ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.60
Committed: Sun Nov 4 18:29:44 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.59: +29 -3 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stddef.h>
63
64 #include <stdio.h>
65
66 #include <assert.h>
67 #include <errno.h>
68 #include <sys/types.h>
69 #ifndef WIN32
70 # include <sys/wait.h>
71 #endif
72 #include <sys/time.h>
73 #include <time.h>
74
75 /**/
76
77 #ifndef EV_USE_MONOTONIC
78 # define EV_USE_MONOTONIC 1
79 #endif
80
81 #ifndef EV_USE_SELECT
82 # define EV_USE_SELECT 1
83 #endif
84
85 #ifndef EV_USE_POLL
86 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 #endif
88
89 #ifndef EV_USE_EPOLL
90 # define EV_USE_EPOLL 0
91 #endif
92
93 #ifndef EV_USE_KQUEUE
94 # define EV_USE_KQUEUE 0
95 #endif
96
97 #ifndef EV_USE_REALTIME
98 # define EV_USE_REALTIME 1
99 #endif
100
101 /**/
102
103 #ifndef CLOCK_MONOTONIC
104 # undef EV_USE_MONOTONIC
105 # define EV_USE_MONOTONIC 0
106 #endif
107
108 #ifndef CLOCK_REALTIME
109 # undef EV_USE_REALTIME
110 # define EV_USE_REALTIME 0
111 #endif
112
113 /**/
114
115 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119
120 #include "ev.h"
121
122 #if __GNUC__ >= 3
123 # define expect(expr,value) __builtin_expect ((expr),(value))
124 # define inline inline
125 #else
126 # define expect(expr,value) (expr)
127 # define inline static
128 #endif
129
130 #define expect_false(expr) expect ((expr) != 0, 0)
131 #define expect_true(expr) expect ((expr) != 0, 1)
132
133 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
135
136 typedef struct ev_watcher *W;
137 typedef struct ev_watcher_list *WL;
138 typedef struct ev_watcher_time *WT;
139
140 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141
142 /*****************************************************************************/
143
144 typedef struct
145 {
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149 } ANFD;
150
151 typedef struct
152 {
153 W w;
154 int events;
155 } ANPENDING;
156
157 #if EV_MULTIPLICITY
158
159 struct ev_loop
160 {
161 # define VAR(name,decl) decl;
162 # include "ev_vars.h"
163 };
164 # undef VAR
165 # include "ev_wrap.h"
166
167 #else
168
169 # define VAR(name,decl) static decl;
170 # include "ev_vars.h"
171 # undef VAR
172
173 #endif
174
175 /*****************************************************************************/
176
177 inline ev_tstamp
178 ev_time (void)
179 {
180 #if EV_USE_REALTIME
181 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts);
183 return ts.tv_sec + ts.tv_nsec * 1e-9;
184 #else
185 struct timeval tv;
186 gettimeofday (&tv, 0);
187 return tv.tv_sec + tv.tv_usec * 1e-6;
188 #endif
189 }
190
191 inline ev_tstamp
192 get_clock (void)
193 {
194 #if EV_USE_MONOTONIC
195 if (expect_true (have_monotonic))
196 {
197 struct timespec ts;
198 clock_gettime (CLOCK_MONOTONIC, &ts);
199 return ts.tv_sec + ts.tv_nsec * 1e-9;
200 }
201 #endif
202
203 return ev_time ();
204 }
205
206 ev_tstamp
207 ev_now (EV_P)
208 {
209 return rt_now;
210 }
211
212 #define array_roundsize(base,n) ((n) | 4 & ~3)
213
214 #define array_needsize(base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \
216 { \
217 int newcnt = cur; \
218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \
225 init (base + cur, newcnt - cur); \
226 cur = newcnt; \
227 }
228
229 /*****************************************************************************/
230
231 static void
232 anfds_init (ANFD *base, int count)
233 {
234 while (count--)
235 {
236 base->head = 0;
237 base->events = EV_NONE;
238 base->reify = 0;
239
240 ++base;
241 }
242 }
243
244 static void
245 event (EV_P_ W w, int events)
246 {
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
251 }
252
253 w->pending = ++pendingcnt [ABSPRI (w)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257 }
258
259 static void
260 queue_events (EV_P_ W *events, int eventcnt, int type)
261 {
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266 }
267
268 static void
269 fd_event (EV_P_ int fd, int events)
270 {
271 ANFD *anfd = anfds + fd;
272 struct ev_io *w;
273
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 {
276 int ev = w->events & events;
277
278 if (ev)
279 event (EV_A_ (W)w, ev);
280 }
281 }
282
283 /*****************************************************************************/
284
285 static void
286 fd_reify (EV_P)
287 {
288 int i;
289
290 for (i = 0; i < fdchangecnt; ++i)
291 {
292 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd;
294 struct ev_io *w;
295
296 int events = 0;
297
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events;
300
301 anfd->reify = 0;
302
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events;
307 }
308 }
309
310 fdchangecnt = 0;
311 }
312
313 static void
314 fd_change (EV_P_ int fd)
315 {
316 if (anfds [fd].reify || fdchangecnt < 0)
317 return;
318
319 anfds [fd].reify = 1;
320
321 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
323 fdchanges [fdchangecnt - 1] = fd;
324 }
325
326 static void
327 fd_kill (EV_P_ int fd)
328 {
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336 }
337
338 /* called on EBADF to verify fds */
339 static void
340 fd_ebadf (EV_P)
341 {
342 int fd;
343
344 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd);
348 }
349
350 /* called on ENOMEM in select/poll to kill some fds and retry */
351 static void
352 fd_enomem (EV_P)
353 {
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
358 {
359 close (fd);
360 fd_kill (EV_A_ fd);
361 return;
362 }
363 }
364
365 /* susually called after fork if method needs to re-arm all fds from scratch */
366 static void
367 fd_rearm_all (EV_P)
368 {
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
378 }
379
380 /*****************************************************************************/
381
382 static void
383 upheap (WT *heap, int k)
384 {
385 WT w = heap [k];
386
387 while (k && heap [k >> 1]->at > w->at)
388 {
389 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1;
391 k >>= 1;
392 }
393
394 heap [k] = w;
395 heap [k]->active = k + 1;
396
397 }
398
399 static void
400 downheap (WT *heap, int N, int k)
401 {
402 WT w = heap [k];
403
404 while (k < (N >> 1))
405 {
406 int j = k << 1;
407
408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
409 ++j;
410
411 if (w->at <= heap [j]->at)
412 break;
413
414 heap [k] = heap [j];
415 heap [k]->active = k + 1;
416 k = j;
417 }
418
419 heap [k] = w;
420 heap [k]->active = k + 1;
421 }
422
423 /*****************************************************************************/
424
425 typedef struct
426 {
427 struct ev_watcher_list *head;
428 sig_atomic_t volatile gotsig;
429 } ANSIG;
430
431 static ANSIG *signals;
432 static int signalmax;
433
434 static int sigpipe [2];
435 static sig_atomic_t volatile gotsig;
436 static struct ev_io sigev;
437
438 static void
439 signals_init (ANSIG *base, int count)
440 {
441 while (count--)
442 {
443 base->head = 0;
444 base->gotsig = 0;
445
446 ++base;
447 }
448 }
449
450 static void
451 sighandler (int signum)
452 {
453 signals [signum - 1].gotsig = 1;
454
455 if (!gotsig)
456 {
457 int old_errno = errno;
458 gotsig = 1;
459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
461 }
462 }
463
464 static void
465 sigcb (EV_P_ struct ev_io *iow, int revents)
466 {
467 struct ev_watcher_list *w;
468 int signum;
469
470 read (sigpipe [0], &revents, 1);
471 gotsig = 0;
472
473 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig)
475 {
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481 }
482
483 static void
484 siginit (EV_P)
485 {
486 #ifndef WIN32
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493 #endif
494
495 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
498 }
499
500 /*****************************************************************************/
501
502 #ifndef WIN32
503
504 static struct ev_child *childs [PID_HASHSIZE];
505 static struct ev_signal childev;
506
507 #ifndef WCONTINUED
508 # define WCONTINUED 0
509 #endif
510
511 static void
512 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513 {
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524 }
525
526 static void
527 childcb (EV_P_ struct ev_signal *sw, int revents)
528 {
529 int pid, status;
530
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 {
533 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL);
535
536 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
539 }
540
541 #endif
542
543 /*****************************************************************************/
544
545 #if EV_USE_KQUEUE
546 # include "ev_kqueue.c"
547 #endif
548 #if EV_USE_EPOLL
549 # include "ev_epoll.c"
550 #endif
551 #if EV_USE_POLL
552 # include "ev_poll.c"
553 #endif
554 #if EV_USE_SELECT
555 # include "ev_select.c"
556 #endif
557
558 int
559 ev_version_major (void)
560 {
561 return EV_VERSION_MAJOR;
562 }
563
564 int
565 ev_version_minor (void)
566 {
567 return EV_VERSION_MINOR;
568 }
569
570 /* return true if we are running with elevated privileges and should ignore env variables */
571 static int
572 enable_secure (void)
573 {
574 #ifdef WIN32
575 return 0;
576 #else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579 #endif
580 }
581
582 int
583 ev_method (EV_P)
584 {
585 return method;
586 }
587
588 static void
589 loop_init (EV_P_ int methods)
590 {
591 if (!method)
592 {
593 #if EV_USE_MONOTONIC
594 {
595 struct timespec ts;
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1;
598 }
599 #endif
600
601 rt_now = ev_time ();
602 mn_now = get_clock ();
603 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now;
605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613 #if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615 #endif
616 #if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618 #endif
619 #if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621 #endif
622 #if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624 #endif
625 }
626 }
627
628 void
629 loop_destroy (EV_P)
630 {
631 #if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633 #endif
634 #if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636 #endif
637 #if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639 #endif
640 #if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642 #endif
643
644 method = 0;
645 /*TODO*/
646 }
647
648 void
649 loop_fork (EV_P)
650 {
651 /*TODO*/
652 #if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654 #endif
655 #if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657 #endif
658 }
659
660 #if EV_MULTIPLICITY
661 struct ev_loop *
662 ev_loop_new (int methods)
663 {
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672 }
673
674 void
675 ev_loop_destroy (EV_P)
676 {
677 loop_destroy (EV_A);
678 free (loop);
679 }
680
681 void
682 ev_loop_fork (EV_P)
683 {
684 loop_fork (EV_A);
685 }
686
687 #endif
688
689 #if EV_MULTIPLICITY
690 struct ev_loop default_loop_struct;
691 static struct ev_loop *default_loop;
692
693 struct ev_loop *
694 #else
695 static int default_loop;
696
697 int
698 #endif
699 ev_default_loop (int methods)
700 {
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707 #if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709 #else
710 default_loop = 1;
711 #endif
712
713 loop_init (EV_A_ methods);
714
715 if (ev_method (EV_A))
716 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A);
720
721 #ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */
726 #endif
727 }
728 else
729 default_loop = 0;
730 }
731
732 return default_loop;
733 }
734
735 void
736 ev_default_destroy (void)
737 {
738 #if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop;
740 #endif
741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752 }
753
754 void
755 ev_default_fork (void)
756 {
757 #if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759 #endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770 }
771
772 /*****************************************************************************/
773
774 static void
775 call_pending (EV_P)
776 {
777 int pri;
778
779 for (pri = NUMPRI; pri--; )
780 while (pendingcnt [pri])
781 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783
784 if (p->w)
785 {
786 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events);
788 }
789 }
790 }
791
792 static void
793 timers_reify (EV_P)
794 {
795 while (timercnt && timers [0]->at <= mn_now)
796 {
797 struct ev_timer *w = timers [0];
798
799 /* first reschedule or stop timer */
800 if (w->repeat)
801 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
803 w->at = mn_now + w->repeat;
804 downheap ((WT *)timers, timercnt, 0);
805 }
806 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808
809 event (EV_A_ (W)w, EV_TIMEOUT);
810 }
811 }
812
813 static void
814 periodics_reify (EV_P)
815 {
816 while (periodiccnt && periodics [0]->at <= rt_now)
817 {
818 struct ev_periodic *w = periodics [0];
819
820 /* first reschedule or stop timer */
821 if (w->interval)
822 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0);
826 }
827 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829
830 event (EV_A_ (W)w, EV_PERIODIC);
831 }
832 }
833
834 static void
835 periodics_reschedule (EV_P)
836 {
837 int i;
838
839 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i)
841 {
842 struct ev_periodic *w = periodics [i];
843
844 if (w->interval)
845 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
847
848 if (fabs (diff) >= 1e-4)
849 {
850 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w);
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 }
855 }
856 }
857 }
858
859 inline int
860 time_update_monotonic (EV_P)
861 {
862 mn_now = get_clock ();
863
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 {
866 rt_now = rtmn_diff + mn_now;
867 return 0;
868 }
869 else
870 {
871 now_floor = mn_now;
872 rt_now = ev_time ();
873 return 1;
874 }
875 }
876
877 static void
878 time_update (EV_P)
879 {
880 int i;
881
882 #if EV_USE_MONOTONIC
883 if (expect_true (have_monotonic))
884 {
885 if (time_update_monotonic (EV_A))
886 {
887 ev_tstamp odiff = rtmn_diff;
888
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 {
891 rtmn_diff = rt_now - mn_now;
892
893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
894 return; /* all is well */
895
896 rt_now = ev_time ();
897 mn_now = get_clock ();
898 now_floor = mn_now;
899 }
900
901 periodics_reschedule (EV_A);
902 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
904 }
905 }
906 else
907 #endif
908 {
909 rt_now = ev_time ();
910
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
912 {
913 periodics_reschedule (EV_A);
914
915 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now;
918 }
919
920 mn_now = rt_now;
921 }
922 }
923
924 void
925 ev_ref (EV_P)
926 {
927 ++activecnt;
928 }
929
930 void
931 ev_unref (EV_P)
932 {
933 --activecnt;
934 }
935
936 static int loop_done;
937
938 void
939 ev_loop (EV_P_ int flags)
940 {
941 double block;
942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
943
944 do
945 {
946 /* queue check watchers (and execute them) */
947 if (expect_false (preparecnt))
948 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A);
951 }
952
953 /* update fd-related kernel structures */
954 fd_reify (EV_A);
955
956 /* calculate blocking time */
957
958 /* we only need this for !monotonic clockor timers, but as we basically
959 always have timers, we just calculate it always */
960 #if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A);
963 else
964 #endif
965 {
966 rt_now = ev_time ();
967 mn_now = rt_now;
968 }
969
970 if (flags & EVLOOP_NONBLOCK || idlecnt)
971 block = 0.;
972 else
973 {
974 block = MAX_BLOCKTIME;
975
976 if (timercnt)
977 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
979 if (block > to) block = to;
980 }
981
982 if (periodiccnt)
983 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
985 if (block > to) block = to;
986 }
987
988 if (block < 0.) block = 0.;
989 }
990
991 method_poll (EV_A_ block);
992
993 /* update rt_now, do magic */
994 time_update (EV_A);
995
996 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */
998 periodics_reify (EV_A); /* absolute timers called first */
999
1000 /* queue idle watchers unless io or timers are pending */
1001 if (!pendingcnt)
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1003
1004 /* queue check watchers, to be executed first */
1005 if (checkcnt)
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1007
1008 call_pending (EV_A);
1009 }
1010 while (activecnt && !loop_done);
1011
1012 if (loop_done != 2)
1013 loop_done = 0;
1014 }
1015
1016 void
1017 ev_unloop (EV_P_ int how)
1018 {
1019 loop_done = how;
1020 }
1021
1022 /*****************************************************************************/
1023
1024 inline void
1025 wlist_add (WL *head, WL elem)
1026 {
1027 elem->next = *head;
1028 *head = elem;
1029 }
1030
1031 inline void
1032 wlist_del (WL *head, WL elem)
1033 {
1034 while (*head)
1035 {
1036 if (*head == elem)
1037 {
1038 *head = elem->next;
1039 return;
1040 }
1041
1042 head = &(*head)->next;
1043 }
1044 }
1045
1046 inline void
1047 ev_clear_pending (EV_P_ W w)
1048 {
1049 if (w->pending)
1050 {
1051 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1052 w->pending = 0;
1053 }
1054 }
1055
1056 inline void
1057 ev_start (EV_P_ W w, int active)
1058 {
1059 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1060 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1061
1062 w->active = active;
1063 ev_ref (EV_A);
1064 }
1065
1066 inline void
1067 ev_stop (EV_P_ W w)
1068 {
1069 ev_unref (EV_A);
1070 w->active = 0;
1071 }
1072
1073 /*****************************************************************************/
1074
1075 void
1076 ev_io_start (EV_P_ struct ev_io *w)
1077 {
1078 int fd = w->fd;
1079
1080 if (ev_is_active (w))
1081 return;
1082
1083 assert (("ev_io_start called with negative fd", fd >= 0));
1084
1085 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1088
1089 fd_change (EV_A_ fd);
1090 }
1091
1092 void
1093 ev_io_stop (EV_P_ struct ev_io *w)
1094 {
1095 ev_clear_pending (EV_A_ (W)w);
1096 if (!ev_is_active (w))
1097 return;
1098
1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1100 ev_stop (EV_A_ (W)w);
1101
1102 fd_change (EV_A_ w->fd);
1103 }
1104
1105 void
1106 ev_timer_start (EV_P_ struct ev_timer *w)
1107 {
1108 if (ev_is_active (w))
1109 return;
1110
1111 w->at += mn_now;
1112
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114
1115 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, );
1117 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1);
1119 }
1120
1121 void
1122 ev_timer_stop (EV_P_ struct ev_timer *w)
1123 {
1124 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w))
1126 return;
1127
1128 if (w->active < timercnt--)
1129 {
1130 timers [w->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1);
1132 }
1133
1134 w->at = w->repeat;
1135
1136 ev_stop (EV_A_ (W)w);
1137 }
1138
1139 void
1140 ev_timer_again (EV_P_ struct ev_timer *w)
1141 {
1142 if (ev_is_active (w))
1143 {
1144 if (w->repeat)
1145 {
1146 w->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1);
1148 }
1149 else
1150 ev_timer_stop (EV_A_ w);
1151 }
1152 else if (w->repeat)
1153 ev_timer_start (EV_A_ w);
1154 }
1155
1156 void
1157 ev_periodic_start (EV_P_ struct ev_periodic *w)
1158 {
1159 if (ev_is_active (w))
1160 return;
1161
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1167
1168 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, );
1170 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1);
1172 }
1173
1174 void
1175 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176 {
1177 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w))
1179 return;
1180
1181 if (w->active < periodiccnt--)
1182 {
1183 periodics [w->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1185 }
1186
1187 ev_stop (EV_A_ (W)w);
1188 }
1189
1190 void
1191 ev_idle_start (EV_P_ struct ev_idle *w)
1192 {
1193 if (ev_is_active (w))
1194 return;
1195
1196 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, );
1198 idles [idlecnt - 1] = w;
1199 }
1200
1201 void
1202 ev_idle_stop (EV_P_ struct ev_idle *w)
1203 {
1204 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w))
1206 return;
1207
1208 idles [w->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w);
1210 }
1211
1212 void
1213 ev_prepare_start (EV_P_ struct ev_prepare *w)
1214 {
1215 if (ev_is_active (w))
1216 return;
1217
1218 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, );
1220 prepares [preparecnt - 1] = w;
1221 }
1222
1223 void
1224 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225 {
1226 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w))
1228 return;
1229
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232 }
1233
1234 void
1235 ev_check_start (EV_P_ struct ev_check *w)
1236 {
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243 }
1244
1245 void
1246 ev_check_stop (EV_P_ struct ev_check *w)
1247 {
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w);
1254 }
1255
1256 #ifndef SA_RESTART
1257 # define SA_RESTART 0
1258 #endif
1259
1260 void
1261 ev_signal_start (EV_P_ struct ev_signal *w)
1262 {
1263 #if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1265 #endif
1266 if (ev_is_active (w))
1267 return;
1268
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270
1271 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274
1275 if (!w->next)
1276 {
1277 struct sigaction sa;
1278 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0);
1282 }
1283 }
1284
1285 void
1286 ev_signal_stop (EV_P_ struct ev_signal *w)
1287 {
1288 ev_clear_pending (EV_A_ (W)w);
1289 if (!ev_is_active (w))
1290 return;
1291
1292 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1293 ev_stop (EV_A_ (W)w);
1294
1295 if (!signals [w->signum - 1].head)
1296 signal (w->signum, SIG_DFL);
1297 }
1298
1299 void
1300 ev_child_start (EV_P_ struct ev_child *w)
1301 {
1302 #if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop));
1304 #endif
1305 if (ev_is_active (w))
1306 return;
1307
1308 ev_start (EV_A_ (W)w, 1);
1309 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1310 }
1311
1312 void
1313 ev_child_stop (EV_P_ struct ev_child *w)
1314 {
1315 ev_clear_pending (EV_A_ (W)w);
1316 if (ev_is_active (w))
1317 return;
1318
1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1320 ev_stop (EV_A_ (W)w);
1321 }
1322
1323 /*****************************************************************************/
1324
1325 struct ev_once
1326 {
1327 struct ev_io io;
1328 struct ev_timer to;
1329 void (*cb)(int revents, void *arg);
1330 void *arg;
1331 };
1332
1333 static void
1334 once_cb (EV_P_ struct ev_once *once, int revents)
1335 {
1336 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg;
1338
1339 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to);
1341 free (once);
1342
1343 cb (revents, arg);
1344 }
1345
1346 static void
1347 once_cb_io (EV_P_ struct ev_io *w, int revents)
1348 {
1349 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1350 }
1351
1352 static void
1353 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1354 {
1355 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1356 }
1357
1358 void
1359 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360 {
1361 struct ev_once *once = malloc (sizeof (struct ev_once));
1362
1363 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else
1366 {
1367 once->cb = cb;
1368 once->arg = arg;
1369
1370 ev_watcher_init (&once->io, once_cb_io);
1371 if (fd >= 0)
1372 {
1373 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io);
1375 }
1376
1377 ev_watcher_init (&once->to, once_cb_to);
1378 if (timeout >= 0.)
1379 {
1380 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to);
1382 }
1383 }
1384 }
1385