--- libev/ev.html 2007/11/12 08:47:14 1.17 +++ libev/ev.html 2007/11/24 10:19:14 1.42 @@ -6,7 +6,7 @@ - + @@ -19,10 +19,12 @@
  • DESCRIPTION
  • FEATURES
  • CONVENTIONS
  • -
  • TIME AND OTHER GLOBAL FUNCTIONS
  • +
  • TIME REPRESENTATION
  • +
  • GLOBAL FUNCTIONS
  • FUNCTIONS CONTROLLING THE EVENT LOOP
  • ANATOMY OF A WATCHER -
  • OTHER FUNCTIONS
  • +
  • LIBEVENT EMULATION
  • +
  • C++ SUPPORT
  • +
  • EMBEDDING + +
  • AUTHOR

  • @@ -89,17 +105,30 @@ will not have this argument.

    -

    TIME AND OTHER GLOBAL FUNCTIONS

    Top

    -
    +

    TIME REPRESENTATION

    Top

    +

    Libev represents time as a single floating point number, representing the (fractional) number of seconds since the (POSIX) epoch (somewhere near the beginning of 1970, details are complicated, don't ask). This type is called ev_tstamp, which is what you should use too. It usually aliases -to the double type in C.

    +to the double type in C, and when you need to do any calculations on +it, you should treat it as such.

    + + + + + +
    +

    GLOBAL FUNCTIONS

    Top

    +
    +

    These functions can be called anytime, even before initialising the +library in any way.

    ev_tstamp ev_time ()
    -

    Returns the current time as libev would use it.

    +

    Returns the current time as libev would use it. Please note that the +ev_now function is usually faster and also often returns the timestamp +you actually want to know.

    int ev_version_major ()
    int ev_version_minor ()
    @@ -113,6 +142,44 @@ as this indicates an incompatible change. Minor versions are usually compatible to older versions, so a larger minor version alone is usually not a problem.

    +

    Example: make sure we haven't accidentally been linked against the wrong +version:

    +
      assert (("libev version mismatch",
    +           ev_version_major () == EV_VERSION_MAJOR
    +           && ev_version_minor () >= EV_VERSION_MINOR));
    +
    +
    + +
    unsigned int ev_supported_backends ()
    +
    +

    Return the set of all backends (i.e. their corresponding EV_BACKEND_* +value) compiled into this binary of libev (independent of their +availability on the system you are running on). See ev_default_loop for +a description of the set values.

    +

    Example: make sure we have the epoll method, because yeah this is cool and +a must have and can we have a torrent of it please!!!11

    +
      assert (("sorry, no epoll, no sex",
    +           ev_supported_backends () & EVBACKEND_EPOLL));
    +
    +
    +
    +
    unsigned int ev_recommended_backends ()
    +
    +

    Return the set of all backends compiled into this binary of libev and also +recommended for this platform. This set is often smaller than the one +returned by ev_supported_backends, as for example kqueue is broken on +most BSDs and will not be autodetected unless you explicitly request it +(assuming you know what you are doing). This is the set of backends that +libev will probe for if you specify no backends explicitly.

    +
    +
    unsigned int ev_embeddable_backends ()
    +
    +

    Returns the set of backends that are embeddable in other event loops. This +is the theoretical, all-platform, value. To find which backends +might be supported on the current system, you would need to look at +ev_embeddable_backends () & ev_supported_backends (), likewise for +recommended ones.

    +

    See the description of ev_embed watchers for more info.

    ev_set_allocator (void *(*cb)(void *ptr, long size))
    @@ -124,6 +191,26 @@

    You could override this function in high-availability programs to, say, free some memory if it cannot allocate memory, to use a special allocator, or even to sleep a while and retry until some memory is available.

    +

    Example: replace the libev allocator with one that waits a bit and then +retries: better than mine).

    +
       static void *
    +   persistent_realloc (void *ptr, long size)
    +   {
    +     for (;;)
    +       {
    +         void *newptr = realloc (ptr, size);
    +
    +         if (newptr)
    +           return newptr;
    +
    +         sleep (60);
    +       }
    +   }
    +
    +   ...
    +   ev_set_allocator (persistent_realloc);
    +
    +
    ev_set_syserr_cb (void (*cb)(const char *msg));
    @@ -134,6 +221,18 @@ matter what, when it returns. That is, libev will generally retry the requested operation, or, if the condition doesn't go away, do bad stuff (such as abort).

    +

    Example: do the same thing as libev does internally:

    +
       static void
    +   fatal_error (const char *msg)
    +   {
    +     perror (msg);
    +     abort ();
    +   }
    +
    +   ...
    +   ev_set_syserr_cb (fatal_error);
    +
    +
    @@ -144,7 +243,7 @@ types of such loops, the default loop, which supports signals and child events, and dynamically created loops which do not.

    If you use threads, a common model is to run the default event loop -in your main thread (or in a separate thrad) and for each thread you +in your main thread (or in a separate thread) and for each thread you create, you also create another event loop. Libev itself does no locking whatsoever, so if you mix calls to the same event loop in different threads, make sure you lock (this is usually a bad idea, though, even if @@ -155,12 +254,12 @@

    This will initialise the default event loop if it hasn't been initialised yet and return it. If the default loop could not be initialised, returns false. If it already was initialised it simply returns it (and ignores the -flags).

    +flags. If that is troubling you, check ev_backend () afterwards).

    If you don't know what event loop to use, use the one returned from this function.

    The flags argument can be used to specify special behaviour or specific -backends to use, and is usually specified as 0 (or EVFLAG_AUTO).

    -

    It supports the following flags:

    +backends to use, and is usually specified as 0 (or EVFLAG_AUTO).

    +

    The following flags are supported:

    EVFLAG_AUTO
    @@ -177,19 +276,90 @@ useful to try out specific backends to test their performance, or to work around bugs.

    -
    EVMETHOD_SELECT (portable select backend)
    -
    EVMETHOD_POLL (poll backend, available everywhere except on windows)
    -
    EVMETHOD_EPOLL (linux only)
    -
    EVMETHOD_KQUEUE (some bsds only)
    -
    EVMETHOD_DEVPOLL (solaris 8 only)
    -
    EVMETHOD_PORT (solaris 10 only)
    -
    -

    If one or more of these are ored into the flags value, then only these -backends will be tried (in the reverse order as given here). If one are -specified, any backend will do.

    +
    EVBACKEND_SELECT (value 1, portable select backend)
    +
    +

    This is your standard select(2) backend. Not completely standard, as +libev tries to roll its own fd_set with no limits on the number of fds, +but if that fails, expect a fairly low limit on the number of fds when +using this backend. It doesn't scale too well (O(highest_fd)), but its usually +the fastest backend for a low number of fds.

    +
    +
    EVBACKEND_POLL (value 2, poll backend, available everywhere except on windows)
    +
    +

    And this is your standard poll(2) backend. It's more complicated than +select, but handles sparse fds better and has no artificial limit on the +number of fds you can use (except it will slow down considerably with a +lot of inactive fds). It scales similarly to select, i.e. O(total_fds).

    +
    +
    EVBACKEND_EPOLL (value 4, Linux)
    +
    +

    For few fds, this backend is a bit little slower than poll and select, +but it scales phenomenally better. While poll and select usually scale like +O(total_fds) where n is the total number of fds (or the highest fd), epoll scales +either O(1) or O(active_fds).

    +

    While stopping and starting an I/O watcher in the same iteration will +result in some caching, there is still a syscall per such incident +(because the fd could point to a different file description now), so its +best to avoid that. Also, dup()ed file descriptors might not work very +well if you register events for both fds.

    +

    Please note that epoll sometimes generates spurious notifications, so you +need to use non-blocking I/O or other means to avoid blocking when no data +(or space) is available.

    +
    +
    EVBACKEND_KQUEUE (value 8, most BSD clones)
    +
    +

    Kqueue deserves special mention, as at the time of this writing, it +was broken on all BSDs except NetBSD (usually it doesn't work with +anything but sockets and pipes, except on Darwin, where of course its +completely useless). For this reason its not being "autodetected" +unless you explicitly specify it explicitly in the flags (i.e. using +EVBACKEND_KQUEUE).

    +

    It scales in the same way as the epoll backend, but the interface to the +kernel is more efficient (which says nothing about its actual speed, of +course). While starting and stopping an I/O watcher does not cause an +extra syscall as with epoll, it still adds up to four event changes per +incident, so its best to avoid that.

    +
    +
    EVBACKEND_DEVPOLL (value 16, Solaris 8)
    +
    +

    This is not implemented yet (and might never be).

    +
    +
    EVBACKEND_PORT (value 32, Solaris 10)
    +
    +

    This uses the Solaris 10 port mechanism. As with everything on Solaris, +it's really slow, but it still scales very well (O(active_fds)).

    +

    Please note that solaris ports can result in a lot of spurious +notifications, so you need to use non-blocking I/O or other means to avoid +blocking when no data (or space) is available.

    +
    +
    EVBACKEND_ALL
    +
    +

    Try all backends (even potentially broken ones that wouldn't be tried +with EVFLAG_AUTO). Since this is a mask, you can do stuff such as +EVBACKEND_ALL & ~EVBACKEND_KQUEUE.

    +

    If one or more of these are ored into the flags value, then only these +backends will be tried (in the reverse order as given here). If none are +specified, most compiled-in backend will be tried, usually in reverse +order of their flag values :)

    +

    The most typical usage is like this:

    +
      if (!ev_default_loop (0))
    +    fatal ("could not initialise libev, bad $LIBEV_FLAGS in environment?");
    +
    +
    +

    Restrict libev to the select and poll backends, and do not allow +environment settings to be taken into account:

    +
      ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
    +
    +
    +

    Use whatever libev has to offer, but make sure that kqueue is used if +available (warning, breaks stuff, best use only with your own private +event loop and only if you know the OS supports your types of fds):

    +
      ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
    +
    +
    struct ev_loop *ev_loop_new (unsigned int flags)
    @@ -197,12 +367,22 @@ always distinct from the default loop. Unlike the default loop, it cannot handle signal and child watchers, and attempts to do so will be greeted by undefined behaviour (or a failed assertion if assertions are enabled).

    +

    Example: try to create a event loop that uses epoll and nothing else.

    +
      struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
    +  if (!epoller)
    +    fatal ("no epoll found here, maybe it hides under your chair");
    +
    +
    ev_default_destroy ()

    Destroys the default loop again (frees all memory and kernel state -etc.). This stops all registered event watchers (by not touching them in -any way whatsoever, although you cannot rely on this :).

    +etc.). None of the active event watchers will be stopped in the normal +sense, so e.g. ev_is_active might still return true. It is your +responsibility to either stop all watchers cleanly yoursef before +calling this function, or cope with the fact afterwards (which is usually +the easiest thing, youc na just ignore the watchers and/or free () them +for example).

    ev_loop_destroy (loop)
    @@ -215,15 +395,18 @@ one. Despite the name, you can call it anytime, but it makes most sense after forking, in either the parent or child process (or both, but that again makes little sense).

    -

    You must call this function after forking if and only if you want to -use the event library in both processes. If you just fork+exec, you don't -have to call it.

    +

    You must call this function in the child process after forking if and +only if you want to use the event library in both processes. If you just +fork+exec, you don't have to call it.

    The function itself is quite fast and it's usually not a problem to call it just in case after a fork. To make this easy, the function will fit in quite nicely into a call to pthread_atfork:

        pthread_atfork (0, 0, ev_default_fork);
     
     
    +

    At the moment, EVBACKEND_SELECT and EVBACKEND_POLL are safe to use +without calling this function, so if you force one of those backends you +do not need to care.

    ev_loop_fork (loop)
    @@ -231,42 +414,76 @@ ev_loop_new. Yes, you have to call this on every allocated event loop after fork, and how you do this is entirely your own problem.

    -
    unsigned int ev_method (loop)
    +
    unsigned int ev_backend (loop)
    -

    Returns one of the EVMETHOD_* flags indicating the event backend in +

    Returns one of the EVBACKEND_* flags indicating the event backend in use.

    ev_tstamp ev_now (loop)

    Returns the current "event loop time", which is the time the event loop -got events and started processing them. This timestamp does not change -as long as callbacks are being processed, and this is also the base time -used for relative timers. You can treat it as the timestamp of the event -occuring (or more correctly, the mainloop finding out about it).

    +received events and started processing them. This timestamp does not +change as long as callbacks are being processed, and this is also the base +time used for relative timers. You can treat it as the timestamp of the +event occuring (or more correctly, libev finding out about it).

    ev_loop (loop, int flags)

    Finally, this is it, the event handler. This function usually is called after you initialised all your watchers and you want to start handling events.

    -

    If the flags argument is specified as 0, it will not return until either -no event watchers are active anymore or ev_unloop was called.

    +

    If the flags argument is specified as 0, it will not return until +either no event watchers are active anymore or ev_unloop was called.

    +

    Please note that an explicit ev_unloop is usually better than +relying on all watchers to be stopped when deciding when a program has +finished (especially in interactive programs), but having a program that +automatically loops as long as it has to and no longer by virtue of +relying on its watchers stopping correctly is a thing of beauty.

    A flags value of EVLOOP_NONBLOCK will look for new events, will handle those events and any outstanding ones, but will not block your process in case there are no events and will return after one iteration of the loop.

    A flags value of EVLOOP_ONESHOT will look for new events (waiting if neccessary) and will handle those and any outstanding ones. It will block your process until at least one new event arrives, and will return after -one iteration of the loop.

    -

    This flags value could be used to implement alternative looping -constructs, but the prepare and check watchers provide a better and -more generic mechanism.

    +one iteration of the loop. This is useful if you are waiting for some +external event in conjunction with something not expressible using other +libev watchers. However, a pair of ev_prepare/ev_check watchers is +usually a better approach for this kind of thing.

    +

    Here are the gory details of what ev_loop does:

    +
       * If there are no active watchers (reference count is zero), return.
    +   - Queue prepare watchers and then call all outstanding watchers.
    +   - If we have been forked, recreate the kernel state.
    +   - Update the kernel state with all outstanding changes.
    +   - Update the "event loop time".
    +   - Calculate for how long to block.
    +   - Block the process, waiting for any events.
    +   - Queue all outstanding I/O (fd) events.
    +   - Update the "event loop time" and do time jump handling.
    +   - Queue all outstanding timers.
    +   - Queue all outstanding periodics.
    +   - If no events are pending now, queue all idle watchers.
    +   - Queue all check watchers.
    +   - Call all queued watchers in reverse order (i.e. check watchers first).
    +     Signals and child watchers are implemented as I/O watchers, and will
    +     be handled here by queueing them when their watcher gets executed.
    +   - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
    +     were used, return, otherwise continue with step *.
    +
    +
    +

    Example: queue some jobs and then loop until no events are outsanding +anymore.

    +
       ... queue jobs here, make sure they register event watchers as long
    +   ... as they still have work to do (even an idle watcher will do..)
    +   ev_loop (my_loop, 0);
    +   ... jobs done. yeah!
    +
    +
    ev_unloop (loop, how)

    Can be used to make a call to ev_loop return early (but only after it has processed all outstanding events). The how argument must be either -EVUNLOOP_ONCE, which will make the innermost ev_loop call return, or +EVUNLOOP_ONE, which will make the innermost ev_loop call return, or EVUNLOOP_ALL, which will make all nested ev_loop calls return.

    ev_ref (loop)
    @@ -282,6 +499,19 @@ no event watchers registered by it are active. It is also an excellent way to do this for generic recurring timers or from within third-party libraries. Just remember to unref after start and ref before stop.

    +

    Example: create a signal watcher, but keep it from keeping ev_loop +running when nothing else is active.

    +
      struct dv_signal exitsig;
    +  ev_signal_init (&exitsig, sig_cb, SIGINT);
    +  ev_signal_start (myloop, &exitsig);
    +  evf_unref (myloop);
    +
    +
    +

    Example: for some weird reason, unregister the above signal handler again.

    +
      ev_ref (myloop);
    +  ev_signal_stop (myloop, &exitsig);
    +
    +
    @@ -323,11 +553,7 @@ corresponding stop function (ev_<type>_stop (loop, watcher *).

    As long as your watcher is active (has been started but not stopped) you must not touch the values stored in it. Most specifically you must never -reinitialise it or call its set method.

    -

    You can check whether an event is active by calling the ev_is_active -(watcher *) macro. To see whether an event is outstanding (but the -callback for it has not been called yet) you can use the ev_is_pending -(watcher *) macro.

    +reinitialise it or call its set macro.

    Each and every callback receives the event loop pointer as first, the registered watcher structure as second, and a bitset of received events as third argument.

    @@ -388,6 +614,84 @@
    +

    SUMMARY OF GENERIC WATCHER FUNCTIONS

    +
    +

    In the following description, TYPE stands for the watcher type, +e.g. timer for ev_timer watchers and io for ev_io watchers.

    +
    +
    ev_init (ev_TYPE *watcher, callback)
    +
    +

    This macro initialises the generic portion of a watcher. The contents +of the watcher object can be arbitrary (so malloc will do). Only +the generic parts of the watcher are initialised, you need to call +the type-specific ev_TYPE_set macro afterwards to initialise the +type-specific parts. For each type there is also a ev_TYPE_init macro +which rolls both calls into one.

    +

    You can reinitialise a watcher at any time as long as it has been stopped +(or never started) and there are no pending events outstanding.

    +

    The callbakc is always of type void (*)(ev_loop *loop, ev_TYPE *watcher, +int revents).

    +
    +
    ev_TYPE_set (ev_TYPE *, [args])
    +
    +

    This macro initialises the type-specific parts of a watcher. You need to +call ev_init at least once before you call this macro, but you can +call ev_TYPE_set any number of times. You must not, however, call this +macro on a watcher that is active (it can be pending, however, which is a +difference to the ev_init macro).

    +

    Although some watcher types do not have type-specific arguments +(e.g. ev_prepare) you still need to call its set macro.

    +
    +
    ev_TYPE_init (ev_TYPE *watcher, callback, [args])
    +
    +

    This convinience macro rolls both ev_init and ev_TYPE_set macro +calls into a single call. This is the most convinient method to initialise +a watcher. The same limitations apply, of course.

    +
    +
    ev_TYPE_start (loop *, ev_TYPE *watcher)
    +
    +

    Starts (activates) the given watcher. Only active watchers will receive +events. If the watcher is already active nothing will happen.

    +
    +
    ev_TYPE_stop (loop *, ev_TYPE *watcher)
    +
    +

    Stops the given watcher again (if active) and clears the pending +status. It is possible that stopped watchers are pending (for example, +non-repeating timers are being stopped when they become pending), but +ev_TYPE_stop ensures that the watcher is neither active nor pending. If +you want to free or reuse the memory used by the watcher it is therefore a +good idea to always call its ev_TYPE_stop function.

    +
    +
    bool ev_is_active (ev_TYPE *watcher)
    +
    +

    Returns a true value iff the watcher is active (i.e. it has been started +and not yet been stopped). As long as a watcher is active you must not modify +it.

