ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
(Generate patch)

Comparing libev/ev.html (file contents):
Revision 1.47 by root, Mon Nov 26 10:20:43 2007 UTC vs.
Revision 1.52 by root, Tue Nov 27 19:41:52 2007 UTC

4<head> 4<head>
5 <title>libev</title> 5 <title>libev</title>
6 <meta name="description" content="Pod documentation for libev" /> 6 <meta name="description" content="Pod documentation for libev" />
7 <meta name="inputfile" content="&lt;standard input&gt;" /> 7 <meta name="inputfile" content="&lt;standard input&gt;" />
8 <meta name="outputfile" content="&lt;standard output&gt;" /> 8 <meta name="outputfile" content="&lt;standard output&gt;" />
9 <meta name="created" content="Mon Nov 26 11:20:35 2007" /> 9 <meta name="created" content="Tue Nov 27 20:38:24 2007" />
10 <meta name="generator" content="Pod::Xhtml 1.57" /> 10 <meta name="generator" content="Pod::Xhtml 1.57" />
11<link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head> 11<link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12<body> 12<body>
13<div class="pod"> 13<div class="pod">
14<!-- INDEX START --> 14<!-- INDEX START -->
31<ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li> 31<ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
32<li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li> 32<li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
33<li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li> 33<li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
34<li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li> 34<li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
35<li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li> 35<li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
36<li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
36<li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li> 37<li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
37<li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li> 38<li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
38<li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li> 39<li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
40<li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
39</ul> 41</ul>
40</li> 42</li>
41<li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li> 43<li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
42<li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li> 44<li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
43<li><a href="#C_SUPPORT">C++ SUPPORT</a></li> 45<li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
46<li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
44<li><a href="#EMBEDDING">EMBEDDING</a> 47<li><a href="#EMBEDDING">EMBEDDING</a>
45<ul><li><a href="#FILESETS">FILESETS</a> 48<ul><li><a href="#FILESETS">FILESETS</a>
46<ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li> 49<ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
47<li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li> 50<li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
48<li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li> 51<li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
113the beginning of 1970, details are complicated, don't ask). This type is 116the beginning of 1970, details are complicated, don't ask). This type is
114called <code>ev_tstamp</code>, which is what you should use too. It usually aliases 117called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
115to the <code>double</code> type in C, and when you need to do any calculations on 118to the <code>double</code> type in C, and when you need to do any calculations on
116it, you should treat it as such.</p> 119it, you should treat it as such.</p>
117 120
118
119
120
121
122</div> 121</div>
123<h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p> 122<h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
124<div id="GLOBAL_FUNCTIONS_CONTENT"> 123<div id="GLOBAL_FUNCTIONS_CONTENT">
125<p>These functions can be called anytime, even before initialising the 124<p>These functions can be called anytime, even before initialising the
126library in any way.</p> 125library in any way.</p>
180might be supported on the current system, you would need to look at 179might be supported on the current system, you would need to look at
181<code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for 180<code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
182recommended ones.</p> 181recommended ones.</p>
183 <p>See the description of <code>ev_embed</code> watchers for more info.</p> 182 <p>See the description of <code>ev_embed</code> watchers for more info.</p>
184 </dd> 183 </dd>
185 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt> 184 <dt>ev_set_allocator (void *(*cb)(void *ptr, size_t size))</dt>
186 <dd> 185 <dd>
187 <p>Sets the allocation function to use (the prototype is similar to the 186 <p>Sets the allocation function to use (the prototype and semantics are
188realloc C function, the semantics are identical). It is used to allocate 187identical to the realloc C function). It is used to allocate and free
189and free memory (no surprises here). If it returns zero when memory 188memory (no surprises here). If it returns zero when memory needs to be
190needs to be allocated, the library might abort or take some potentially 189allocated, the library might abort or take some potentially destructive
191destructive action. The default is your system realloc function.</p> 190action. The default is your system realloc function.</p>
192 <p>You could override this function in high-availability programs to, say, 191 <p>You could override this function in high-availability programs to, say,
193free some memory if it cannot allocate memory, to use a special allocator, 192free some memory if it cannot allocate memory, to use a special allocator,
194or even to sleep a while and retry until some memory is available.</p> 193or even to sleep a while and retry until some memory is available.</p>
195 <p>Example: replace the libev allocator with one that waits a bit and then 194 <p>Example: replace the libev allocator with one that waits a bit and then
196retries: better than mine).</p> 195retries: better than mine).</p>
197<pre> static void * 196<pre> static void *
198 persistent_realloc (void *ptr, long size) 197 persistent_realloc (void *ptr, size_t size)
199 { 198 {
200 for (;;) 199 for (;;)
201 { 200 {
202 void *newptr = realloc (ptr, size); 201 void *newptr = realloc (ptr, size);
203 202
586 </dd> 585 </dd>
587 <dt><code>EV_CHILD</code></dt> 586 <dt><code>EV_CHILD</code></dt>
588 <dd> 587 <dd>
589 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p> 588 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
590 </dd> 589 </dd>
590 <dt><code>EV_STAT</code></dt>
591 <dd>
592 <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
593 </dd>
591 <dt><code>EV_IDLE</code></dt> 594 <dt><code>EV_IDLE</code></dt>
592 <dd> 595 <dd>
593 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p> 596 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
594 </dd> 597 </dd>
595 <dt><code>EV_PREPARE</code></dt> 598 <dt><code>EV_PREPARE</code></dt>
600<code>ev_loop</code> has gathered them, but before it invokes any callbacks for any 603<code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
601received events. Callbacks of both watcher types can start and stop as 604received events. Callbacks of both watcher types can start and stop as
602many watchers as they want, and all of them will be taken into account 605many watchers as they want, and all of them will be taken into account
603(for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep 606(for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
604<code>ev_loop</code> from blocking).</p> 607<code>ev_loop</code> from blocking).</p>
608 </dd>
609 <dt><code>EV_EMBED</code></dt>
610 <dd>
611 <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
612 </dd>
613 <dt><code>EV_FORK</code></dt>
614 <dd>
615 <p>The event loop has been resumed in the child process after fork (see
616<code>ev_fork</code>).</p>
605 </dd> 617 </dd>
606 <dt><code>EV_ERROR</code></dt> 618 <dt><code>EV_ERROR</code></dt>
607 <dd> 619 <dd>
608 <p>An unspecified error has occured, the watcher has been stopped. This might 620 <p>An unspecified error has occured, the watcher has been stopped. This might
609happen because the watcher could not be properly started because libev 621happen because the watcher could not be properly started because libev
732 744
733</div> 745</div>
734<h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p> 746<h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p>
735<div id="WATCHER_TYPES_CONTENT"> 747<div id="WATCHER_TYPES_CONTENT">
736<p>This section describes each watcher in detail, but will not repeat 748<p>This section describes each watcher in detail, but will not repeat
737information given in the last section.</p> 749information given in the last section. Any initialisation/set macros,
750functions and members specific to the watcher type are explained.</p>
751<p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
752while the watcher is active, you can look at the member and expect some
753sensible content, but you must not modify it (you can modify it while the
754watcher is stopped to your hearts content), or <i>[read-write]</i>, which
755means you can expect it to have some sensible content while the watcher
756is active, but you can also modify it. Modifying it may not do something
757sensible or take immediate effect (or do anything at all), but libev will
758not crash or malfunction in any way.</p>
738 759
739 760
740 761
741 762
742 763
781 <dd> 802 <dd>
782 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to 803 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
783rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or 804rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
784<code>EV_READ | EV_WRITE</code> to receive the given events.</p> 805<code>EV_READ | EV_WRITE</code> to receive the given events.</p>
785 </dd> 806 </dd>
807 <dt>int fd [read-only]</dt>
808 <dd>
809 <p>The file descriptor being watched.</p>
810 </dd>
811 <dt>int events [read-only]</dt>
812 <dd>
813 <p>The events being watched.</p>
814 </dd>
786</dl> 815</dl>
787<p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well 816<p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
788readable, but only once. Since it is likely line-buffered, you could 817readable, but only once. Since it is likely line-buffered, you could
789attempt to read a whole line in the callback:</p> 818attempt to read a whole line in the callback:</p>
790<pre> static void 819<pre> static void
847repeating. The exact semantics are:</p> 876repeating. The exact semantics are:</p>
848 <p>If the timer is started but nonrepeating, stop it.</p> 877 <p>If the timer is started but nonrepeating, stop it.</p>
849 <p>If the timer is repeating, either start it if necessary (with the repeat 878 <p>If the timer is repeating, either start it if necessary (with the repeat
850value), or reset the running timer to the repeat value.</p> 879value), or reset the running timer to the repeat value.</p>
851 <p>This sounds a bit complicated, but here is a useful and typical 880 <p>This sounds a bit complicated, but here is a useful and typical
852example: Imagine you have a tcp connection and you want a so-called idle 881example: Imagine you have a tcp connection and you want a so-called
853timeout, that is, you want to be called when there have been, say, 60 882idle timeout, that is, you want to be called when there have been,
854seconds of inactivity on the socket. The easiest way to do this is to 883say, 60 seconds of inactivity on the socket. The easiest way to do
855configure an <code>ev_timer</code> with after=repeat=60 and calling ev_timer_again each 884this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling
856time you successfully read or write some data. If you go into an idle 885<code>ev_timer_again</code> each time you successfully read or write some data. If
857state where you do not expect data to travel on the socket, you can stop 886you go into an idle state where you do not expect data to travel on the
858the timer, and again will automatically restart it if need be.</p> 887socket, you can stop the timer, and again will automatically restart it if
888need be.</p>
889 <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether
890and only ever use the <code>repeat</code> value:</p>
891<pre> ev_timer_init (timer, callback, 0., 5.);
892 ev_timer_again (loop, timer);
893 ...
894 timer-&gt;again = 17.;
895 ev_timer_again (loop, timer);
896 ...
897 timer-&gt;again = 10.;
898 ev_timer_again (loop, timer);
899
900</pre>
901 <p>This is more efficient then stopping/starting the timer eahc time you want
902to modify its timeout value.</p>
903 </dd>
904 <dt>ev_tstamp repeat [read-write]</dt>
905 <dd>
906 <p>The current <code>repeat</code> value. Will be used each time the watcher times out
907or <code>ev_timer_again</code> is called and determines the next timeout (if any),
908which is also when any modifications are taken into account.</p>
859 </dd> 909 </dd>
860</dl> 910</dl>
861<p>Example: create a timer that fires after 60 seconds.</p> 911<p>Example: create a timer that fires after 60 seconds.</p>
862<pre> static void 912<pre> static void
863 one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) 913 one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
981 <p>Simply stops and restarts the periodic watcher again. This is only useful 1031 <p>Simply stops and restarts the periodic watcher again. This is only useful
982when you changed some parameters or the reschedule callback would return 1032when you changed some parameters or the reschedule callback would return
983a different time than the last time it was called (e.g. in a crond like 1033a different time than the last time it was called (e.g. in a crond like
984program when the crontabs have changed).</p> 1034program when the crontabs have changed).</p>
985 </dd> 1035 </dd>
1036 <dt>ev_tstamp interval [read-write]</dt>
1037 <dd>
1038 <p>The current interval value. Can be modified any time, but changes only
1039take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1040called.</p>
1041 </dd>
1042 <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1043 <dd>
1044 <p>The current reschedule callback, or <code>0</code>, if this functionality is
1045switched off. Can be changed any time, but changes only take effect when
1046the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1047 </dd>
986</dl> 1048</dl>
987<p>Example: call a callback every hour, or, more precisely, whenever the 1049<p>Example: call a callback every hour, or, more precisely, whenever the
988system clock is divisible by 3600. The callback invocation times have 1050system clock is divisible by 3600. The callback invocation times have
989potentially a lot of jittering, but good long-term stability.</p> 1051potentially a lot of jittering, but good long-term stability.</p>
990<pre> static void 1052<pre> static void
1039 <dt>ev_signal_set (ev_signal *, int signum)</dt> 1101 <dt>ev_signal_set (ev_signal *, int signum)</dt>
1040 <dd> 1102 <dd>
1041 <p>Configures the watcher to trigger on the given signal number (usually one 1103 <p>Configures the watcher to trigger on the given signal number (usually one
1042of the <code>SIGxxx</code> constants).</p> 1104of the <code>SIGxxx</code> constants).</p>
1043 </dd> 1105 </dd>
1106 <dt>int signum [read-only]</dt>
1107 <dd>
1108 <p>The signal the watcher watches out for.</p>
1109 </dd>
1044</dl> 1110</dl>
1045 1111
1046 1112
1047 1113
1048 1114
1061at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see 1127at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1062the status word (use the macros from <code>sys/wait.h</code> and see your systems 1128the status word (use the macros from <code>sys/wait.h</code> and see your systems
1063<code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the 1129<code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1064process causing the status change.</p> 1130process causing the status change.</p>
1065 </dd> 1131 </dd>
1132 <dt>int pid [read-only]</dt>
1133 <dd>
1134 <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1135 </dd>
1136 <dt>int rpid [read-write]</dt>
1137 <dd>
1138 <p>The process id that detected a status change.</p>
1139 </dd>
1140 <dt>int rstatus [read-write]</dt>
1141 <dd>
1142 <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1143<code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1144 </dd>
1066</dl> 1145</dl>
1067<p>Example: try to exit cleanly on SIGINT and SIGTERM.</p> 1146<p>Example: try to exit cleanly on SIGINT and SIGTERM.</p>
1068<pre> static void 1147<pre> static void
1069 sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents) 1148 sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1070 { 1149 {
1072 } 1151 }
1073 1152
1074 struct ev_signal signal_watcher; 1153 struct ev_signal signal_watcher;
1075 ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT); 1154 ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1076 ev_signal_start (loop, &amp;sigint_cb); 1155 ev_signal_start (loop, &amp;sigint_cb);
1156
1157
1158
1159
1160</pre>
1161
1162</div>
1163<h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1164<div id="code_ev_stat_code_did_the_file_attri-2">
1165<p>This watches a filesystem path for attribute changes. That is, it calls
1166<code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1167compared to the last time, invoking the callback if it did.</p>
1168<p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1169not exist&quot; is a status change like any other. The condition &quot;path does
1170not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1171otherwise always forced to be at least one) and all the other fields of
1172the stat buffer having unspecified contents.</p>
1173<p>Since there is no standard to do this, the portable implementation simply
1174calls <code>stat (2)</code> regulalry on the path to see if it changed somehow. You
1175can specify a recommended polling interval for this case. If you specify
1176a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1177unspecified default</i> value will be used (which you can expect to be around
1178five seconds, although this might change dynamically). Libev will also
1179impose a minimum interval which is currently around <code>0.1</code>, but thats
1180usually overkill.</p>
1181<p>This watcher type is not meant for massive numbers of stat watchers,
1182as even with OS-supported change notifications, this can be
1183resource-intensive.</p>
1184<p>At the time of this writing, no specific OS backends are implemented, but
1185if demand increases, at least a kqueue and inotify backend will be added.</p>
1186<dl>
1187 <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1188 <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1189 <dd>
1190 <p>Configures the watcher to wait for status changes of the given
1191<code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1192be detected and should normally be specified as <code>0</code> to let libev choose
1193a suitable value. The memory pointed to by <code>path</code> must point to the same
1194path for as long as the watcher is active.</p>
1195 <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1196relative to the attributes at the time the watcher was started (or the
1197last change was detected).</p>
1198 </dd>
1199 <dt>ev_stat_stat (ev_stat *)</dt>
1200 <dd>
1201 <p>Updates the stat buffer immediately with new values. If you change the
1202watched path in your callback, you could call this fucntion to avoid
1203detecting this change (while introducing a race condition). Can also be
1204useful simply to find out the new values.</p>
1205 </dd>
1206 <dt>ev_statdata attr [read-only]</dt>
1207 <dd>
1208 <p>The most-recently detected attributes of the file. Although the type is of
1209<code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1210suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1211was some error while <code>stat</code>ing the file.</p>
1212 </dd>
1213 <dt>ev_statdata prev [read-only]</dt>
1214 <dd>
1215 <p>The previous attributes of the file. The callback gets invoked whenever
1216<code>prev</code> != <code>attr</code>.</p>
1217 </dd>
1218 <dt>ev_tstamp interval [read-only]</dt>
1219 <dd>
1220 <p>The specified interval.</p>
1221 </dd>
1222 <dt>const char *path [read-only]</dt>
1223 <dd>
1224 <p>The filesystem path that is being watched.</p>
1225 </dd>
1226</dl>
1227<p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1228<pre> static void
1229 passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1230 {
1231 /* /etc/passwd changed in some way */
1232 if (w-&gt;attr.st_nlink)
1233 {
1234 printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1235 printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1236 printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1237 }
1238 else
1239 /* you shalt not abuse printf for puts */
1240 puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1241 &quot;if this is windows, they already arrived\n&quot;);
1242 }
1243
1244 ...
1245 ev_stat passwd;
1246
1247 ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1248 ev_stat_start (loop, &amp;passwd);
1077 1249
1078 1250
1079 1251
1080 1252
1081</pre> 1253</pre>
1303 <dt>ev_embed_sweep (loop, ev_embed *)</dt> 1475 <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1304 <dd> 1476 <dd>
1305 <p>Make a single, non-blocking sweep over the embedded loop. This works 1477 <p>Make a single, non-blocking sweep over the embedded loop. This works
1306similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most 1478similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1307apropriate way for embedded loops.</p> 1479apropriate way for embedded loops.</p>
1480 </dd>
1481 <dt>struct ev_loop *loop [read-only]</dt>
1482 <dd>
1483 <p>The embedded event loop.</p>
1484 </dd>
1485</dl>
1486
1487
1488
1489
1490
1491</div>
1492<h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1493<div id="code_ev_fork_code_the_audacity_to_re-2">
1494<p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1495whoever is a good citizen cared to tell libev about it by calling
1496<code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1497event loop blocks next and before <code>ev_check</code> watchers are being called,
1498and only in the child after the fork. If whoever good citizen calling
1499<code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1500handlers will be invoked, too, of course.</p>
1501<dl>
1502 <dt>ev_fork_init (ev_signal *, callback)</dt>
1503 <dd>
1504 <p>Initialises and configures the fork watcher - it has no parameters of any
1505kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1506believe me.</p>
1308 </dd> 1507 </dd>
1309</dl> 1508</dl>
1310 1509
1311 1510
1312 1511
1462 </dd> 1661 </dd>
1463 <dt>w-&gt;sweep () <code>ev::embed</code> only</dt> 1662 <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1464 <dd> 1663 <dd>
1465 <p>Invokes <code>ev_embed_sweep</code>.</p> 1664 <p>Invokes <code>ev_embed_sweep</code>.</p>
1466 </dd> 1665 </dd>
1666 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1667 <dd>
1668 <p>Invokes <code>ev_stat_stat</code>.</p>
1669 </dd>
1467 </dl> 1670 </dl>
1468 </p> 1671 </p>
1469 </dd> 1672 </dd>
1470</dl> 1673</dl>
1471<p>Example: Define a class with an IO and idle watcher, start one of them in 1674<p>Example: Define a class with an IO and idle watcher, start one of them in
1482 : io (this, &amp;myclass::io_cb), 1685 : io (this, &amp;myclass::io_cb),
1483 idle (this, &amp;myclass::idle_cb) 1686 idle (this, &amp;myclass::idle_cb)
1484 { 1687 {
1485 io.start (fd, ev::READ); 1688 io.start (fd, ev::READ);
1486 } 1689 }
1690
1691
1692
1693
1694</pre>
1695
1696</div>
1697<h1 id="MACRO_MAGIC">MACRO MAGIC</h1><p><a href="#TOP" class="toplink">Top</a></p>
1698<div id="MACRO_MAGIC_CONTENT">
1699<p>Libev can be compiled with a variety of options, the most fundemantal is
1700<code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1701callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1702<p>To make it easier to write programs that cope with either variant, the
1703following macros are defined:</p>
1704<dl>
1705 <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1706 <dd>
1707 <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1708loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1709<code>EV_A_</code> is used when other arguments are following. Example:</p>
1710<pre> ev_unref (EV_A);
1711 ev_timer_add (EV_A_ watcher);
1712 ev_loop (EV_A_ 0);
1713
1714</pre>
1715 <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1716which is often provided by the following macro.</p>
1717 </dd>
1718 <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1719 <dd>
1720 <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1721loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1722<code>EV_P_</code> is used when other parameters are following. Example:</p>
1723<pre> // this is how ev_unref is being declared
1724 static void ev_unref (EV_P);
1725
1726 // this is how you can declare your typical callback
1727 static void cb (EV_P_ ev_timer *w, int revents)
1728
1729</pre>
1730 <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1731suitable for use with <code>EV_A</code>.</p>
1732 </dd>
1733 <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1734 <dd>
1735 <p>Similar to the other two macros, this gives you the value of the default
1736loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1737 </dd>
1738</dl>
1739<p>Example: Declare and initialise a check watcher, working regardless of
1740wether multiple loops are supported or not.</p>
1741<pre> static void
1742 check_cb (EV_P_ ev_timer *w, int revents)
1743 {
1744 ev_check_stop (EV_A_ w);
1745 }
1746
1747 ev_check check;
1748 ev_check_init (&amp;check, check_cb);
1749 ev_check_start (EV_DEFAULT_ &amp;check);
1750 ev_loop (EV_DEFAULT_ 0);
1751
1752
1753
1487 1754
1488</pre> 1755</pre>
1489 1756
1490</div> 1757</div>
1491<h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p> 1758<h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
1702will have the <code>struct ev_loop *</code> as first argument, and you can create 1969will have the <code>struct ev_loop *</code> as first argument, and you can create
1703additional independent event loops. Otherwise there will be no support 1970additional independent event loops. Otherwise there will be no support
1704for multiple event loops and there is no first event loop pointer 1971for multiple event loops and there is no first event loop pointer
1705argument. Instead, all functions act on the single default loop.</p> 1972argument. Instead, all functions act on the single default loop.</p>
1706 </dd> 1973 </dd>
1707 <dt>EV_PERIODICS</dt> 1974 <dt>EV_PERIODIC_ENABLE</dt>
1708 <dd> 1975 <dd>
1709 <p>If undefined or defined to be <code>1</code>, then periodic timers are supported, 1976 <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
1710otherwise not. This saves a few kb of code.</p> 1977defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
1978code.</p>
1979 </dd>
1980 <dt>EV_EMBED_ENABLE</dt>
1981 <dd>
1982 <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
1983defined to be <code>0</code>, then they are not.</p>
1984 </dd>
1985 <dt>EV_STAT_ENABLE</dt>
1986 <dd>
1987 <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
1988defined to be <code>0</code>, then they are not.</p>
1989 </dd>
1990 <dt>EV_FORK_ENABLE</dt>
1991 <dd>
1992 <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
1993defined to be <code>0</code>, then they are not.</p>
1994 </dd>
1995 <dt>EV_MINIMAL</dt>
1996 <dd>
1997 <p>If you need to shave off some kilobytes of code at the expense of some
1998speed, define this symbol to <code>1</code>. Currently only used for gcc to override
1999some inlining decisions, saves roughly 30% codesize of amd64.</p>
2000 </dd>
2001 <dt>EV_PID_HASHSIZE</dt>
2002 <dd>
2003 <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2004pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2005than enough. If you need to manage thousands of children you might want to
2006increase this value.</p>
1711 </dd> 2007 </dd>
1712 <dt>EV_COMMON</dt> 2008 <dt>EV_COMMON</dt>
1713 <dd> 2009 <dd>
1714 <p>By default, all watchers have a <code>void *data</code> member. By redefining 2010 <p>By default, all watchers have a <code>void *data</code> member. By redefining
1715this macro to a something else you can include more and other types of 2011this macro to a something else you can include more and other types of

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines