ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.47
Committed: Mon Nov 26 10:20:43 2007 UTC (16 years, 6 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.46: +29 -1 lines
Log Message:
add some small complexities section

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.47 <meta name="created" content="Mon Nov 26 11:20:35 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19     <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
20     <li><a href="#FEATURES">FEATURES</a></li>
21     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
22 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
23     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
24 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
25     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
26 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
27 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
28 root 1.1 </ul>
29     </li>
30     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
31 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
32     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
33     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
34     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
35     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
36     <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
37     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
38     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
39 root 1.1 </ul>
40     </li>
41     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
42 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
43     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
44 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
45     <ul><li><a href="#FILESETS">FILESETS</a>
46     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
47     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
48     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
49     </ul>
50     </li>
51     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
52     <li><a href="#EXAMPLES">EXAMPLES</a></li>
53     </ul>
54     </li>
55 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
56 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
57     </li>
58     </ul><hr />
59     <!-- INDEX END -->
60    
61     <h1 id="NAME">NAME</h1><p><a href="#TOP" class="toplink">Top</a></p>
62     <div id="NAME_CONTENT">
63     <p>libev - a high performance full-featured event loop written in C</p>
64    
65     </div>
66     <h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p>
67     <div id="SYNOPSIS_CONTENT">
68     <pre> #include &lt;ev.h&gt;
69    
70     </pre>
71    
72     </div>
73     <h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p>
74     <div id="DESCRIPTION_CONTENT">
75     <p>Libev is an event loop: you register interest in certain events (such as a
76     file descriptor being readable or a timeout occuring), and it will manage
77 root 1.4 these event sources and provide your program with events.</p>
78 root 1.1 <p>To do this, it must take more or less complete control over your process
79     (or thread) by executing the <i>event loop</i> handler, and will then
80     communicate events via a callback mechanism.</p>
81     <p>You register interest in certain events by registering so-called <i>event
82     watchers</i>, which are relatively small C structures you initialise with the
83     details of the event, and then hand it over to libev by <i>starting</i> the
84     watcher.</p>
85    
86     </div>
87     <h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p>
88     <div id="FEATURES_CONTENT">
89     <p>Libev supports select, poll, the linux-specific epoll and the bsd-specific
90     kqueue mechanisms for file descriptor events, relative timers, absolute
91     timers with customised rescheduling, signal events, process status change
92     events (related to SIGCHLD), and event watchers dealing with the event
93 root 1.5 loop mechanism itself (idle, prepare and check watchers). It also is quite
94 root 1.7 fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing
95     it to libevent for example).</p>
96 root 1.1
97     </div>
98     <h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
99     <div id="CONVENTIONS_CONTENT">
100     <p>Libev is very configurable. In this manual the default configuration
101     will be described, which supports multiple event loops. For more info
102 root 1.7 about various configuration options please have a look at the file
103 root 1.1 <cite>README.embed</cite> in the libev distribution. If libev was configured without
104     support for multiple event loops, then all functions taking an initial
105     argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>)
106     will not have this argument.</p>
107    
108     </div>
109 root 1.18 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
110     <div id="TIME_REPRESENTATION_CONTENT">
111 root 1.2 <p>Libev represents time as a single floating point number, representing the
112     (fractional) number of seconds since the (POSIX) epoch (somewhere near
113     the beginning of 1970, details are complicated, don't ask). This type is
114 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
115 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
116     it, you should treat it as such.</p>
117    
118    
119    
120    
121 root 1.18
122     </div>
123     <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
124     <div id="GLOBAL_FUNCTIONS_CONTENT">
125 root 1.21 <p>These functions can be called anytime, even before initialising the
126     library in any way.</p>
127 root 1.1 <dl>
128     <dt>ev_tstamp ev_time ()</dt>
129     <dd>
130 root 1.28 <p>Returns the current time as libev would use it. Please note that the
131     <code>ev_now</code> function is usually faster and also often returns the timestamp
132     you actually want to know.</p>
133 root 1.1 </dd>
134     <dt>int ev_version_major ()</dt>
135     <dt>int ev_version_minor ()</dt>
136     <dd>
137     <p>You can find out the major and minor version numbers of the library
138     you linked against by calling the functions <code>ev_version_major</code> and
139     <code>ev_version_minor</code>. If you want, you can compare against the global
140     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
141     version of the library your program was compiled against.</p>
142 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
143 root 1.1 as this indicates an incompatible change. Minor versions are usually
144     compatible to older versions, so a larger minor version alone is usually
145     not a problem.</p>
146 root 1.35 <p>Example: make sure we haven't accidentally been linked against the wrong
147     version:</p>
148     <pre> assert ((&quot;libev version mismatch&quot;,
149     ev_version_major () == EV_VERSION_MAJOR
150     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
151    
152     </pre>
153 root 1.1 </dd>
154 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
155     <dd>
156     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
157     value) compiled into this binary of libev (independent of their
158     availability on the system you are running on). See <code>ev_default_loop</code> for
159     a description of the set values.</p>
160 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
161     a must have and can we have a torrent of it please!!!11</p>
162     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
163     ev_supported_backends () &amp; EVBACKEND_EPOLL));
164    
165     </pre>
166 root 1.32 </dd>
167     <dt>unsigned int ev_recommended_backends ()</dt>
168     <dd>
169     <p>Return the set of all backends compiled into this binary of libev and also
170     recommended for this platform. This set is often smaller than the one
171     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
172     most BSDs and will not be autodetected unless you explicitly request it
173     (assuming you know what you are doing). This is the set of backends that
174 root 1.34 libev will probe for if you specify no backends explicitly.</p>
175 root 1.32 </dd>
176 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
177     <dd>
178     <p>Returns the set of backends that are embeddable in other event loops. This
179     is the theoretical, all-platform, value. To find which backends
180     might be supported on the current system, you would need to look at
181     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
182     recommended ones.</p>
183     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
184     </dd>
185 root 1.1 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
186     <dd>
187     <p>Sets the allocation function to use (the prototype is similar to the
188 root 1.7 realloc C function, the semantics are identical). It is used to allocate
189     and free memory (no surprises here). If it returns zero when memory
190     needs to be allocated, the library might abort or take some potentially
191     destructive action. The default is your system realloc function.</p>
192 root 1.1 <p>You could override this function in high-availability programs to, say,
193     free some memory if it cannot allocate memory, to use a special allocator,
194     or even to sleep a while and retry until some memory is available.</p>
195 root 1.35 <p>Example: replace the libev allocator with one that waits a bit and then
196     retries: better than mine).</p>
197     <pre> static void *
198     persistent_realloc (void *ptr, long size)
199     {
200     for (;;)
201     {
202     void *newptr = realloc (ptr, size);
203    
204     if (newptr)
205     return newptr;
206    
207     sleep (60);
208     }
209     }
210    
211     ...
212     ev_set_allocator (persistent_realloc);
213    
214     </pre>
215 root 1.1 </dd>
216     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
217     <dd>
218     <p>Set the callback function to call on a retryable syscall error (such
219     as failed select, poll, epoll_wait). The message is a printable string
220     indicating the system call or subsystem causing the problem. If this
221     callback is set, then libev will expect it to remedy the sitution, no
222 root 1.7 matter what, when it returns. That is, libev will generally retry the
223 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
224     (such as abort).</p>
225 root 1.35 <p>Example: do the same thing as libev does internally:</p>
226     <pre> static void
227     fatal_error (const char *msg)
228     {
229     perror (msg);
230     abort ();
231     }
232    
233     ...
234     ev_set_syserr_cb (fatal_error);
235    
236     </pre>
237 root 1.1 </dd>
238     </dl>
239    
240     </div>
241     <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1><p><a href="#TOP" class="toplink">Top</a></p>
242     <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
243     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
244     types of such loops, the <i>default</i> loop, which supports signals and child
245     events, and dynamically created loops which do not.</p>
246     <p>If you use threads, a common model is to run the default event loop
247 root 1.18 in your main thread (or in a separate thread) and for each thread you
248 root 1.7 create, you also create another event loop. Libev itself does no locking
249     whatsoever, so if you mix calls to the same event loop in different
250     threads, make sure you lock (this is usually a bad idea, though, even if
251 root 1.9 done correctly, because it's hideous and inefficient).</p>
252 root 1.1 <dl>
253     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
254     <dd>
255     <p>This will initialise the default event loop if it hasn't been initialised
256     yet and return it. If the default loop could not be initialised, returns
257     false. If it already was initialised it simply returns it (and ignores the
258 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
259 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
260     function.</p>
261     <p>The flags argument can be used to specify special behaviour or specific
262 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
263     <p>The following flags are supported:</p>
264 root 1.1 <p>
265     <dl>
266 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
267 root 1.1 <dd>
268 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
269 root 1.1 thing, believe me).</p>
270     </dd>
271 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
272 root 1.1 <dd>
273 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
274     or setgid) then libev will <i>not</i> look at the environment variable
275     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
276     override the flags completely if it is found in the environment. This is
277     useful to try out specific backends to test their performance, or to work
278     around bugs.</p>
279 root 1.1 </dd>
280 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
281 root 1.29 <dd>
282     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
283     libev tries to roll its own fd_set with no limits on the number of fds,
284     but if that fails, expect a fairly low limit on the number of fds when
285     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
286     the fastest backend for a low number of fds.</p>
287     </dd>
288 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
289 root 1.29 <dd>
290     <p>And this is your standard poll(2) backend. It's more complicated than
291     select, but handles sparse fds better and has no artificial limit on the
292     number of fds you can use (except it will slow down considerably with a
293     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
294     </dd>
295 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
296 root 1.29 <dd>
297     <p>For few fds, this backend is a bit little slower than poll and select,
298     but it scales phenomenally better. While poll and select usually scale like
299     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
300     either O(1) or O(active_fds).</p>
301     <p>While stopping and starting an I/O watcher in the same iteration will
302     result in some caching, there is still a syscall per such incident
303     (because the fd could point to a different file description now), so its
304     best to avoid that. Also, dup()ed file descriptors might not work very
305     well if you register events for both fds.</p>
306 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
307     need to use non-blocking I/O or other means to avoid blocking when no data
308     (or space) is available.</p>
309 root 1.29 </dd>
310 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
311 root 1.29 <dd>
312     <p>Kqueue deserves special mention, as at the time of this writing, it
313     was broken on all BSDs except NetBSD (usually it doesn't work with
314     anything but sockets and pipes, except on Darwin, where of course its
315 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
316     unless you explicitly specify it explicitly in the flags (i.e. using
317     <code>EVBACKEND_KQUEUE</code>).</p>
318 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
319     kernel is more efficient (which says nothing about its actual speed, of
320     course). While starting and stopping an I/O watcher does not cause an
321     extra syscall as with epoll, it still adds up to four event changes per
322     incident, so its best to avoid that.</p>
323     </dd>
324 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
325 root 1.29 <dd>
326     <p>This is not implemented yet (and might never be).</p>
327     </dd>
328 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
329 root 1.29 <dd>
330     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
331     it's really slow, but it still scales very well (O(active_fds)).</p>
332 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
333     notifications, so you need to use non-blocking I/O or other means to avoid
334     blocking when no data (or space) is available.</p>
335 root 1.29 </dd>
336 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
337 root 1.29 <dd>
338 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
339     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
340 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
341 root 1.1 </dd>
342     </dl>
343     </p>
344 root 1.29 <p>If one or more of these are ored into the flags value, then only these
345     backends will be tried (in the reverse order as given here). If none are
346     specified, most compiled-in backend will be tried, usually in reverse
347     order of their flag values :)</p>
348 root 1.34 <p>The most typical usage is like this:</p>
349     <pre> if (!ev_default_loop (0))
350     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
351    
352     </pre>
353     <p>Restrict libev to the select and poll backends, and do not allow
354     environment settings to be taken into account:</p>
355     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
356    
357     </pre>
358     <p>Use whatever libev has to offer, but make sure that kqueue is used if
359     available (warning, breaks stuff, best use only with your own private
360     event loop and only if you know the OS supports your types of fds):</p>
361     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
362    
363     </pre>
364 root 1.1 </dd>
365     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
366     <dd>
367     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
368     always distinct from the default loop. Unlike the default loop, it cannot
369     handle signal and child watchers, and attempts to do so will be greeted by
370     undefined behaviour (or a failed assertion if assertions are enabled).</p>
371 root 1.35 <p>Example: try to create a event loop that uses epoll and nothing else.</p>
372     <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
373     if (!epoller)
374     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
375    
376     </pre>
377 root 1.1 </dd>
378     <dt>ev_default_destroy ()</dt>
379     <dd>
380     <p>Destroys the default loop again (frees all memory and kernel state
381 root 1.38 etc.). None of the active event watchers will be stopped in the normal
382     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
383     responsibility to either stop all watchers cleanly yoursef <i>before</i>
384     calling this function, or cope with the fact afterwards (which is usually
385     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
386     for example).</p>
387 root 1.1 </dd>
388     <dt>ev_loop_destroy (loop)</dt>
389     <dd>
390     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
391     earlier call to <code>ev_loop_new</code>.</p>
392     </dd>
393     <dt>ev_default_fork ()</dt>
394     <dd>
395     <p>This function reinitialises the kernel state for backends that have
396     one. Despite the name, you can call it anytime, but it makes most sense
397     after forking, in either the parent or child process (or both, but that
398     again makes little sense).</p>
399 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
400     only if you want to use the event library in both processes. If you just
401     fork+exec, you don't have to call it.</p>
402 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
403 root 1.1 it just in case after a fork. To make this easy, the function will fit in
404     quite nicely into a call to <code>pthread_atfork</code>:</p>
405     <pre> pthread_atfork (0, 0, ev_default_fork);
406    
407     </pre>
408 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
409     without calling this function, so if you force one of those backends you
410     do not need to care.</p>
411 root 1.1 </dd>
412     <dt>ev_loop_fork (loop)</dt>
413     <dd>
414     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
415     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
416     after fork, and how you do this is entirely your own problem.</p>
417     </dd>
418 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
419 root 1.1 <dd>
420 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
421 root 1.1 use.</p>
422     </dd>
423 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
424 root 1.1 <dd>
425     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
426 root 1.35 received events and started processing them. This timestamp does not
427     change as long as callbacks are being processed, and this is also the base
428     time used for relative timers. You can treat it as the timestamp of the
429     event occuring (or more correctly, libev finding out about it).</p>
430 root 1.1 </dd>
431     <dt>ev_loop (loop, int flags)</dt>
432     <dd>
433     <p>Finally, this is it, the event handler. This function usually is called
434     after you initialised all your watchers and you want to start handling
435     events.</p>
436 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
437     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
438 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
439     relying on all watchers to be stopped when deciding when a program has
440     finished (especially in interactive programs), but having a program that
441     automatically loops as long as it has to and no longer by virtue of
442     relying on its watchers stopping correctly is a thing of beauty.</p>
443 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
444     those events and any outstanding ones, but will not block your process in
445 root 1.9 case there are no events and will return after one iteration of the loop.</p>
446 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
447     neccessary) and will handle those and any outstanding ones. It will block
448 root 1.9 your process until at least one new event arrives, and will return after
449 root 1.34 one iteration of the loop. This is useful if you are waiting for some
450     external event in conjunction with something not expressible using other
451     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
452     usually a better approach for this kind of thing.</p>
453     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
454     <pre> * If there are no active watchers (reference count is zero), return.
455     - Queue prepare watchers and then call all outstanding watchers.
456     - If we have been forked, recreate the kernel state.
457     - Update the kernel state with all outstanding changes.
458     - Update the &quot;event loop time&quot;.
459     - Calculate for how long to block.
460     - Block the process, waiting for any events.
461     - Queue all outstanding I/O (fd) events.
462     - Update the &quot;event loop time&quot; and do time jump handling.
463     - Queue all outstanding timers.
464     - Queue all outstanding periodics.
465     - If no events are pending now, queue all idle watchers.
466     - Queue all check watchers.
467     - Call all queued watchers in reverse order (i.e. check watchers first).
468     Signals and child watchers are implemented as I/O watchers, and will
469     be handled here by queueing them when their watcher gets executed.
470     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
471     were used, return, otherwise continue with step *.
472 root 1.28
473     </pre>
474 root 1.35 <p>Example: queue some jobs and then loop until no events are outsanding
475     anymore.</p>
476     <pre> ... queue jobs here, make sure they register event watchers as long
477     ... as they still have work to do (even an idle watcher will do..)
478     ev_loop (my_loop, 0);
479     ... jobs done. yeah!
480    
481     </pre>
482 root 1.1 </dd>
483     <dt>ev_unloop (loop, how)</dt>
484     <dd>
485 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
486     has processed all outstanding events). The <code>how</code> argument must be either
487 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
488 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
489 root 1.1 </dd>
490     <dt>ev_ref (loop)</dt>
491     <dt>ev_unref (loop)</dt>
492     <dd>
493 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
494     loop: Every watcher keeps one reference, and as long as the reference
495     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
496     a watcher you never unregister that should not keep <code>ev_loop</code> from
497     returning, ev_unref() after starting, and ev_ref() before stopping it. For
498     example, libev itself uses this for its internal signal pipe: It is not
499     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
500     no event watchers registered by it are active. It is also an excellent
501     way to do this for generic recurring timers or from within third-party
502     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
503 root 1.35 <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code>
504     running when nothing else is active.</p>
505     <pre> struct dv_signal exitsig;
506     ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
507     ev_signal_start (myloop, &amp;exitsig);
508     evf_unref (myloop);
509    
510     </pre>
511     <p>Example: for some weird reason, unregister the above signal handler again.</p>
512     <pre> ev_ref (myloop);
513     ev_signal_stop (myloop, &amp;exitsig);
514    
515     </pre>
516 root 1.1 </dd>
517     </dl>
518    
519 root 1.43
520    
521    
522    
523 root 1.1 </div>
524     <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1><p><a href="#TOP" class="toplink">Top</a></p>
525     <div id="ANATOMY_OF_A_WATCHER_CONTENT">
526     <p>A watcher is a structure that you create and register to record your
527     interest in some event. For instance, if you want to wait for STDIN to
528 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
529 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
530     {
531     ev_io_stop (w);
532     ev_unloop (loop, EVUNLOOP_ALL);
533     }
534    
535     struct ev_loop *loop = ev_default_loop (0);
536     struct ev_io stdin_watcher;
537     ev_init (&amp;stdin_watcher, my_cb);
538     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
539     ev_io_start (loop, &amp;stdin_watcher);
540     ev_loop (loop, 0);
541    
542     </pre>
543     <p>As you can see, you are responsible for allocating the memory for your
544     watcher structures (and it is usually a bad idea to do this on the stack,
545     although this can sometimes be quite valid).</p>
546     <p>Each watcher structure must be initialised by a call to <code>ev_init
547     (watcher *, callback)</code>, which expects a callback to be provided. This
548     callback gets invoked each time the event occurs (or, in the case of io
549     watchers, each time the event loop detects that the file descriptor given
550     is readable and/or writable).</p>
551     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
552     with arguments specific to this watcher type. There is also a macro
553     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
554     (watcher *, callback, ...)</code>.</p>
555     <p>To make the watcher actually watch out for events, you have to start it
556     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
557     *)</code>), and you can stop watching for events at any time by calling the
558     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
559     <p>As long as your watcher is active (has been started but not stopped) you
560     must not touch the values stored in it. Most specifically you must never
561 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
562 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
563     registered watcher structure as second, and a bitset of received events as
564     third argument.</p>
565 root 1.14 <p>The received events usually include a single bit per event type received
566 root 1.1 (you can receive multiple events at the same time). The possible bit masks
567     are:</p>
568     <dl>
569 root 1.10 <dt><code>EV_READ</code></dt>
570     <dt><code>EV_WRITE</code></dt>
571 root 1.1 <dd>
572 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
573 root 1.1 writable.</p>
574     </dd>
575 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
576 root 1.1 <dd>
577 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
578 root 1.1 </dd>
579 root 1.10 <dt><code>EV_PERIODIC</code></dt>
580 root 1.1 <dd>
581 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
582 root 1.1 </dd>
583 root 1.10 <dt><code>EV_SIGNAL</code></dt>
584 root 1.1 <dd>
585 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
586 root 1.1 </dd>
587 root 1.10 <dt><code>EV_CHILD</code></dt>
588 root 1.1 <dd>
589 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
590 root 1.1 </dd>
591 root 1.10 <dt><code>EV_IDLE</code></dt>
592 root 1.1 <dd>
593 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
594 root 1.1 </dd>
595 root 1.10 <dt><code>EV_PREPARE</code></dt>
596     <dt><code>EV_CHECK</code></dt>
597 root 1.1 <dd>
598 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
599     to gather new events, and all <code>ev_check</code> watchers are invoked just after
600 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
601     received events. Callbacks of both watcher types can start and stop as
602     many watchers as they want, and all of them will be taken into account
603 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
604 root 1.1 <code>ev_loop</code> from blocking).</p>
605     </dd>
606 root 1.10 <dt><code>EV_ERROR</code></dt>
607 root 1.1 <dd>
608     <p>An unspecified error has occured, the watcher has been stopped. This might
609     happen because the watcher could not be properly started because libev
610     ran out of memory, a file descriptor was found to be closed or any other
611     problem. You best act on it by reporting the problem and somehow coping
612     with the watcher being stopped.</p>
613     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
614     for example it might indicate that a fd is readable or writable, and if
615     your callbacks is well-written it can just attempt the operation and cope
616     with the error from read() or write(). This will not work in multithreaded
617     programs, though, so beware.</p>
618     </dd>
619     </dl>
620    
621     </div>
622 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
623     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
624 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
625     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
626     <dl>
627     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
628     <dd>
629     <p>This macro initialises the generic portion of a watcher. The contents
630     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
631     the generic parts of the watcher are initialised, you <i>need</i> to call
632     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
633     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
634     which rolls both calls into one.</p>
635     <p>You can reinitialise a watcher at any time as long as it has been stopped
636     (or never started) and there are no pending events outstanding.</p>
637 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
638 root 1.37 int revents)</code>.</p>
639     </dd>
640     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
641     <dd>
642     <p>This macro initialises the type-specific parts of a watcher. You need to
643     call <code>ev_init</code> at least once before you call this macro, but you can
644     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
645     macro on a watcher that is active (it can be pending, however, which is a
646     difference to the <code>ev_init</code> macro).</p>
647     <p>Although some watcher types do not have type-specific arguments
648     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
649     </dd>
650     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
651     <dd>
652     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
653     calls into a single call. This is the most convinient method to initialise
654     a watcher. The same limitations apply, of course.</p>
655     </dd>
656     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
657     <dd>
658     <p>Starts (activates) the given watcher. Only active watchers will receive
659     events. If the watcher is already active nothing will happen.</p>
660     </dd>
661     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
662     <dd>
663     <p>Stops the given watcher again (if active) and clears the pending
664     status. It is possible that stopped watchers are pending (for example,
665     non-repeating timers are being stopped when they become pending), but
666     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
667     you want to free or reuse the memory used by the watcher it is therefore a
668     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
669     </dd>
670     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
671     <dd>
672     <p>Returns a true value iff the watcher is active (i.e. it has been started
673     and not yet been stopped). As long as a watcher is active you must not modify
674     it.</p>
675     </dd>
676     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
677     <dd>
678     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
679     events but its callback has not yet been invoked). As long as a watcher
680     is pending (but not active) you must not call an init function on it (but
681     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
682     libev (e.g. you cnanot <code>free ()</code> it).</p>
683     </dd>
684     <dt>callback = ev_cb (ev_TYPE *watcher)</dt>
685     <dd>
686     <p>Returns the callback currently set on the watcher.</p>
687     </dd>
688     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
689     <dd>
690     <p>Change the callback. You can change the callback at virtually any time
691     (modulo threads).</p>
692     </dd>
693     </dl>
694    
695    
696    
697    
698    
699     </div>
700 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
701     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
702     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
703 root 1.14 and read at any time, libev will completely ignore it. This can be used
704 root 1.1 to associate arbitrary data with your watcher. If you need more data and
705     don't want to allocate memory and store a pointer to it in that data
706     member, you can also &quot;subclass&quot; the watcher type and provide your own
707     data:</p>
708     <pre> struct my_io
709     {
710     struct ev_io io;
711     int otherfd;
712     void *somedata;
713     struct whatever *mostinteresting;
714     }
715    
716     </pre>
717     <p>And since your callback will be called with a pointer to the watcher, you
718     can cast it back to your own type:</p>
719     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
720     {
721     struct my_io *w = (struct my_io *)w_;
722     ...
723     }
724    
725     </pre>
726     <p>More interesting and less C-conformant ways of catsing your callback type
727     have been omitted....</p>
728    
729    
730    
731    
732    
733     </div>
734     <h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p>
735     <div id="WATCHER_TYPES_CONTENT">
736     <p>This section describes each watcher in detail, but will not repeat
737     information given in the last section.</p>
738    
739 root 1.35
740    
741    
742    
743 root 1.1 </div>
744 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
745 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
746 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
747 root 1.43 in each iteration of the event loop, or, more precisely, when reading
748     would not block the process and writing would at least be able to write
749     some data. This behaviour is called level-triggering because you keep
750     receiving events as long as the condition persists. Remember you can stop
751     the watcher if you don't want to act on the event and neither want to
752     receive future events.</p>
753 root 1.25 <p>In general you can register as many read and/or write event watchers per
754 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
755     descriptors to non-blocking mode is also usually a good idea (but not
756     required if you know what you are doing).</p>
757     <p>You have to be careful with dup'ed file descriptors, though. Some backends
758     (the linux epoll backend is a notable example) cannot handle dup'ed file
759     descriptors correctly if you register interest in two or more fds pointing
760 root 1.43 to the same underlying file/socket/etc. description (that is, they share
761 root 1.26 the same underlying &quot;file open&quot;).</p>
762 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
763 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
764     <code>EVBACKEND_POLL</code>).</p>
765 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
766     receive &quot;spurious&quot; readyness notifications, that is your callback might
767     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
768     because there is no data. Not only are some backends known to create a
769     lot of those (for example solaris ports), it is very easy to get into
770     this situation even with a relatively standard program structure. Thus
771     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
772     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
773     <p>If you cannot run the fd in non-blocking mode (for example you should not
774     play around with an Xlib connection), then you have to seperately re-test
775     wether a file descriptor is really ready with a known-to-be good interface
776     such as poll (fortunately in our Xlib example, Xlib already does this on
777     its own, so its quite safe to use).</p>
778 root 1.1 <dl>
779     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
780     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
781     <dd>
782 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
783     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
784     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
785 root 1.1 </dd>
786     </dl>
787 root 1.35 <p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
788     readable, but only once. Since it is likely line-buffered, you could
789     attempt to read a whole line in the callback:</p>
790     <pre> static void
791     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
792     {
793     ev_io_stop (loop, w);
794     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
795     }
796    
797     ...
798     struct ev_loop *loop = ev_default_init (0);
799     struct ev_io stdin_readable;
800     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
801     ev_io_start (loop, &amp;stdin_readable);
802     ev_loop (loop, 0);
803    
804    
805    
806    
807     </pre>
808 root 1.1
809     </div>
810 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
811 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
812 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
813     given time, and optionally repeating in regular intervals after that.</p>
814     <p>The timers are based on real time, that is, if you register an event that
815 root 1.25 times out after an hour and you reset your system clock to last years
816 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
817 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
818 root 1.1 monotonic clock option helps a lot here).</p>
819 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
820     time. This is usually the right thing as this timestamp refers to the time
821 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
822     you suspect event processing to be delayed and you <i>need</i> to base the timeout
823 root 1.25 on the current time, use something like this to adjust for this:</p>
824 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
825    
826     </pre>
827 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
828     but if multiple timers become ready during the same loop iteration then
829     order of execution is undefined.</p>
830 root 1.1 <dl>
831     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
832     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
833     <dd>
834     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
835     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
836     timer will automatically be configured to trigger again <code>repeat</code> seconds
837     later, again, and again, until stopped manually.</p>
838     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
839     configure a timer to trigger every 10 seconds, then it will trigger at
840     exactly 10 second intervals. If, however, your program cannot keep up with
841 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
842 root 1.1 timer will not fire more than once per event loop iteration.</p>
843     </dd>
844     <dt>ev_timer_again (loop)</dt>
845     <dd>
846     <p>This will act as if the timer timed out and restart it again if it is
847     repeating. The exact semantics are:</p>
848     <p>If the timer is started but nonrepeating, stop it.</p>
849     <p>If the timer is repeating, either start it if necessary (with the repeat
850     value), or reset the running timer to the repeat value.</p>
851     <p>This sounds a bit complicated, but here is a useful and typical
852     example: Imagine you have a tcp connection and you want a so-called idle
853     timeout, that is, you want to be called when there have been, say, 60
854     seconds of inactivity on the socket. The easiest way to do this is to
855 root 1.10 configure an <code>ev_timer</code> with after=repeat=60 and calling ev_timer_again each
856 root 1.1 time you successfully read or write some data. If you go into an idle
857     state where you do not expect data to travel on the socket, you can stop
858     the timer, and again will automatically restart it if need be.</p>
859     </dd>
860     </dl>
861 root 1.35 <p>Example: create a timer that fires after 60 seconds.</p>
862     <pre> static void
863     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
864     {
865     .. one minute over, w is actually stopped right here
866     }
867    
868     struct ev_timer mytimer;
869     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
870     ev_timer_start (loop, &amp;mytimer);
871    
872     </pre>
873     <p>Example: create a timeout timer that times out after 10 seconds of
874     inactivity.</p>
875     <pre> static void
876     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
877     {
878     .. ten seconds without any activity
879     }
880    
881     struct ev_timer mytimer;
882     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
883     ev_timer_again (&amp;mytimer); /* start timer */
884     ev_loop (loop, 0);
885    
886     // and in some piece of code that gets executed on any &quot;activity&quot;:
887     // reset the timeout to start ticking again at 10 seconds
888     ev_timer_again (&amp;mytimer);
889    
890    
891    
892    
893     </pre>
894 root 1.1
895     </div>
896 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
897 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
898 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
899     (and unfortunately a bit complex).</p>
900 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
901 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
902     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
903 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
904     + 10.</code>) and then reset your system clock to the last year, then it will
905 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
906 root 1.1 roughly 10 seconds later and of course not if you reset your system time
907     again).</p>
908     <p>They can also be used to implement vastly more complex timers, such as
909     triggering an event on eahc midnight, local time.</p>
910 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
911     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
912     during the same loop iteration then order of execution is undefined.</p>
913 root 1.1 <dl>
914     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
915     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
916     <dd>
917     <p>Lots of arguments, lets sort it out... There are basically three modes of
918     operation, and we will explain them from simplest to complex:</p>
919     <p>
920     <dl>
921     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
922     <dd>
923     <p>In this configuration the watcher triggers an event at the wallclock time
924     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
925     that is, if it is to be run at January 1st 2011 then it will run when the
926     system time reaches or surpasses this time.</p>
927     </dd>
928     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
929     <dd>
930     <p>In this mode the watcher will always be scheduled to time out at the next
931     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
932     of any time jumps.</p>
933     <p>This can be used to create timers that do not drift with respect to system
934     time:</p>
935     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
936    
937     </pre>
938     <p>This doesn't mean there will always be 3600 seconds in between triggers,
939     but only that the the callback will be called when the system time shows a
940 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
941 root 1.1 by 3600.</p>
942     <p>Another way to think about it (for the mathematically inclined) is that
943 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
944 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
945     </dd>
946     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
947     <dd>
948     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
949     ignored. Instead, each time the periodic watcher gets scheduled, the
950     reschedule callback will be called with the watcher as first, and the
951     current time as second argument.</p>
952 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
953     ever, or make any event loop modifications</i>. If you need to stop it,
954     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
955     starting a prepare watcher).</p>
956 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
957     ev_tstamp now)</code>, e.g.:</p>
958 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
959     {
960     return now + 60.;
961     }
962    
963     </pre>
964     <p>It must return the next time to trigger, based on the passed time value
965     (that is, the lowest time value larger than to the second argument). It
966     will usually be called just before the callback will be triggered, but
967     might be called at other times, too.</p>
968 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
969 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
970 root 1.1 <p>This can be used to create very complex timers, such as a timer that
971     triggers on each midnight, local time. To do this, you would calculate the
972 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
973     you do this is, again, up to you (but it is not trivial, which is the main
974     reason I omitted it as an example).</p>
975 root 1.1 </dd>
976     </dl>
977     </p>
978     </dd>
979     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
980     <dd>
981     <p>Simply stops and restarts the periodic watcher again. This is only useful
982     when you changed some parameters or the reschedule callback would return
983     a different time than the last time it was called (e.g. in a crond like
984     program when the crontabs have changed).</p>
985     </dd>
986     </dl>
987 root 1.35 <p>Example: call a callback every hour, or, more precisely, whenever the
988     system clock is divisible by 3600. The callback invocation times have
989     potentially a lot of jittering, but good long-term stability.</p>
990     <pre> static void
991     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
992     {
993     ... its now a full hour (UTC, or TAI or whatever your clock follows)
994     }
995    
996     struct ev_periodic hourly_tick;
997     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
998     ev_periodic_start (loop, &amp;hourly_tick);
999    
1000     </pre>
1001     <p>Example: the same as above, but use a reschedule callback to do it:</p>
1002     <pre> #include &lt;math.h&gt;
1003    
1004     static ev_tstamp
1005     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1006     {
1007     return fmod (now, 3600.) + 3600.;
1008     }
1009    
1010     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1011    
1012     </pre>
1013     <p>Example: call a callback every hour, starting now:</p>
1014     <pre> struct ev_periodic hourly_tick;
1015     ev_periodic_init (&amp;hourly_tick, clock_cb,
1016     fmod (ev_now (loop), 3600.), 3600., 0);
1017     ev_periodic_start (loop, &amp;hourly_tick);
1018    
1019    
1020    
1021    
1022     </pre>
1023 root 1.1
1024     </div>
1025 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1026 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1027 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1028     signal one or more times. Even though signals are very asynchronous, libev
1029 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1030 root 1.1 normal event processing, like any other event.</p>
1031 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1032 root 1.1 first watcher gets started will libev actually register a signal watcher
1033     with the kernel (thus it coexists with your own signal handlers as long
1034     as you don't register any with libev). Similarly, when the last signal
1035     watcher for a signal is stopped libev will reset the signal handler to
1036     SIG_DFL (regardless of what it was set to before).</p>
1037     <dl>
1038     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1039     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1040     <dd>
1041     <p>Configures the watcher to trigger on the given signal number (usually one
1042     of the <code>SIGxxx</code> constants).</p>
1043     </dd>
1044     </dl>
1045    
1046 root 1.36
1047    
1048    
1049    
1050 root 1.1 </div>
1051 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1052     <div id="code_ev_child_code_watch_out_for_pro-2">
1053 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1054     some child status changes (most typically when a child of yours dies).</p>
1055     <dl>
1056     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1057     <dt>ev_child_set (ev_child *, int pid)</dt>
1058     <dd>
1059     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1060     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1061     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1062 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1063     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1064     process causing the status change.</p>
1065 root 1.1 </dd>
1066     </dl>
1067 root 1.35 <p>Example: try to exit cleanly on SIGINT and SIGTERM.</p>
1068     <pre> static void
1069     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1070     {
1071     ev_unloop (loop, EVUNLOOP_ALL);
1072     }
1073    
1074     struct ev_signal signal_watcher;
1075     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1076     ev_signal_start (loop, &amp;sigint_cb);
1077    
1078    
1079    
1080    
1081     </pre>
1082 root 1.1
1083     </div>
1084 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1085 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1086 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1087     (prepare, check and other idle watchers do not count). That is, as long
1088     as your process is busy handling sockets or timeouts (or even signals,
1089     imagine) it will not be triggered. But when your process is idle all idle
1090     watchers are being called again and again, once per event loop iteration -
1091     until stopped, that is, or your process receives more events and becomes
1092     busy.</p>
1093 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1094     active, the process will not block when waiting for new events.</p>
1095     <p>Apart from keeping your process non-blocking (which is a useful
1096     effect on its own sometimes), idle watchers are a good place to do
1097     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1098     event loop has handled all outstanding events.</p>
1099     <dl>
1100     <dt>ev_idle_init (ev_signal *, callback)</dt>
1101     <dd>
1102     <p>Initialises and configures the idle watcher - it has no parameters of any
1103     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1104     believe me.</p>
1105     </dd>
1106     </dl>
1107 root 1.35 <p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the
1108     callback, free it. Alos, use no error checking, as usual.</p>
1109     <pre> static void
1110     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1111     {
1112     free (w);
1113     // now do something you wanted to do when the program has
1114     // no longer asnything immediate to do.
1115     }
1116    
1117     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1118     ev_idle_init (idle_watcher, idle_cb);
1119     ev_idle_start (loop, idle_cb);
1120    
1121    
1122    
1123    
1124     </pre>
1125 root 1.1
1126     </div>
1127 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1128 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1129 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1130 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1131 root 1.14 afterwards.</p>
1132 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1133     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1134     watchers. Other loops than the current one are fine, however. The
1135     rationale behind this is that you do not need to check for recursion in
1136     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1137     <code>ev_check</code> so if you have one watcher of each kind they will always be
1138     called in pairs bracketing the blocking call.</p>
1139 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1140     their use is somewhat advanced. This could be used, for example, to track
1141     variable changes, implement your own watchers, integrate net-snmp or a
1142 root 1.46 coroutine library and lots more. They are also occasionally useful if
1143     you cache some data and want to flush it before blocking (for example,
1144     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1145     watcher).</p>
1146 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1147 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1148     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1149     provide just this functionality). Then, in the check watcher you check for
1150     any events that occured (by checking the pending status of all watchers
1151     and stopping them) and call back into the library. The I/O and timer
1152 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1153 root 1.14 because you never know, you know?).</p>
1154     <p>As another example, the Perl Coro module uses these hooks to integrate
1155 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1156     during each prepare and only letting the process block if no coroutines
1157 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1158     with priority higher than or equal to the event loop and one coroutine
1159     of lower priority, but only once, using idle watchers to keep the event
1160     loop from blocking if lower-priority coroutines are active, thus mapping
1161     low-priority coroutines to idle/background tasks).</p>
1162 root 1.1 <dl>
1163     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1164     <dt>ev_check_init (ev_check *, callback)</dt>
1165     <dd>
1166     <p>Initialises and configures the prepare or check watcher - they have no
1167     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1168 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1169 root 1.1 </dd>
1170     </dl>
1171 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1172     and a timeout watcher in a prepare handler, as required by libadns, and
1173     in a check watcher, destroy them and call into libadns. What follows is
1174     pseudo-code only of course:</p>
1175     <pre> static ev_io iow [nfd];
1176     static ev_timer tw;
1177    
1178     static void
1179     io_cb (ev_loop *loop, ev_io *w, int revents)
1180     {
1181     // set the relevant poll flags
1182 root 1.47 // could also call adns_processreadable etc. here
1183 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1184     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1185     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1186     }
1187    
1188     // create io watchers for each fd and a timer before blocking
1189     static void
1190     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1191     {
1192     int timeout = 3600000;truct pollfd fds [nfd];
1193     // actual code will need to loop here and realloc etc.
1194     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1195    
1196     /* the callback is illegal, but won't be called as we stop during check */
1197     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1198     ev_timer_start (loop, &amp;tw);
1199    
1200     // create on ev_io per pollfd
1201     for (int i = 0; i &lt; nfd; ++i)
1202     {
1203     ev_io_init (iow + i, io_cb, fds [i].fd,
1204     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1205     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1206    
1207     fds [i].revents = 0;
1208     iow [i].data = fds + i;
1209     ev_io_start (loop, iow + i);
1210     }
1211     }
1212    
1213     // stop all watchers after blocking
1214     static void
1215     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1216     {
1217     ev_timer_stop (loop, &amp;tw);
1218    
1219     for (int i = 0; i &lt; nfd; ++i)
1220     ev_io_stop (loop, iow + i);
1221    
1222     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1223     }
1224 root 1.35
1225    
1226    
1227    
1228 root 1.46 </pre>
1229 root 1.1
1230     </div>
1231 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1232 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1233     <p>This is a rather advanced watcher type that lets you embed one event loop
1234 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1235     loop, other types of watchers might be handled in a delayed or incorrect
1236     fashion and must not be used).</p>
1237 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1238     prioritise I/O.</p>
1239     <p>As an example for a bug workaround, the kqueue backend might only support
1240     sockets on some platform, so it is unusable as generic backend, but you
1241     still want to make use of it because you have many sockets and it scales
1242     so nicely. In this case, you would create a kqueue-based loop and embed it
1243     into your default loop (which might use e.g. poll). Overall operation will
1244     be a bit slower because first libev has to poll and then call kevent, but
1245     at least you can use both at what they are best.</p>
1246     <p>As for prioritising I/O: rarely you have the case where some fds have
1247     to be watched and handled very quickly (with low latency), and even
1248     priorities and idle watchers might have too much overhead. In this case
1249     you would put all the high priority stuff in one loop and all the rest in
1250     a second one, and embed the second one in the first.</p>
1251 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1252     there might be events pending in the embedded loop. The callback must then
1253     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1254     their callbacks (you could also start an idle watcher to give the embedded
1255     loop strictly lower priority for example). You can also set the callback
1256     to <code>0</code>, in which case the embed watcher will automatically execute the
1257     embedded loop sweep.</p>
1258 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1259     callback will be invoked whenever some events have been handled. You can
1260     set the callback to <code>0</code> to avoid having to specify one if you are not
1261     interested in that.</p>
1262     <p>Also, there have not currently been made special provisions for forking:
1263     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1264     but you will also have to stop and restart any <code>ev_embed</code> watchers
1265     yourself.</p>
1266     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1267     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1268     portable one.</p>
1269     <p>So when you want to use this feature you will always have to be prepared
1270     that you cannot get an embeddable loop. The recommended way to get around
1271     this is to have a separate variables for your embeddable loop, try to
1272     create it, and if that fails, use the normal loop for everything:</p>
1273     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1274     struct ev_loop *loop_lo = 0;
1275     struct ev_embed embed;
1276    
1277     // see if there is a chance of getting one that works
1278     // (remember that a flags value of 0 means autodetection)
1279     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1280     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1281     : 0;
1282    
1283     // if we got one, then embed it, otherwise default to loop_hi
1284     if (loop_lo)
1285     {
1286     ev_embed_init (&amp;embed, 0, loop_lo);
1287     ev_embed_start (loop_hi, &amp;embed);
1288     }
1289     else
1290     loop_lo = loop_hi;
1291    
1292     </pre>
1293     <dl>
1294 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1295     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1296 root 1.36 <dd>
1297 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1298     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1299     invoked automatically, otherwise it is the responsibility of the callback
1300     to invoke it (it will continue to be called until the sweep has been done,
1301     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1302     </dd>
1303     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1304     <dd>
1305     <p>Make a single, non-blocking sweep over the embedded loop. This works
1306     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1307     apropriate way for embedded loops.</p>
1308 root 1.36 </dd>
1309     </dl>
1310    
1311    
1312    
1313    
1314    
1315     </div>
1316 root 1.1 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
1317     <div id="OTHER_FUNCTIONS_CONTENT">
1318 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1319 root 1.1 <dl>
1320     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1321     <dd>
1322     <p>This function combines a simple timer and an I/O watcher, calls your
1323     callback on whichever event happens first and automatically stop both
1324     watchers. This is useful if you want to wait for a single event on an fd
1325 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1326 root 1.1 more watchers yourself.</p>
1327 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1328     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1329     <code>events</code> set will be craeted and started.</p>
1330 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1331 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1332     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1333     dubious value.</p>
1334     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1335 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1336 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1337     value passed to <code>ev_once</code>:</p>
1338 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1339     {
1340     if (revents &amp; EV_TIMEOUT)
1341 root 1.14 /* doh, nothing entered */;
1342 root 1.1 else if (revents &amp; EV_READ)
1343 root 1.14 /* stdin might have data for us, joy! */;
1344 root 1.1 }
1345    
1346 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1347 root 1.1
1348     </pre>
1349     </dd>
1350 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1351 root 1.1 <dd>
1352     <p>Feeds the given event set into the event loop, as if the specified event
1353 root 1.14 had happened for the specified watcher (which must be a pointer to an
1354     initialised but not necessarily started event watcher).</p>
1355 root 1.1 </dd>
1356 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1357 root 1.1 <dd>
1358 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1359     the given events it.</p>
1360 root 1.1 </dd>
1361 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1362 root 1.1 <dd>
1363 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1364     loop!).</p>
1365 root 1.1 </dd>
1366     </dl>
1367    
1368 root 1.35
1369    
1370    
1371    
1372 root 1.1 </div>
1373 root 1.23 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
1374     <div id="LIBEVENT_EMULATION_CONTENT">
1375 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1376     emulate the internals of libevent, so here are some usage hints:</p>
1377     <dl>
1378     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1379     <dt>* The following members are fully supported: ev_base, ev_callback,
1380     ev_arg, ev_fd, ev_res, ev_events.</dt>
1381     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1382     maintained by libev, it does not work exactly the same way as in libevent (consider
1383     it a private API).</dt>
1384     <dt>* Priorities are not currently supported. Initialising priorities
1385     will fail and all watchers will have the same priority, even though there
1386     is an ev_pri field.</dt>
1387     <dt>* Other members are not supported.</dt>
1388     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1389     to use the libev header file and library.</dt>
1390     </dl>
1391 root 1.23
1392     </div>
1393     <h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p>
1394     <div id="C_SUPPORT_CONTENT">
1395 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1396     you to use some convinience methods to start/stop watchers and also change
1397     the callback model to a model using method callbacks on objects.</p>
1398     <p>To use it,</p>
1399     <pre> #include &lt;ev++.h&gt;
1400    
1401     </pre>
1402     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1403     and puts all of its definitions (many of them macros) into the global
1404     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1405     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1406     <code>EV_MULTIPLICITY</code>.</p>
1407     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1408     <dl>
1409     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1410     <dd>
1411     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1412     macros from <cite>ev.h</cite>.</p>
1413     </dd>
1414     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1415     <dd>
1416     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1417     </dd>
1418     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1419     <dd>
1420     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1421     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1422     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1423     defines by many implementations.</p>
1424     <p>All of those classes have these methods:</p>
1425     <p>
1426     <dl>
1427     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1428     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1429     <dt>ev::TYPE::~TYPE</dt>
1430     <dd>
1431     <p>The constructor takes a pointer to an object and a method pointer to
1432     the event handler callback to call in this class. The constructor calls
1433     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1434     before starting it. If you do not specify a loop then the constructor
1435     automatically associates the default loop with this watcher.</p>
1436     <p>The destructor automatically stops the watcher if it is active.</p>
1437     </dd>
1438     <dt>w-&gt;set (struct ev_loop *)</dt>
1439     <dd>
1440     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1441     do this when the watcher is inactive (and not pending either).</p>
1442     </dd>
1443     <dt>w-&gt;set ([args])</dt>
1444     <dd>
1445     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1446     called at least once. Unlike the C counterpart, an active watcher gets
1447     automatically stopped and restarted.</p>
1448     </dd>
1449     <dt>w-&gt;start ()</dt>
1450     <dd>
1451     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1452     constructor already takes the loop.</p>
1453     </dd>
1454     <dt>w-&gt;stop ()</dt>
1455     <dd>
1456     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1457     </dd>
1458     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1459     <dd>
1460     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1461     <code>ev_TYPE_again</code> function.</p>
1462     </dd>
1463     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1464     <dd>
1465     <p>Invokes <code>ev_embed_sweep</code>.</p>
1466     </dd>
1467     </dl>
1468     </p>
1469     </dd>
1470     </dl>
1471     <p>Example: Define a class with an IO and idle watcher, start one of them in
1472     the constructor.</p>
1473     <pre> class myclass
1474     {
1475     ev_io io; void io_cb (ev::io &amp;w, int revents);
1476     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1477    
1478     myclass ();
1479     }
1480    
1481     myclass::myclass (int fd)
1482     : io (this, &amp;myclass::io_cb),
1483     idle (this, &amp;myclass::idle_cb)
1484     {
1485     io.start (fd, ev::READ);
1486     }
1487    
1488     </pre>
1489 root 1.23
1490     </div>
1491 root 1.40 <h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
1492     <div id="EMBEDDING_CONTENT">
1493     <p>Libev can (and often is) directly embedded into host
1494     applications. Examples of applications that embed it include the Deliantra
1495     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1496     and rxvt-unicode.</p>
1497     <p>The goal is to enable you to just copy the neecssary files into your
1498     source directory without having to change even a single line in them, so
1499     you can easily upgrade by simply copying (or having a checked-out copy of
1500     libev somewhere in your source tree).</p>
1501    
1502     </div>
1503     <h2 id="FILESETS">FILESETS</h2>
1504     <div id="FILESETS_CONTENT">
1505     <p>Depending on what features you need you need to include one or more sets of files
1506     in your app.</p>
1507    
1508     </div>
1509     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1510     <div id="CORE_EVENT_LOOP_CONTENT">
1511     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1512     configuration (no autoconf):</p>
1513     <pre> #define EV_STANDALONE 1
1514     #include &quot;ev.c&quot;
1515    
1516     </pre>
1517     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1518     single C source file only to provide the function implementations. To use
1519     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1520     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1521     where you can put other configuration options):</p>
1522     <pre> #define EV_STANDALONE 1
1523     #include &quot;ev.h&quot;
1524    
1525     </pre>
1526     <p>Both header files and implementation files can be compiled with a C++
1527     compiler (at least, thats a stated goal, and breakage will be treated
1528     as a bug).</p>
1529     <p>You need the following files in your source tree, or in a directory
1530     in your include path (e.g. in libev/ when using -Ilibev):</p>
1531     <pre> ev.h
1532     ev.c
1533     ev_vars.h
1534     ev_wrap.h
1535    
1536     ev_win32.c required on win32 platforms only
1537    
1538 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1539 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1540     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1541     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1542     ev_port.c only when the solaris port backend is enabled (disabled by default)
1543    
1544     </pre>
1545     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1546 root 1.44 to compile this single file.</p>
1547 root 1.40
1548     </div>
1549     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1550     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1551     <p>To include the libevent compatibility API, also include:</p>
1552     <pre> #include &quot;event.c&quot;
1553    
1554     </pre>
1555     <p>in the file including <cite>ev.c</cite>, and:</p>
1556     <pre> #include &quot;event.h&quot;
1557    
1558     </pre>
1559     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1560     <p>You need the following additional files for this:</p>
1561     <pre> event.h
1562     event.c
1563    
1564     </pre>
1565    
1566     </div>
1567     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1568     <div id="AUTOCONF_SUPPORT_CONTENT">
1569     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1570     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1571 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1572     include <cite>config.h</cite> and configure itself accordingly.</p>
1573 root 1.40 <p>For this of course you need the m4 file:</p>
1574     <pre> libev.m4
1575    
1576     </pre>
1577    
1578     </div>
1579     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1580     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1581     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1582     before including any of its files. The default is not to build for multiplicity
1583     and only include the select backend.</p>
1584     <dl>
1585     <dt>EV_STANDALONE</dt>
1586     <dd>
1587     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1588     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1589     implementations for some libevent functions (such as logging, which is not
1590     supported). It will also not define any of the structs usually found in
1591     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1592     </dd>
1593     <dt>EV_USE_MONOTONIC</dt>
1594     <dd>
1595     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1596     monotonic clock option at both compiletime and runtime. Otherwise no use
1597     of the monotonic clock option will be attempted. If you enable this, you
1598     usually have to link against librt or something similar. Enabling it when
1599     the functionality isn't available is safe, though, althoguh you have
1600     to make sure you link against any libraries where the <code>clock_gettime</code>
1601     function is hiding in (often <cite>-lrt</cite>).</p>
1602     </dd>
1603     <dt>EV_USE_REALTIME</dt>
1604     <dd>
1605     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1606     realtime clock option at compiletime (and assume its availability at
1607     runtime if successful). Otherwise no use of the realtime clock option will
1608     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1609     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1610     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1611     </dd>
1612     <dt>EV_USE_SELECT</dt>
1613     <dd>
1614     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1615     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1616     other method takes over, select will be it. Otherwise the select backend
1617     will not be compiled in.</p>
1618     </dd>
1619     <dt>EV_SELECT_USE_FD_SET</dt>
1620     <dd>
1621     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1622     structure. This is useful if libev doesn't compile due to a missing
1623     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1624     exotic systems. This usually limits the range of file descriptors to some
1625     low limit such as 1024 or might have other limitations (winsocket only
1626     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1627     influence the size of the <code>fd_set</code> used.</p>
1628     </dd>
1629     <dt>EV_SELECT_IS_WINSOCKET</dt>
1630     <dd>
1631     <p>When defined to <code>1</code>, the select backend will assume that
1632     select/socket/connect etc. don't understand file descriptors but
1633     wants osf handles on win32 (this is the case when the select to
1634     be used is the winsock select). This means that it will call
1635     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1636     it is assumed that all these functions actually work on fds, even
1637     on win32. Should not be defined on non-win32 platforms.</p>
1638     </dd>
1639     <dt>EV_USE_POLL</dt>
1640     <dd>
1641     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1642     backend. Otherwise it will be enabled on non-win32 platforms. It
1643     takes precedence over select.</p>
1644     </dd>
1645     <dt>EV_USE_EPOLL</dt>
1646     <dd>
1647     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
1648     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
1649     otherwise another method will be used as fallback. This is the
1650     preferred backend for GNU/Linux systems.</p>
1651     </dd>
1652     <dt>EV_USE_KQUEUE</dt>
1653     <dd>
1654     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
1655     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
1656     otherwise another method will be used as fallback. This is the preferred
1657     backend for BSD and BSD-like systems, although on most BSDs kqueue only
1658     supports some types of fds correctly (the only platform we found that
1659     supports ptys for example was NetBSD), so kqueue might be compiled in, but
1660     not be used unless explicitly requested. The best way to use it is to find
1661 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
1662 root 1.40 kqueue loop.</p>
1663     </dd>
1664     <dt>EV_USE_PORT</dt>
1665     <dd>
1666     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
1667     10 port style backend. Its availability will be detected at runtime,
1668     otherwise another method will be used as fallback. This is the preferred
1669     backend for Solaris 10 systems.</p>
1670     </dd>
1671     <dt>EV_USE_DEVPOLL</dt>
1672     <dd>
1673     <p>reserved for future expansion, works like the USE symbols above.</p>
1674     </dd>
1675     <dt>EV_H</dt>
1676     <dd>
1677     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
1678     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
1679     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
1680     </dd>
1681     <dt>EV_CONFIG_H</dt>
1682     <dd>
1683     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
1684     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
1685     <code>EV_H</code>, above.</p>
1686     </dd>
1687     <dt>EV_EVENT_H</dt>
1688     <dd>
1689     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
1690     of how the <cite>event.h</cite> header can be found.</p>
1691     </dd>
1692     <dt>EV_PROTOTYPES</dt>
1693     <dd>
1694     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
1695     prototypes, but still define all the structs and other symbols. This is
1696     occasionally useful if you want to provide your own wrapper functions
1697     around libev functions.</p>
1698     </dd>
1699     <dt>EV_MULTIPLICITY</dt>
1700     <dd>
1701     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
1702     will have the <code>struct ev_loop *</code> as first argument, and you can create
1703     additional independent event loops. Otherwise there will be no support
1704     for multiple event loops and there is no first event loop pointer
1705     argument. Instead, all functions act on the single default loop.</p>
1706     </dd>
1707     <dt>EV_PERIODICS</dt>
1708     <dd>
1709     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported,
1710     otherwise not. This saves a few kb of code.</p>
1711     </dd>
1712     <dt>EV_COMMON</dt>
1713     <dd>
1714     <p>By default, all watchers have a <code>void *data</code> member. By redefining
1715     this macro to a something else you can include more and other types of
1716     members. You have to define it each time you include one of the files,
1717     though, and it must be identical each time.</p>
1718     <p>For example, the perl EV module uses something like this:</p>
1719     <pre> #define EV_COMMON \
1720     SV *self; /* contains this struct */ \
1721     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
1722    
1723     </pre>
1724     </dd>
1725 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
1726     <dt>EV_CB_INVOKE (watcher, revents)</dt>
1727     <dt>ev_set_cb (ev, cb)</dt>
1728 root 1.40 <dd>
1729     <p>Can be used to change the callback member declaration in each watcher,
1730     and the way callbacks are invoked and set. Must expand to a struct member
1731     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
1732     their default definitions. One possible use for overriding these is to
1733 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
1734     method calls instead of plain function calls in C++.</p>
1735 root 1.40
1736     </div>
1737     <h2 id="EXAMPLES">EXAMPLES</h2>
1738     <div id="EXAMPLES_CONTENT">
1739     <p>For a real-world example of a program the includes libev
1740     verbatim, you can have a look at the EV perl module
1741     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
1742     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
1743     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
1744     will be compiled. It is pretty complex because it provides its own header
1745     file.</p>
1746     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
1747     that everybody includes and which overrides some autoconf choices:</p>
1748 root 1.41 <pre> #define EV_USE_POLL 0
1749     #define EV_MULTIPLICITY 0
1750     #define EV_PERIODICS 0
1751     #define EV_CONFIG_H &lt;config.h&gt;
1752 root 1.40
1753 root 1.41 #include &quot;ev++.h&quot;
1754 root 1.40
1755     </pre>
1756     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
1757 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
1758     #include &quot;ev.c&quot;
1759 root 1.40
1760 root 1.47
1761    
1762    
1763 root 1.40 </pre>
1764    
1765     </div>
1766 root 1.47 <h1 id="COMPLEXITIES">COMPLEXITIES</h1><p><a href="#TOP" class="toplink">Top</a></p>
1767     <div id="COMPLEXITIES_CONTENT">
1768     <p>In this section the complexities of (many of) the algorithms used inside
1769     libev will be explained. For complexity discussions about backends see the
1770     documentation for <code>ev_default_init</code>.</p>
1771     <p>
1772     <dl>
1773     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
1774     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
1775     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
1776     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
1777     <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % 16))</dt>
1778     <dt>Finding the next timer per loop iteration: O(1)</dt>
1779     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
1780     <dt>Activating one watcher: O(1)</dt>
1781     </dl>
1782     </p>
1783    
1784    
1785    
1786    
1787    
1788     </div>
1789 root 1.1 <h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
1790     <div id="AUTHOR_CONTENT">
1791 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
1792 root 1.1
1793     </div>
1794     </div></body>
1795     </html>