ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.66
Committed: Sun Nov 4 23:30:53 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.65: +1 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stddef.h>
63
64 #include <stdio.h>
65
66 #include <assert.h>
67 #include <errno.h>
68 #include <sys/types.h>
69 #ifndef WIN32
70 # include <sys/wait.h>
71 #endif
72 #include <sys/time.h>
73 #include <time.h>
74
75 /**/
76
77 #ifndef EV_USE_MONOTONIC
78 # define EV_USE_MONOTONIC 1
79 #endif
80
81 #ifndef EV_USE_SELECT
82 # define EV_USE_SELECT 1
83 #endif
84
85 #ifndef EV_USE_POLL
86 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 #endif
88
89 #ifndef EV_USE_EPOLL
90 # define EV_USE_EPOLL 0
91 #endif
92
93 #ifndef EV_USE_KQUEUE
94 # define EV_USE_KQUEUE 0
95 #endif
96
97 #ifndef EV_USE_WIN32
98 # ifdef WIN32
99 # define EV_USE_WIN32 1
100 # else
101 # define EV_USE_WIN32 0
102 # endif
103 #endif
104
105 #ifndef EV_USE_REALTIME
106 # define EV_USE_REALTIME 1
107 #endif
108
109 /**/
110
111 #ifndef CLOCK_MONOTONIC
112 # undef EV_USE_MONOTONIC
113 # define EV_USE_MONOTONIC 0
114 #endif
115
116 #ifndef CLOCK_REALTIME
117 # undef EV_USE_REALTIME
118 # define EV_USE_REALTIME 0
119 #endif
120
121 /**/
122
123 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127
128 #include "ev.h"
129
130 #if __GNUC__ >= 3
131 # define expect(expr,value) __builtin_expect ((expr),(value))
132 # define inline inline
133 #else
134 # define expect(expr,value) (expr)
135 # define inline static
136 #endif
137
138 #define expect_false(expr) expect ((expr) != 0, 0)
139 #define expect_true(expr) expect ((expr) != 0, 1)
140
141 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144 typedef struct ev_watcher *W;
145 typedef struct ev_watcher_list *WL;
146 typedef struct ev_watcher_time *WT;
147
148 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150 /*****************************************************************************/
151
152 typedef struct
153 {
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157 } ANFD;
158
159 typedef struct
160 {
161 W w;
162 int events;
163 } ANPENDING;
164
165 #if EV_MULTIPLICITY
166
167 struct ev_loop
168 {
169 # define VAR(name,decl) decl;
170 # include "ev_vars.h"
171 };
172 # undef VAR
173 # include "ev_wrap.h"
174
175 #else
176
177 # define VAR(name,decl) static decl;
178 # include "ev_vars.h"
179 # undef VAR
180
181 #endif
182
183 /*****************************************************************************/
184
185 inline ev_tstamp
186 ev_time (void)
187 {
188 #if EV_USE_REALTIME
189 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9;
192 #else
193 struct timeval tv;
194 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6;
196 #endif
197 }
198
199 inline ev_tstamp
200 get_clock (void)
201 {
202 #if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic))
204 {
205 struct timespec ts;
206 clock_gettime (CLOCK_MONOTONIC, &ts);
207 return ts.tv_sec + ts.tv_nsec * 1e-9;
208 }
209 #endif
210
211 return ev_time ();
212 }
213
214 ev_tstamp
215 ev_now (EV_P)
216 {
217 return rt_now;
218 }
219
220 #define array_roundsize(base,n) ((n) | 4 & ~3)
221
222 #define array_needsize(base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 }
236
237 #define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
240 /*****************************************************************************/
241
242 static void
243 anfds_init (ANFD *base, int count)
244 {
245 while (count--)
246 {
247 base->head = 0;
248 base->events = EV_NONE;
249 base->reify = 0;
250
251 ++base;
252 }
253 }
254
255 static void
256 event (EV_P_ W w, int events)
257 {
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
262 }
263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268 }
269
270 static void
271 queue_events (EV_P_ W *events, int eventcnt, int type)
272 {
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277 }
278
279 static void
280 fd_event (EV_P_ int fd, int events)
281 {
282 ANFD *anfd = anfds + fd;
283 struct ev_io *w;
284
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 {
287 int ev = w->events & events;
288
289 if (ev)
290 event (EV_A_ (W)w, ev);
291 }
292 }
293
294 /*****************************************************************************/
295
296 static void
297 fd_reify (EV_P)
298 {
299 int i;
300
301 for (i = 0; i < fdchangecnt; ++i)
302 {
303 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd;
305 struct ev_io *w;
306
307 int events = 0;
308
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events;
316 }
317
318 fdchangecnt = 0;
319 }
320
321 static void
322 fd_change (EV_P_ int fd)
323 {
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332 }
333
334 static void
335 fd_kill (EV_P_ int fd)
336 {
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344 }
345
346 /* called on EBADF to verify fds */
347 static void
348 fd_ebadf (EV_P)
349 {
350 int fd;
351
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd);
356 }
357
358 /* called on ENOMEM in select/poll to kill some fds and retry */
359 static void
360 fd_enomem (EV_P)
361 {
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371 }
372
373 /* susually called after fork if method needs to re-arm all fds from scratch */
374 static void
375 fd_rearm_all (EV_P)
376 {
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386 }
387
388 /*****************************************************************************/
389
390 static void
391 upheap (WT *heap, int k)
392 {
393 WT w = heap [k];
394
395 while (k && heap [k >> 1]->at > w->at)
396 {
397 heap [k] = heap [k >> 1];
398 ((W)heap [k])->active = k + 1;
399 k >>= 1;
400 }
401
402 heap [k] = w;
403 ((W)heap [k])->active = k + 1;
404
405 }
406
407 static void
408 downheap (WT *heap, int N, int k)
409 {
410 WT w = heap [k];
411
412 while (k < (N >> 1))
413 {
414 int j = k << 1;
415
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
417 ++j;
418
419 if (w->at <= heap [j]->at)
420 break;
421
422 heap [k] = heap [j];
423 ((W)heap [k])->active = k + 1;
424 k = j;
425 }
426
427 heap [k] = w;
428 ((W)heap [k])->active = k + 1;
429 }
430
431 /*****************************************************************************/
432
433 typedef struct
434 {
435 struct ev_watcher_list *head;
436 sig_atomic_t volatile gotsig;
437 } ANSIG;
438
439 static ANSIG *signals;
440 static int signalmax;
441
442 static int sigpipe [2];
443 static sig_atomic_t volatile gotsig;
444 static struct ev_io sigev;
445
446 static void
447 signals_init (ANSIG *base, int count)
448 {
449 while (count--)
450 {
451 base->head = 0;
452 base->gotsig = 0;
453
454 ++base;
455 }
456 }
457
458 static void
459 sighandler (int signum)
460 {
461 signals [signum - 1].gotsig = 1;
462
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470 }
471
472 static void
473 sigcb (EV_P_ struct ev_io *iow, int revents)
474 {
475 struct ev_watcher_list *w;
476 int signum;
477
478 read (sigpipe [0], &revents, 1);
479 gotsig = 0;
480
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489 }
490
491 static void
492 siginit (EV_P)
493 {
494 #ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501 #endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506 }
507
508 /*****************************************************************************/
509
510 #ifndef WIN32
511
512 static struct ev_child *childs [PID_HASHSIZE];
513 static struct ev_signal childev;
514
515 #ifndef WCONTINUED
516 # define WCONTINUED 0
517 #endif
518
519 static void
520 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521 {
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532 }
533
534 static void
535 childcb (EV_P_ struct ev_signal *sw, int revents)
536 {
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547 }
548
549 #endif
550
551 /*****************************************************************************/
552
553 #if EV_USE_KQUEUE
554 # include "ev_kqueue.c"
555 #endif
556 #if EV_USE_EPOLL
557 # include "ev_epoll.c"
558 #endif
559 #if EV_USE_POLL
560 # include "ev_poll.c"
561 #endif
562 #if EV_USE_SELECT
563 # include "ev_select.c"
564 #endif
565
566 int
567 ev_version_major (void)
568 {
569 return EV_VERSION_MAJOR;
570 }
571
572 int
573 ev_version_minor (void)
574 {
575 return EV_VERSION_MINOR;
576 }
577
578 /* return true if we are running with elevated privileges and should ignore env variables */
579 static int
580 enable_secure (void)
581 {
582 #ifdef WIN32
583 return 0;
584 #else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587 #endif
588 }
589
590 int
591 ev_method (EV_P)
592 {
593 return method;
594 }
595
596 static void
597 loop_init (EV_P_ int methods)
598 {
599 if (!method)
600 {
601 #if EV_USE_MONOTONIC
602 {
603 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1;
606 }
607 #endif
608
609 rt_now = ev_time ();
610 mn_now = get_clock ();
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621 #if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623 #endif
624 #if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626 #endif
627 #if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629 #endif
630 #if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632 #endif
633 #if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635 #endif
636 }
637 }
638
639 void
640 loop_destroy (EV_P)
641 {
642 int i;
643
644 #if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646 #endif
647 #if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649 #endif
650 #if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652 #endif
653 #if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655 #endif
656 #if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658 #endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672 }
673
674 void
675 loop_fork (EV_P)
676 {
677 /*TODO*/
678 #if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680 #endif
681 #if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683 #endif
684 }
685
686 #if EV_MULTIPLICITY
687 struct ev_loop *
688 ev_loop_new (int methods)
689 {
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698 }
699
700 void
701 ev_loop_destroy (EV_P)
702 {
703 loop_destroy (EV_A);
704 free (loop);
705 }
706
707 void
708 ev_loop_fork (EV_P)
709 {
710 loop_fork (EV_A);
711 }
712
713 #endif
714
715 #if EV_MULTIPLICITY
716 struct ev_loop default_loop_struct;
717 static struct ev_loop *default_loop;
718
719 struct ev_loop *
720 #else
721 static int default_loop;
722
723 int
724 #endif
725 ev_default_loop (int methods)
726 {
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733 #if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735 #else
736 default_loop = 1;
737 #endif
738
739 loop_init (EV_A_ methods);
740
741 if (ev_method (EV_A))
742 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A);
746
747 #ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752 #endif
753 }
754 else
755 default_loop = 0;
756 }
757
758 return default_loop;
759 }
760
761 void
762 ev_default_destroy (void)
763 {
764 #if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop;
766 #endif
767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778 }
779
780 void
781 ev_default_fork (void)
782 {
783 #if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785 #endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796 }
797
798 /*****************************************************************************/
799
800 static void
801 call_pending (EV_P)
802 {
803 int pri;
804
805 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri])
807 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809
810 if (p->w)
811 {
812 p->w->pending = 0;
813 p->w->cb (EV_A_ p->w, p->events);
814 }
815 }
816 }
817
818 static void
819 timers_reify (EV_P)
820 {
821 while (timercnt && ((WT)timers [0])->at <= mn_now)
822 {
823 struct ev_timer *w = timers [0];
824
825 assert (("inactive timer on timer heap detected", ev_is_active (w)));
826
827 /* first reschedule or stop timer */
828 if (w->repeat)
829 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
831 ((WT)w)->at = mn_now + w->repeat;
832 downheap ((WT *)timers, timercnt, 0);
833 }
834 else
835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
836
837 event (EV_A_ (W)w, EV_TIMEOUT);
838 }
839 }
840
841 static void
842 periodics_reify (EV_P)
843 {
844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
845 {
846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
849
850 /* first reschedule or stop timer */
851 if (w->interval)
852 {
853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
855 downheap ((WT *)periodics, periodiccnt, 0);
856 }
857 else
858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
859
860 event (EV_A_ (W)w, EV_PERIODIC);
861 }
862 }
863
864 static void
865 periodics_reschedule (EV_P)
866 {
867 int i;
868
869 /* adjust periodics after time jump */
870 for (i = 0; i < periodiccnt; ++i)
871 {
872 struct ev_periodic *w = periodics [i];
873
874 if (w->interval)
875 {
876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
877
878 if (fabs (diff) >= 1e-4)
879 {
880 ev_periodic_stop (EV_A_ w);
881 ev_periodic_start (EV_A_ w);
882
883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
884 }
885 }
886 }
887 }
888
889 inline int
890 time_update_monotonic (EV_P)
891 {
892 mn_now = get_clock ();
893
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 {
896 rt_now = rtmn_diff + mn_now;
897 return 0;
898 }
899 else
900 {
901 now_floor = mn_now;
902 rt_now = ev_time ();
903 return 1;
904 }
905 }
906
907 static void
908 time_update (EV_P)
909 {
910 int i;
911
912 #if EV_USE_MONOTONIC
913 if (expect_true (have_monotonic))
914 {
915 if (time_update_monotonic (EV_A))
916 {
917 ev_tstamp odiff = rtmn_diff;
918
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */
920 {
921 rtmn_diff = rt_now - mn_now;
922
923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
924 return; /* all is well */
925
926 rt_now = ev_time ();
927 mn_now = get_clock ();
928 now_floor = mn_now;
929 }
930
931 periodics_reschedule (EV_A);
932 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
934 }
935 }
936 else
937 #endif
938 {
939 rt_now = ev_time ();
940
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
942 {
943 periodics_reschedule (EV_A);
944
945 /* adjust timers. this is easy, as the offset is the same for all */
946 for (i = 0; i < timercnt; ++i)
947 ((WT)timers [i])->at += rt_now - mn_now;
948 }
949
950 mn_now = rt_now;
951 }
952 }
953
954 void
955 ev_ref (EV_P)
956 {
957 ++activecnt;
958 }
959
960 void
961 ev_unref (EV_P)
962 {
963 --activecnt;
964 }
965
966 static int loop_done;
967
968 void
969 ev_loop (EV_P_ int flags)
970 {
971 double block;
972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
973
974 do
975 {
976 /* queue check watchers (and execute them) */
977 if (expect_false (preparecnt))
978 {
979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
980 call_pending (EV_A);
981 }
982
983 /* update fd-related kernel structures */
984 fd_reify (EV_A);
985
986 /* calculate blocking time */
987
988 /* we only need this for !monotonic clockor timers, but as we basically
989 always have timers, we just calculate it always */
990 #if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A);
993 else
994 #endif
995 {
996 rt_now = ev_time ();
997 mn_now = rt_now;
998 }
999
1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
1001 block = 0.;
1002 else
1003 {
1004 block = MAX_BLOCKTIME;
1005
1006 if (timercnt)
1007 {
1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1009 if (block > to) block = to;
1010 }
1011
1012 if (periodiccnt)
1013 {
1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1015 if (block > to) block = to;
1016 }
1017
1018 if (block < 0.) block = 0.;
1019 }
1020
1021 method_poll (EV_A_ block);
1022
1023 /* update rt_now, do magic */
1024 time_update (EV_A);
1025
1026 /* queue pending timers and reschedule them */
1027 timers_reify (EV_A); /* relative timers called last */
1028 periodics_reify (EV_A); /* absolute timers called first */
1029
1030 /* queue idle watchers unless io or timers are pending */
1031 if (!pendingcnt)
1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1033
1034 /* queue check watchers, to be executed first */
1035 if (checkcnt)
1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1037
1038 call_pending (EV_A);
1039 }
1040 while (activecnt && !loop_done);
1041
1042 if (loop_done != 2)
1043 loop_done = 0;
1044 }
1045
1046 void
1047 ev_unloop (EV_P_ int how)
1048 {
1049 loop_done = how;
1050 }
1051
1052 /*****************************************************************************/
1053
1054 inline void
1055 wlist_add (WL *head, WL elem)
1056 {
1057 elem->next = *head;
1058 *head = elem;
1059 }
1060
1061 inline void
1062 wlist_del (WL *head, WL elem)
1063 {
1064 while (*head)
1065 {
1066 if (*head == elem)
1067 {
1068 *head = elem->next;
1069 return;
1070 }
1071
1072 head = &(*head)->next;
1073 }
1074 }
1075
1076 inline void
1077 ev_clear_pending (EV_P_ W w)
1078 {
1079 if (w->pending)
1080 {
1081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1082 w->pending = 0;
1083 }
1084 }
1085
1086 inline void
1087 ev_start (EV_P_ W w, int active)
1088 {
1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
1092 w->active = active;
1093 ev_ref (EV_A);
1094 }
1095
1096 inline void
1097 ev_stop (EV_P_ W w)
1098 {
1099 ev_unref (EV_A);
1100 w->active = 0;
1101 }
1102
1103 /*****************************************************************************/
1104
1105 void
1106 ev_io_start (EV_P_ struct ev_io *w)
1107 {
1108 int fd = w->fd;
1109
1110 if (ev_is_active (w))
1111 return;
1112
1113 assert (("ev_io_start called with negative fd", fd >= 0));
1114
1115 ev_start (EV_A_ (W)w, 1);
1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1117 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1118
1119 fd_change (EV_A_ fd);
1120 }
1121
1122 void
1123 ev_io_stop (EV_P_ struct ev_io *w)
1124 {
1125 ev_clear_pending (EV_A_ (W)w);
1126 if (!ev_is_active (w))
1127 return;
1128
1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1130 ev_stop (EV_A_ (W)w);
1131
1132 fd_change (EV_A_ w->fd);
1133 }
1134
1135 void
1136 ev_timer_start (EV_P_ struct ev_timer *w)
1137 {
1138 if (ev_is_active (w))
1139 return;
1140
1141 ((WT)w)->at += mn_now;
1142
1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1144
1145 ev_start (EV_A_ (W)w, ++timercnt);
1146 array_needsize (timers, timermax, timercnt, );
1147 timers [timercnt - 1] = w;
1148 upheap ((WT *)timers, timercnt - 1);
1149
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151 }
1152
1153 void
1154 ev_timer_stop (EV_P_ struct ev_timer *w)
1155 {
1156 ev_clear_pending (EV_A_ (W)w);
1157 if (!ev_is_active (w))
1158 return;
1159
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1161
1162 if (((W)w)->active < timercnt--)
1163 {
1164 timers [((W)w)->active - 1] = timers [timercnt];
1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1166 }
1167
1168 ((WT)w)->at = w->repeat;
1169
1170 ev_stop (EV_A_ (W)w);
1171 }
1172
1173 void
1174 ev_timer_again (EV_P_ struct ev_timer *w)
1175 {
1176 if (ev_is_active (w))
1177 {
1178 if (w->repeat)
1179 {
1180 ((WT)w)->at = mn_now + w->repeat;
1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1182 }
1183 else
1184 ev_timer_stop (EV_A_ w);
1185 }
1186 else if (w->repeat)
1187 ev_timer_start (EV_A_ w);
1188 }
1189
1190 void
1191 ev_periodic_start (EV_P_ struct ev_periodic *w)
1192 {
1193 if (ev_is_active (w))
1194 return;
1195
1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1197
1198 /* this formula differs from the one in periodic_reify because we do not always round up */
1199 if (w->interval)
1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1201
1202 ev_start (EV_A_ (W)w, ++periodiccnt);
1203 array_needsize (periodics, periodicmax, periodiccnt, );
1204 periodics [periodiccnt - 1] = w;
1205 upheap ((WT *)periodics, periodiccnt - 1);
1206
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208 }
1209
1210 void
1211 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1212 {
1213 ev_clear_pending (EV_A_ (W)w);
1214 if (!ev_is_active (w))
1215 return;
1216
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1218
1219 if (((W)w)->active < periodiccnt--)
1220 {
1221 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1223 }
1224
1225 ev_stop (EV_A_ (W)w);
1226 }
1227
1228 void
1229 ev_idle_start (EV_P_ struct ev_idle *w)
1230 {
1231 if (ev_is_active (w))
1232 return;
1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237 }
1238
1239 void
1240 ev_idle_stop (EV_P_ struct ev_idle *w)
1241 {
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w);
1248 }
1249
1250 void
1251 ev_prepare_start (EV_P_ struct ev_prepare *w)
1252 {
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259 }
1260
1261 void
1262 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263 {
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270 }
1271
1272 void
1273 ev_check_start (EV_P_ struct ev_check *w)
1274 {
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281 }
1282
1283 void
1284 ev_check_stop (EV_P_ struct ev_check *w)
1285 {
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292 }
1293
1294 #ifndef SA_RESTART
1295 # define SA_RESTART 0
1296 #endif
1297
1298 void
1299 ev_signal_start (EV_P_ struct ev_signal *w)
1300 {
1301 #if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1303 #endif
1304 if (ev_is_active (w))
1305 return;
1306
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308
1309 ev_start (EV_A_ (W)w, 1);
1310 array_needsize (signals, signalmax, w->signum, signals_init);
1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1312
1313 if (!((WL)w)->next)
1314 {
1315 struct sigaction sa;
1316 sa.sa_handler = sighandler;
1317 sigfillset (&sa.sa_mask);
1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1319 sigaction (w->signum, &sa, 0);
1320 }
1321 }
1322
1323 void
1324 ev_signal_stop (EV_P_ struct ev_signal *w)
1325 {
1326 ev_clear_pending (EV_A_ (W)w);
1327 if (!ev_is_active (w))
1328 return;
1329
1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1331 ev_stop (EV_A_ (W)w);
1332
1333 if (!signals [w->signum - 1].head)
1334 signal (w->signum, SIG_DFL);
1335 }
1336
1337 void
1338 ev_child_start (EV_P_ struct ev_child *w)
1339 {
1340 #if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop));
1342 #endif
1343 if (ev_is_active (w))
1344 return;
1345
1346 ev_start (EV_A_ (W)w, 1);
1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1348 }
1349
1350 void
1351 ev_child_stop (EV_P_ struct ev_child *w)
1352 {
1353 ev_clear_pending (EV_A_ (W)w);
1354 if (ev_is_active (w))
1355 return;
1356
1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1358 ev_stop (EV_A_ (W)w);
1359 }
1360
1361 /*****************************************************************************/
1362
1363 struct ev_once
1364 {
1365 struct ev_io io;
1366 struct ev_timer to;
1367 void (*cb)(int revents, void *arg);
1368 void *arg;
1369 };
1370
1371 static void
1372 once_cb (EV_P_ struct ev_once *once, int revents)
1373 {
1374 void (*cb)(int revents, void *arg) = once->cb;
1375 void *arg = once->arg;
1376
1377 ev_io_stop (EV_A_ &once->io);
1378 ev_timer_stop (EV_A_ &once->to);
1379 free (once);
1380
1381 cb (revents, arg);
1382 }
1383
1384 static void
1385 once_cb_io (EV_P_ struct ev_io *w, int revents)
1386 {
1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1388 }
1389
1390 static void
1391 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1392 {
1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1394 }
1395
1396 void
1397 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1398 {
1399 struct ev_once *once = malloc (sizeof (struct ev_once));
1400
1401 if (!once)
1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1403 else
1404 {
1405 once->cb = cb;
1406 once->arg = arg;
1407
1408 ev_watcher_init (&once->io, once_cb_io);
1409 if (fd >= 0)
1410 {
1411 ev_io_set (&once->io, fd, events);
1412 ev_io_start (EV_A_ &once->io);
1413 }
1414
1415 ev_watcher_init (&once->to, once_cb_to);
1416 if (timeout >= 0.)
1417 {
1418 ev_timer_set (&once->to, timeout, 0.);
1419 ev_timer_start (EV_A_ &once->to);
1420 }
1421 }
1422 }
1423