ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.64
Committed: Sun Nov 4 23:14:11 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.63: +2 -5 lines
Log Message:
- have to re-check potentially closed fds regularly for epoll. this hurts
  badly :(
- still more than twice as fats as libevent.
- many minor fixes

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stddef.h>
63
64 #include <stdio.h>
65
66 #include <assert.h>
67 #include <errno.h>
68 #include <sys/types.h>
69 #ifndef WIN32
70 # include <sys/wait.h>
71 #endif
72 #include <sys/time.h>
73 #include <time.h>
74
75 /**/
76
77 #ifndef EV_USE_MONOTONIC
78 # define EV_USE_MONOTONIC 1
79 #endif
80
81 #ifndef EV_USE_SELECT
82 # define EV_USE_SELECT 1
83 #endif
84
85 #ifndef EV_USE_POLL
86 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 #endif
88
89 #ifndef EV_USE_EPOLL
90 # define EV_USE_EPOLL 0
91 #endif
92
93 #ifndef EV_USE_KQUEUE
94 # define EV_USE_KQUEUE 0
95 #endif
96
97 #ifndef EV_USE_WIN32
98 # ifdef WIN32
99 # define EV_USE_WIN32 1
100 # else
101 # define EV_USE_WIN32 0
102 # endif
103 #endif
104
105 #ifndef EV_USE_REALTIME
106 # define EV_USE_REALTIME 1
107 #endif
108
109 /**/
110
111 #ifndef CLOCK_MONOTONIC
112 # undef EV_USE_MONOTONIC
113 # define EV_USE_MONOTONIC 0
114 #endif
115
116 #ifndef CLOCK_REALTIME
117 # undef EV_USE_REALTIME
118 # define EV_USE_REALTIME 0
119 #endif
120
121 /**/
122
123 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127
128 #include "ev.h"
129
130 #if __GNUC__ >= 3
131 # define expect(expr,value) __builtin_expect ((expr),(value))
132 # define inline inline
133 #else
134 # define expect(expr,value) (expr)
135 # define inline static
136 #endif
137
138 #define expect_false(expr) expect ((expr) != 0, 0)
139 #define expect_true(expr) expect ((expr) != 0, 1)
140
141 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144 typedef struct ev_watcher *W;
145 typedef struct ev_watcher_list *WL;
146 typedef struct ev_watcher_time *WT;
147
148 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150 /*****************************************************************************/
151
152 typedef struct
153 {
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157 } ANFD;
158
159 typedef struct
160 {
161 W w;
162 int events;
163 } ANPENDING;
164
165 #if EV_MULTIPLICITY
166
167 struct ev_loop
168 {
169 # define VAR(name,decl) decl;
170 # include "ev_vars.h"
171 };
172 # undef VAR
173 # include "ev_wrap.h"
174
175 #else
176
177 # define VAR(name,decl) static decl;
178 # include "ev_vars.h"
179 # undef VAR
180
181 #endif
182
183 /*****************************************************************************/
184
185 inline ev_tstamp
186 ev_time (void)
187 {
188 #if EV_USE_REALTIME
189 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9;
192 #else
193 struct timeval tv;
194 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6;
196 #endif
197 }
198
199 inline ev_tstamp
200 get_clock (void)
201 {
202 #if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic))
204 {
205 struct timespec ts;
206 clock_gettime (CLOCK_MONOTONIC, &ts);
207 return ts.tv_sec + ts.tv_nsec * 1e-9;
208 }
209 #endif
210
211 return ev_time ();
212 }
213
214 ev_tstamp
215 ev_now (EV_P)
216 {
217 return rt_now;
218 }
219
220 #define array_roundsize(base,n) ((n) | 4 & ~3)
221
222 #define array_needsize(base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 }
236
237 /*****************************************************************************/
238
239 static void
240 anfds_init (ANFD *base, int count)
241 {
242 while (count--)
243 {
244 base->head = 0;
245 base->events = EV_NONE;
246 base->reify = 0;
247
248 ++base;
249 }
250 }
251
252 static void
253 event (EV_P_ W w, int events)
254 {
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265 }
266
267 static void
268 queue_events (EV_P_ W *events, int eventcnt, int type)
269 {
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274 }
275
276 static void
277 fd_event (EV_P_ int fd, int events)
278 {
279 ANFD *anfd = anfds + fd;
280 struct ev_io *w;
281
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 {
284 int ev = w->events & events;
285
286 if (ev)
287 event (EV_A_ (W)w, ev);
288 }
289 }
290
291 /*****************************************************************************/
292
293 static void
294 fd_reify (EV_P)
295 {
296 int i;
297
298 for (i = 0; i < fdchangecnt; ++i)
299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 method_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events;
313 }
314
315 fdchangecnt = 0;
316 }
317
318 static void
319 fd_change (EV_P_ int fd)
320 {
321 if (anfds [fd].reify || fdchangecnt < 0)
322 return;
323
324 anfds [fd].reify = 1;
325
326 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
328 fdchanges [fdchangecnt - 1] = fd;
329 }
330
331 static void
332 fd_kill (EV_P_ int fd)
333 {
334 struct ev_io *w;
335
336 while ((w = (struct ev_io *)anfds [fd].head))
337 {
338 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 }
341 }
342
343 /* called on EBADF to verify fds */
344 static void
345 fd_ebadf (EV_P)
346 {
347 int fd;
348
349 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
352 fd_kill (EV_A_ fd);
353 }
354
355 /* called on ENOMEM in select/poll to kill some fds and retry */
356 static void
357 fd_enomem (EV_P)
358 {
359 int fd;
360
361 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events)
363 {
364 close (fd);
365 fd_kill (EV_A_ fd);
366 return;
367 }
368 }
369
370 /* susually called after fork if method needs to re-arm all fds from scratch */
371 static void
372 fd_rearm_all (EV_P)
373 {
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
383 }
384
385 /*****************************************************************************/
386
387 static void
388 upheap (WT *heap, int k)
389 {
390 WT w = heap [k];
391
392 while (k && heap [k >> 1]->at > w->at)
393 {
394 heap [k] = heap [k >> 1];
395 ((W)heap [k])->active = k + 1;
396 k >>= 1;
397 }
398
399 heap [k] = w;
400 ((W)heap [k])->active = k + 1;
401
402 }
403
404 static void
405 downheap (WT *heap, int N, int k)
406 {
407 WT w = heap [k];
408
409 while (k < (N >> 1))
410 {
411 int j = k << 1;
412
413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
414 ++j;
415
416 if (w->at <= heap [j]->at)
417 break;
418
419 heap [k] = heap [j];
420 ((W)heap [k])->active = k + 1;
421 k = j;
422 }
423
424 heap [k] = w;
425 ((W)heap [k])->active = k + 1;
426 }
427
428 /*****************************************************************************/
429
430 typedef struct
431 {
432 struct ev_watcher_list *head;
433 sig_atomic_t volatile gotsig;
434 } ANSIG;
435
436 static ANSIG *signals;
437 static int signalmax;
438
439 static int sigpipe [2];
440 static sig_atomic_t volatile gotsig;
441 static struct ev_io sigev;
442
443 static void
444 signals_init (ANSIG *base, int count)
445 {
446 while (count--)
447 {
448 base->head = 0;
449 base->gotsig = 0;
450
451 ++base;
452 }
453 }
454
455 static void
456 sighandler (int signum)
457 {
458 signals [signum - 1].gotsig = 1;
459
460 if (!gotsig)
461 {
462 int old_errno = errno;
463 gotsig = 1;
464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
466 }
467 }
468
469 static void
470 sigcb (EV_P_ struct ev_io *iow, int revents)
471 {
472 struct ev_watcher_list *w;
473 int signum;
474
475 read (sigpipe [0], &revents, 1);
476 gotsig = 0;
477
478 for (signum = signalmax; signum--; )
479 if (signals [signum].gotsig)
480 {
481 signals [signum].gotsig = 0;
482
483 for (w = signals [signum].head; w; w = w->next)
484 event (EV_A_ (W)w, EV_SIGNAL);
485 }
486 }
487
488 static void
489 siginit (EV_P)
490 {
491 #ifndef WIN32
492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
494
495 /* rather than sort out wether we really need nb, set it */
496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498 #endif
499
500 ev_io_set (&sigev, sigpipe [0], EV_READ);
501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
503 }
504
505 /*****************************************************************************/
506
507 #ifndef WIN32
508
509 static struct ev_child *childs [PID_HASHSIZE];
510 static struct ev_signal childev;
511
512 #ifndef WCONTINUED
513 # define WCONTINUED 0
514 #endif
515
516 static void
517 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518 {
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529 }
530
531 static void
532 childcb (EV_P_ struct ev_signal *sw, int revents)
533 {
534 int pid, status;
535
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 {
538 /* make sure we are called again until all childs have been reaped */
539 event (EV_A_ (W)sw, EV_SIGNAL);
540
541 child_reap (EV_A_ sw, pid, pid, status);
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 }
544 }
545
546 #endif
547
548 /*****************************************************************************/
549
550 #if EV_USE_KQUEUE
551 # include "ev_kqueue.c"
552 #endif
553 #if EV_USE_EPOLL
554 # include "ev_epoll.c"
555 #endif
556 #if EV_USE_POLL
557 # include "ev_poll.c"
558 #endif
559 #if EV_USE_SELECT
560 # include "ev_select.c"
561 #endif
562
563 int
564 ev_version_major (void)
565 {
566 return EV_VERSION_MAJOR;
567 }
568
569 int
570 ev_version_minor (void)
571 {
572 return EV_VERSION_MINOR;
573 }
574
575 /* return true if we are running with elevated privileges and should ignore env variables */
576 static int
577 enable_secure (void)
578 {
579 #ifdef WIN32
580 return 0;
581 #else
582 return getuid () != geteuid ()
583 || getgid () != getegid ();
584 #endif
585 }
586
587 int
588 ev_method (EV_P)
589 {
590 return method;
591 }
592
593 static void
594 loop_init (EV_P_ int methods)
595 {
596 if (!method)
597 {
598 #if EV_USE_MONOTONIC
599 {
600 struct timespec ts;
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
602 have_monotonic = 1;
603 }
604 #endif
605
606 rt_now = ev_time ();
607 mn_now = get_clock ();
608 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now;
610
611 if (methods == EVMETHOD_AUTO)
612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
615 methods = EVMETHOD_ANY;
616
617 method = 0;
618 #if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620 #endif
621 #if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623 #endif
624 #if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626 #endif
627 #if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629 #endif
630 #if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632 #endif
633 }
634 }
635
636 void
637 loop_destroy (EV_P)
638 {
639 #if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641 #endif
642 #if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644 #endif
645 #if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647 #endif
648 #if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650 #endif
651 #if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653 #endif
654
655 method = 0;
656 /*TODO*/
657 }
658
659 void
660 loop_fork (EV_P)
661 {
662 /*TODO*/
663 #if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665 #endif
666 #if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668 #endif
669 }
670
671 #if EV_MULTIPLICITY
672 struct ev_loop *
673 ev_loop_new (int methods)
674 {
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683 }
684
685 void
686 ev_loop_destroy (EV_P)
687 {
688 loop_destroy (EV_A);
689 free (loop);
690 }
691
692 void
693 ev_loop_fork (EV_P)
694 {
695 loop_fork (EV_A);
696 }
697
698 #endif
699
700 #if EV_MULTIPLICITY
701 struct ev_loop default_loop_struct;
702 static struct ev_loop *default_loop;
703
704 struct ev_loop *
705 #else
706 static int default_loop;
707
708 int
709 #endif
710 ev_default_loop (int methods)
711 {
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop)
717 {
718 #if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720 #else
721 default_loop = 1;
722 #endif
723
724 loop_init (EV_A_ methods);
725
726 if (ev_method (EV_A))
727 {
728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
730 siginit (EV_A);
731
732 #ifndef WIN32
733 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI);
735 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */
737 #endif
738 }
739 else
740 default_loop = 0;
741 }
742
743 return default_loop;
744 }
745
746 void
747 ev_default_destroy (void)
748 {
749 #if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop;
751 #endif
752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763 }
764
765 void
766 ev_default_fork (void)
767 {
768 #if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770 #endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
775 close (sigpipe [0]);
776 close (sigpipe [1]);
777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
780 siginit (EV_A);
781 }
782
783 /*****************************************************************************/
784
785 static void
786 call_pending (EV_P)
787 {
788 int pri;
789
790 for (pri = NUMPRI; pri--; )
791 while (pendingcnt [pri])
792 {
793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
794
795 if (p->w)
796 {
797 p->w->pending = 0;
798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
800 }
801 }
802 }
803
804 static void
805 timers_reify (EV_P)
806 {
807 while (timercnt && ((WT)timers [0])->at <= mn_now)
808 {
809 struct ev_timer *w = timers [0];
810
811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
812
813 /* first reschedule or stop timer */
814 if (w->repeat)
815 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
817 ((WT)w)->at = mn_now + w->repeat;
818 downheap ((WT *)timers, timercnt, 0);
819 }
820 else
821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
822
823 event (EV_A_ (W)w, EV_TIMEOUT);
824 }
825 }
826
827 static void
828 periodics_reify (EV_P)
829 {
830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
831 {
832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
835
836 /* first reschedule or stop timer */
837 if (w->interval)
838 {
839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
841 downheap ((WT *)periodics, periodiccnt, 0);
842 }
843 else
844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
845
846 event (EV_A_ (W)w, EV_PERIODIC);
847 }
848 }
849
850 static void
851 periodics_reschedule (EV_P)
852 {
853 int i;
854
855 /* adjust periodics after time jump */
856 for (i = 0; i < periodiccnt; ++i)
857 {
858 struct ev_periodic *w = periodics [i];
859
860 if (w->interval)
861 {
862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
863
864 if (fabs (diff) >= 1e-4)
865 {
866 ev_periodic_stop (EV_A_ w);
867 ev_periodic_start (EV_A_ w);
868
869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
870 }
871 }
872 }
873 }
874
875 inline int
876 time_update_monotonic (EV_P)
877 {
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891 }
892
893 static void
894 time_update (EV_P)
895 {
896 int i;
897
898 #if EV_USE_MONOTONIC
899 if (expect_true (have_monotonic))
900 {
901 if (time_update_monotonic (EV_A))
902 {
903 ev_tstamp odiff = rtmn_diff;
904
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 {
907 rtmn_diff = rt_now - mn_now;
908
909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
910 return; /* all is well */
911
912 rt_now = ev_time ();
913 mn_now = get_clock ();
914 now_floor = mn_now;
915 }
916
917 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
920 }
921 }
922 else
923 #endif
924 {
925 rt_now = ev_time ();
926
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
928 {
929 periodics_reschedule (EV_A);
930
931 /* adjust timers. this is easy, as the offset is the same for all */
932 for (i = 0; i < timercnt; ++i)
933 ((WT)timers [i])->at += rt_now - mn_now;
934 }
935
936 mn_now = rt_now;
937 }
938 }
939
940 void
941 ev_ref (EV_P)
942 {
943 ++activecnt;
944 }
945
946 void
947 ev_unref (EV_P)
948 {
949 --activecnt;
950 }
951
952 static int loop_done;
953
954 void
955 ev_loop (EV_P_ int flags)
956 {
957 double block;
958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
959
960 do
961 {
962 /* queue check watchers (and execute them) */
963 if (expect_false (preparecnt))
964 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A);
967 }
968
969 /* update fd-related kernel structures */
970 fd_reify (EV_A);
971
972 /* calculate blocking time */
973
974 /* we only need this for !monotonic clockor timers, but as we basically
975 always have timers, we just calculate it always */
976 #if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980 #endif
981 {
982 rt_now = ev_time ();
983 mn_now = rt_now;
984 }
985
986 if (flags & EVLOOP_NONBLOCK || idlecnt)
987 block = 0.;
988 else
989 {
990 block = MAX_BLOCKTIME;
991
992 if (timercnt)
993 {
994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
995 if (block > to) block = to;
996 }
997
998 if (periodiccnt)
999 {
1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1001 if (block > to) block = to;
1002 }
1003
1004 if (block < 0.) block = 0.;
1005 }
1006
1007 method_poll (EV_A_ block);
1008
1009 /* update rt_now, do magic */
1010 time_update (EV_A);
1011
1012 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */
1014 periodics_reify (EV_A); /* absolute timers called first */
1015
1016 /* queue idle watchers unless io or timers are pending */
1017 if (!pendingcnt)
1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1019
1020 /* queue check watchers, to be executed first */
1021 if (checkcnt)
1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1023
1024 call_pending (EV_A);
1025 }
1026 while (activecnt && !loop_done);
1027
1028 if (loop_done != 2)
1029 loop_done = 0;
1030 }
1031
1032 void
1033 ev_unloop (EV_P_ int how)
1034 {
1035 loop_done = how;
1036 }
1037
1038 /*****************************************************************************/
1039
1040 inline void
1041 wlist_add (WL *head, WL elem)
1042 {
1043 elem->next = *head;
1044 *head = elem;
1045 }
1046
1047 inline void
1048 wlist_del (WL *head, WL elem)
1049 {
1050 while (*head)
1051 {
1052 if (*head == elem)
1053 {
1054 *head = elem->next;
1055 return;
1056 }
1057
1058 head = &(*head)->next;
1059 }
1060 }
1061
1062 inline void
1063 ev_clear_pending (EV_P_ W w)
1064 {
1065 if (w->pending)
1066 {
1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1068 w->pending = 0;
1069 }
1070 }
1071
1072 inline void
1073 ev_start (EV_P_ W w, int active)
1074 {
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
1078 w->active = active;
1079 ev_ref (EV_A);
1080 }
1081
1082 inline void
1083 ev_stop (EV_P_ W w)
1084 {
1085 ev_unref (EV_A);
1086 w->active = 0;
1087 }
1088
1089 /*****************************************************************************/
1090
1091 void
1092 ev_io_start (EV_P_ struct ev_io *w)
1093 {
1094 int fd = w->fd;
1095
1096 if (ev_is_active (w))
1097 return;
1098
1099 assert (("ev_io_start called with negative fd", fd >= 0));
1100
1101 ev_start (EV_A_ (W)w, 1);
1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1104
1105 fd_change (EV_A_ fd);
1106 }
1107
1108 void
1109 ev_io_stop (EV_P_ struct ev_io *w)
1110 {
1111 ev_clear_pending (EV_A_ (W)w);
1112 if (!ev_is_active (w))
1113 return;
1114
1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1116 ev_stop (EV_A_ (W)w);
1117
1118 fd_change (EV_A_ w->fd);
1119 }
1120
1121 void
1122 ev_timer_start (EV_P_ struct ev_timer *w)
1123 {
1124 if (ev_is_active (w))
1125 return;
1126
1127 ((WT)w)->at += mn_now;
1128
1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1130
1131 ev_start (EV_A_ (W)w, ++timercnt);
1132 array_needsize (timers, timermax, timercnt, );
1133 timers [timercnt - 1] = w;
1134 upheap ((WT *)timers, timercnt - 1);
1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137 }
1138
1139 void
1140 ev_timer_stop (EV_P_ struct ev_timer *w)
1141 {
1142 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w))
1144 return;
1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
1148 if (((W)w)->active < timercnt--)
1149 {
1150 timers [((W)w)->active - 1] = timers [timercnt];
1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 }
1153
1154 ((WT)w)->at = w->repeat;
1155
1156 ev_stop (EV_A_ (W)w);
1157 }
1158
1159 void
1160 ev_timer_again (EV_P_ struct ev_timer *w)
1161 {
1162 if (ev_is_active (w))
1163 {
1164 if (w->repeat)
1165 {
1166 ((WT)w)->at = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1168 }
1169 else
1170 ev_timer_stop (EV_A_ w);
1171 }
1172 else if (w->repeat)
1173 ev_timer_start (EV_A_ w);
1174 }
1175
1176 void
1177 ev_periodic_start (EV_P_ struct ev_periodic *w)
1178 {
1179 if (ev_is_active (w))
1180 return;
1181
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1183
1184 /* this formula differs from the one in periodic_reify because we do not always round up */
1185 if (w->interval)
1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1187
1188 ev_start (EV_A_ (W)w, ++periodiccnt);
1189 array_needsize (periodics, periodicmax, periodiccnt, );
1190 periodics [periodiccnt - 1] = w;
1191 upheap ((WT *)periodics, periodiccnt - 1);
1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194 }
1195
1196 void
1197 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1198 {
1199 ev_clear_pending (EV_A_ (W)w);
1200 if (!ev_is_active (w))
1201 return;
1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
1205 if (((W)w)->active < periodiccnt--)
1206 {
1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1209 }
1210
1211 ev_stop (EV_A_ (W)w);
1212 }
1213
1214 void
1215 ev_idle_start (EV_P_ struct ev_idle *w)
1216 {
1217 if (ev_is_active (w))
1218 return;
1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223 }
1224
1225 void
1226 ev_idle_stop (EV_P_ struct ev_idle *w)
1227 {
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234 }
1235
1236 void
1237 ev_prepare_start (EV_P_ struct ev_prepare *w)
1238 {
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245 }
1246
1247 void
1248 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249 {
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256 }
1257
1258 void
1259 ev_check_start (EV_P_ struct ev_check *w)
1260 {
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267 }
1268
1269 void
1270 ev_check_stop (EV_P_ struct ev_check *w)
1271 {
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278 }
1279
1280 #ifndef SA_RESTART
1281 # define SA_RESTART 0
1282 #endif
1283
1284 void
1285 ev_signal_start (EV_P_ struct ev_signal *w)
1286 {
1287 #if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289 #endif
1290 if (ev_is_active (w))
1291 return;
1292
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294
1295 ev_start (EV_A_ (W)w, 1);
1296 array_needsize (signals, signalmax, w->signum, signals_init);
1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1298
1299 if (!((WL)w)->next)
1300 {
1301 struct sigaction sa;
1302 sa.sa_handler = sighandler;
1303 sigfillset (&sa.sa_mask);
1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1305 sigaction (w->signum, &sa, 0);
1306 }
1307 }
1308
1309 void
1310 ev_signal_stop (EV_P_ struct ev_signal *w)
1311 {
1312 ev_clear_pending (EV_A_ (W)w);
1313 if (!ev_is_active (w))
1314 return;
1315
1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1317 ev_stop (EV_A_ (W)w);
1318
1319 if (!signals [w->signum - 1].head)
1320 signal (w->signum, SIG_DFL);
1321 }
1322
1323 void
1324 ev_child_start (EV_P_ struct ev_child *w)
1325 {
1326 #if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328 #endif
1329 if (ev_is_active (w))
1330 return;
1331
1332 ev_start (EV_A_ (W)w, 1);
1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1334 }
1335
1336 void
1337 ev_child_stop (EV_P_ struct ev_child *w)
1338 {
1339 ev_clear_pending (EV_A_ (W)w);
1340 if (ev_is_active (w))
1341 return;
1342
1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1344 ev_stop (EV_A_ (W)w);
1345 }
1346
1347 /*****************************************************************************/
1348
1349 struct ev_once
1350 {
1351 struct ev_io io;
1352 struct ev_timer to;
1353 void (*cb)(int revents, void *arg);
1354 void *arg;
1355 };
1356
1357 static void
1358 once_cb (EV_P_ struct ev_once *once, int revents)
1359 {
1360 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg;
1362
1363 ev_io_stop (EV_A_ &once->io);
1364 ev_timer_stop (EV_A_ &once->to);
1365 free (once);
1366
1367 cb (revents, arg);
1368 }
1369
1370 static void
1371 once_cb_io (EV_P_ struct ev_io *w, int revents)
1372 {
1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1374 }
1375
1376 static void
1377 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1378 {
1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1380 }
1381
1382 void
1383 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1384 {
1385 struct ev_once *once = malloc (sizeof (struct ev_once));
1386
1387 if (!once)
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1389 else
1390 {
1391 once->cb = cb;
1392 once->arg = arg;
1393
1394 ev_watcher_init (&once->io, once_cb_io);
1395 if (fd >= 0)
1396 {
1397 ev_io_set (&once->io, fd, events);
1398 ev_io_start (EV_A_ &once->io);
1399 }
1400
1401 ev_watcher_init (&once->to, once_cb_to);
1402 if (timeout >= 0.)
1403 {
1404 ev_timer_set (&once->to, timeout, 0.);
1405 ev_timer_start (EV_A_ &once->to);
1406 }
1407 }
1408 }
1409