiccnt--) { periodics [w->active - 1] = periodics [periodiccnt]; downheap ((WT *)periodics, periodiccnt, w->active - 1); } ev_stop (EV_A_ (W)w); } void ev_idle_start (EV_P_ struct ev_idle *w) { if (ev_is_active (w)) return; ev_start (EV_A_ (W)w, ++idlecnt); array_needsize (idles, idlemax, idlecnt, ); idles [idlecnt - 1] = w; } void ev_idle_stop (EV_P_ struct ev_idle *w) { ev_clear_pending (EV_A_ (W)w); if (ev_is_active (w)) return; idles [w->active - 1] = idles [--idlecnt]; ev_stop (EV_A_ (W)w); } void ev_prepare_start (EV_P_ struct ev_prepare *w) { if (ev_is_active (w)) return; ev_start (EV_A_ (W)w, ++preparecnt); array_needsize (prepares, preparemax, preparecnt, ); prepares [preparecnt - 1] = w; } void ev_prepare_stop (EV_P_ struct ev_prepare *w) { ev_clear_pending (EV_A_ (W)w); if (ev_is_active (w)) return; prepares [w->active - 1] = prepares [--preparecnt]; ev_stop (EV_A_ (W)w); } void ev_check_start (EV_P_ struct ev_check *w) { if (ev_is_active (w)) return; ev_start (EV_A_ (W)w, ++checkcnt); array_needsize (checks, checkmax, checkcnt, ); checks [checkcnt - 1] = w; } void ev_check_stop (EV_P_ struct ev_check *w) { ev_clear_pending (EV_A_ (W)w); if (ev_is_active (w)) return; checks [w->active - 1] = checks [--checkcnt]; ev_stop (EV_A_ (W)w); } #ifndef SA_RESTART # define SA_RESTART 0 #endif void ev_signal_start (EV_P_ struct ev_signal *w) { #if EV_MULTIPLICITY assert (("signal watchers are only supported in the default loop", loop == default_loop)); #endif if (ev_is_active (w)) return; assert (("ev_signal_start called with illegal signal number", w->signum > 0)); ev_start (EV_A_ (W)w, 1); array_needsize (signals, signalmax, w->signum, signals_init); wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); if (!w->next) { struct sigaction sa; sa.sa_handler = sighandler; sigfillset (&sa.sa_mask); sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ sigaction (w->signum, &sa, 0); } } void ev_signal_stop (EV_P_ struct ev_signal *w) { ev_clear_pending (EV_A_ (W)w); if (!ev_is_active (w)) return; wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); ev_stop (EV_A_ (W)w); if (!signals [w->signum - 1].head) signal (w->signum, SIG_DFL); } void ev_child_start (EV_P_ struct ev_child *w) { #if EV_MULTIPLICITY assert (("child watchers are only supported in the default loop", loop == default_loop)); #endif if (ev_is_active (w)) return; ev_start (EV_A_ (W)w, 1); wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); } void ev_child_stop (EV_P_ struct ev_child *w) { ev_clear_pending (EV_A_ (W)w); if (ev_is_active (w)) return; wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); ev_stop (EV_A_ (W)w); } /*****************************************************************************/ struct ev_once { struct ev_io io; struct ev_timer to; void (*cb)(int revents, void *arg); void *arg; }; static void once_cb (EV_P_ struct ev_once *once, int revents) { void (*cb)(int revents, void *arg) = once->cb; void *arg = once->arg; ev_io_stop (EV_A_ &once->io); ev_timer_stop (EV_A_ &once->to); free (once); cb (revents, arg); } static void once_cb_io (EV_P_ struct ev_io *w, int revents) { once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); } static void once_cb_to (EV_P_ struct ev_timer *w, int revents) { once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); } void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) { struct ev_once *once = malloc (sizeof (struct ev_once)); if (!once) cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); else { once->cb = cb; once->arg = arg; ev_watcher_init (&once->io, once_cb_io); if (fd >= 0) { ev_io_set (&once->io, fd, events); ev_io_start (EV_A_ &once->io); } ev_watcher_init (&once->to, once_cb_to); if (timeout >= 0.) { ev_timer_set (&once->to, timeout, 0.); ev_timer_start (EV_A_ &once->to); } } }