ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.62
Committed: Sun Nov 4 20:38:07 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.61: +38 -16 lines
Log Message:
need to rethinkg design, maybe use 'proper' struct subclassing due to aliasing restrictions in C

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stddef.h>
63
64 #include <stdio.h>
65
66 #include <assert.h>
67 #include <errno.h>
68 #include <sys/types.h>
69 #ifndef WIN32
70 # include <sys/wait.h>
71 #endif
72 #include <sys/time.h>
73 #include <time.h>
74
75 /**/
76
77 #ifndef EV_USE_MONOTONIC
78 # define EV_USE_MONOTONIC 1
79 #endif
80
81 #ifndef EV_USE_SELECT
82 # define EV_USE_SELECT 1
83 #endif
84
85 #ifndef EV_USE_POLL
86 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 #endif
88
89 #ifndef EV_USE_EPOLL
90 # define EV_USE_EPOLL 0
91 #endif
92
93 #ifndef EV_USE_KQUEUE
94 # define EV_USE_KQUEUE 0
95 #endif
96
97 #ifndef EV_USE_WIN32
98 # ifdef WIN32
99 # define EV_USE_WIN32 1
100 # else
101 # define EV_USE_WIN32 0
102 # endif
103 #endif
104
105 #ifndef EV_USE_REALTIME
106 # define EV_USE_REALTIME 1
107 #endif
108
109 /**/
110
111 #ifndef CLOCK_MONOTONIC
112 # undef EV_USE_MONOTONIC
113 # define EV_USE_MONOTONIC 0
114 #endif
115
116 #ifndef CLOCK_REALTIME
117 # undef EV_USE_REALTIME
118 # define EV_USE_REALTIME 0
119 #endif
120
121 /**/
122
123 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127
128 #include "ev.h"
129
130 #if __GNUC__ >= 3
131 # define expect(expr,value) __builtin_expect ((expr),(value))
132 # define inline inline
133 #else
134 # define expect(expr,value) (expr)
135 # define inline static
136 #endif
137
138 #define expect_false(expr) expect ((expr) != 0, 0)
139 #define expect_true(expr) expect ((expr) != 0, 1)
140
141 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144 typedef struct ev_watcher *W;
145 typedef struct ev_watcher_list *WL;
146 typedef struct ev_watcher_time *WT;
147
148 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150 /*****************************************************************************/
151
152 typedef struct
153 {
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157 } ANFD;
158
159 typedef struct
160 {
161 W w;
162 int events;
163 } ANPENDING;
164
165 #if EV_MULTIPLICITY
166
167 struct ev_loop
168 {
169 # define VAR(name,decl) decl;
170 # include "ev_vars.h"
171 };
172 # undef VAR
173 # include "ev_wrap.h"
174
175 #else
176
177 # define VAR(name,decl) static decl;
178 # include "ev_vars.h"
179 # undef VAR
180
181 #endif
182
183 /*****************************************************************************/
184
185 inline ev_tstamp
186 ev_time (void)
187 {
188 #if EV_USE_REALTIME
189 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9;
192 #else
193 struct timeval tv;
194 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6;
196 #endif
197 }
198
199 inline ev_tstamp
200 get_clock (void)
201 {
202 #if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic))
204 {
205 struct timespec ts;
206 clock_gettime (CLOCK_MONOTONIC, &ts);
207 return ts.tv_sec + ts.tv_nsec * 1e-9;
208 }
209 #endif
210
211 return ev_time ();
212 }
213
214 ev_tstamp
215 ev_now (EV_P)
216 {
217 return rt_now;
218 }
219
220 #define array_roundsize(base,n) ((n) | 4 & ~3)
221
222 #define array_needsize(base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 }
236
237 /*****************************************************************************/
238
239 static void
240 anfds_init (ANFD *base, int count)
241 {
242 while (count--)
243 {
244 base->head = 0;
245 base->events = EV_NONE;
246 base->reify = 0;
247
248 ++base;
249 }
250 }
251
252 static void
253 event (EV_P_ W w, int events)
254 {
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265 }
266
267 static void
268 queue_events (EV_P_ W *events, int eventcnt, int type)
269 {
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274 }
275
276 static void
277 fd_event (EV_P_ int fd, int events)
278 {
279 ANFD *anfd = anfds + fd;
280 struct ev_io *w;
281
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 {
284 int ev = w->events & events;
285
286 if (ev)
287 event (EV_A_ (W)w, ev);
288 }
289 }
290
291 /*****************************************************************************/
292
293 static void
294 fd_reify (EV_P)
295 {
296 int i;
297
298 for (i = 0; i < fdchangecnt; ++i)
299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events;
315 }
316 }
317
318 fdchangecnt = 0;
319 }
320
321 static void
322 fd_change (EV_P_ int fd)
323 {
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332 }
333
334 static void
335 fd_kill (EV_P_ int fd)
336 {
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344 }
345
346 /* called on EBADF to verify fds */
347 static void
348 fd_ebadf (EV_P)
349 {
350 int fd;
351
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd);
356 }
357
358 /* called on ENOMEM in select/poll to kill some fds and retry */
359 static void
360 fd_enomem (EV_P)
361 {
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371 }
372
373 /* susually called after fork if method needs to re-arm all fds from scratch */
374 static void
375 fd_rearm_all (EV_P)
376 {
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386 }
387
388 /*****************************************************************************/
389
390 static void
391 upheap (WT *heap, int k)
392 {
393 WT w = heap [k];
394
395 while (k && heap [k >> 1]->at > w->at)
396 {
397 heap [k] = heap [k >> 1];
398 ((W)heap [k])->active = k + 1;
399 k >>= 1;
400 }
401
402 heap [k] = w;
403 ((W)heap [k])->active = k + 1;
404
405 }
406
407 static void
408 downheap (WT *heap, int N, int k)
409 {
410 WT w = heap [k];
411
412 while (k < (N >> 1))
413 {
414 int j = k << 1;
415
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
417 ++j;
418
419 if (w->at <= heap [j]->at)
420 break;
421
422 heap [k] = heap [j];
423 ((W)heap [k])->active = k + 1;
424 k = j;
425 }
426
427 heap [k] = w;
428 ((W)heap [k])->active = k + 1;
429 }
430
431 /*****************************************************************************/
432
433 typedef struct
434 {
435 struct ev_watcher_list *head;
436 sig_atomic_t volatile gotsig;
437 } ANSIG;
438
439 static ANSIG *signals;
440 static int signalmax;
441
442 static int sigpipe [2];
443 static sig_atomic_t volatile gotsig;
444 static struct ev_io sigev;
445
446 static void
447 signals_init (ANSIG *base, int count)
448 {
449 while (count--)
450 {
451 base->head = 0;
452 base->gotsig = 0;
453
454 ++base;
455 }
456 }
457
458 static void
459 sighandler (int signum)
460 {
461 signals [signum - 1].gotsig = 1;
462
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470 }
471
472 static void
473 sigcb (EV_P_ struct ev_io *iow, int revents)
474 {
475 struct ev_watcher_list *w;
476 int signum;
477
478 read (sigpipe [0], &revents, 1);
479 gotsig = 0;
480
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489 }
490
491 static void
492 siginit (EV_P)
493 {
494 #ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501 #endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506 }
507
508 /*****************************************************************************/
509
510 #ifndef WIN32
511
512 static struct ev_child *childs [PID_HASHSIZE];
513 static struct ev_signal childev;
514
515 #ifndef WCONTINUED
516 # define WCONTINUED 0
517 #endif
518
519 static void
520 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521 {
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 w->priority = sw->priority; /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532 }
533
534 static void
535 childcb (EV_P_ struct ev_signal *sw, int revents)
536 {
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547 }
548
549 #endif
550
551 /*****************************************************************************/
552
553 #if EV_USE_KQUEUE
554 # include "ev_kqueue.c"
555 #endif
556 #if EV_USE_EPOLL
557 # include "ev_epoll.c"
558 #endif
559 #if EV_USE_POLL
560 # include "ev_poll.c"
561 #endif
562 #if EV_USE_SELECT
563 # include "ev_select.c"
564 #endif
565
566 int
567 ev_version_major (void)
568 {
569 return EV_VERSION_MAJOR;
570 }
571
572 int
573 ev_version_minor (void)
574 {
575 return EV_VERSION_MINOR;
576 }
577
578 /* return true if we are running with elevated privileges and should ignore env variables */
579 static int
580 enable_secure (void)
581 {
582 #ifdef WIN32
583 return 0;
584 #else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587 #endif
588 }
589
590 int
591 ev_method (EV_P)
592 {
593 return method;
594 }
595
596 static void
597 loop_init (EV_P_ int methods)
598 {
599 if (!method)
600 {
601 #if EV_USE_MONOTONIC
602 {
603 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1;
606 }
607 #endif
608
609 rt_now = ev_time ();
610 mn_now = get_clock ();
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621 #if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623 #endif
624 #if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626 #endif
627 #if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629 #endif
630 #if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632 #endif
633 #if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635 #endif
636 }
637 }
638
639 void
640 loop_destroy (EV_P)
641 {
642 #if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644 #endif
645 #if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647 #endif
648 #if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650 #endif
651 #if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653 #endif
654 #if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656 #endif
657
658 method = 0;
659 /*TODO*/
660 }
661
662 void
663 loop_fork (EV_P)
664 {
665 /*TODO*/
666 #if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668 #endif
669 #if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671 #endif
672 }
673
674 #if EV_MULTIPLICITY
675 struct ev_loop *
676 ev_loop_new (int methods)
677 {
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686 }
687
688 void
689 ev_loop_destroy (EV_P)
690 {
691 loop_destroy (EV_A);
692 free (loop);
693 }
694
695 void
696 ev_loop_fork (EV_P)
697 {
698 loop_fork (EV_A);
699 }
700
701 #endif
702
703 #if EV_MULTIPLICITY
704 struct ev_loop default_loop_struct;
705 static struct ev_loop *default_loop;
706
707 struct ev_loop *
708 #else
709 static int default_loop;
710
711 int
712 #endif
713 ev_default_loop (int methods)
714 {
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721 #if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723 #else
724 default_loop = 1;
725 #endif
726
727 loop_init (EV_A_ methods);
728
729 if (ev_method (EV_A))
730 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A);
734
735 #ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
740 #endif
741 }
742 else
743 default_loop = 0;
744 }
745
746 return default_loop;
747 }
748
749 void
750 ev_default_destroy (void)
751 {
752 #if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop;
754 #endif
755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766 }
767
768 void
769 ev_default_fork (void)
770 {
771 #if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773 #endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784 }
785
786 /*****************************************************************************/
787
788 static void
789 call_pending (EV_P)
790 {
791 int pri;
792
793 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri])
795 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797
798 if (p->w)
799 {
800 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events);
802 }
803 }
804 }
805
806 static void
807 timers_reify (EV_P)
808 {
809 while (timercnt && timers [0]->at <= mn_now)
810 {
811 struct ev_timer *w = timers [0];
812
813 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814
815 /* first reschedule or stop timer */
816 if (w->repeat)
817 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
819 w->at = mn_now + w->repeat;
820 downheap ((WT *)timers, timercnt, 0);
821 }
822 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824
825 event (EV_A_ (W)w, EV_TIMEOUT);
826 }
827 }
828
829 static void
830 periodics_reify (EV_P)
831 {
832 while (periodiccnt && periodics [0]->at <= rt_now)
833 {
834 struct ev_periodic *w = periodics [0];
835
836 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837
838 /* first reschedule or stop timer */
839 if (w->interval)
840 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0);
844 }
845 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847
848 event (EV_A_ (W)w, EV_PERIODIC);
849 }
850 }
851
852 static void
853 periodics_reschedule (EV_P)
854 {
855 int i;
856
857 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i)
859 {
860 struct ev_periodic *w = periodics [i];
861
862 if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 }
875 }
876
877 inline int
878 time_update_monotonic (EV_P)
879 {
880 mn_now = get_clock ();
881
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 {
884 rt_now = rtmn_diff + mn_now;
885 return 0;
886 }
887 else
888 {
889 now_floor = mn_now;
890 rt_now = ev_time ();
891 return 1;
892 }
893 }
894
895 static void
896 time_update (EV_P)
897 {
898 int i;
899
900 #if EV_USE_MONOTONIC
901 if (expect_true (have_monotonic))
902 {
903 if (time_update_monotonic (EV_A))
904 {
905 ev_tstamp odiff = rtmn_diff;
906
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 {
909 rtmn_diff = rt_now - mn_now;
910
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */
913
914 rt_now = ev_time ();
915 mn_now = get_clock ();
916 now_floor = mn_now;
917 }
918
919 periodics_reschedule (EV_A);
920 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
922 }
923 }
924 else
925 #endif
926 {
927 rt_now = ev_time ();
928
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 {
931 periodics_reschedule (EV_A);
932
933 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now;
936 }
937
938 mn_now = rt_now;
939 }
940 }
941
942 void
943 ev_ref (EV_P)
944 {
945 ++activecnt;
946 }
947
948 void
949 ev_unref (EV_P)
950 {
951 --activecnt;
952 }
953
954 static int loop_done;
955
956 void
957 ev_loop (EV_P_ int flags)
958 {
959 double block;
960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
961
962 do
963 {
964 /* queue check watchers (and execute them) */
965 if (expect_false (preparecnt))
966 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A);
969 }
970
971 /* update fd-related kernel structures */
972 fd_reify (EV_A);
973
974 /* calculate blocking time */
975
976 /* we only need this for !monotonic clockor timers, but as we basically
977 always have timers, we just calculate it always */
978 #if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A);
981 else
982 #endif
983 {
984 rt_now = ev_time ();
985 mn_now = rt_now;
986 }
987
988 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.;
990 else
991 {
992 block = MAX_BLOCKTIME;
993
994 if (timercnt)
995 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
997 if (block > to) block = to;
998 }
999
1000 if (periodiccnt)
1001 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
1003 if (block > to) block = to;
1004 }
1005
1006 if (block < 0.) block = 0.;
1007 }
1008
1009 method_poll (EV_A_ block);
1010
1011 /* update rt_now, do magic */
1012 time_update (EV_A);
1013
1014 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */
1016 periodics_reify (EV_A); /* absolute timers called first */
1017
1018 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt)
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021
1022 /* queue check watchers, to be executed first */
1023 if (checkcnt)
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1025
1026 call_pending (EV_A);
1027 }
1028 while (activecnt && !loop_done);
1029
1030 if (loop_done != 2)
1031 loop_done = 0;
1032 }
1033
1034 void
1035 ev_unloop (EV_P_ int how)
1036 {
1037 loop_done = how;
1038 }
1039
1040 /*****************************************************************************/
1041
1042 inline void
1043 wlist_add (WL *head, WL elem)
1044 {
1045 elem->next = *head;
1046 *head = elem;
1047 }
1048
1049 inline void
1050 wlist_del (WL *head, WL elem)
1051 {
1052 while (*head)
1053 {
1054 if (*head == elem)
1055 {
1056 *head = elem->next;
1057 return;
1058 }
1059
1060 head = &(*head)->next;
1061 }
1062 }
1063
1064 inline void
1065 ev_clear_pending (EV_P_ W w)
1066 {
1067 if (w->pending)
1068 {
1069 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1070 w->pending = 0;
1071 }
1072 }
1073
1074 inline void
1075 ev_start (EV_P_ W w, int active)
1076 {
1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1079
1080 w->active = active;
1081 ev_ref (EV_A);
1082 }
1083
1084 inline void
1085 ev_stop (EV_P_ W w)
1086 {
1087 ev_unref (EV_A);
1088 w->active = 0;
1089 }
1090
1091 /*****************************************************************************/
1092
1093 void
1094 ev_io_start (EV_P_ struct ev_io *w)
1095 {
1096 int fd = w->fd;
1097
1098 if (ev_is_active (w))
1099 return;
1100
1101 assert (("ev_io_start called with negative fd", fd >= 0));
1102
1103 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106
1107 fd_change (EV_A_ fd);
1108 }
1109
1110 void
1111 ev_io_stop (EV_P_ struct ev_io *w)
1112 {
1113 ev_clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w))
1115 return;
1116
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w);
1119
1120 fd_change (EV_A_ w->fd);
1121 }
1122
1123 void
1124 ev_timer_start (EV_P_ struct ev_timer *w)
1125 {
1126 if (ev_is_active (w))
1127 return;
1128
1129 w->at += mn_now;
1130
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132
1133 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, );
1135 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1);
1137
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139 }
1140
1141 void
1142 ev_timer_stop (EV_P_ struct ev_timer *w)
1143 {
1144 ev_clear_pending (EV_A_ (W)w);
1145 if (!ev_is_active (w))
1146 return;
1147
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149
1150 if (((W)w)->active < timercnt--)
1151 {
1152 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 }
1155
1156 w->at = w->repeat;
1157
1158 ev_stop (EV_A_ (W)w);
1159 }
1160
1161 void
1162 ev_timer_again (EV_P_ struct ev_timer *w)
1163 {
1164 if (ev_is_active (w))
1165 {
1166 if (w->repeat)
1167 {
1168 w->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1170 }
1171 else
1172 ev_timer_stop (EV_A_ w);
1173 }
1174 else if (w->repeat)
1175 ev_timer_start (EV_A_ w);
1176 }
1177
1178 void
1179 ev_periodic_start (EV_P_ struct ev_periodic *w)
1180 {
1181 if (ev_is_active (w))
1182 return;
1183
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1189
1190 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, );
1192 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1);
1194
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196 }
1197
1198 void
1199 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1200 {
1201 ev_clear_pending (EV_A_ (W)w);
1202 if (!ev_is_active (w))
1203 return;
1204
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206
1207 if (((W)w)->active < periodiccnt--)
1208 {
1209 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1211 }
1212
1213 ev_stop (EV_A_ (W)w);
1214 }
1215
1216 void
1217 ev_idle_start (EV_P_ struct ev_idle *w)
1218 {
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225 }
1226
1227 void
1228 ev_idle_stop (EV_P_ struct ev_idle *w)
1229 {
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w);
1236 }
1237
1238 void
1239 ev_prepare_start (EV_P_ struct ev_prepare *w)
1240 {
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247 }
1248
1249 void
1250 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251 {
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258 }
1259
1260 void
1261 ev_check_start (EV_P_ struct ev_check *w)
1262 {
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269 }
1270
1271 void
1272 ev_check_stop (EV_P_ struct ev_check *w)
1273 {
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1280 }
1281
1282 #ifndef SA_RESTART
1283 # define SA_RESTART 0
1284 #endif
1285
1286 void
1287 ev_signal_start (EV_P_ struct ev_signal *w)
1288 {
1289 #if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1291 #endif
1292 if (ev_is_active (w))
1293 return;
1294
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296
1297 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300
1301 if (!w->next)
1302 {
1303 struct sigaction sa;
1304 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0);
1308 }
1309 }
1310
1311 void
1312 ev_signal_stop (EV_P_ struct ev_signal *w)
1313 {
1314 ev_clear_pending (EV_A_ (W)w);
1315 if (!ev_is_active (w))
1316 return;
1317
1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1319 ev_stop (EV_A_ (W)w);
1320
1321 if (!signals [w->signum - 1].head)
1322 signal (w->signum, SIG_DFL);
1323 }
1324
1325 void
1326 ev_child_start (EV_P_ struct ev_child *w)
1327 {
1328 #if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop));
1330 #endif
1331 if (ev_is_active (w))
1332 return;
1333
1334 ev_start (EV_A_ (W)w, 1);
1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1336 }
1337
1338 void
1339 ev_child_stop (EV_P_ struct ev_child *w)
1340 {
1341 ev_clear_pending (EV_A_ (W)w);
1342 if (ev_is_active (w))
1343 return;
1344
1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1346 ev_stop (EV_A_ (W)w);
1347 }
1348
1349 /*****************************************************************************/
1350
1351 struct ev_once
1352 {
1353 struct ev_io io;
1354 struct ev_timer to;
1355 void (*cb)(int revents, void *arg);
1356 void *arg;
1357 };
1358
1359 static void
1360 once_cb (EV_P_ struct ev_once *once, int revents)
1361 {
1362 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg;
1364
1365 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to);
1367 free (once);
1368
1369 cb (revents, arg);
1370 }
1371
1372 static void
1373 once_cb_io (EV_P_ struct ev_io *w, int revents)
1374 {
1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1376 }
1377
1378 static void
1379 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1380 {
1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1382 }
1383
1384 void
1385 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386 {
1387 struct ev_once *once = malloc (sizeof (struct ev_once));
1388
1389 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else
1392 {
1393 once->cb = cb;
1394 once->arg = arg;
1395
1396 ev_watcher_init (&once->io, once_cb_io);
1397 if (fd >= 0)
1398 {
1399 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io);
1401 }
1402
1403 ev_watcher_init (&once->to, once_cb_to);
1404 if (timeout >= 0.)
1405 {
1406 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to);
1408 }
1409 }
1410 }
1411