    +
    +
    bool ev_is_pending (ev_TYPE *watcher)
    +
    +

    Returns a true value iff the watcher is pending, (i.e. it has outstanding +events but its callback has not yet been invoked). As long as a watcher +is pending (but not active) you must not call an init function on it (but +ev_TYPE_set is safe) and you must make sure the watcher is available to +libev (e.g. you cnanot free () it).

    +
    +
    callback = ev_cb (ev_TYPE *watcher)
    +
    +

    Returns the callback currently set on the watcher.

    +
    +
    ev_cb_set (ev_TYPE *watcher, callback)
    +
    +

    Change the callback. You can change the callback at virtually any time +(modulo threads).

    +
    +
    + + + + + +

    ASSOCIATING CUSTOM DATA WITH A WATCHER

    Each watcher has, by default, a member void *data that you can change @@ -427,6 +731,10 @@

    This section describes each watcher in detail, but will not repeat information given in the last section.

    + + + +

    ev_io - is this file descriptor readable or writable

    @@ -435,17 +743,18 @@ level-triggering because you keep receiving events as long as the condition persists. Remember you can stop the watcher if you don't want to act on the event and neither want to receive future events).

    -

    In general you can register as many read and/or write event watchers oer +

    In general you can register as many read and/or write event watchers per fd as you want (as long as you don't confuse yourself). Setting all file descriptors to non-blocking mode is also usually a good idea (but not required if you know what you are doing).

    You have to be careful with dup'ed file descriptors, though. Some backends (the linux epoll backend is a notable example) cannot handle dup'ed file descriptors correctly if you register interest in two or more fds pointing -to the same file/socket etc. description.

    +to the same underlying file/socket etc. description (that is, they share +the same underlying "file open").

    If you must do this, then force the use of a known-to-be-good backend -(at the time of this writing, this includes only EVMETHOD_SELECT and -EVMETHOD_POLL).

    +(at the time of this writing, this includes only EVBACKEND_SELECT and +EVBACKEND_POLL).

    ev_io_init (ev_io *, callback, int fd, int events)
    ev_io_set (ev_io *, int fd, int events)
    @@ -453,8 +762,39 @@

    Configures an ev_io watcher. The fd is the file descriptor to rceeive events for and events is either EV_READ, EV_WRITE or EV_READ | EV_WRITE to receive the given events.

    +

    Please note that most of the more scalable backend mechanisms (for example +epoll and solaris ports) can result in spurious readyness notifications +for file descriptors, so you practically need to use non-blocking I/O (and +treat callback invocation as hint only), or retest separately with a safe +interface before doing I/O (XLib can do this), or force the use of either +EVBACKEND_SELECT or EVBACKEND_POLL, which don't suffer from this +problem. Also note that it is quite easy to have your callback invoked +when the readyness condition is no longer valid even when employing +typical ways of handling events, so its a good idea to use non-blocking +I/O unconditionally.

    +

    Example: call stdin_readable_cb when STDIN_FILENO has become, well +readable, but only once. Since it is likely line-buffered, you could +attempt to read a whole line in the callback:

    +
      static void
    +  stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
    +  {
    +     ev_io_stop (loop, w);
    +    .. read from stdin here (or from w->fd) and haqndle any I/O errors
    +  }
    +
    +  ...
    +  struct ev_loop *loop = ev_default_init (0);
    +  struct ev_io stdin_readable;
    +  ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
    +  ev_io_start (loop, &stdin_readable);
    +  ev_loop (loop, 0);
    +
    +
    +
    +
    +

    ev_timer - relative and optionally recurring timeouts

    @@ -462,18 +802,21 @@

    Timer watchers are simple relative timers that generate an event after a given time, and optionally repeating in regular intervals after that.

    The timers are based on real time, that is, if you register an event that -times out after an hour and youreset your system clock to last years +times out after an hour and you reset your system clock to last years time, it will still time out after (roughly) and hour. "Roughly" because -detecting time jumps is hard, and soem inaccuracies are unavoidable (the +detecting time jumps is hard, and some inaccuracies are unavoidable (the monotonic clock option helps a lot here).

    The relative timeouts are calculated relative to the ev_now () time. This is usually the right thing as this timestamp refers to the time -of the event triggering whatever timeout you are modifying/starting. If -you suspect event processing to be delayed and you *need* to base the timeout -ion the current time, use something like this to adjust for this:

    +of the event triggering whatever timeout you are modifying/starting. If +you suspect event processing to be delayed and you need to base the timeout +on the current time, use something like this to adjust for this:

       ev_timer_set (&timer, after + ev_now () - ev_time (), 0.);
     
     
    +

    The callback is guarenteed to be invoked only when its timeout has passed, +but if multiple timers become ready during the same loop iteration then +order of execution is undefined.

    ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)
    ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)
    @@ -485,7 +828,7 @@

    The timer itself will do a best-effort at avoiding drift, that is, if you configure a timer to trigger every 10 seconds, then it will trigger at exactly 10 second intervals. If, however, your program cannot keep up with -the timer (ecause it takes longer than those 10 seconds to do stuff) the +the timer (because it takes longer than those 10 seconds to do stuff) the timer will not fire more than once per event loop iteration.

    ev_timer_again (loop)
    @@ -505,6 +848,39 @@ the timer, and again will automatically restart it if need be.

    +

    Example: create a timer that fires after 60 seconds.

    +
      static void
    +  one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
    +  {
    +    .. one minute over, w is actually stopped right here
    +  }
    +
    +  struct ev_timer mytimer;
    +  ev_timer_init (&mytimer, one_minute_cb, 60., 0.);
    +  ev_timer_start (loop, &mytimer);
    +
    +
    +

    Example: create a timeout timer that times out after 10 seconds of +inactivity.

    +
      static void
    +  timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
    +  {
    +    .. ten seconds without any activity
    +  }
    +
    +  struct ev_timer mytimer;
    +  ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
    +  ev_timer_again (&mytimer); /* start timer */
    +  ev_loop (loop, 0);
    +
    +  // and in some piece of code that gets executed on any "activity":
    +  // reset the timeout to start ticking again at 10 seconds
    +  ev_timer_again (&mytimer);
    +
    +
    +
    +
    +

    ev_periodic - to cron or not to cron

    @@ -514,23 +890,22 @@

    Unlike ev_timer's, they are not based on real time (or relative time) but on wallclock time (absolute time). You can tell a periodic watcher to trigger "at" some specific point in time. For example, if you tell a -periodic watcher to trigger in 10 seconds (by specifiying e.g. c<ev_now () -+ 10.>) and then reset your system clock to the last year, then it will +periodic watcher to trigger in 10 seconds (by specifiying e.g. ev_now () ++ 10.) and then reset your system clock to the last year, then it will take a year to trigger the event (unlike an ev_timer, which would trigger roughly 10 seconds later and of course not if you reset your system time again).

    They can also be used to implement vastly more complex timers, such as triggering an event on eahc midnight, local time.

    +

    As with timers, the callback is guarenteed to be invoked only when the +time (at) has been passed, but if multiple periodic timers become ready +during the same loop iteration then order of execution is undefined.

    ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)
    ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)

    Lots of arguments, lets sort it out... There are basically three modes of operation, and we will explain them from simplest to complex:

    - - - -

    * absolute timer (interval = reschedule_cb = 0)
    @@ -564,11 +939,10 @@ ignored. Instead, each time the periodic watcher gets scheduled, the reschedule callback will be called with the watcher as first, and the current time as second argument.

    -

    NOTE: This callback MUST NOT stop or destroy the periodic or any other -periodic watcher, ever, or make any event loop modifications. If you need -to stop it, return now + 1e30 (or so, fudge fudge) and stop it afterwards.

    -

    Also, this callback must always return a time that is later than the -passed now value. Not even now itself will be ok.

    +

    NOTE: This callback MUST NOT stop or destroy any periodic watcher, +ever, or make any event loop modifications. If you need to stop it, +return now + 1e30 (or so, fudge fudge) and stop it afterwards (e.g. by +starting a prepare watcher).

    Its prototype is ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now), e.g.:

       static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
    @@ -581,10 +955,13 @@
     (that is, the lowest time value larger than to the second argument). It
     will usually be called just before the callback will be triggered, but
     might be called at other times, too.

    +

    NOTE: This callback must always return a time that is later than the +passed now value. Not even now itself will do, it must be larger.

    This can be used to create very complex timers, such as a timer that triggers on each midnight, local time. To do this, you would calculate the -next midnight after now and return the timestamp value for this. How you do this -is, again, up to you (but it is not trivial).

    +next midnight after now and return the timestamp value for this. How +you do this is, again, up to you (but it is not trivial, which is the main +reason I omitted it as an example).

    @@ -597,6 +974,42 @@ program when the crontabs have changed).

    +

    Example: call a callback every hour, or, more precisely, whenever the +system clock is divisible by 3600. The callback invocation times have +potentially a lot of jittering, but good long-term stability.

    +
      static void
    +  clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
    +  {
    +    ... its now a full hour (UTC, or TAI or whatever your clock follows)
    +  }
    +
    +  struct ev_periodic hourly_tick;
    +  ev_periodic_init (&hourly_tick, clock_cb, 0., 3600., 0);
    +  ev_periodic_start (loop, &hourly_tick);
    +
    +
    +

    Example: the same as above, but use a reschedule callback to do it:

    +
      #include <math.h>
    +
    +  static ev_tstamp
    +  my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
    +  {
    +    return fmod (now, 3600.) + 3600.;
    +  }
    +
    +  ev_periodic_init (&hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
    +
    +
    +

    Example: call a callback every hour, starting now:

    +
      struct ev_periodic hourly_tick;
    +  ev_periodic_init (&hourly_tick, clock_cb,
    +                    fmod (ev_now (loop), 3600.), 3600., 0);
    +  ev_periodic_start (loop, &hourly_tick);
    +
    +
    +
    +
    +

    ev_signal - signal me when a signal gets signalled

    @@ -620,6 +1033,10 @@ + + + +

    ev_child - wait for pid status changes

    @@ -637,6 +1054,21 @@ process causing the status change.

    +

    Example: try to exit cleanly on SIGINT and SIGTERM.

    +
      static void
    +  sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
    +  {
    +    ev_unloop (loop, EVUNLOOP_ALL);
    +  }
    +
    +  struct ev_signal signal_watcher;
    +  ev_signal_init (&signal_watcher, sigint_cb, SIGINT);
    +  ev_signal_start (loop, &sigint_cb);
    +
    +
    +
    +
    +

    ev_idle - when you've got nothing better to do

    @@ -662,32 +1094,51 @@ believe me.

    +

    Example: dynamically allocate an ev_idle, start it, and in the +callback, free it. Alos, use no error checking, as usual.

    +
      static void
    +  idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
    +  {
    +    free (w);
    +    // now do something you wanted to do when the program has
    +    // no longer asnything immediate to do.
    +  }
    +
    +  struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
    +  ev_idle_init (idle_watcher, idle_cb);
    +  ev_idle_start (loop, idle_cb);
    +
    +
    +
    +
    +

    ev_prepare and ev_check - customise your event loop

    Prepare and check watchers are usually (but not always) used in tandem: -Prepare watchers get invoked before the process blocks and check watchers +prepare watchers get invoked before the process blocks and check watchers afterwards.

    -

    Their main purpose is to integrate other event mechanisms into libev. This -could be used, for example, to track variable changes, implement your own -watchers, integrate net-snmp or a coroutine library and lots more.

    +

    Their main purpose is to integrate other event mechanisms into libev and +their use is somewhat advanced. This could be used, for example, to track +variable changes, implement your own watchers, integrate net-snmp or a +coroutine library and lots more.

    This is done by examining in each prepare call which file descriptors need to be watched by the other library, registering ev_io watchers for them and starting an ev_timer watcher for any timeouts (many libraries provide just this functionality). Then, in the check watcher you check for any events that occured (by checking the pending status of all watchers and stopping them) and call back into the library. The I/O and timer -callbacks will never actually be called (but must be valid neverthelles, +callbacks will never actually be called (but must be valid nevertheless, because you never know, you know?).

    As another example, the Perl Coro module uses these hooks to integrate coroutines into libev programs, by yielding to other active coroutines during each prepare and only letting the process block if no coroutines -are ready to run (its actually more complicated, it only runs coroutines -with priority higher than the event loop and one lower priority once, -using idle watchers to keep the event loop from blocking if lower-priority -coroutines exist, thus mapping low-priority coroutines to idle/background -tasks).

    +are ready to run (it's actually more complicated: it only runs coroutines +with priority higher than or equal to the event loop and one coroutine +of lower priority, but only once, using idle watchers to keep the event +loop from blocking if lower-priority coroutines are active, thus mapping +low-priority coroutines to idle/background tasks).

    ev_prepare_init (ev_prepare *, callback)
    ev_check_init (ev_check *, callback)
    @@ -697,6 +1148,96 @@ macros, but using them is utterly, utterly and completely pointless.

    +

    Example: *TODO*.

    + + + + + +
    +

    ev_embed - when one backend isn't enough

    +
    +

    This is a rather advanced watcher type that lets you embed one event loop +into another (currently only ev_io events are supported in the embedded +loop, other types of watchers might be handled in a delayed or incorrect +fashion and must not be used).

    +

    There are primarily two reasons you would want that: work around bugs and +prioritise I/O.

    +

    As an example for a bug workaround, the kqueue backend might only support +sockets on some platform, so it is unusable as generic backend, but you +still want to make use of it because you have many sockets and it scales +so nicely. In this case, you would create a kqueue-based loop and embed it +into your default loop (which might use e.g. poll). Overall operation will +be a bit slower because first libev has to poll and then call kevent, but +at least you can use both at what they are best.

    +

    As for prioritising I/O: rarely you have the case where some fds have +to be watched and handled very quickly (with low latency), and even +priorities and idle watchers might have too much overhead. In this case +you would put all the high priority stuff in one loop and all the rest in +a second one, and embed the second one in the first.

    +

    As long as the watcher is active, the callback will be invoked every time +there might be events pending in the embedded loop. The callback must then +call ev_embed_sweep (mainloop, watcher) to make a single sweep and invoke +their callbacks (you could also start an idle watcher to give the embedded +loop strictly lower priority for example). You can also set the callback +to 0, in which case the embed watcher will automatically execute the +embedded loop sweep.

    +

    As long as the watcher is started it will automatically handle events. The +callback will be invoked whenever some events have been handled. You can +set the callback to 0 to avoid having to specify one if you are not +interested in that.

    +

    Also, there have not currently been made special provisions for forking: +when you fork, you not only have to call ev_loop_fork on both loops, +but you will also have to stop and restart any ev_embed watchers +yourself.

    +

    Unfortunately, not all backends are embeddable, only the ones returned by +ev_embeddable_backends are, which, unfortunately, does not include any +portable one.

    +

    So when you want to use this feature you will always have to be prepared +that you cannot get an embeddable loop. The recommended way to get around +this is to have a separate variables for your embeddable loop, try to +create it, and if that fails, use the normal loop for everything:

    +
      struct ev_loop *loop_hi = ev_default_init (0);
    +  struct ev_loop *loop_lo = 0;
    +  struct ev_embed embed;
    +
    +  // see if there is a chance of getting one that works
    +  // (remember that a flags value of 0 means autodetection)
    +  loop_lo = ev_embeddable_backends () & ev_recommended_backends ()
    +    ? ev_loop_new (ev_embeddable_backends () & ev_recommended_backends ())
    +    : 0;
    +
    +  // if we got one, then embed it, otherwise default to loop_hi
    +  if (loop_lo)
    +    {
    +      ev_embed_init (&embed, 0, loop_lo);
    +      ev_embed_start (loop_hi, &embed);
    +    }
    +  else
    +    loop_lo = loop_hi;
    +
    +
    +
    +
    ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)
    +
    ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)
    +
    +

    Configures the watcher to embed the given loop, which must be +embeddable. If the callback is 0, then ev_embed_sweep will be +invoked automatically, otherwise it is the responsibility of the callback +to invoke it (it will continue to be called until the sweep has been done, +if you do not want thta, you need to temporarily stop the embed watcher).

    +
    +
    ev_embed_sweep (loop, ev_embed *)
    +
    +

    Make a single, non-blocking sweep over the embedded loop. This works +similarly to ev_loop (embedded_loop, EVLOOP_NONBLOCK), but in the most +apropriate way for embedded loops.

    +
    +
    + + + +

    OTHER FUNCTIONS

    Top

    @@ -708,7 +1249,7 @@

    This function combines a simple timer and an I/O watcher, calls your callback on whichever event happens first and automatically stop both watchers. This is useful if you want to wait for a single event on an fd -or timeout without havign to allocate/configure/start/stop/free one or +or timeout without having to allocate/configure/start/stop/free one or more watchers yourself.

    If fd is less than 0, then no I/O watcher will be started and events is being ignored. Otherwise, an ev_io watcher for the given fd and @@ -718,7 +1259,7 @@ repeat = 0) will be started. While 0 is a valid timeout, it is of dubious value.

    The callback has the type void (*cb)(int revents, void *arg) and gets -passed an events set like normal event callbacks (with a combination of +passed an revents set like normal event callbacks (a combination of EV_ERROR, EV_READ, EV_WRITE or EV_TIMEOUT) and the arg value passed to ev_once:

      static void stdin_ready (int revents, void *arg)
    @@ -733,27 +1274,422 @@
     
     
    -
    ev_feed_event (loop, watcher, int events)
    +
    ev_feed_event (ev_loop *, watcher *, int revents)

    Feeds the given event set into the event loop, as if the specified event had happened for the specified watcher (which must be a pointer to an initialised but not necessarily started event watcher).

    -
    ev_feed_fd_event (loop, int fd, int revents)
    +
    ev_feed_fd_event (ev_loop *, int fd, int revents)

    Feed an event on the given fd, as if a file descriptor backend detected the given events it.

    -
    ev_feed_signal_event (loop, int signum)
    +
    ev_feed_signal_event (ev_loop *loop, int signum)
    +
    +

    Feed an event as if the given signal occured (loop must be the default +loop!).

    +
    + + + + + + + +

    LIBEVENT EMULATION

    Top

    +
    +

    Libev offers a compatibility emulation layer for libevent. It cannot +emulate the internals of libevent, so here are some usage hints:

    +
    +
    * Use it by including <event.h>, as usual.
    +
    * The following members are fully supported: ev_base, ev_callback, +ev_arg, ev_fd, ev_res, ev_events.
    +
    * Avoid using ev_flags and the EVLIST_*-macros, while it is +maintained by libev, it does not work exactly the same way as in libevent (consider +it a private API).
    +
    * Priorities are not currently supported. Initialising priorities +will fail and all watchers will have the same priority, even though there +is an ev_pri field.
    +
    * Other members are not supported.
    +
    * The libev emulation is not ABI compatible to libevent, you need +to use the libev header file and library.
    +
    + +
    +

    C++ SUPPORT

    Top

    +
    +

    Libev comes with some simplistic wrapper classes for C++ that mainly allow +you to use some convinience methods to start/stop watchers and also change +the callback model to a model using method callbacks on objects.

    +

    To use it,

    +
      #include <ev++.h>
    +
    +
    +

    (it is not installed by default). This automatically includes ev.h +and puts all of its definitions (many of them macros) into the global +namespace. All C++ specific things are put into the ev namespace.

    +

    It should support all the same embedding options as ev.h, most notably +EV_MULTIPLICITY.

    +

    Here is a list of things available in the ev namespace:

    +
    +
    ev::READ, ev::WRITE etc.
    +
    +

    These are just enum values with the same values as the EV_READ etc. +macros from ev.h.

    +
    +
    ev::tstamp, ev::now
    +
    +

    Aliases to the same types/functions as with the ev_ prefix.

    +
    +
    ev::io, ev::timer, ev::periodic, ev::idle, ev::sig etc.
    -

    Feed an event as if the given signal occured (loop must be the default loop!).

    +

    For each ev_TYPE watcher in ev.h there is a corresponding class of +the same name in the ev namespace, with the exception of ev_signal +which is called ev::sig to avoid clashes with the signal macro +defines by many implementations.

    +

    All of those classes have these methods:

    +

    +

    +
    ev::TYPE::TYPE (object *, object::method *)
    +
    ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)
    +
    ev::TYPE::~TYPE
    +
    +

    The constructor takes a pointer to an object and a method pointer to +the event handler callback to call in this class. The constructor calls +ev_init for you, which means you have to call the set method +before starting it. If you do not specify a loop then the constructor +automatically associates the default loop with this watcher.

    +

    The destructor automatically stops the watcher if it is active.

    +
    +
    w->set (struct ev_loop *)
    +
    +

    Associates a different struct ev_loop with this watcher. You can only +do this when the watcher is inactive (and not pending either).

    +
    +
    w->set ([args])
    +
    +

    Basically the same as ev_TYPE_set, with the same args. Must be +called at least once. Unlike the C counterpart, an active watcher gets +automatically stopped and restarted.

    +
    +
    w->start ()
    +
    +

    Starts the watcher. Note that there is no loop argument as the +constructor already takes the loop.

    +
    +
    w->stop ()
    +
    +

    Stops the watcher if it is active. Again, no loop argument.

    +
    +
    w->again () ev::timer, ev::periodic only
    +
    +

    For ev::timer and ev::periodic, this invokes the corresponding +ev_TYPE_again function.

    +
    +
    w->sweep () ev::embed only
    +
    +

    Invokes ev_embed_sweep.

    +
    +
    +

    +

    Example: Define a class with an IO and idle watcher, start one of them in +the constructor.

    +
      class myclass
    +  {
    +    ev_io   io;   void io_cb   (ev::io   &w, int revents);
    +    ev_idle idle  void idle_cb (ev::idle &w, int revents);
    +
    +    myclass ();
    +  }
    +
    +  myclass::myclass (int fd)
    +  : io   (this, &myclass::io_cb),
    +    idle (this, &myclass::idle_cb)
    +  {
    +    io.start (fd, ev::READ);
    +  }
    +
    +
    + +
    +

    EMBEDDING

    Top

    +
    +

    Libev can (and often is) directly embedded into host +applications. Examples of applications that embed it include the Deliantra +Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe) +and rxvt-unicode.

    +

    The goal is to enable you to just copy the neecssary files into your +source directory without having to change even a single line in them, so +you can easily upgrade by simply copying (or having a checked-out copy of +libev somewhere in your source tree).

    + +
    +

    FILESETS

    +
    +

    Depending on what features you need you need to include one or more sets of files +in your app.

    + +
    +

    CORE EVENT LOOP

    +
    +

    To include only the libev core (all the ev_* functions), with manual +configuration (no autoconf):

    +
      #define EV_STANDALONE 1
    +  #include "ev.c"
    +
    +
    +

    This will automatically include ev.h, too, and should be done in a +single C source file only to provide the function implementations. To use +it, do the same for ev.h in all files wishing to use this API (best +done by writing a wrapper around ev.h that you can include instead and +where you can put other configuration options):

    +
      #define EV_STANDALONE 1
    +  #include "ev.h"
    +
    +
    +

    Both header files and implementation files can be compiled with a C++ +compiler (at least, thats a stated goal, and breakage will be treated +as a bug).

    +

    You need the following files in your source tree, or in a directory +in your include path (e.g. in libev/ when using -Ilibev):

    +
      ev.h
    +  ev.c
    +  ev_vars.h
    +  ev_wrap.h
    +
    +  ev_win32.c      required on win32 platforms only
    +
    +  ev_select.c     only when select backend is enabled (which is is by default)
    +  ev_poll.c       only when poll backend is enabled (disabled by default)
    +  ev_epoll.c      only when the epoll backend is enabled (disabled by default)
    +  ev_kqueue.c     only when the kqueue backend is enabled (disabled by default)
    +  ev_port.c       only when the solaris port backend is enabled (disabled by default)
    +
    +
    +

    ev.c includes the backend files directly when enabled, so you only need +to compile a single file.

    + +
    +

    LIBEVENT COMPATIBILITY API

    +
    +

    To include the libevent compatibility API, also include:

    +
      #include "event.c"
    +
    +
    +

    in the file including ev.c, and:

    +
      #include "event.h"
    +
    +
    +

    in the files that want to use the libevent API. This also includes ev.h.

    +

    You need the following additional files for this:

    +
      event.h
    +  event.c
    +
    +
    + +
    +

    AUTOCONF SUPPORT

    +
    +

    Instead of using EV_STANDALONE=1 and providing your config in +whatever way you want, you can also m4_include([libev.m4]) in your +configure.ac and leave EV_STANDALONE off. ev.c will then include +config.h and configure itself accordingly.

    +

    For this of course you need the m4 file:

    +
      libev.m4
    +
    +
    + +
    +

    PREPROCESSOR SYMBOLS/MACROS

    +
    +

    Libev can be configured via a variety of preprocessor symbols you have to define +before including any of its files. The default is not to build for multiplicity +and only include the select backend.

    +
    +
    EV_STANDALONE
    +
    +

    Must always be 1 if you do not use autoconf configuration, which +keeps libev from including config.h, and it also defines dummy +implementations for some libevent functions (such as logging, which is not +supported). It will also not define any of the structs usually found in +event.h that are not directly supported by the libev core alone.

    +
    +
    EV_USE_MONOTONIC
    +
    +

    If defined to be 1, libev will try to detect the availability of the +monotonic clock option at both compiletime and runtime. Otherwise no use +of the monotonic clock option will be attempted. If you enable this, you +usually have to link against librt or something similar. Enabling it when +the functionality isn't available is safe, though, althoguh you have +to make sure you link against any libraries where the clock_gettime +function is hiding in (often -lrt).

    +
    +
    EV_USE_REALTIME
    +
    +

    If defined to be 1, libev will try to detect the availability of the +realtime clock option at compiletime (and assume its availability at +runtime if successful). Otherwise no use of the realtime clock option will +be attempted. This effectively replaces gettimeofday by clock_get +(CLOCK_REALTIME, ...) and will not normally affect correctness. See tzhe note about libraries +in the description of EV_USE_MONOTONIC, though.

    +
    +
    EV_USE_SELECT
    +
    +

    If undefined or defined to be 1, libev will compile in support for the +select(2) backend. No attempt at autodetection will be done: if no +other method takes over, select will be it. Otherwise the select backend +will not be compiled in.

    +
    +
    EV_SELECT_USE_FD_SET
    +
    +

    If defined to 1, then the select backend will use the system fd_set +structure. This is useful if libev doesn't compile due to a missing +NFDBITS or fd_mask definition or it misguesses the bitset layout on +exotic systems. This usually limits the range of file descriptors to some +low limit such as 1024 or might have other limitations (winsocket only +allows 64 sockets). The FD_SETSIZE macro, set before compilation, might +influence the size of the fd_set used.

    +
    +
    EV_SELECT_IS_WINSOCKET
    +
    +

    When defined to 1, the select backend will assume that +select/socket/connect etc. don't understand file descriptors but +wants osf handles on win32 (this is the case when the select to +be used is the winsock select). This means that it will call +_get_osfhandle on the fd to convert it to an OS handle. Otherwise, +it is assumed that all these functions actually work on fds, even +on win32. Should not be defined on non-win32 platforms.

    +
    +
    EV_USE_POLL
    +
    +

    If defined to be 1, libev will compile in support for the poll(2) +backend. Otherwise it will be enabled on non-win32 platforms. It +takes precedence over select.

    +
    +
    EV_USE_EPOLL
    +
    +

    If defined to be 1, libev will compile in support for the Linux +epoll(7) backend. Its availability will be detected at runtime, +otherwise another method will be used as fallback. This is the +preferred backend for GNU/Linux systems.

    +
    +
    EV_USE_KQUEUE
    +
    +

    If defined to be 1, libev will compile in support for the BSD style +kqueue(2) backend. Its actual availability will be detected at runtime, +otherwise another method will be used as fallback. This is the preferred +backend for BSD and BSD-like systems, although on most BSDs kqueue only +supports some types of fds correctly (the only platform we found that +supports ptys for example was NetBSD), so kqueue might be compiled in, but +not be used unless explicitly requested. The best way to use it is to find +out whether kqueue supports your type of fd properly and use an embedded +kqueue loop.

    +
    +
    EV_USE_PORT
    +
    +

    If defined to be 1, libev will compile in support for the Solaris +10 port style backend. Its availability will be detected at runtime, +otherwise another method will be used as fallback. This is the preferred +backend for Solaris 10 systems.

    +
    +
    EV_USE_DEVPOLL
    +
    +

    reserved for future expansion, works like the USE symbols above.

    +
    +
    EV_H
    +
    +

    The name of the ev.h header file used to include it. The default if +undefined is <ev.h> in event.h and "ev.h" in ev.c. This +can be used to virtually rename the ev.h header file in case of conflicts.

    +
    +
    EV_CONFIG_H
    +
    +

    If EV_STANDALONE isn't 1, this variable can be used to override +ev.c's idea of where to find the config.h file, similarly to +EV_H, above.

    +
    +
    EV_EVENT_H
    +
    +

    Similarly to EV_H, this macro can be used to override event.c's idea +of how the event.h header can be found.

    +
    +
    EV_PROTOTYPES
    +
    +

    If defined to be 0, then ev.h will not define any function +prototypes, but still define all the structs and other symbols. This is +occasionally useful if you want to provide your own wrapper functions +around libev functions.

    +
    +
    EV_MULTIPLICITY
    +
    +

    If undefined or defined to 1, then all event-loop-specific functions +will have the struct ev_loop * as first argument, and you can create +additional independent event loops. Otherwise there will be no support +for multiple event loops and there is no first event loop pointer +argument. Instead, all functions act on the single default loop.

    +
    +
    EV_PERIODICS
    +
    +

    If undefined or defined to be 1, then periodic timers are supported, +otherwise not. This saves a few kb of code.

    +
    +
    EV_COMMON
    +
    +

    By default, all watchers have a void *data member. By redefining +this macro to a something else you can include more and other types of +members. You have to define it each time you include one of the files, +though, and it must be identical each time.

    +

    For example, the perl EV module uses something like this:

    +
      #define EV_COMMON                       \
    +    SV *self; /* contains this struct */  \
    +    SV *cb_sv, *fh /* note no trailing ";" */
    +
    +
    +
    +
    EV_CB_DECLARE(type)
    +
    EV_CB_INVOKE(watcher,revents)
    +
    ev_set_cb(ev,cb)
    +
    +

    Can be used to change the callback member declaration in each watcher, +and the way callbacks are invoked and set. Must expand to a struct member +definition and a statement, respectively. See the ev.v header file for +their default definitions. One possible use for overriding these is to +avoid the ev_loop pointer as first argument in all cases, or to use method +calls instead of plain function calls in C++.

    + +
    +

    EXAMPLES

    +
    +

    For a real-world example of a program the includes libev +verbatim, you can have a look at the EV perl module +(http://software.schmorp.de/pkg/EV.html). It has the libev files in +the libev/ subdirectory and includes them in the EV/EVAPI.h (public +interface) and EV.xs (implementation) files. Only the EV.xs file +will be compiled. It is pretty complex because it provides its own header +file.

    +

    The usage in rxvt-unicode is simpler. It has a ev_cpp.h header file +that everybody includes and which overrides some autoconf choices:

    +
      #define EV_USE_POLL 0
    +  #define EV_MULTIPLICITY 0
    +  #define EV_PERIODICS 0
    +  #define EV_CONFIG_H <config.h>
    +
    +  #include "ev++.h"
    +
    +
    +

    And a ev_cpp.C implementation file that contains libev proper and is compiled:

    +
      #include "ev_cpp.h"
    +  #include "ev.c"
    +
    +

    AUTHOR

    Top

    -

    Marc Lehmann <libev@schmorp.de>.

    +

    Marc Lehmann <libev@schmorp.de>.