ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
(Generate patch)

Comparing libev/ev.html (file contents):
Revision 1.45 by root, Sat Nov 24 16:57:39 2007 UTC vs.
Revision 1.54 by root, Tue Nov 27 20:26:51 2007 UTC

4<head> 4<head>
5 <title>libev</title> 5 <title>libev</title>
6 <meta name="description" content="Pod documentation for libev" /> 6 <meta name="description" content="Pod documentation for libev" />
7 <meta name="inputfile" content="&lt;standard input&gt;" /> 7 <meta name="inputfile" content="&lt;standard input&gt;" />
8 <meta name="outputfile" content="&lt;standard output&gt;" /> 8 <meta name="outputfile" content="&lt;standard output&gt;" />
9 <meta name="created" content="Sat Nov 24 17:57:37 2007" /> 9 <meta name="created" content="Tue Nov 27 21:26:46 2007" />
10 <meta name="generator" content="Pod::Xhtml 1.57" /> 10 <meta name="generator" content="Pod::Xhtml 1.57" />
11<link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head> 11<link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12<body> 12<body>
13<div class="pod"> 13<div class="pod">
14<!-- INDEX START --> 14<!-- INDEX START -->
15<h3 id="TOP">Index</h3> 15<h3 id="TOP">Index</h3>
16 16
17<ul><li><a href="#NAME">NAME</a></li> 17<ul><li><a href="#NAME">NAME</a></li>
18<li><a href="#SYNOPSIS">SYNOPSIS</a></li> 18<li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19<li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
19<li><a href="#DESCRIPTION">DESCRIPTION</a></li> 20<li><a href="#DESCRIPTION">DESCRIPTION</a></li>
20<li><a href="#FEATURES">FEATURES</a></li> 21<li><a href="#FEATURES">FEATURES</a></li>
21<li><a href="#CONVENTIONS">CONVENTIONS</a></li> 22<li><a href="#CONVENTIONS">CONVENTIONS</a></li>
22<li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li> 23<li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
23<li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li> 24<li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
31<ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li> 32<ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
32<li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li> 33<li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
33<li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li> 34<li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
34<li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li> 35<li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
35<li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li> 36<li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37<li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
36<li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li> 38<li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
37<li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li> 39<li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
38<li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li> 40<li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41<li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
39</ul> 42</ul>
40</li> 43</li>
41<li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li> 44<li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
42<li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li> 45<li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
43<li><a href="#C_SUPPORT">C++ SUPPORT</a></li> 46<li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47<li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
44<li><a href="#EMBEDDING">EMBEDDING</a> 48<li><a href="#EMBEDDING">EMBEDDING</a>
45<ul><li><a href="#FILESETS">FILESETS</a> 49<ul><li><a href="#FILESETS">FILESETS</a>
46<ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li> 50<ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
47<li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li> 51<li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
48<li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li> 52<li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
50</li> 54</li>
51<li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li> 55<li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
52<li><a href="#EXAMPLES">EXAMPLES</a></li> 56<li><a href="#EXAMPLES">EXAMPLES</a></li>
53</ul> 57</ul>
54</li> 58</li>
59<li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
55<li><a href="#AUTHOR">AUTHOR</a> 60<li><a href="#AUTHOR">AUTHOR</a>
56</li> 61</li>
57</ul><hr /> 62</ul><hr />
58<!-- INDEX END --> 63<!-- INDEX END -->
59 64
63 68
64</div> 69</div>
65<h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p> 70<h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p>
66<div id="SYNOPSIS_CONTENT"> 71<div id="SYNOPSIS_CONTENT">
67<pre> #include &lt;ev.h&gt; 72<pre> #include &lt;ev.h&gt;
73
74</pre>
75
76</div>
77<h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1><p><a href="#TOP" class="toplink">Top</a></p>
78<div id="EXAMPLE_PROGRAM_CONTENT">
79<pre> #include &lt;ev.h&gt;
80
81 ev_io stdin_watcher;
82 ev_timer timeout_watcher;
83
84 /* called when data readable on stdin */
85 static void
86 stdin_cb (EV_P_ struct ev_io *w, int revents)
87 {
88 /* puts (&quot;stdin ready&quot;); */
89 ev_io_stop (EV_A_ w); /* just a syntax example */
90 ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91 }
92
93 static void
94 timeout_cb (EV_P_ struct ev_timer *w, int revents)
95 {
96 /* puts (&quot;timeout&quot;); */
97 ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98 }
99
100 int
101 main (void)
102 {
103 struct ev_loop *loop = ev_default_loop (0);
104
105 /* initialise an io watcher, then start it */
106 ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107 ev_io_start (loop, &amp;stdin_watcher);
108
109 /* simple non-repeating 5.5 second timeout */
110 ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111 ev_timer_start (loop, &amp;timeout_watcher);
112
113 /* loop till timeout or data ready */
114 ev_loop (loop, 0);
115
116 return 0;
117 }
68 118
69</pre> 119</pre>
70 120
71</div> 121</div>
72<h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p> 122<h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p>
83watcher.</p> 133watcher.</p>
84 134
85</div> 135</div>
86<h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p> 136<h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p>
87<div id="FEATURES_CONTENT"> 137<div id="FEATURES_CONTENT">
88<p>Libev supports select, poll, the linux-specific epoll and the bsd-specific 138<p>Libev supports <code>select</code>, <code>poll</code>, the linux-specific <code>epoll</code>, the
89kqueue mechanisms for file descriptor events, relative timers, absolute 139bsd-specific <code>kqueue</code> and the solaris-specific event port mechanisms
90timers with customised rescheduling, signal events, process status change 140for file descriptor events (<code>ev_io</code>), relative timers (<code>ev_timer</code>),
91events (related to SIGCHLD), and event watchers dealing with the event 141absolute timers with customised rescheduling (<code>ev_periodic</code>), synchronous
92loop mechanism itself (idle, prepare and check watchers). It also is quite 142signals (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and
143event watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
144<code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
145file watchers (<code>ev_stat</code>) and even limited support for fork events
146(<code>ev_fork</code>).</p>
147<p>It also is quite fast (see this
93fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing 148<a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
94it to libevent for example).</p> 149for example).</p>
95 150
96</div> 151</div>
97<h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p> 152<h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
98<div id="CONVENTIONS_CONTENT"> 153<div id="CONVENTIONS_CONTENT">
99<p>Libev is very configurable. In this manual the default configuration 154<p>Libev is very configurable. In this manual the default configuration will
100will be described, which supports multiple event loops. For more info 155be described, which supports multiple event loops. For more info about
101about various configuration options please have a look at the file 156various configuration options please have a look at <strong>EMBED</strong> section in
102<cite>README.embed</cite> in the libev distribution. If libev was configured without 157this manual. If libev was configured without support for multiple event
103support for multiple event loops, then all functions taking an initial 158loops, then all functions taking an initial argument of name <code>loop</code>
104argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>) 159(which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
105will not have this argument.</p>
106 160
107</div> 161</div>
108<h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p> 162<h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
109<div id="TIME_REPRESENTATION_CONTENT"> 163<div id="TIME_REPRESENTATION_CONTENT">
110<p>Libev represents time as a single floating point number, representing the 164<p>Libev represents time as a single floating point number, representing the
111(fractional) number of seconds since the (POSIX) epoch (somewhere near 165(fractional) number of seconds since the (POSIX) epoch (somewhere near
112the beginning of 1970, details are complicated, don't ask). This type is 166the beginning of 1970, details are complicated, don't ask). This type is
113called <code>ev_tstamp</code>, which is what you should use too. It usually aliases 167called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
114to the <code>double</code> type in C, and when you need to do any calculations on 168to the <code>double</code> type in C, and when you need to do any calculations on
115it, you should treat it as such.</p> 169it, you should treat it as such.</p>
116
117
118
119
120 170
121</div> 171</div>
122<h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p> 172<h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
123<div id="GLOBAL_FUNCTIONS_CONTENT"> 173<div id="GLOBAL_FUNCTIONS_CONTENT">
124<p>These functions can be called anytime, even before initialising the 174<p>These functions can be called anytime, even before initialising the
140version of the library your program was compiled against.</p> 190version of the library your program was compiled against.</p>
141 <p>Usually, it's a good idea to terminate if the major versions mismatch, 191 <p>Usually, it's a good idea to terminate if the major versions mismatch,
142as this indicates an incompatible change. Minor versions are usually 192as this indicates an incompatible change. Minor versions are usually
143compatible to older versions, so a larger minor version alone is usually 193compatible to older versions, so a larger minor version alone is usually
144not a problem.</p> 194not a problem.</p>
145 <p>Example: make sure we haven't accidentally been linked against the wrong 195 <p>Example: Make sure we haven't accidentally been linked against the wrong
146version:</p> 196version.</p>
147<pre> assert ((&quot;libev version mismatch&quot;, 197<pre> assert ((&quot;libev version mismatch&quot;,
148 ev_version_major () == EV_VERSION_MAJOR 198 ev_version_major () == EV_VERSION_MAJOR
149 &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR)); 199 &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
150 200
151</pre> 201</pre>
179might be supported on the current system, you would need to look at 229might be supported on the current system, you would need to look at
180<code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for 230<code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
181recommended ones.</p> 231recommended ones.</p>
182 <p>See the description of <code>ev_embed</code> watchers for more info.</p> 232 <p>See the description of <code>ev_embed</code> watchers for more info.</p>
183 </dd> 233 </dd>
184 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt> 234 <dt>ev_set_allocator (void *(*cb)(void *ptr, size_t size))</dt>
185 <dd> 235 <dd>
186 <p>Sets the allocation function to use (the prototype is similar to the 236 <p>Sets the allocation function to use (the prototype and semantics are
187realloc C function, the semantics are identical). It is used to allocate 237identical to the realloc C function). It is used to allocate and free
188and free memory (no surprises here). If it returns zero when memory 238memory (no surprises here). If it returns zero when memory needs to be
189needs to be allocated, the library might abort or take some potentially 239allocated, the library might abort or take some potentially destructive
190destructive action. The default is your system realloc function.</p> 240action. The default is your system realloc function.</p>
191 <p>You could override this function in high-availability programs to, say, 241 <p>You could override this function in high-availability programs to, say,
192free some memory if it cannot allocate memory, to use a special allocator, 242free some memory if it cannot allocate memory, to use a special allocator,
193or even to sleep a while and retry until some memory is available.</p> 243or even to sleep a while and retry until some memory is available.</p>
194 <p>Example: replace the libev allocator with one that waits a bit and then 244 <p>Example: Replace the libev allocator with one that waits a bit and then
195retries: better than mine).</p> 245retries).</p>
196<pre> static void * 246<pre> static void *
197 persistent_realloc (void *ptr, long size) 247 persistent_realloc (void *ptr, size_t size)
198 { 248 {
199 for (;;) 249 for (;;)
200 { 250 {
201 void *newptr = realloc (ptr, size); 251 void *newptr = realloc (ptr, size);
202 252
219indicating the system call or subsystem causing the problem. If this 269indicating the system call or subsystem causing the problem. If this
220callback is set, then libev will expect it to remedy the sitution, no 270callback is set, then libev will expect it to remedy the sitution, no
221matter what, when it returns. That is, libev will generally retry the 271matter what, when it returns. That is, libev will generally retry the
222requested operation, or, if the condition doesn't go away, do bad stuff 272requested operation, or, if the condition doesn't go away, do bad stuff
223(such as abort).</p> 273(such as abort).</p>
224 <p>Example: do the same thing as libev does internally:</p> 274 <p>Example: This is basically the same thing that libev does internally, too.</p>
225<pre> static void 275<pre> static void
226 fatal_error (const char *msg) 276 fatal_error (const char *msg)
227 { 277 {
228 perror (msg); 278 perror (msg);
229 abort (); 279 abort ();
365 <dd> 415 <dd>
366 <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is 416 <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
367always distinct from the default loop. Unlike the default loop, it cannot 417always distinct from the default loop. Unlike the default loop, it cannot
368handle signal and child watchers, and attempts to do so will be greeted by 418handle signal and child watchers, and attempts to do so will be greeted by
369undefined behaviour (or a failed assertion if assertions are enabled).</p> 419undefined behaviour (or a failed assertion if assertions are enabled).</p>
370 <p>Example: try to create a event loop that uses epoll and nothing else.</p> 420 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
371<pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV); 421<pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
372 if (!epoller) 422 if (!epoller)
373 fatal (&quot;no epoll found here, maybe it hides under your chair&quot;); 423 fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
374 424
375</pre> 425</pre>
468 be handled here by queueing them when their watcher gets executed. 518 be handled here by queueing them when their watcher gets executed.
469 - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK 519 - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
470 were used, return, otherwise continue with step *. 520 were used, return, otherwise continue with step *.
471 521
472</pre> 522</pre>
473 <p>Example: queue some jobs and then loop until no events are outsanding 523 <p>Example: Queue some jobs and then loop until no events are outsanding
474anymore.</p> 524anymore.</p>
475<pre> ... queue jobs here, make sure they register event watchers as long 525<pre> ... queue jobs here, make sure they register event watchers as long
476 ... as they still have work to do (even an idle watcher will do..) 526 ... as they still have work to do (even an idle watcher will do..)
477 ev_loop (my_loop, 0); 527 ev_loop (my_loop, 0);
478 ... jobs done. yeah! 528 ... jobs done. yeah!
497example, libev itself uses this for its internal signal pipe: It is not 547example, libev itself uses this for its internal signal pipe: It is not
498visible to the libev user and should not keep <code>ev_loop</code> from exiting if 548visible to the libev user and should not keep <code>ev_loop</code> from exiting if
499no event watchers registered by it are active. It is also an excellent 549no event watchers registered by it are active. It is also an excellent
500way to do this for generic recurring timers or from within third-party 550way to do this for generic recurring timers or from within third-party
501libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p> 551libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
502 <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code> 552 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
503running when nothing else is active.</p> 553running when nothing else is active.</p>
504<pre> struct dv_signal exitsig; 554<pre> struct ev_signal exitsig;
505 ev_signal_init (&amp;exitsig, sig_cb, SIGINT); 555 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
506 ev_signal_start (myloop, &amp;exitsig); 556 ev_signal_start (loop, &amp;exitsig);
507 evf_unref (myloop); 557 evf_unref (loop);
508 558
509</pre> 559</pre>
510 <p>Example: for some weird reason, unregister the above signal handler again.</p> 560 <p>Example: For some weird reason, unregister the above signal handler again.</p>
511<pre> ev_ref (myloop); 561<pre> ev_ref (loop);
512 ev_signal_stop (myloop, &amp;exitsig); 562 ev_signal_stop (loop, &amp;exitsig);
513 563
514</pre> 564</pre>
515 </dd> 565 </dd>
516</dl> 566</dl>
517 567
585 </dd> 635 </dd>
586 <dt><code>EV_CHILD</code></dt> 636 <dt><code>EV_CHILD</code></dt>
587 <dd> 637 <dd>
588 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p> 638 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
589 </dd> 639 </dd>
640 <dt><code>EV_STAT</code></dt>
641 <dd>
642 <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
643 </dd>
590 <dt><code>EV_IDLE</code></dt> 644 <dt><code>EV_IDLE</code></dt>
591 <dd> 645 <dd>
592 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p> 646 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
593 </dd> 647 </dd>
594 <dt><code>EV_PREPARE</code></dt> 648 <dt><code>EV_PREPARE</code></dt>
599<code>ev_loop</code> has gathered them, but before it invokes any callbacks for any 653<code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
600received events. Callbacks of both watcher types can start and stop as 654received events. Callbacks of both watcher types can start and stop as
601many watchers as they want, and all of them will be taken into account 655many watchers as they want, and all of them will be taken into account
602(for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep 656(for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
603<code>ev_loop</code> from blocking).</p> 657<code>ev_loop</code> from blocking).</p>
658 </dd>
659 <dt><code>EV_EMBED</code></dt>
660 <dd>
661 <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
662 </dd>
663 <dt><code>EV_FORK</code></dt>
664 <dd>
665 <p>The event loop has been resumed in the child process after fork (see
666<code>ev_fork</code>).</p>
604 </dd> 667 </dd>
605 <dt><code>EV_ERROR</code></dt> 668 <dt><code>EV_ERROR</code></dt>
606 <dd> 669 <dd>
607 <p>An unspecified error has occured, the watcher has been stopped. This might 670 <p>An unspecified error has occured, the watcher has been stopped. This might
608happen because the watcher could not be properly started because libev 671happen because the watcher could not be properly started because libev
731 794
732</div> 795</div>
733<h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p> 796<h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p>
734<div id="WATCHER_TYPES_CONTENT"> 797<div id="WATCHER_TYPES_CONTENT">
735<p>This section describes each watcher in detail, but will not repeat 798<p>This section describes each watcher in detail, but will not repeat
736information given in the last section.</p> 799information given in the last section. Any initialisation/set macros,
800functions and members specific to the watcher type are explained.</p>
801<p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
802while the watcher is active, you can look at the member and expect some
803sensible content, but you must not modify it (you can modify it while the
804watcher is stopped to your hearts content), or <i>[read-write]</i>, which
805means you can expect it to have some sensible content while the watcher
806is active, but you can also modify it. Modifying it may not do something
807sensible or take immediate effect (or do anything at all), but libev will
808not crash or malfunction in any way.</p>
737 809
738 810
739 811
740 812
741 813
780 <dd> 852 <dd>
781 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to 853 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
782rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or 854rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
783<code>EV_READ | EV_WRITE</code> to receive the given events.</p> 855<code>EV_READ | EV_WRITE</code> to receive the given events.</p>
784 </dd> 856 </dd>
857 <dt>int fd [read-only]</dt>
858 <dd>
859 <p>The file descriptor being watched.</p>
860 </dd>
861 <dt>int events [read-only]</dt>
862 <dd>
863 <p>The events being watched.</p>
864 </dd>
785</dl> 865</dl>
786<p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well 866<p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
787readable, but only once. Since it is likely line-buffered, you could 867readable, but only once. Since it is likely line-buffered, you could
788attempt to read a whole line in the callback:</p> 868attempt to read a whole line in the callback.</p>
789<pre> static void 869<pre> static void
790 stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents) 870 stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
791 { 871 {
792 ev_io_stop (loop, w); 872 ev_io_stop (loop, w);
793 .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors 873 .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
846repeating. The exact semantics are:</p> 926repeating. The exact semantics are:</p>
847 <p>If the timer is started but nonrepeating, stop it.</p> 927 <p>If the timer is started but nonrepeating, stop it.</p>
848 <p>If the timer is repeating, either start it if necessary (with the repeat 928 <p>If the timer is repeating, either start it if necessary (with the repeat
849value), or reset the running timer to the repeat value.</p> 929value), or reset the running timer to the repeat value.</p>
850 <p>This sounds a bit complicated, but here is a useful and typical 930 <p>This sounds a bit complicated, but here is a useful and typical
851example: Imagine you have a tcp connection and you want a so-called idle 931example: Imagine you have a tcp connection and you want a so-called
852timeout, that is, you want to be called when there have been, say, 60 932idle timeout, that is, you want to be called when there have been,
853seconds of inactivity on the socket. The easiest way to do this is to 933say, 60 seconds of inactivity on the socket. The easiest way to do
854configure an <code>ev_timer</code> with after=repeat=60 and calling ev_timer_again each 934this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling
855time you successfully read or write some data. If you go into an idle 935<code>ev_timer_again</code> each time you successfully read or write some data. If
856state where you do not expect data to travel on the socket, you can stop 936you go into an idle state where you do not expect data to travel on the
857the timer, and again will automatically restart it if need be.</p> 937socket, you can stop the timer, and again will automatically restart it if
938need be.</p>
939 <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether
940and only ever use the <code>repeat</code> value:</p>
941<pre> ev_timer_init (timer, callback, 0., 5.);
942 ev_timer_again (loop, timer);
943 ...
944 timer-&gt;again = 17.;
945 ev_timer_again (loop, timer);
946 ...
947 timer-&gt;again = 10.;
948 ev_timer_again (loop, timer);
949
950</pre>
951 <p>This is more efficient then stopping/starting the timer eahc time you want
952to modify its timeout value.</p>
953 </dd>
954 <dt>ev_tstamp repeat [read-write]</dt>
955 <dd>
956 <p>The current <code>repeat</code> value. Will be used each time the watcher times out
957or <code>ev_timer_again</code> is called and determines the next timeout (if any),
958which is also when any modifications are taken into account.</p>
858 </dd> 959 </dd>
859</dl> 960</dl>
860<p>Example: create a timer that fires after 60 seconds.</p> 961<p>Example: Create a timer that fires after 60 seconds.</p>
861<pre> static void 962<pre> static void
862 one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) 963 one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
863 { 964 {
864 .. one minute over, w is actually stopped right here 965 .. one minute over, w is actually stopped right here
865 } 966 }
867 struct ev_timer mytimer; 968 struct ev_timer mytimer;
868 ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.); 969 ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
869 ev_timer_start (loop, &amp;mytimer); 970 ev_timer_start (loop, &amp;mytimer);
870 971
871</pre> 972</pre>
872<p>Example: create a timeout timer that times out after 10 seconds of 973<p>Example: Create a timeout timer that times out after 10 seconds of
873inactivity.</p> 974inactivity.</p>
874<pre> static void 975<pre> static void
875 timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents) 976 timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
876 { 977 {
877 .. ten seconds without any activity 978 .. ten seconds without any activity
980 <p>Simply stops and restarts the periodic watcher again. This is only useful 1081 <p>Simply stops and restarts the periodic watcher again. This is only useful
981when you changed some parameters or the reschedule callback would return 1082when you changed some parameters or the reschedule callback would return
982a different time than the last time it was called (e.g. in a crond like 1083a different time than the last time it was called (e.g. in a crond like
983program when the crontabs have changed).</p> 1084program when the crontabs have changed).</p>
984 </dd> 1085 </dd>
1086 <dt>ev_tstamp interval [read-write]</dt>
1087 <dd>
1088 <p>The current interval value. Can be modified any time, but changes only
1089take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1090called.</p>
1091 </dd>
1092 <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1093 <dd>
1094 <p>The current reschedule callback, or <code>0</code>, if this functionality is
1095switched off. Can be changed any time, but changes only take effect when
1096the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1097 </dd>
985</dl> 1098</dl>
986<p>Example: call a callback every hour, or, more precisely, whenever the 1099<p>Example: Call a callback every hour, or, more precisely, whenever the
987system clock is divisible by 3600. The callback invocation times have 1100system clock is divisible by 3600. The callback invocation times have
988potentially a lot of jittering, but good long-term stability.</p> 1101potentially a lot of jittering, but good long-term stability.</p>
989<pre> static void 1102<pre> static void
990 clock_cb (struct ev_loop *loop, struct ev_io *w, int revents) 1103 clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
991 { 1104 {
995 struct ev_periodic hourly_tick; 1108 struct ev_periodic hourly_tick;
996 ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0); 1109 ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
997 ev_periodic_start (loop, &amp;hourly_tick); 1110 ev_periodic_start (loop, &amp;hourly_tick);
998 1111
999</pre> 1112</pre>
1000<p>Example: the same as above, but use a reschedule callback to do it:</p> 1113<p>Example: The same as above, but use a reschedule callback to do it:</p>
1001<pre> #include &lt;math.h&gt; 1114<pre> #include &lt;math.h&gt;
1002 1115
1003 static ev_tstamp 1116 static ev_tstamp
1004 my_scheduler_cb (struct ev_periodic *w, ev_tstamp now) 1117 my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1005 { 1118 {
1007 } 1120 }
1008 1121
1009 ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb); 1122 ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1010 1123
1011</pre> 1124</pre>
1012<p>Example: call a callback every hour, starting now:</p> 1125<p>Example: Call a callback every hour, starting now:</p>
1013<pre> struct ev_periodic hourly_tick; 1126<pre> struct ev_periodic hourly_tick;
1014 ev_periodic_init (&amp;hourly_tick, clock_cb, 1127 ev_periodic_init (&amp;hourly_tick, clock_cb,
1015 fmod (ev_now (loop), 3600.), 3600., 0); 1128 fmod (ev_now (loop), 3600.), 3600., 0);
1016 ev_periodic_start (loop, &amp;hourly_tick); 1129 ev_periodic_start (loop, &amp;hourly_tick);
1017 1130
1038 <dt>ev_signal_set (ev_signal *, int signum)</dt> 1151 <dt>ev_signal_set (ev_signal *, int signum)</dt>
1039 <dd> 1152 <dd>
1040 <p>Configures the watcher to trigger on the given signal number (usually one 1153 <p>Configures the watcher to trigger on the given signal number (usually one
1041of the <code>SIGxxx</code> constants).</p> 1154of the <code>SIGxxx</code> constants).</p>
1042 </dd> 1155 </dd>
1156 <dt>int signum [read-only]</dt>
1157 <dd>
1158 <p>The signal the watcher watches out for.</p>
1159 </dd>
1043</dl> 1160</dl>
1044 1161
1045 1162
1046 1163
1047 1164
1060at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see 1177at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1061the status word (use the macros from <code>sys/wait.h</code> and see your systems 1178the status word (use the macros from <code>sys/wait.h</code> and see your systems
1062<code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the 1179<code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1063process causing the status change.</p> 1180process causing the status change.</p>
1064 </dd> 1181 </dd>
1182 <dt>int pid [read-only]</dt>
1183 <dd>
1184 <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1185 </dd>
1186 <dt>int rpid [read-write]</dt>
1187 <dd>
1188 <p>The process id that detected a status change.</p>
1189 </dd>
1190 <dt>int rstatus [read-write]</dt>
1191 <dd>
1192 <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1193<code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1194 </dd>
1065</dl> 1195</dl>
1066<p>Example: try to exit cleanly on SIGINT and SIGTERM.</p> 1196<p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1067<pre> static void 1197<pre> static void
1068 sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents) 1198 sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1069 { 1199 {
1070 ev_unloop (loop, EVUNLOOP_ALL); 1200 ev_unloop (loop, EVUNLOOP_ALL);
1071 } 1201 }
1072 1202
1073 struct ev_signal signal_watcher; 1203 struct ev_signal signal_watcher;
1074 ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT); 1204 ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1075 ev_signal_start (loop, &amp;sigint_cb); 1205 ev_signal_start (loop, &amp;sigint_cb);
1206
1207
1208
1209
1210</pre>
1211
1212</div>
1213<h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1214<div id="code_ev_stat_code_did_the_file_attri-2">
1215<p>This watches a filesystem path for attribute changes. That is, it calls
1216<code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1217compared to the last time, invoking the callback if it did.</p>
1218<p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1219not exist&quot; is a status change like any other. The condition &quot;path does
1220not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1221otherwise always forced to be at least one) and all the other fields of
1222the stat buffer having unspecified contents.</p>
1223<p>Since there is no standard to do this, the portable implementation simply
1224calls <code>stat (2)</code> regulalry on the path to see if it changed somehow. You
1225can specify a recommended polling interval for this case. If you specify
1226a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1227unspecified default</i> value will be used (which you can expect to be around
1228five seconds, although this might change dynamically). Libev will also
1229impose a minimum interval which is currently around <code>0.1</code>, but thats
1230usually overkill.</p>
1231<p>This watcher type is not meant for massive numbers of stat watchers,
1232as even with OS-supported change notifications, this can be
1233resource-intensive.</p>
1234<p>At the time of this writing, no specific OS backends are implemented, but
1235if demand increases, at least a kqueue and inotify backend will be added.</p>
1236<dl>
1237 <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1238 <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1239 <dd>
1240 <p>Configures the watcher to wait for status changes of the given
1241<code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1242be detected and should normally be specified as <code>0</code> to let libev choose
1243a suitable value. The memory pointed to by <code>path</code> must point to the same
1244path for as long as the watcher is active.</p>
1245 <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1246relative to the attributes at the time the watcher was started (or the
1247last change was detected).</p>
1248 </dd>
1249 <dt>ev_stat_stat (ev_stat *)</dt>
1250 <dd>
1251 <p>Updates the stat buffer immediately with new values. If you change the
1252watched path in your callback, you could call this fucntion to avoid
1253detecting this change (while introducing a race condition). Can also be
1254useful simply to find out the new values.</p>
1255 </dd>
1256 <dt>ev_statdata attr [read-only]</dt>
1257 <dd>
1258 <p>The most-recently detected attributes of the file. Although the type is of
1259<code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1260suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1261was some error while <code>stat</code>ing the file.</p>
1262 </dd>
1263 <dt>ev_statdata prev [read-only]</dt>
1264 <dd>
1265 <p>The previous attributes of the file. The callback gets invoked whenever
1266<code>prev</code> != <code>attr</code>.</p>
1267 </dd>
1268 <dt>ev_tstamp interval [read-only]</dt>
1269 <dd>
1270 <p>The specified interval.</p>
1271 </dd>
1272 <dt>const char *path [read-only]</dt>
1273 <dd>
1274 <p>The filesystem path that is being watched.</p>
1275 </dd>
1276</dl>
1277<p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1278<pre> static void
1279 passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1280 {
1281 /* /etc/passwd changed in some way */
1282 if (w-&gt;attr.st_nlink)
1283 {
1284 printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1285 printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1286 printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1287 }
1288 else
1289 /* you shalt not abuse printf for puts */
1290 puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1291 &quot;if this is windows, they already arrived\n&quot;);
1292 }
1293
1294 ...
1295 ev_stat passwd;
1296
1297 ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1298 ev_stat_start (loop, &amp;passwd);
1076 1299
1077 1300
1078 1301
1079 1302
1080</pre> 1303</pre>
1101 <p>Initialises and configures the idle watcher - it has no parameters of any 1324 <p>Initialises and configures the idle watcher - it has no parameters of any
1102kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless, 1325kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1103believe me.</p> 1326believe me.</p>
1104 </dd> 1327 </dd>
1105</dl> 1328</dl>
1106<p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the 1329<p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1107callback, free it. Alos, use no error checking, as usual.</p> 1330callback, free it. Also, use no error checking, as usual.</p>
1108<pre> static void 1331<pre> static void
1109 idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents) 1332 idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1110 { 1333 {
1111 free (w); 1334 free (w);
1112 // now do something you wanted to do when the program has 1335 // now do something you wanted to do when the program has
1126<h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2> 1349<h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1127<div id="code_ev_prepare_code_and_code_ev_che-2"> 1350<div id="code_ev_prepare_code_and_code_ev_che-2">
1128<p>Prepare and check watchers are usually (but not always) used in tandem: 1351<p>Prepare and check watchers are usually (but not always) used in tandem:
1129prepare watchers get invoked before the process blocks and check watchers 1352prepare watchers get invoked before the process blocks and check watchers
1130afterwards.</p> 1353afterwards.</p>
1354<p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1355the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1356watchers. Other loops than the current one are fine, however. The
1357rationale behind this is that you do not need to check for recursion in
1358those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1359<code>ev_check</code> so if you have one watcher of each kind they will always be
1360called in pairs bracketing the blocking call.</p>
1131<p>Their main purpose is to integrate other event mechanisms into libev and 1361<p>Their main purpose is to integrate other event mechanisms into libev and
1132their use is somewhat advanced. This could be used, for example, to track 1362their use is somewhat advanced. This could be used, for example, to track
1133variable changes, implement your own watchers, integrate net-snmp or a 1363variable changes, implement your own watchers, integrate net-snmp or a
1134coroutine library and lots more.</p> 1364coroutine library and lots more. They are also occasionally useful if
1365you cache some data and want to flush it before blocking (for example,
1366in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1367watcher).</p>
1135<p>This is done by examining in each prepare call which file descriptors need 1368<p>This is done by examining in each prepare call which file descriptors need
1136to be watched by the other library, registering <code>ev_io</code> watchers for 1369to be watched by the other library, registering <code>ev_io</code> watchers for
1137them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries 1370them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1138provide just this functionality). Then, in the check watcher you check for 1371provide just this functionality). Then, in the check watcher you check for
1139any events that occured (by checking the pending status of all watchers 1372any events that occured (by checking the pending status of all watchers
1155 <p>Initialises and configures the prepare or check watcher - they have no 1388 <p>Initialises and configures the prepare or check watcher - they have no
1156parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code> 1389parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1157macros, but using them is utterly, utterly and completely pointless.</p> 1390macros, but using them is utterly, utterly and completely pointless.</p>
1158 </dd> 1391 </dd>
1159</dl> 1392</dl>
1160<p>Example: *TODO*.</p> 1393<p>Example: To include a library such as adns, you would add IO watchers
1394and a timeout watcher in a prepare handler, as required by libadns, and
1395in a check watcher, destroy them and call into libadns. What follows is
1396pseudo-code only of course:</p>
1397<pre> static ev_io iow [nfd];
1398 static ev_timer tw;
1161 1399
1400 static void
1401 io_cb (ev_loop *loop, ev_io *w, int revents)
1402 {
1403 // set the relevant poll flags
1404 // could also call adns_processreadable etc. here
1405 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1406 if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1407 if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1408 }
1162 1409
1410 // create io watchers for each fd and a timer before blocking
1411 static void
1412 adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1413 {
1414 int timeout = 3600000;truct pollfd fds [nfd];
1415 // actual code will need to loop here and realloc etc.
1416 adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1163 1417
1418 /* the callback is illegal, but won't be called as we stop during check */
1419 ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1420 ev_timer_start (loop, &amp;tw);
1164 1421
1422 // create on ev_io per pollfd
1423 for (int i = 0; i &lt; nfd; ++i)
1424 {
1425 ev_io_init (iow + i, io_cb, fds [i].fd,
1426 ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1427 | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1428
1429 fds [i].revents = 0;
1430 iow [i].data = fds + i;
1431 ev_io_start (loop, iow + i);
1432 }
1433 }
1434
1435 // stop all watchers after blocking
1436 static void
1437 adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1438 {
1439 ev_timer_stop (loop, &amp;tw);
1440
1441 for (int i = 0; i &lt; nfd; ++i)
1442 ev_io_stop (loop, iow + i);
1443
1444 adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1445 }
1446
1447
1448
1449
1450</pre>
1165 1451
1166</div> 1452</div>
1167<h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2> 1453<h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1168<div id="code_ev_embed_code_when_one_backend_-2"> 1454<div id="code_ev_embed_code_when_one_backend_-2">
1169<p>This is a rather advanced watcher type that lets you embed one event loop 1455<p>This is a rather advanced watcher type that lets you embed one event loop
1239 <dt>ev_embed_sweep (loop, ev_embed *)</dt> 1525 <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1240 <dd> 1526 <dd>
1241 <p>Make a single, non-blocking sweep over the embedded loop. This works 1527 <p>Make a single, non-blocking sweep over the embedded loop. This works
1242similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most 1528similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1243apropriate way for embedded loops.</p> 1529apropriate way for embedded loops.</p>
1530 </dd>
1531 <dt>struct ev_loop *loop [read-only]</dt>
1532 <dd>
1533 <p>The embedded event loop.</p>
1534 </dd>
1535</dl>
1536
1537
1538
1539
1540
1541</div>
1542<h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1543<div id="code_ev_fork_code_the_audacity_to_re-2">
1544<p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1545whoever is a good citizen cared to tell libev about it by calling
1546<code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1547event loop blocks next and before <code>ev_check</code> watchers are being called,
1548and only in the child after the fork. If whoever good citizen calling
1549<code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1550handlers will be invoked, too, of course.</p>
1551<dl>
1552 <dt>ev_fork_init (ev_signal *, callback)</dt>
1553 <dd>
1554 <p>Initialises and configures the fork watcher - it has no parameters of any
1555kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1556believe me.</p>
1244 </dd> 1557 </dd>
1245</dl> 1558</dl>
1246 1559
1247 1560
1248 1561
1398 </dd> 1711 </dd>
1399 <dt>w-&gt;sweep () <code>ev::embed</code> only</dt> 1712 <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1400 <dd> 1713 <dd>
1401 <p>Invokes <code>ev_embed_sweep</code>.</p> 1714 <p>Invokes <code>ev_embed_sweep</code>.</p>
1402 </dd> 1715 </dd>
1716 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1717 <dd>
1718 <p>Invokes <code>ev_stat_stat</code>.</p>
1719 </dd>
1403 </dl> 1720 </dl>
1404 </p> 1721 </p>
1405 </dd> 1722 </dd>
1406</dl> 1723</dl>
1407<p>Example: Define a class with an IO and idle watcher, start one of them in 1724<p>Example: Define a class with an IO and idle watcher, start one of them in
1418 : io (this, &amp;myclass::io_cb), 1735 : io (this, &amp;myclass::io_cb),
1419 idle (this, &amp;myclass::idle_cb) 1736 idle (this, &amp;myclass::idle_cb)
1420 { 1737 {
1421 io.start (fd, ev::READ); 1738 io.start (fd, ev::READ);
1422 } 1739 }
1740
1741
1742
1743
1744</pre>
1745
1746</div>
1747<h1 id="MACRO_MAGIC">MACRO MAGIC</h1><p><a href="#TOP" class="toplink">Top</a></p>
1748<div id="MACRO_MAGIC_CONTENT">
1749<p>Libev can be compiled with a variety of options, the most fundemantal is
1750<code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1751callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1752<p>To make it easier to write programs that cope with either variant, the
1753following macros are defined:</p>
1754<dl>
1755 <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1756 <dd>
1757 <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1758loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1759<code>EV_A_</code> is used when other arguments are following. Example:</p>
1760<pre> ev_unref (EV_A);
1761 ev_timer_add (EV_A_ watcher);
1762 ev_loop (EV_A_ 0);
1763
1764</pre>
1765 <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1766which is often provided by the following macro.</p>
1767 </dd>
1768 <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1769 <dd>
1770 <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1771loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1772<code>EV_P_</code> is used when other parameters are following. Example:</p>
1773<pre> // this is how ev_unref is being declared
1774 static void ev_unref (EV_P);
1775
1776 // this is how you can declare your typical callback
1777 static void cb (EV_P_ ev_timer *w, int revents)
1778
1779</pre>
1780 <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1781suitable for use with <code>EV_A</code>.</p>
1782 </dd>
1783 <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1784 <dd>
1785 <p>Similar to the other two macros, this gives you the value of the default
1786loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1787 </dd>
1788</dl>
1789<p>Example: Declare and initialise a check watcher, working regardless of
1790wether multiple loops are supported or not.</p>
1791<pre> static void
1792 check_cb (EV_P_ ev_timer *w, int revents)
1793 {
1794 ev_check_stop (EV_A_ w);
1795 }
1796
1797 ev_check check;
1798 ev_check_init (&amp;check, check_cb);
1799 ev_check_start (EV_DEFAULT_ &amp;check);
1800 ev_loop (EV_DEFAULT_ 0);
1801
1802
1803
1423 1804
1424</pre> 1805</pre>
1425 1806
1426</div> 1807</div>
1427<h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p> 1808<h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
1638will have the <code>struct ev_loop *</code> as first argument, and you can create 2019will have the <code>struct ev_loop *</code> as first argument, and you can create
1639additional independent event loops. Otherwise there will be no support 2020additional independent event loops. Otherwise there will be no support
1640for multiple event loops and there is no first event loop pointer 2021for multiple event loops and there is no first event loop pointer
1641argument. Instead, all functions act on the single default loop.</p> 2022argument. Instead, all functions act on the single default loop.</p>
1642 </dd> 2023 </dd>
1643 <dt>EV_PERIODICS</dt> 2024 <dt>EV_PERIODIC_ENABLE</dt>
1644 <dd> 2025 <dd>
1645 <p>If undefined or defined to be <code>1</code>, then periodic timers are supported, 2026 <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
1646otherwise not. This saves a few kb of code.</p> 2027defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2028code.</p>
2029 </dd>
2030 <dt>EV_EMBED_ENABLE</dt>
2031 <dd>
2032 <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2033defined to be <code>0</code>, then they are not.</p>
2034 </dd>
2035 <dt>EV_STAT_ENABLE</dt>
2036 <dd>
2037 <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2038defined to be <code>0</code>, then they are not.</p>
2039 </dd>
2040 <dt>EV_FORK_ENABLE</dt>
2041 <dd>
2042 <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2043defined to be <code>0</code>, then they are not.</p>
2044 </dd>
2045 <dt>EV_MINIMAL</dt>
2046 <dd>
2047 <p>If you need to shave off some kilobytes of code at the expense of some
2048speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2049some inlining decisions, saves roughly 30% codesize of amd64.</p>
2050 </dd>
2051 <dt>EV_PID_HASHSIZE</dt>
2052 <dd>
2053 <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2054pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2055than enough. If you need to manage thousands of children you might want to
2056increase this value.</p>
1647 </dd> 2057 </dd>
1648 <dt>EV_COMMON</dt> 2058 <dt>EV_COMMON</dt>
1649 <dd> 2059 <dd>
1650 <p>By default, all watchers have a <code>void *data</code> member. By redefining 2060 <p>By default, all watchers have a <code>void *data</code> member. By redefining
1651this macro to a something else you can include more and other types of 2061this macro to a something else you can include more and other types of
1691</pre> 2101</pre>
1692 <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p> 2102 <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
1693<pre> #include &quot;ev_cpp.h&quot; 2103<pre> #include &quot;ev_cpp.h&quot;
1694 #include &quot;ev.c&quot; 2104 #include &quot;ev.c&quot;
1695 2105
2106
2107
2108
1696</pre> 2109</pre>
2110
2111</div>
2112<h1 id="COMPLEXITIES">COMPLEXITIES</h1><p><a href="#TOP" class="toplink">Top</a></p>
2113<div id="COMPLEXITIES_CONTENT">
2114 <p>In this section the complexities of (many of) the algorithms used inside
2115libev will be explained. For complexity discussions about backends see the
2116documentation for <code>ev_default_init</code>.</p>
2117 <p>
2118 <dl>
2119 <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2120 <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2121 <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2122 <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2123 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % 16))</dt>
2124 <dt>Finding the next timer per loop iteration: O(1)</dt>
2125 <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2126 <dt>Activating one watcher: O(1)</dt>
2127 </dl>
2128 </p>
2129
2130
2131
2132
1697 2133
1698</div> 2134</div>
1699<h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p> 2135<h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
1700<div id="AUTHOR_CONTENT"> 2136<div id="AUTHOR_CONTENT">
1701 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p> 2137 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines