ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
(Generate patch)

Comparing libev/ev.html (file contents):
Revision 1.52 by root, Tue Nov 27 19:41:52 2007 UTC vs.
Revision 1.61 by root, Thu Nov 29 12:21:21 2007 UTC

4<head> 4<head>
5 <title>libev</title> 5 <title>libev</title>
6 <meta name="description" content="Pod documentation for libev" /> 6 <meta name="description" content="Pod documentation for libev" />
7 <meta name="inputfile" content="&lt;standard input&gt;" /> 7 <meta name="inputfile" content="&lt;standard input&gt;" />
8 <meta name="outputfile" content="&lt;standard output&gt;" /> 8 <meta name="outputfile" content="&lt;standard output&gt;" />
9 <meta name="created" content="Tue Nov 27 20:38:24 2007" /> 9 <meta name="created" content="Thu Nov 29 13:21:20 2007" />
10 <meta name="generator" content="Pod::Xhtml 1.57" /> 10 <meta name="generator" content="Pod::Xhtml 1.57" />
11<link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head> 11<link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12<body> 12<body>
13<div class="pod"> 13<div class="pod">
14<!-- INDEX START --> 14<!-- INDEX START -->
15<h3 id="TOP">Index</h3> 15<h3 id="TOP">Index</h3>
16 16
17<ul><li><a href="#NAME">NAME</a></li> 17<ul><li><a href="#NAME">NAME</a></li>
18<li><a href="#SYNOPSIS">SYNOPSIS</a></li> 18<li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19<li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
19<li><a href="#DESCRIPTION">DESCRIPTION</a></li> 20<li><a href="#DESCRIPTION">DESCRIPTION</a></li>
20<li><a href="#FEATURES">FEATURES</a></li> 21<li><a href="#FEATURES">FEATURES</a></li>
21<li><a href="#CONVENTIONS">CONVENTIONS</a></li> 22<li><a href="#CONVENTIONS">CONVENTIONS</a></li>
22<li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li> 23<li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
23<li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li> 24<li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
59<li><a href="#AUTHOR">AUTHOR</a> 60<li><a href="#AUTHOR">AUTHOR</a>
60</li> 61</li>
61</ul><hr /> 62</ul><hr />
62<!-- INDEX END --> 63<!-- INDEX END -->
63 64
64<h1 id="NAME">NAME</h1><p><a href="#TOP" class="toplink">Top</a></p> 65<h1 id="NAME">NAME</h1>
65<div id="NAME_CONTENT"> 66<div id="NAME_CONTENT">
66<p>libev - a high performance full-featured event loop written in C</p> 67<p>libev - a high performance full-featured event loop written in C</p>
67 68
68</div> 69</div>
69<h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p> 70<h1 id="SYNOPSIS">SYNOPSIS</h1>
70<div id="SYNOPSIS_CONTENT"> 71<div id="SYNOPSIS_CONTENT">
71<pre> #include &lt;ev.h&gt; 72<pre> #include &lt;ev.h&gt;
72 73
73</pre> 74</pre>
74 75
75</div> 76</div>
76<h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p> 77<h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78<div id="EXAMPLE_PROGRAM_CONTENT">
79<pre> #include &lt;ev.h&gt;
80
81 ev_io stdin_watcher;
82 ev_timer timeout_watcher;
83
84 /* called when data readable on stdin */
85 static void
86 stdin_cb (EV_P_ struct ev_io *w, int revents)
87 {
88 /* puts (&quot;stdin ready&quot;); */
89 ev_io_stop (EV_A_ w); /* just a syntax example */
90 ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91 }
92
93 static void
94 timeout_cb (EV_P_ struct ev_timer *w, int revents)
95 {
96 /* puts (&quot;timeout&quot;); */
97 ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98 }
99
100 int
101 main (void)
102 {
103 struct ev_loop *loop = ev_default_loop (0);
104
105 /* initialise an io watcher, then start it */
106 ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107 ev_io_start (loop, &amp;stdin_watcher);
108
109 /* simple non-repeating 5.5 second timeout */
110 ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111 ev_timer_start (loop, &amp;timeout_watcher);
112
113 /* loop till timeout or data ready */
114 ev_loop (loop, 0);
115
116 return 0;
117 }
118
119</pre>
120
121</div>
122<h1 id="DESCRIPTION">DESCRIPTION</h1>
77<div id="DESCRIPTION_CONTENT"> 123<div id="DESCRIPTION_CONTENT">
78<p>Libev is an event loop: you register interest in certain events (such as a 124<p>Libev is an event loop: you register interest in certain events (such as a
79file descriptor being readable or a timeout occuring), and it will manage 125file descriptor being readable or a timeout occuring), and it will manage
80these event sources and provide your program with events.</p> 126these event sources and provide your program with events.</p>
81<p>To do this, it must take more or less complete control over your process 127<p>To do this, it must take more or less complete control over your process
85watchers</i>, which are relatively small C structures you initialise with the 131watchers</i>, which are relatively small C structures you initialise with the
86details of the event, and then hand it over to libev by <i>starting</i> the 132details of the event, and then hand it over to libev by <i>starting</i> the
87watcher.</p> 133watcher.</p>
88 134
89</div> 135</div>
90<h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p> 136<h1 id="FEATURES">FEATURES</h1>
91<div id="FEATURES_CONTENT"> 137<div id="FEATURES_CONTENT">
92<p>Libev supports select, poll, the linux-specific epoll and the bsd-specific 138<p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
93kqueue mechanisms for file descriptor events, relative timers, absolute 139BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
94timers with customised rescheduling, signal events, process status change 140for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
95events (related to SIGCHLD), and event watchers dealing with the event 141(for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
96loop mechanism itself (idle, prepare and check watchers). It also is quite 142with customised rescheduling (<code>ev_periodic</code>), synchronous signals
143(<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
144watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
145<code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
146file watchers (<code>ev_stat</code>) and even limited support for fork events
147(<code>ev_fork</code>).</p>
148<p>It also is quite fast (see this
97fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing 149<a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
98it to libevent for example).</p> 150for example).</p>
99 151
100</div> 152</div>
101<h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p> 153<h1 id="CONVENTIONS">CONVENTIONS</h1>
102<div id="CONVENTIONS_CONTENT"> 154<div id="CONVENTIONS_CONTENT">
103<p>Libev is very configurable. In this manual the default configuration 155<p>Libev is very configurable. In this manual the default configuration will
104will be described, which supports multiple event loops. For more info 156be described, which supports multiple event loops. For more info about
105about various configuration options please have a look at the file 157various configuration options please have a look at <strong>EMBED</strong> section in
106<cite>README.embed</cite> in the libev distribution. If libev was configured without 158this manual. If libev was configured without support for multiple event
107support for multiple event loops, then all functions taking an initial 159loops, then all functions taking an initial argument of name <code>loop</code>
108argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>) 160(which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
109will not have this argument.</p>
110 161
111</div> 162</div>
112<h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p> 163<h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
113<div id="TIME_REPRESENTATION_CONTENT"> 164<div id="TIME_REPRESENTATION_CONTENT">
114<p>Libev represents time as a single floating point number, representing the 165<p>Libev represents time as a single floating point number, representing the
115(fractional) number of seconds since the (POSIX) epoch (somewhere near 166(fractional) number of seconds since the (POSIX) epoch (somewhere near
116the beginning of 1970, details are complicated, don't ask). This type is 167the beginning of 1970, details are complicated, don't ask). This type is
117called <code>ev_tstamp</code>, which is what you should use too. It usually aliases 168called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
118to the <code>double</code> type in C, and when you need to do any calculations on 169to the <code>double</code> type in C, and when you need to do any calculations on
119it, you should treat it as such.</p> 170it, you should treat it as such.</p>
120 171
121</div> 172</div>
122<h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p> 173<h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
123<div id="GLOBAL_FUNCTIONS_CONTENT"> 174<div id="GLOBAL_FUNCTIONS_CONTENT">
124<p>These functions can be called anytime, even before initialising the 175<p>These functions can be called anytime, even before initialising the
125library in any way.</p> 176library in any way.</p>
126<dl> 177<dl>
127 <dt>ev_tstamp ev_time ()</dt> 178 <dt>ev_tstamp ev_time ()</dt>
140version of the library your program was compiled against.</p> 191version of the library your program was compiled against.</p>
141 <p>Usually, it's a good idea to terminate if the major versions mismatch, 192 <p>Usually, it's a good idea to terminate if the major versions mismatch,
142as this indicates an incompatible change. Minor versions are usually 193as this indicates an incompatible change. Minor versions are usually
143compatible to older versions, so a larger minor version alone is usually 194compatible to older versions, so a larger minor version alone is usually
144not a problem.</p> 195not a problem.</p>
145 <p>Example: make sure we haven't accidentally been linked against the wrong 196 <p>Example: Make sure we haven't accidentally been linked against the wrong
146version:</p> 197version.</p>
147<pre> assert ((&quot;libev version mismatch&quot;, 198<pre> assert ((&quot;libev version mismatch&quot;,
148 ev_version_major () == EV_VERSION_MAJOR 199 ev_version_major () == EV_VERSION_MAJOR
149 &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR)); 200 &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
150 201
151</pre> 202</pre>
179might be supported on the current system, you would need to look at 230might be supported on the current system, you would need to look at
180<code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for 231<code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
181recommended ones.</p> 232recommended ones.</p>
182 <p>See the description of <code>ev_embed</code> watchers for more info.</p> 233 <p>See the description of <code>ev_embed</code> watchers for more info.</p>
183 </dd> 234 </dd>
184 <dt>ev_set_allocator (void *(*cb)(void *ptr, size_t size))</dt> 235 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
185 <dd> 236 <dd>
186 <p>Sets the allocation function to use (the prototype and semantics are 237 <p>Sets the allocation function to use (the prototype is similar - the
187identical to the realloc C function). It is used to allocate and free 238semantics is identical - to the realloc C function). It is used to
188memory (no surprises here). If it returns zero when memory needs to be 239allocate and free memory (no surprises here). If it returns zero when
189allocated, the library might abort or take some potentially destructive 240memory needs to be allocated, the library might abort or take some
190action. The default is your system realloc function.</p> 241potentially destructive action. The default is your system realloc
242function.</p>
191 <p>You could override this function in high-availability programs to, say, 243 <p>You could override this function in high-availability programs to, say,
192free some memory if it cannot allocate memory, to use a special allocator, 244free some memory if it cannot allocate memory, to use a special allocator,
193or even to sleep a while and retry until some memory is available.</p> 245or even to sleep a while and retry until some memory is available.</p>
194 <p>Example: replace the libev allocator with one that waits a bit and then 246 <p>Example: Replace the libev allocator with one that waits a bit and then
195retries: better than mine).</p> 247retries).</p>
196<pre> static void * 248<pre> static void *
197 persistent_realloc (void *ptr, size_t size) 249 persistent_realloc (void *ptr, size_t size)
198 { 250 {
199 for (;;) 251 for (;;)
200 { 252 {
219indicating the system call or subsystem causing the problem. If this 271indicating the system call or subsystem causing the problem. If this
220callback is set, then libev will expect it to remedy the sitution, no 272callback is set, then libev will expect it to remedy the sitution, no
221matter what, when it returns. That is, libev will generally retry the 273matter what, when it returns. That is, libev will generally retry the
222requested operation, or, if the condition doesn't go away, do bad stuff 274requested operation, or, if the condition doesn't go away, do bad stuff
223(such as abort).</p> 275(such as abort).</p>
224 <p>Example: do the same thing as libev does internally:</p> 276 <p>Example: This is basically the same thing that libev does internally, too.</p>
225<pre> static void 277<pre> static void
226 fatal_error (const char *msg) 278 fatal_error (const char *msg)
227 { 279 {
228 perror (msg); 280 perror (msg);
229 abort (); 281 abort ();
235</pre> 287</pre>
236 </dd> 288 </dd>
237</dl> 289</dl>
238 290
239</div> 291</div>
240<h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1><p><a href="#TOP" class="toplink">Top</a></p> 292<h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
241<div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2"> 293<div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
242<p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two 294<p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
243types of such loops, the <i>default</i> loop, which supports signals and child 295types of such loops, the <i>default</i> loop, which supports signals and child
244events, and dynamically created loops which do not.</p> 296events, and dynamically created loops which do not.</p>
245<p>If you use threads, a common model is to run the default event loop 297<p>If you use threads, a common model is to run the default event loop
365 <dd> 417 <dd>
366 <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is 418 <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
367always distinct from the default loop. Unlike the default loop, it cannot 419always distinct from the default loop. Unlike the default loop, it cannot
368handle signal and child watchers, and attempts to do so will be greeted by 420handle signal and child watchers, and attempts to do so will be greeted by
369undefined behaviour (or a failed assertion if assertions are enabled).</p> 421undefined behaviour (or a failed assertion if assertions are enabled).</p>
370 <p>Example: try to create a event loop that uses epoll and nothing else.</p> 422 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
371<pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV); 423<pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
372 if (!epoller) 424 if (!epoller)
373 fatal (&quot;no epoll found here, maybe it hides under your chair&quot;); 425 fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
374 426
375</pre> 427</pre>
468 be handled here by queueing them when their watcher gets executed. 520 be handled here by queueing them when their watcher gets executed.
469 - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK 521 - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
470 were used, return, otherwise continue with step *. 522 were used, return, otherwise continue with step *.
471 523
472</pre> 524</pre>
473 <p>Example: queue some jobs and then loop until no events are outsanding 525 <p>Example: Queue some jobs and then loop until no events are outsanding
474anymore.</p> 526anymore.</p>
475<pre> ... queue jobs here, make sure they register event watchers as long 527<pre> ... queue jobs here, make sure they register event watchers as long
476 ... as they still have work to do (even an idle watcher will do..) 528 ... as they still have work to do (even an idle watcher will do..)
477 ev_loop (my_loop, 0); 529 ev_loop (my_loop, 0);
478 ... jobs done. yeah! 530 ... jobs done. yeah!
497example, libev itself uses this for its internal signal pipe: It is not 549example, libev itself uses this for its internal signal pipe: It is not
498visible to the libev user and should not keep <code>ev_loop</code> from exiting if 550visible to the libev user and should not keep <code>ev_loop</code> from exiting if
499no event watchers registered by it are active. It is also an excellent 551no event watchers registered by it are active. It is also an excellent
500way to do this for generic recurring timers or from within third-party 552way to do this for generic recurring timers or from within third-party
501libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p> 553libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
502 <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code> 554 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
503running when nothing else is active.</p> 555running when nothing else is active.</p>
504<pre> struct dv_signal exitsig; 556<pre> struct ev_signal exitsig;
505 ev_signal_init (&amp;exitsig, sig_cb, SIGINT); 557 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
506 ev_signal_start (myloop, &amp;exitsig); 558 ev_signal_start (loop, &amp;exitsig);
507 evf_unref (myloop); 559 evf_unref (loop);
508 560
509</pre> 561</pre>
510 <p>Example: for some weird reason, unregister the above signal handler again.</p> 562 <p>Example: For some weird reason, unregister the above signal handler again.</p>
511<pre> ev_ref (myloop); 563<pre> ev_ref (loop);
512 ev_signal_stop (myloop, &amp;exitsig); 564 ev_signal_stop (loop, &amp;exitsig);
513 565
514</pre> 566</pre>
515 </dd> 567 </dd>
516</dl> 568</dl>
517 569
518 570
519 571
520 572
521 573
522</div> 574</div>
523<h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1><p><a href="#TOP" class="toplink">Top</a></p> 575<h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
524<div id="ANATOMY_OF_A_WATCHER_CONTENT"> 576<div id="ANATOMY_OF_A_WATCHER_CONTENT">
525<p>A watcher is a structure that you create and register to record your 577<p>A watcher is a structure that you create and register to record your
526interest in some event. For instance, if you want to wait for STDIN to 578interest in some event. For instance, if you want to wait for STDIN to
527become readable, you would create an <code>ev_io</code> watcher for that:</p> 579become readable, you would create an <code>ev_io</code> watcher for that:</p>
528<pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents) 580<pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
691events but its callback has not yet been invoked). As long as a watcher 743events but its callback has not yet been invoked). As long as a watcher
692is pending (but not active) you must not call an init function on it (but 744is pending (but not active) you must not call an init function on it (but
693<code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to 745<code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
694libev (e.g. you cnanot <code>free ()</code> it).</p> 746libev (e.g. you cnanot <code>free ()</code> it).</p>
695 </dd> 747 </dd>
696 <dt>callback = ev_cb (ev_TYPE *watcher)</dt> 748 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
697 <dd> 749 <dd>
698 <p>Returns the callback currently set on the watcher.</p> 750 <p>Returns the callback currently set on the watcher.</p>
699 </dd> 751 </dd>
700 <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt> 752 <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
701 <dd> 753 <dd>
733 struct my_io *w = (struct my_io *)w_; 785 struct my_io *w = (struct my_io *)w_;
734 ... 786 ...
735 } 787 }
736 788
737</pre> 789</pre>
738<p>More interesting and less C-conformant ways of catsing your callback type 790<p>More interesting and less C-conformant ways of casting your callback type
739have been omitted....</p> 791instead have been omitted.</p>
792<p>Another common scenario is having some data structure with multiple
793watchers:</p>
794<pre> struct my_biggy
795 {
796 int some_data;
797 ev_timer t1;
798 ev_timer t2;
799 }
740 800
801</pre>
802<p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
803you need to use <code>offsetof</code>:</p>
804<pre> #include &lt;stddef.h&gt;
741 805
806 static void
807 t1_cb (EV_P_ struct ev_timer *w, int revents)
808 {
809 struct my_biggy big = (struct my_biggy *
810 (((char *)w) - offsetof (struct my_biggy, t1));
811 }
742 812
813 static void
814 t2_cb (EV_P_ struct ev_timer *w, int revents)
815 {
816 struct my_biggy big = (struct my_biggy *
817 (((char *)w) - offsetof (struct my_biggy, t2));
818 }
743 819
744 820
821
822
823</pre>
824
745</div> 825</div>
746<h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p> 826<h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
747<div id="WATCHER_TYPES_CONTENT"> 827<div id="WATCHER_TYPES_CONTENT">
748<p>This section describes each watcher in detail, but will not repeat 828<p>This section describes each watcher in detail, but will not repeat
749information given in the last section. Any initialisation/set macros, 829information given in the last section. Any initialisation/set macros,
750functions and members specific to the watcher type are explained.</p> 830functions and members specific to the watcher type are explained.</p>
751<p>Members are additionally marked with either <i>[read-only]</i>, meaning that, 831<p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
811 <dt>int events [read-only]</dt> 891 <dt>int events [read-only]</dt>
812 <dd> 892 <dd>
813 <p>The events being watched.</p> 893 <p>The events being watched.</p>
814 </dd> 894 </dd>
815</dl> 895</dl>
816<p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well 896<p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
817readable, but only once. Since it is likely line-buffered, you could 897readable, but only once. Since it is likely line-buffered, you could
818attempt to read a whole line in the callback:</p> 898attempt to read a whole line in the callback.</p>
819<pre> static void 899<pre> static void
820 stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents) 900 stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
821 { 901 {
822 ev_io_stop (loop, w); 902 ev_io_stop (loop, w);
823 .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors 903 .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
872 </dd> 952 </dd>
873 <dt>ev_timer_again (loop)</dt> 953 <dt>ev_timer_again (loop)</dt>
874 <dd> 954 <dd>
875 <p>This will act as if the timer timed out and restart it again if it is 955 <p>This will act as if the timer timed out and restart it again if it is
876repeating. The exact semantics are:</p> 956repeating. The exact semantics are:</p>
957 <p>If the timer is pending, its pending status is cleared.</p>
877 <p>If the timer is started but nonrepeating, stop it.</p> 958 <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
878 <p>If the timer is repeating, either start it if necessary (with the repeat 959 <p>If the timer is repeating, either start it if necessary (with the
879value), or reset the running timer to the repeat value.</p> 960<code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
880 <p>This sounds a bit complicated, but here is a useful and typical 961 <p>This sounds a bit complicated, but here is a useful and typical
881example: Imagine you have a tcp connection and you want a so-called 962example: Imagine you have a tcp connection and you want a so-called idle
882idle timeout, that is, you want to be called when there have been, 963timeout, that is, you want to be called when there have been, say, 60
883say, 60 seconds of inactivity on the socket. The easiest way to do 964seconds of inactivity on the socket. The easiest way to do this is to
884this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling 965configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
885<code>ev_timer_again</code> each time you successfully read or write some data. If 966<code>ev_timer_again</code> each time you successfully read or write some data. If
886you go into an idle state where you do not expect data to travel on the 967you go into an idle state where you do not expect data to travel on the
887socket, you can stop the timer, and again will automatically restart it if 968socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
888need be.</p> 969automatically restart it if need be.</p>
889 <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether 970 <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
890and only ever use the <code>repeat</code> value:</p> 971altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
891<pre> ev_timer_init (timer, callback, 0., 5.); 972<pre> ev_timer_init (timer, callback, 0., 5.);
892 ev_timer_again (loop, timer); 973 ev_timer_again (loop, timer);
893 ... 974 ...
894 timer-&gt;again = 17.; 975 timer-&gt;again = 17.;
895 ev_timer_again (loop, timer); 976 ev_timer_again (loop, timer);
896 ... 977 ...
897 timer-&gt;again = 10.; 978 timer-&gt;again = 10.;
898 ev_timer_again (loop, timer); 979 ev_timer_again (loop, timer);
899 980
900</pre> 981</pre>
901 <p>This is more efficient then stopping/starting the timer eahc time you want 982 <p>This is more slightly efficient then stopping/starting the timer each time
902to modify its timeout value.</p> 983you want to modify its timeout value.</p>
903 </dd> 984 </dd>
904 <dt>ev_tstamp repeat [read-write]</dt> 985 <dt>ev_tstamp repeat [read-write]</dt>
905 <dd> 986 <dd>
906 <p>The current <code>repeat</code> value. Will be used each time the watcher times out 987 <p>The current <code>repeat</code> value. Will be used each time the watcher times out
907or <code>ev_timer_again</code> is called and determines the next timeout (if any), 988or <code>ev_timer_again</code> is called and determines the next timeout (if any),
908which is also when any modifications are taken into account.</p> 989which is also when any modifications are taken into account.</p>
909 </dd> 990 </dd>
910</dl> 991</dl>
911<p>Example: create a timer that fires after 60 seconds.</p> 992<p>Example: Create a timer that fires after 60 seconds.</p>
912<pre> static void 993<pre> static void
913 one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) 994 one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
914 { 995 {
915 .. one minute over, w is actually stopped right here 996 .. one minute over, w is actually stopped right here
916 } 997 }
918 struct ev_timer mytimer; 999 struct ev_timer mytimer;
919 ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.); 1000 ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
920 ev_timer_start (loop, &amp;mytimer); 1001 ev_timer_start (loop, &amp;mytimer);
921 1002
922</pre> 1003</pre>
923<p>Example: create a timeout timer that times out after 10 seconds of 1004<p>Example: Create a timeout timer that times out after 10 seconds of
924inactivity.</p> 1005inactivity.</p>
925<pre> static void 1006<pre> static void
926 timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents) 1007 timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
927 { 1008 {
928 .. ten seconds without any activity 1009 .. ten seconds without any activity
1044 <p>The current reschedule callback, or <code>0</code>, if this functionality is 1125 <p>The current reschedule callback, or <code>0</code>, if this functionality is
1045switched off. Can be changed any time, but changes only take effect when 1126switched off. Can be changed any time, but changes only take effect when
1046the periodic timer fires or <code>ev_periodic_again</code> is being called.</p> 1127the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1047 </dd> 1128 </dd>
1048</dl> 1129</dl>
1049<p>Example: call a callback every hour, or, more precisely, whenever the 1130<p>Example: Call a callback every hour, or, more precisely, whenever the
1050system clock is divisible by 3600. The callback invocation times have 1131system clock is divisible by 3600. The callback invocation times have
1051potentially a lot of jittering, but good long-term stability.</p> 1132potentially a lot of jittering, but good long-term stability.</p>
1052<pre> static void 1133<pre> static void
1053 clock_cb (struct ev_loop *loop, struct ev_io *w, int revents) 1134 clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1054 { 1135 {
1058 struct ev_periodic hourly_tick; 1139 struct ev_periodic hourly_tick;
1059 ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0); 1140 ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1060 ev_periodic_start (loop, &amp;hourly_tick); 1141 ev_periodic_start (loop, &amp;hourly_tick);
1061 1142
1062</pre> 1143</pre>
1063<p>Example: the same as above, but use a reschedule callback to do it:</p> 1144<p>Example: The same as above, but use a reschedule callback to do it:</p>
1064<pre> #include &lt;math.h&gt; 1145<pre> #include &lt;math.h&gt;
1065 1146
1066 static ev_tstamp 1147 static ev_tstamp
1067 my_scheduler_cb (struct ev_periodic *w, ev_tstamp now) 1148 my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1068 { 1149 {
1070 } 1151 }
1071 1152
1072 ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb); 1153 ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1073 1154
1074</pre> 1155</pre>
1075<p>Example: call a callback every hour, starting now:</p> 1156<p>Example: Call a callback every hour, starting now:</p>
1076<pre> struct ev_periodic hourly_tick; 1157<pre> struct ev_periodic hourly_tick;
1077 ev_periodic_init (&amp;hourly_tick, clock_cb, 1158 ev_periodic_init (&amp;hourly_tick, clock_cb,
1078 fmod (ev_now (loop), 3600.), 3600., 0); 1159 fmod (ev_now (loop), 3600.), 3600., 0);
1079 ev_periodic_start (loop, &amp;hourly_tick); 1160 ev_periodic_start (loop, &amp;hourly_tick);
1080 1161
1141 <dd> 1222 <dd>
1142 <p>The process exit/trace status caused by <code>rpid</code> (see your systems 1223 <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1143<code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p> 1224<code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1144 </dd> 1225 </dd>
1145</dl> 1226</dl>
1146<p>Example: try to exit cleanly on SIGINT and SIGTERM.</p> 1227<p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1147<pre> static void 1228<pre> static void
1148 sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents) 1229 sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1149 { 1230 {
1150 ev_unloop (loop, EVUNLOOP_ALL); 1231 ev_unloop (loop, EVUNLOOP_ALL);
1151 } 1232 }
1168<p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does 1249<p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1169not exist&quot; is a status change like any other. The condition &quot;path does 1250not exist&quot; is a status change like any other. The condition &quot;path does
1170not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is 1251not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1171otherwise always forced to be at least one) and all the other fields of 1252otherwise always forced to be at least one) and all the other fields of
1172the stat buffer having unspecified contents.</p> 1253the stat buffer having unspecified contents.</p>
1254<p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1255relative and your working directory changes, the behaviour is undefined.</p>
1173<p>Since there is no standard to do this, the portable implementation simply 1256<p>Since there is no standard to do this, the portable implementation simply
1174calls <code>stat (2)</code> regulalry on the path to see if it changed somehow. You 1257calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1175can specify a recommended polling interval for this case. If you specify 1258can specify a recommended polling interval for this case. If you specify
1176a polling interval of <code>0</code> (highly recommended!) then a <i>suitable, 1259a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1177unspecified default</i> value will be used (which you can expect to be around 1260unspecified default</i> value will be used (which you can expect to be around
1178five seconds, although this might change dynamically). Libev will also 1261five seconds, although this might change dynamically). Libev will also
1179impose a minimum interval which is currently around <code>0.1</code>, but thats 1262impose a minimum interval which is currently around <code>0.1</code>, but thats
1180usually overkill.</p> 1263usually overkill.</p>
1181<p>This watcher type is not meant for massive numbers of stat watchers, 1264<p>This watcher type is not meant for massive numbers of stat watchers,
1182as even with OS-supported change notifications, this can be 1265as even with OS-supported change notifications, this can be
1183resource-intensive.</p> 1266resource-intensive.</p>
1184<p>At the time of this writing, no specific OS backends are implemented, but 1267<p>At the time of this writing, only the Linux inotify interface is
1185if demand increases, at least a kqueue and inotify backend will be added.</p> 1268implemented (implementing kqueue support is left as an exercise for the
1269reader). Inotify will be used to give hints only and should not change the
1270semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1271to fall back to regular polling again even with inotify, but changes are
1272usually detected immediately, and if the file exists there will be no
1273polling.</p>
1186<dl> 1274<dl>
1187 <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt> 1275 <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1188 <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt> 1276 <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1189 <dd> 1277 <dd>
1190 <p>Configures the watcher to wait for status changes of the given 1278 <p>Configures the watcher to wait for status changes of the given
1274 <p>Initialises and configures the idle watcher - it has no parameters of any 1362 <p>Initialises and configures the idle watcher - it has no parameters of any
1275kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless, 1363kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1276believe me.</p> 1364believe me.</p>
1277 </dd> 1365 </dd>
1278</dl> 1366</dl>
1279<p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the 1367<p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1280callback, free it. Alos, use no error checking, as usual.</p> 1368callback, free it. Also, use no error checking, as usual.</p>
1281<pre> static void 1369<pre> static void
1282 idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents) 1370 idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1283 { 1371 {
1284 free (w); 1372 free (w);
1285 // now do something you wanted to do when the program has 1373 // now do something you wanted to do when the program has
1510 1598
1511 1599
1512 1600
1513 1601
1514</div> 1602</div>
1515<h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p> 1603<h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1516<div id="OTHER_FUNCTIONS_CONTENT"> 1604<div id="OTHER_FUNCTIONS_CONTENT">
1517<p>There are some other functions of possible interest. Described. Here. Now.</p> 1605<p>There are some other functions of possible interest. Described. Here. Now.</p>
1518<dl> 1606<dl>
1519 <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt> 1607 <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1520 <dd> 1608 <dd>
1567 1655
1568 1656
1569 1657
1570 1658
1571</div> 1659</div>
1572<h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p> 1660<h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1573<div id="LIBEVENT_EMULATION_CONTENT"> 1661<div id="LIBEVENT_EMULATION_CONTENT">
1574<p>Libev offers a compatibility emulation layer for libevent. It cannot 1662<p>Libev offers a compatibility emulation layer for libevent. It cannot
1575emulate the internals of libevent, so here are some usage hints:</p> 1663emulate the internals of libevent, so here are some usage hints:</p>
1576<dl> 1664<dl>
1577 <dt>* Use it by including &lt;event.h&gt;, as usual.</dt> 1665 <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1587 <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need 1675 <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1588to use the libev header file and library.</dt> 1676to use the libev header file and library.</dt>
1589</dl> 1677</dl>
1590 1678
1591</div> 1679</div>
1592<h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p> 1680<h1 id="C_SUPPORT">C++ SUPPORT</h1>
1593<div id="C_SUPPORT_CONTENT"> 1681<div id="C_SUPPORT_CONTENT">
1594<p>Libev comes with some simplistic wrapper classes for C++ that mainly allow 1682<p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1595you to use some convinience methods to start/stop watchers and also change 1683you to use some convinience methods to start/stop watchers and also change
1596the callback model to a model using method callbacks on objects.</p> 1684the callback model to a model using method callbacks on objects.</p>
1597<p>To use it,</p> 1685<p>To use it,</p>
1692 1780
1693 1781
1694</pre> 1782</pre>
1695 1783
1696</div> 1784</div>
1697<h1 id="MACRO_MAGIC">MACRO MAGIC</h1><p><a href="#TOP" class="toplink">Top</a></p> 1785<h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1698<div id="MACRO_MAGIC_CONTENT"> 1786<div id="MACRO_MAGIC_CONTENT">
1699<p>Libev can be compiled with a variety of options, the most fundemantal is 1787<p>Libev can be compiled with a variety of options, the most fundemantal is
1700<code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and 1788<code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1701callbacks have an initial <code>struct ev_loop *</code> argument.</p> 1789callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1702<p>To make it easier to write programs that cope with either variant, the 1790<p>To make it easier to write programs that cope with either variant, the
1753 1841
1754 1842
1755</pre> 1843</pre>
1756 1844
1757</div> 1845</div>
1758<h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p> 1846<h1 id="EMBEDDING">EMBEDDING</h1>
1759<div id="EMBEDDING_CONTENT"> 1847<div id="EMBEDDING_CONTENT">
1760<p>Libev can (and often is) directly embedded into host 1848<p>Libev can (and often is) directly embedded into host
1761applications. Examples of applications that embed it include the Deliantra 1849applications. Examples of applications that embed it include the Deliantra
1762Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe) 1850Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1763and rxvt-unicode.</p> 1851and rxvt-unicode.</p>
1937 </dd> 2025 </dd>
1938 <dt>EV_USE_DEVPOLL</dt> 2026 <dt>EV_USE_DEVPOLL</dt>
1939 <dd> 2027 <dd>
1940 <p>reserved for future expansion, works like the USE symbols above.</p> 2028 <p>reserved for future expansion, works like the USE symbols above.</p>
1941 </dd> 2029 </dd>
2030 <dt>EV_USE_INOTIFY</dt>
2031 <dd>
2032 <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2033interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2034be detected at runtime.</p>
2035 </dd>
1942 <dt>EV_H</dt> 2036 <dt>EV_H</dt>
1943 <dd> 2037 <dd>
1944 <p>The name of the <cite>ev.h</cite> header file used to include it. The default if 2038 <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
1945undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This 2039undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
1946can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p> 2040can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2001 <dt>EV_PID_HASHSIZE</dt> 2095 <dt>EV_PID_HASHSIZE</dt>
2002 <dd> 2096 <dd>
2003 <p><code>ev_child</code> watchers use a small hash table to distribute workload by 2097 <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2004pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more 2098pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2005than enough. If you need to manage thousands of children you might want to 2099than enough. If you need to manage thousands of children you might want to
2006increase this value.</p> 2100increase this value (<i>must</i> be a power of two).</p>
2101 </dd>
2102 <dt>EV_INOTIFY_HASHSIZE</dt>
2103 <dd>
2104 <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2105inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2106usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2107watchers you might want to increase this value (<i>must</i> be a power of
2108two).</p>
2007 </dd> 2109 </dd>
2008 <dt>EV_COMMON</dt> 2110 <dt>EV_COMMON</dt>
2009 <dd> 2111 <dd>
2010 <p>By default, all watchers have a <code>void *data</code> member. By redefining 2112 <p>By default, all watchers have a <code>void *data</code> member. By redefining
2011this macro to a something else you can include more and other types of 2113this macro to a something else you can include more and other types of
2057 2159
2058 2160
2059</pre> 2161</pre>
2060 2162
2061</div> 2163</div>
2062<h1 id="COMPLEXITIES">COMPLEXITIES</h1><p><a href="#TOP" class="toplink">Top</a></p> 2164<h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2063<div id="COMPLEXITIES_CONTENT"> 2165<div id="COMPLEXITIES_CONTENT">
2064 <p>In this section the complexities of (many of) the algorithms used inside 2166 <p>In this section the complexities of (many of) the algorithms used inside
2065libev will be explained. For complexity discussions about backends see the 2167libev will be explained. For complexity discussions about backends see the
2066documentation for <code>ev_default_init</code>.</p> 2168documentation for <code>ev_default_init</code>.</p>
2067 <p> 2169 <p>
2068 <dl> 2170 <dl>
2069 <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt> 2171 <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2070 <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt> 2172 <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2071 <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt> 2173 <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2072 <dt>Stopping check/prepare/idle watchers: O(1)</dt> 2174 <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2073 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % 16))</dt> 2175 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2074 <dt>Finding the next timer per loop iteration: O(1)</dt> 2176 <dt>Finding the next timer per loop iteration: O(1)</dt>
2075 <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt> 2177 <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2076 <dt>Activating one watcher: O(1)</dt> 2178 <dt>Activating one watcher: O(1)</dt>
2077 </dl> 2179 </dl>
2078 </p> 2180 </p>
2080 2182
2081 2183
2082 2184
2083 2185
2084</div> 2186</div>
2085<h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p> 2187<h1 id="AUTHOR">AUTHOR</h1>
2086<div id="AUTHOR_CONTENT"> 2188<div id="AUTHOR_CONTENT">
2087 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p> 2189 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2088 2190
2089</div> 2191</div>
2090</div></body> 2192</div></body>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines