ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.68
Committed: Mon Nov 5 20:19:00 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.67: +3 -4 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stddef.h>
63
64 #include <stdio.h>
65
66 #include <assert.h>
67 #include <errno.h>
68 #include <sys/types.h>
69 #ifndef WIN32
70 # include <sys/wait.h>
71 #endif
72 #include <sys/time.h>
73 #include <time.h>
74
75 /**/
76
77 #ifndef EV_USE_MONOTONIC
78 # define EV_USE_MONOTONIC 1
79 #endif
80
81 #ifndef EV_USE_SELECT
82 # define EV_USE_SELECT 1
83 #endif
84
85 #ifndef EV_USE_POLL
86 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 #endif
88
89 #ifndef EV_USE_EPOLL
90 # define EV_USE_EPOLL 0
91 #endif
92
93 #ifndef EV_USE_KQUEUE
94 # define EV_USE_KQUEUE 0
95 #endif
96
97 #ifndef EV_USE_WIN32
98 # ifdef WIN32
99 # define EV_USE_WIN32 1
100 # else
101 # define EV_USE_WIN32 0
102 # endif
103 #endif
104
105 #ifndef EV_USE_REALTIME
106 # define EV_USE_REALTIME 1
107 #endif
108
109 /**/
110
111 #ifndef CLOCK_MONOTONIC
112 # undef EV_USE_MONOTONIC
113 # define EV_USE_MONOTONIC 0
114 #endif
115
116 #ifndef CLOCK_REALTIME
117 # undef EV_USE_REALTIME
118 # define EV_USE_REALTIME 0
119 #endif
120
121 /**/
122
123 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127
128 #include "ev.h"
129
130 #if __GNUC__ >= 3
131 # define expect(expr,value) __builtin_expect ((expr),(value))
132 # define inline inline
133 #else
134 # define expect(expr,value) (expr)
135 # define inline static
136 #endif
137
138 #define expect_false(expr) expect ((expr) != 0, 0)
139 #define expect_true(expr) expect ((expr) != 0, 1)
140
141 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144 typedef struct ev_watcher *W;
145 typedef struct ev_watcher_list *WL;
146 typedef struct ev_watcher_time *WT;
147
148 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150 #if WIN32
151 /* note: the comment below could not be substantiated, but what would I care */
152 /* MSDN says this is required to handle SIGFPE */
153 volatile double SIGFPE_REQ = 0.0f;
154 #endif
155
156 /*****************************************************************************/
157
158 typedef struct
159 {
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163 } ANFD;
164
165 typedef struct
166 {
167 W w;
168 int events;
169 } ANPENDING;
170
171 #if EV_MULTIPLICITY
172
173 struct ev_loop
174 {
175 # define VAR(name,decl) decl;
176 # include "ev_vars.h"
177 };
178 # undef VAR
179 # include "ev_wrap.h"
180
181 #else
182
183 # define VAR(name,decl) static decl;
184 # include "ev_vars.h"
185 # undef VAR
186
187 #endif
188
189 /*****************************************************************************/
190
191 inline ev_tstamp
192 ev_time (void)
193 {
194 #if EV_USE_REALTIME
195 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts);
197 return ts.tv_sec + ts.tv_nsec * 1e-9;
198 #else
199 struct timeval tv;
200 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6;
202 #endif
203 }
204
205 inline ev_tstamp
206 get_clock (void)
207 {
208 #if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic))
210 {
211 struct timespec ts;
212 clock_gettime (CLOCK_MONOTONIC, &ts);
213 return ts.tv_sec + ts.tv_nsec * 1e-9;
214 }
215 #endif
216
217 return ev_time ();
218 }
219
220 ev_tstamp
221 ev_now (EV_P)
222 {
223 return rt_now;
224 }
225
226 #define array_roundsize(base,n) ((n) | 4 & ~3)
227
228 #define array_needsize(base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \
230 { \
231 int newcnt = cur; \
232 do \
233 { \
234 newcnt = array_roundsize (base, newcnt << 1); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 }
242
243 #define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251 #define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
254 /*****************************************************************************/
255
256 static void
257 anfds_init (ANFD *base, int count)
258 {
259 while (count--)
260 {
261 base->head = 0;
262 base->events = EV_NONE;
263 base->reify = 0;
264
265 ++base;
266 }
267 }
268
269 static void
270 event (EV_P_ W w, int events)
271 {
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282 }
283
284 static void
285 queue_events (EV_P_ W *events, int eventcnt, int type)
286 {
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291 }
292
293 static void
294 fd_event (EV_P_ int fd, int events)
295 {
296 ANFD *anfd = anfds + fd;
297 struct ev_io *w;
298
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 {
301 int ev = w->events & events;
302
303 if (ev)
304 event (EV_A_ (W)w, ev);
305 }
306 }
307
308 /*****************************************************************************/
309
310 static void
311 fd_reify (EV_P)
312 {
313 int i;
314
315 for (i = 0; i < fdchangecnt; ++i)
316 {
317 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd;
319 struct ev_io *w;
320
321 int events = 0;
322
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events;
325
326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333 }
334
335 static void
336 fd_change (EV_P_ int fd)
337 {
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346 }
347
348 static void
349 fd_kill (EV_P_ int fd)
350 {
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358 }
359
360 /* called on EBADF to verify fds */
361 static void
362 fd_ebadf (EV_P)
363 {
364 int fd;
365
366 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd);
370 }
371
372 /* called on ENOMEM in select/poll to kill some fds and retry */
373 static void
374 fd_enomem (EV_P)
375 {
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
380 {
381 fd_kill (EV_A_ fd);
382 return;
383 }
384 }
385
386 /* susually called after fork if method needs to re-arm all fds from scratch */
387 static void
388 fd_rearm_all (EV_P)
389 {
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
399 }
400
401 /*****************************************************************************/
402
403 static void
404 upheap (WT *heap, int k)
405 {
406 WT w = heap [k];
407
408 while (k && heap [k >> 1]->at > w->at)
409 {
410 heap [k] = heap [k >> 1];
411 ((W)heap [k])->active = k + 1;
412 k >>= 1;
413 }
414
415 heap [k] = w;
416 ((W)heap [k])->active = k + 1;
417
418 }
419
420 static void
421 downheap (WT *heap, int N, int k)
422 {
423 WT w = heap [k];
424
425 while (k < (N >> 1))
426 {
427 int j = k << 1;
428
429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
430 ++j;
431
432 if (w->at <= heap [j]->at)
433 break;
434
435 heap [k] = heap [j];
436 ((W)heap [k])->active = k + 1;
437 k = j;
438 }
439
440 heap [k] = w;
441 ((W)heap [k])->active = k + 1;
442 }
443
444 /*****************************************************************************/
445
446 typedef struct
447 {
448 WL head;
449 sig_atomic_t volatile gotsig;
450 } ANSIG;
451
452 static ANSIG *signals;
453 static int signalmax;
454
455 static int sigpipe [2];
456 static sig_atomic_t volatile gotsig;
457 static struct ev_io sigev;
458
459 static void
460 signals_init (ANSIG *base, int count)
461 {
462 while (count--)
463 {
464 base->head = 0;
465 base->gotsig = 0;
466
467 ++base;
468 }
469 }
470
471 static void
472 sighandler (int signum)
473 {
474 #if WIN32
475 signal (signum, sighandler);
476 #endif
477
478 signals [signum - 1].gotsig = 1;
479
480 if (!gotsig)
481 {
482 int old_errno = errno;
483 gotsig = 1;
484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
486 }
487 }
488
489 static void
490 sigcb (EV_P_ struct ev_io *iow, int revents)
491 {
492 WL w;
493 int signum;
494
495 read (sigpipe [0], &revents, 1);
496 gotsig = 0;
497
498 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig)
500 {
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506 }
507
508 static void
509 siginit (EV_P)
510 {
511 #ifndef WIN32
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518 #endif
519
520 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
523 }
524
525 /*****************************************************************************/
526
527 #ifndef WIN32
528
529 static struct ev_child *childs [PID_HASHSIZE];
530 static struct ev_signal childev;
531
532 #ifndef WCONTINUED
533 # define WCONTINUED 0
534 #endif
535
536 static void
537 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
538 {
539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549 }
550
551 static void
552 childcb (EV_P_ struct ev_signal *sw, int revents)
553 {
554 int pid, status;
555
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 {
558 /* make sure we are called again until all childs have been reaped */
559 event (EV_A_ (W)sw, EV_SIGNAL);
560
561 child_reap (EV_A_ sw, pid, pid, status);
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 }
564 }
565
566 #endif
567
568 /*****************************************************************************/
569
570 #if EV_USE_KQUEUE
571 # include "ev_kqueue.c"
572 #endif
573 #if EV_USE_EPOLL
574 # include "ev_epoll.c"
575 #endif
576 #if EV_USE_POLL
577 # include "ev_poll.c"
578 #endif
579 #if EV_USE_SELECT
580 # include "ev_select.c"
581 #endif
582
583 int
584 ev_version_major (void)
585 {
586 return EV_VERSION_MAJOR;
587 }
588
589 int
590 ev_version_minor (void)
591 {
592 return EV_VERSION_MINOR;
593 }
594
595 /* return true if we are running with elevated privileges and should ignore env variables */
596 static int
597 enable_secure (void)
598 {
599 #ifdef WIN32
600 return 0;
601 #else
602 return getuid () != geteuid ()
603 || getgid () != getegid ();
604 #endif
605 }
606
607 int
608 ev_method (EV_P)
609 {
610 return method;
611 }
612
613 static void
614 loop_init (EV_P_ int methods)
615 {
616 if (!method)
617 {
618 #if EV_USE_MONOTONIC
619 {
620 struct timespec ts;
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1;
623 }
624 #endif
625
626 rt_now = ev_time ();
627 mn_now = get_clock ();
628 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now;
630
631 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS"));
634 else
635 methods = EVMETHOD_ANY;
636
637 method = 0;
638 #if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640 #endif
641 #if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643 #endif
644 #if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
646 #endif
647 #if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649 #endif
650 #if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652 #endif
653 }
654 }
655
656 void
657 loop_destroy (EV_P)
658 {
659 int i;
660
661 #if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663 #endif
664 #if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666 #endif
667 #if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669 #endif
670 #if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672 #endif
673 #if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675 #endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689 }
690
691 void
692 loop_fork (EV_P)
693 {
694 /*TODO*/
695 #if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697 #endif
698 #if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700 #endif
701 }
702
703 #if EV_MULTIPLICITY
704 struct ev_loop *
705 ev_loop_new (int methods)
706 {
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715 }
716
717 void
718 ev_loop_destroy (EV_P)
719 {
720 loop_destroy (EV_A);
721 free (loop);
722 }
723
724 void
725 ev_loop_fork (EV_P)
726 {
727 loop_fork (EV_A);
728 }
729
730 #endif
731
732 #if EV_MULTIPLICITY
733 struct ev_loop default_loop_struct;
734 static struct ev_loop *default_loop;
735
736 struct ev_loop *
737 #else
738 static int default_loop;
739
740 int
741 #endif
742 ev_default_loop (int methods)
743 {
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750 #if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752 #else
753 default_loop = 1;
754 #endif
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A);
763
764 #ifndef WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
769 #endif
770 }
771 else
772 default_loop = 0;
773 }
774
775 return default_loop;
776 }
777
778 void
779 ev_default_destroy (void)
780 {
781 #if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop;
783 #endif
784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795 }
796
797 void
798 ev_default_fork (void)
799 {
800 #if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802 #endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813 }
814
815 /*****************************************************************************/
816
817 static void
818 call_pending (EV_P)
819 {
820 int pri;
821
822 for (pri = NUMPRI; pri--; )
823 while (pendingcnt [pri])
824 {
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826
827 if (p->w)
828 {
829 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events);
831 }
832 }
833 }
834
835 static void
836 timers_reify (EV_P)
837 {
838 while (timercnt && ((WT)timers [0])->at <= mn_now)
839 {
840 struct ev_timer *w = timers [0];
841
842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
843
844 /* first reschedule or stop timer */
845 if (w->repeat)
846 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
848 ((WT)w)->at = mn_now + w->repeat;
849 downheap ((WT *)timers, timercnt, 0);
850 }
851 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853
854 event (EV_A_ (W)w, EV_TIMEOUT);
855 }
856 }
857
858 static void
859 periodics_reify (EV_P)
860 {
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
862 {
863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866
867 /* first reschedule or stop timer */
868 if (w->interval)
869 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0);
873 }
874 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876
877 event (EV_A_ (W)w, EV_PERIODIC);
878 }
879 }
880
881 static void
882 periodics_reschedule (EV_P)
883 {
884 int i;
885
886 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i)
888 {
889 struct ev_periodic *w = periodics [i];
890
891 if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 {
897 ev_periodic_stop (EV_A_ w);
898 ev_periodic_start (EV_A_ w);
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 }
902 }
903 }
904 }
905
906 inline int
907 time_update_monotonic (EV_P)
908 {
909 mn_now = get_clock ();
910
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 }
916 else
917 {
918 now_floor = mn_now;
919 rt_now = ev_time ();
920 return 1;
921 }
922 }
923
924 static void
925 time_update (EV_P)
926 {
927 int i;
928
929 #if EV_USE_MONOTONIC
930 if (expect_true (have_monotonic))
931 {
932 if (time_update_monotonic (EV_A))
933 {
934 ev_tstamp odiff = rtmn_diff;
935
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 {
938 rtmn_diff = rt_now - mn_now;
939
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */
942
943 rt_now = ev_time ();
944 mn_now = get_clock ();
945 now_floor = mn_now;
946 }
947
948 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 }
952 }
953 else
954 #endif
955 {
956 rt_now = ev_time ();
957
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 {
960 periodics_reschedule (EV_A);
961
962 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now;
965 }
966
967 mn_now = rt_now;
968 }
969 }
970
971 void
972 ev_ref (EV_P)
973 {
974 ++activecnt;
975 }
976
977 void
978 ev_unref (EV_P)
979 {
980 --activecnt;
981 }
982
983 static int loop_done;
984
985 void
986 ev_loop (EV_P_ int flags)
987 {
988 double block;
989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
990
991 do
992 {
993 /* queue check watchers (and execute them) */
994 if (expect_false (preparecnt))
995 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A);
998 }
999
1000 /* update fd-related kernel structures */
1001 fd_reify (EV_A);
1002
1003 /* calculate blocking time */
1004
1005 /* we only need this for !monotonic clockor timers, but as we basically
1006 always have timers, we just calculate it always */
1007 #if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A);
1010 else
1011 #endif
1012 {
1013 rt_now = ev_time ();
1014 mn_now = rt_now;
1015 }
1016
1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.;
1019 else
1020 {
1021 block = MAX_BLOCKTIME;
1022
1023 if (timercnt)
1024 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1026 if (block > to) block = to;
1027 }
1028
1029 if (periodiccnt)
1030 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1032 if (block > to) block = to;
1033 }
1034
1035 if (block < 0.) block = 0.;
1036 }
1037
1038 method_poll (EV_A_ block);
1039
1040 /* update rt_now, do magic */
1041 time_update (EV_A);
1042
1043 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */
1045 periodics_reify (EV_A); /* absolute timers called first */
1046
1047 /* queue idle watchers unless io or timers are pending */
1048 if (!pendingcnt)
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1050
1051 /* queue check watchers, to be executed first */
1052 if (checkcnt)
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1054
1055 call_pending (EV_A);
1056 }
1057 while (activecnt && !loop_done);
1058
1059 if (loop_done != 2)
1060 loop_done = 0;
1061 }
1062
1063 void
1064 ev_unloop (EV_P_ int how)
1065 {
1066 loop_done = how;
1067 }
1068
1069 /*****************************************************************************/
1070
1071 inline void
1072 wlist_add (WL *head, WL elem)
1073 {
1074 elem->next = *head;
1075 *head = elem;
1076 }
1077
1078 inline void
1079 wlist_del (WL *head, WL elem)
1080 {
1081 while (*head)
1082 {
1083 if (*head == elem)
1084 {
1085 *head = elem->next;
1086 return;
1087 }
1088
1089 head = &(*head)->next;
1090 }
1091 }
1092
1093 inline void
1094 ev_clear_pending (EV_P_ W w)
1095 {
1096 if (w->pending)
1097 {
1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1099 w->pending = 0;
1100 }
1101 }
1102
1103 inline void
1104 ev_start (EV_P_ W w, int active)
1105 {
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
1109 w->active = active;
1110 ev_ref (EV_A);
1111 }
1112
1113 inline void
1114 ev_stop (EV_P_ W w)
1115 {
1116 ev_unref (EV_A);
1117 w->active = 0;
1118 }
1119
1120 /*****************************************************************************/
1121
1122 void
1123 ev_io_start (EV_P_ struct ev_io *w)
1124 {
1125 int fd = w->fd;
1126
1127 if (ev_is_active (w))
1128 return;
1129
1130 assert (("ev_io_start called with negative fd", fd >= 0));
1131
1132 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1135
1136 fd_change (EV_A_ fd);
1137 }
1138
1139 void
1140 ev_io_stop (EV_P_ struct ev_io *w)
1141 {
1142 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w))
1144 return;
1145
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w);
1148
1149 fd_change (EV_A_ w->fd);
1150 }
1151
1152 void
1153 ev_timer_start (EV_P_ struct ev_timer *w)
1154 {
1155 if (ev_is_active (w))
1156 return;
1157
1158 ((WT)w)->at += mn_now;
1159
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161
1162 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, );
1164 timers [timercnt - 1] = w;
1165 upheap ((WT *)timers, timercnt - 1);
1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168 }
1169
1170 void
1171 ev_timer_stop (EV_P_ struct ev_timer *w)
1172 {
1173 ev_clear_pending (EV_A_ (W)w);
1174 if (!ev_is_active (w))
1175 return;
1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
1179 if (((W)w)->active < timercnt--)
1180 {
1181 timers [((W)w)->active - 1] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 }
1184
1185 ((WT)w)->at = w->repeat;
1186
1187 ev_stop (EV_A_ (W)w);
1188 }
1189
1190 void
1191 ev_timer_again (EV_P_ struct ev_timer *w)
1192 {
1193 if (ev_is_active (w))
1194 {
1195 if (w->repeat)
1196 {
1197 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1199 }
1200 else
1201 ev_timer_stop (EV_A_ w);
1202 }
1203 else if (w->repeat)
1204 ev_timer_start (EV_A_ w);
1205 }
1206
1207 void
1208 ev_periodic_start (EV_P_ struct ev_periodic *w)
1209 {
1210 if (ev_is_active (w))
1211 return;
1212
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1218
1219 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, );
1221 periodics [periodiccnt - 1] = w;
1222 upheap ((WT *)periodics, periodiccnt - 1);
1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225 }
1226
1227 void
1228 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1229 {
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (!ev_is_active (w))
1232 return;
1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
1236 if (((W)w)->active < periodiccnt--)
1237 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1240 }
1241
1242 ev_stop (EV_A_ (W)w);
1243 }
1244
1245 void
1246 ev_idle_start (EV_P_ struct ev_idle *w)
1247 {
1248 if (ev_is_active (w))
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254 }
1255
1256 void
1257 ev_idle_stop (EV_P_ struct ev_idle *w)
1258 {
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265 }
1266
1267 void
1268 ev_prepare_start (EV_P_ struct ev_prepare *w)
1269 {
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276 }
1277
1278 void
1279 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280 {
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287 }
1288
1289 void
1290 ev_check_start (EV_P_ struct ev_check *w)
1291 {
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298 }
1299
1300 void
1301 ev_check_stop (EV_P_ struct ev_check *w)
1302 {
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309 }
1310
1311 #ifndef SA_RESTART
1312 # define SA_RESTART 0
1313 #endif
1314
1315 void
1316 ev_signal_start (EV_P_ struct ev_signal *w)
1317 {
1318 #if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320 #endif
1321 if (ev_is_active (w))
1322 return;
1323
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325
1326 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329
1330 if (!((WL)w)->next)
1331 {
1332 #if WIN32
1333 signal (w->signum, sighandler);
1334 #else
1335 struct sigaction sa;
1336 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask);
1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1339 sigaction (w->signum, &sa, 0);
1340 #endif
1341 }
1342 }
1343
1344 void
1345 ev_signal_stop (EV_P_ struct ev_signal *w)
1346 {
1347 ev_clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w))
1349 return;
1350
1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1352 ev_stop (EV_A_ (W)w);
1353
1354 if (!signals [w->signum - 1].head)
1355 signal (w->signum, SIG_DFL);
1356 }
1357
1358 void
1359 ev_child_start (EV_P_ struct ev_child *w)
1360 {
1361 #if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363 #endif
1364 if (ev_is_active (w))
1365 return;
1366
1367 ev_start (EV_A_ (W)w, 1);
1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1369 }
1370
1371 void
1372 ev_child_stop (EV_P_ struct ev_child *w)
1373 {
1374 ev_clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w))
1376 return;
1377
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w);
1380 }
1381
1382 /*****************************************************************************/
1383
1384 struct ev_once
1385 {
1386 struct ev_io io;
1387 struct ev_timer to;
1388 void (*cb)(int revents, void *arg);
1389 void *arg;
1390 };
1391
1392 static void
1393 once_cb (EV_P_ struct ev_once *once, int revents)
1394 {
1395 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg;
1397
1398 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to);
1400 free (once);
1401
1402 cb (revents, arg);
1403 }
1404
1405 static void
1406 once_cb_io (EV_P_ struct ev_io *w, int revents)
1407 {
1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1409 }
1410
1411 static void
1412 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1413 {
1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1415 }
1416
1417 void
1418 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419 {
1420 struct ev_once *once = malloc (sizeof (struct ev_once));
1421
1422 if (!once)
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else
1425 {
1426 once->cb = cb;
1427 once->arg = arg;
1428
1429 ev_watcher_init (&once->io, once_cb_io);
1430 if (fd >= 0)
1431 {
1432 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io);
1434 }
1435
1436 ev_watcher_init (&once->to, once_cb_to);
1437 if (timeout >= 0.)
1438 {
1439 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to);
1441 }
1442 }
1443 }
1444