1 |
root |
1.1 |
=head1 NAME |
2 |
|
|
|
3 |
|
|
libev - a high performance full-featured event loop written in C |
4 |
|
|
|
5 |
|
|
=head1 SYNOPSIS |
6 |
|
|
|
7 |
|
|
#include <ev.h> |
8 |
|
|
|
9 |
root |
1.105 |
=head2 EXAMPLE PROGRAM |
10 |
root |
1.54 |
|
11 |
|
|
#include <ev.h> |
12 |
|
|
|
13 |
root |
1.53 |
ev_io stdin_watcher; |
14 |
|
|
ev_timer timeout_watcher; |
15 |
|
|
|
16 |
|
|
/* called when data readable on stdin */ |
17 |
|
|
static void |
18 |
|
|
stdin_cb (EV_P_ struct ev_io *w, int revents) |
19 |
|
|
{ |
20 |
|
|
/* puts ("stdin ready"); */ |
21 |
|
|
ev_io_stop (EV_A_ w); /* just a syntax example */ |
22 |
|
|
ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */ |
23 |
|
|
} |
24 |
|
|
|
25 |
|
|
static void |
26 |
|
|
timeout_cb (EV_P_ struct ev_timer *w, int revents) |
27 |
|
|
{ |
28 |
|
|
/* puts ("timeout"); */ |
29 |
|
|
ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */ |
30 |
|
|
} |
31 |
|
|
|
32 |
|
|
int |
33 |
|
|
main (void) |
34 |
|
|
{ |
35 |
|
|
struct ev_loop *loop = ev_default_loop (0); |
36 |
|
|
|
37 |
|
|
/* initialise an io watcher, then start it */ |
38 |
|
|
ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ); |
39 |
|
|
ev_io_start (loop, &stdin_watcher); |
40 |
|
|
|
41 |
|
|
/* simple non-repeating 5.5 second timeout */ |
42 |
|
|
ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.); |
43 |
|
|
ev_timer_start (loop, &timeout_watcher); |
44 |
|
|
|
45 |
|
|
/* loop till timeout or data ready */ |
46 |
|
|
ev_loop (loop, 0); |
47 |
|
|
|
48 |
|
|
return 0; |
49 |
|
|
} |
50 |
|
|
|
51 |
root |
1.1 |
=head1 DESCRIPTION |
52 |
|
|
|
53 |
root |
1.69 |
The newest version of this document is also available as a html-formatted |
54 |
|
|
web page you might find easier to navigate when reading it for the first |
55 |
|
|
time: L<http://cvs.schmorp.de/libev/ev.html>. |
56 |
|
|
|
57 |
root |
1.1 |
Libev is an event loop: you register interest in certain events (such as a |
58 |
root |
1.92 |
file descriptor being readable or a timeout occurring), and it will manage |
59 |
root |
1.4 |
these event sources and provide your program with events. |
60 |
root |
1.1 |
|
61 |
|
|
To do this, it must take more or less complete control over your process |
62 |
|
|
(or thread) by executing the I<event loop> handler, and will then |
63 |
|
|
communicate events via a callback mechanism. |
64 |
|
|
|
65 |
|
|
You register interest in certain events by registering so-called I<event |
66 |
|
|
watchers>, which are relatively small C structures you initialise with the |
67 |
|
|
details of the event, and then hand it over to libev by I<starting> the |
68 |
|
|
watcher. |
69 |
|
|
|
70 |
root |
1.105 |
=head2 FEATURES |
71 |
root |
1.1 |
|
72 |
root |
1.58 |
Libev supports C<select>, C<poll>, the Linux-specific C<epoll>, the |
73 |
|
|
BSD-specific C<kqueue> and the Solaris-specific event port mechanisms |
74 |
|
|
for file descriptor events (C<ev_io>), the Linux C<inotify> interface |
75 |
|
|
(for C<ev_stat>), relative timers (C<ev_timer>), absolute timers |
76 |
|
|
with customised rescheduling (C<ev_periodic>), synchronous signals |
77 |
|
|
(C<ev_signal>), process status change events (C<ev_child>), and event |
78 |
|
|
watchers dealing with the event loop mechanism itself (C<ev_idle>, |
79 |
root |
1.54 |
C<ev_embed>, C<ev_prepare> and C<ev_check> watchers) as well as |
80 |
|
|
file watchers (C<ev_stat>) and even limited support for fork events |
81 |
|
|
(C<ev_fork>). |
82 |
|
|
|
83 |
|
|
It also is quite fast (see this |
84 |
|
|
L<benchmark|http://libev.schmorp.de/bench.html> comparing it to libevent |
85 |
|
|
for example). |
86 |
root |
1.1 |
|
87 |
root |
1.105 |
=head2 CONVENTIONS |
88 |
root |
1.1 |
|
89 |
root |
1.54 |
Libev is very configurable. In this manual the default configuration will |
90 |
|
|
be described, which supports multiple event loops. For more info about |
91 |
|
|
various configuration options please have a look at B<EMBED> section in |
92 |
|
|
this manual. If libev was configured without support for multiple event |
93 |
|
|
loops, then all functions taking an initial argument of name C<loop> |
94 |
|
|
(which is always of type C<struct ev_loop *>) will not have this argument. |
95 |
root |
1.1 |
|
96 |
root |
1.105 |
=head2 TIME REPRESENTATION |
97 |
root |
1.1 |
|
98 |
root |
1.2 |
Libev represents time as a single floating point number, representing the |
99 |
|
|
(fractional) number of seconds since the (POSIX) epoch (somewhere near |
100 |
|
|
the beginning of 1970, details are complicated, don't ask). This type is |
101 |
root |
1.1 |
called C<ev_tstamp>, which is what you should use too. It usually aliases |
102 |
root |
1.34 |
to the C<double> type in C, and when you need to do any calculations on |
103 |
root |
1.86 |
it, you should treat it as some floatingpoint value. Unlike the name |
104 |
|
|
component C<stamp> might indicate, it is also used for time differences |
105 |
|
|
throughout libev. |
106 |
root |
1.34 |
|
107 |
root |
1.17 |
=head1 GLOBAL FUNCTIONS |
108 |
|
|
|
109 |
root |
1.18 |
These functions can be called anytime, even before initialising the |
110 |
|
|
library in any way. |
111 |
|
|
|
112 |
root |
1.1 |
=over 4 |
113 |
|
|
|
114 |
|
|
=item ev_tstamp ev_time () |
115 |
|
|
|
116 |
root |
1.26 |
Returns the current time as libev would use it. Please note that the |
117 |
|
|
C<ev_now> function is usually faster and also often returns the timestamp |
118 |
|
|
you actually want to know. |
119 |
root |
1.1 |
|
120 |
root |
1.97 |
=item ev_sleep (ev_tstamp interval) |
121 |
|
|
|
122 |
|
|
Sleep for the given interval: The current thread will be blocked until |
123 |
|
|
either it is interrupted or the given time interval has passed. Basically |
124 |
|
|
this is a subsecond-resolution C<sleep ()>. |
125 |
|
|
|
126 |
root |
1.1 |
=item int ev_version_major () |
127 |
|
|
|
128 |
|
|
=item int ev_version_minor () |
129 |
|
|
|
130 |
root |
1.80 |
You can find out the major and minor ABI version numbers of the library |
131 |
root |
1.1 |
you linked against by calling the functions C<ev_version_major> and |
132 |
|
|
C<ev_version_minor>. If you want, you can compare against the global |
133 |
|
|
symbols C<EV_VERSION_MAJOR> and C<EV_VERSION_MINOR>, which specify the |
134 |
|
|
version of the library your program was compiled against. |
135 |
|
|
|
136 |
root |
1.80 |
These version numbers refer to the ABI version of the library, not the |
137 |
|
|
release version. |
138 |
root |
1.79 |
|
139 |
root |
1.9 |
Usually, it's a good idea to terminate if the major versions mismatch, |
140 |
root |
1.79 |
as this indicates an incompatible change. Minor versions are usually |
141 |
root |
1.1 |
compatible to older versions, so a larger minor version alone is usually |
142 |
|
|
not a problem. |
143 |
|
|
|
144 |
root |
1.54 |
Example: Make sure we haven't accidentally been linked against the wrong |
145 |
|
|
version. |
146 |
root |
1.34 |
|
147 |
|
|
assert (("libev version mismatch", |
148 |
|
|
ev_version_major () == EV_VERSION_MAJOR |
149 |
|
|
&& ev_version_minor () >= EV_VERSION_MINOR)); |
150 |
|
|
|
151 |
root |
1.31 |
=item unsigned int ev_supported_backends () |
152 |
|
|
|
153 |
|
|
Return the set of all backends (i.e. their corresponding C<EV_BACKEND_*> |
154 |
|
|
value) compiled into this binary of libev (independent of their |
155 |
|
|
availability on the system you are running on). See C<ev_default_loop> for |
156 |
|
|
a description of the set values. |
157 |
|
|
|
158 |
root |
1.34 |
Example: make sure we have the epoll method, because yeah this is cool and |
159 |
|
|
a must have and can we have a torrent of it please!!!11 |
160 |
|
|
|
161 |
|
|
assert (("sorry, no epoll, no sex", |
162 |
|
|
ev_supported_backends () & EVBACKEND_EPOLL)); |
163 |
|
|
|
164 |
root |
1.31 |
=item unsigned int ev_recommended_backends () |
165 |
|
|
|
166 |
|
|
Return the set of all backends compiled into this binary of libev and also |
167 |
|
|
recommended for this platform. This set is often smaller than the one |
168 |
|
|
returned by C<ev_supported_backends>, as for example kqueue is broken on |
169 |
|
|
most BSDs and will not be autodetected unless you explicitly request it |
170 |
|
|
(assuming you know what you are doing). This is the set of backends that |
171 |
root |
1.33 |
libev will probe for if you specify no backends explicitly. |
172 |
root |
1.31 |
|
173 |
root |
1.35 |
=item unsigned int ev_embeddable_backends () |
174 |
|
|
|
175 |
|
|
Returns the set of backends that are embeddable in other event loops. This |
176 |
|
|
is the theoretical, all-platform, value. To find which backends |
177 |
|
|
might be supported on the current system, you would need to look at |
178 |
|
|
C<ev_embeddable_backends () & ev_supported_backends ()>, likewise for |
179 |
|
|
recommended ones. |
180 |
|
|
|
181 |
|
|
See the description of C<ev_embed> watchers for more info. |
182 |
|
|
|
183 |
root |
1.59 |
=item ev_set_allocator (void *(*cb)(void *ptr, long size)) |
184 |
root |
1.1 |
|
185 |
root |
1.59 |
Sets the allocation function to use (the prototype is similar - the |
186 |
|
|
semantics is identical - to the realloc C function). It is used to |
187 |
|
|
allocate and free memory (no surprises here). If it returns zero when |
188 |
|
|
memory needs to be allocated, the library might abort or take some |
189 |
|
|
potentially destructive action. The default is your system realloc |
190 |
|
|
function. |
191 |
root |
1.1 |
|
192 |
|
|
You could override this function in high-availability programs to, say, |
193 |
|
|
free some memory if it cannot allocate memory, to use a special allocator, |
194 |
|
|
or even to sleep a while and retry until some memory is available. |
195 |
|
|
|
196 |
root |
1.54 |
Example: Replace the libev allocator with one that waits a bit and then |
197 |
|
|
retries). |
198 |
root |
1.34 |
|
199 |
|
|
static void * |
200 |
root |
1.52 |
persistent_realloc (void *ptr, size_t size) |
201 |
root |
1.34 |
{ |
202 |
|
|
for (;;) |
203 |
|
|
{ |
204 |
|
|
void *newptr = realloc (ptr, size); |
205 |
|
|
|
206 |
|
|
if (newptr) |
207 |
|
|
return newptr; |
208 |
|
|
|
209 |
|
|
sleep (60); |
210 |
|
|
} |
211 |
|
|
} |
212 |
|
|
|
213 |
|
|
... |
214 |
|
|
ev_set_allocator (persistent_realloc); |
215 |
|
|
|
216 |
root |
1.1 |
=item ev_set_syserr_cb (void (*cb)(const char *msg)); |
217 |
|
|
|
218 |
|
|
Set the callback function to call on a retryable syscall error (such |
219 |
|
|
as failed select, poll, epoll_wait). The message is a printable string |
220 |
|
|
indicating the system call or subsystem causing the problem. If this |
221 |
|
|
callback is set, then libev will expect it to remedy the sitution, no |
222 |
root |
1.7 |
matter what, when it returns. That is, libev will generally retry the |
223 |
root |
1.1 |
requested operation, or, if the condition doesn't go away, do bad stuff |
224 |
|
|
(such as abort). |
225 |
|
|
|
226 |
root |
1.54 |
Example: This is basically the same thing that libev does internally, too. |
227 |
root |
1.34 |
|
228 |
|
|
static void |
229 |
|
|
fatal_error (const char *msg) |
230 |
|
|
{ |
231 |
|
|
perror (msg); |
232 |
|
|
abort (); |
233 |
|
|
} |
234 |
|
|
|
235 |
|
|
... |
236 |
|
|
ev_set_syserr_cb (fatal_error); |
237 |
|
|
|
238 |
root |
1.1 |
=back |
239 |
|
|
|
240 |
|
|
=head1 FUNCTIONS CONTROLLING THE EVENT LOOP |
241 |
|
|
|
242 |
|
|
An event loop is described by a C<struct ev_loop *>. The library knows two |
243 |
|
|
types of such loops, the I<default> loop, which supports signals and child |
244 |
|
|
events, and dynamically created loops which do not. |
245 |
|
|
|
246 |
|
|
If you use threads, a common model is to run the default event loop |
247 |
root |
1.17 |
in your main thread (or in a separate thread) and for each thread you |
248 |
root |
1.7 |
create, you also create another event loop. Libev itself does no locking |
249 |
|
|
whatsoever, so if you mix calls to the same event loop in different |
250 |
|
|
threads, make sure you lock (this is usually a bad idea, though, even if |
251 |
root |
1.9 |
done correctly, because it's hideous and inefficient). |
252 |
root |
1.1 |
|
253 |
|
|
=over 4 |
254 |
|
|
|
255 |
|
|
=item struct ev_loop *ev_default_loop (unsigned int flags) |
256 |
|
|
|
257 |
|
|
This will initialise the default event loop if it hasn't been initialised |
258 |
|
|
yet and return it. If the default loop could not be initialised, returns |
259 |
|
|
false. If it already was initialised it simply returns it (and ignores the |
260 |
root |
1.31 |
flags. If that is troubling you, check C<ev_backend ()> afterwards). |
261 |
root |
1.1 |
|
262 |
|
|
If you don't know what event loop to use, use the one returned from this |
263 |
|
|
function. |
264 |
|
|
|
265 |
root |
1.118 |
The default loop is the only loop that can handle C<ev_signal> and |
266 |
|
|
C<ev_child> watchers, and to do this, it always registers a handler |
267 |
|
|
for C<SIGCHLD>. If this is a problem for your app you can either |
268 |
|
|
create a dynamic loop with C<ev_loop_new> that doesn't do that, or you |
269 |
|
|
can simply overwrite the C<SIGCHLD> signal handler I<after> calling |
270 |
|
|
C<ev_default_init>. |
271 |
|
|
|
272 |
root |
1.1 |
The flags argument can be used to specify special behaviour or specific |
273 |
root |
1.33 |
backends to use, and is usually specified as C<0> (or C<EVFLAG_AUTO>). |
274 |
root |
1.1 |
|
275 |
root |
1.33 |
The following flags are supported: |
276 |
root |
1.1 |
|
277 |
|
|
=over 4 |
278 |
|
|
|
279 |
root |
1.10 |
=item C<EVFLAG_AUTO> |
280 |
root |
1.1 |
|
281 |
root |
1.9 |
The default flags value. Use this if you have no clue (it's the right |
282 |
root |
1.1 |
thing, believe me). |
283 |
|
|
|
284 |
root |
1.10 |
=item C<EVFLAG_NOENV> |
285 |
root |
1.1 |
|
286 |
root |
1.8 |
If this flag bit is ored into the flag value (or the program runs setuid |
287 |
|
|
or setgid) then libev will I<not> look at the environment variable |
288 |
|
|
C<LIBEV_FLAGS>. Otherwise (the default), this environment variable will |
289 |
|
|
override the flags completely if it is found in the environment. This is |
290 |
|
|
useful to try out specific backends to test their performance, or to work |
291 |
|
|
around bugs. |
292 |
root |
1.1 |
|
293 |
root |
1.62 |
=item C<EVFLAG_FORKCHECK> |
294 |
|
|
|
295 |
|
|
Instead of calling C<ev_default_fork> or C<ev_loop_fork> manually after |
296 |
|
|
a fork, you can also make libev check for a fork in each iteration by |
297 |
|
|
enabling this flag. |
298 |
|
|
|
299 |
|
|
This works by calling C<getpid ()> on every iteration of the loop, |
300 |
|
|
and thus this might slow down your event loop if you do a lot of loop |
301 |
ayin |
1.65 |
iterations and little real work, but is usually not noticeable (on my |
302 |
root |
1.62 |
Linux system for example, C<getpid> is actually a simple 5-insn sequence |
303 |
|
|
without a syscall and thus I<very> fast, but my Linux system also has |
304 |
|
|
C<pthread_atfork> which is even faster). |
305 |
|
|
|
306 |
|
|
The big advantage of this flag is that you can forget about fork (and |
307 |
|
|
forget about forgetting to tell libev about forking) when you use this |
308 |
|
|
flag. |
309 |
|
|
|
310 |
|
|
This flag setting cannot be overriden or specified in the C<LIBEV_FLAGS> |
311 |
|
|
environment variable. |
312 |
|
|
|
313 |
root |
1.31 |
=item C<EVBACKEND_SELECT> (value 1, portable select backend) |
314 |
root |
1.1 |
|
315 |
root |
1.29 |
This is your standard select(2) backend. Not I<completely> standard, as |
316 |
|
|
libev tries to roll its own fd_set with no limits on the number of fds, |
317 |
|
|
but if that fails, expect a fairly low limit on the number of fds when |
318 |
root |
1.102 |
using this backend. It doesn't scale too well (O(highest_fd)), but its |
319 |
|
|
usually the fastest backend for a low number of (low-numbered :) fds. |
320 |
|
|
|
321 |
|
|
To get good performance out of this backend you need a high amount of |
322 |
|
|
parallelity (most of the file descriptors should be busy). If you are |
323 |
|
|
writing a server, you should C<accept ()> in a loop to accept as many |
324 |
|
|
connections as possible during one iteration. You might also want to have |
325 |
|
|
a look at C<ev_set_io_collect_interval ()> to increase the amount of |
326 |
|
|
readyness notifications you get per iteration. |
327 |
root |
1.1 |
|
328 |
root |
1.31 |
=item C<EVBACKEND_POLL> (value 2, poll backend, available everywhere except on windows) |
329 |
root |
1.1 |
|
330 |
root |
1.102 |
And this is your standard poll(2) backend. It's more complicated |
331 |
|
|
than select, but handles sparse fds better and has no artificial |
332 |
|
|
limit on the number of fds you can use (except it will slow down |
333 |
|
|
considerably with a lot of inactive fds). It scales similarly to select, |
334 |
|
|
i.e. O(total_fds). See the entry for C<EVBACKEND_SELECT>, above, for |
335 |
|
|
performance tips. |
336 |
root |
1.1 |
|
337 |
root |
1.31 |
=item C<EVBACKEND_EPOLL> (value 4, Linux) |
338 |
root |
1.1 |
|
339 |
root |
1.29 |
For few fds, this backend is a bit little slower than poll and select, |
340 |
root |
1.94 |
but it scales phenomenally better. While poll and select usually scale |
341 |
|
|
like O(total_fds) where n is the total number of fds (or the highest fd), |
342 |
|
|
epoll scales either O(1) or O(active_fds). The epoll design has a number |
343 |
|
|
of shortcomings, such as silently dropping events in some hard-to-detect |
344 |
ayin |
1.96 |
cases and rewiring a syscall per fd change, no fork support and bad |
345 |
root |
1.102 |
support for dup. |
346 |
root |
1.1 |
|
347 |
root |
1.94 |
While stopping, setting and starting an I/O watcher in the same iteration |
348 |
|
|
will result in some caching, there is still a syscall per such incident |
349 |
root |
1.29 |
(because the fd could point to a different file description now), so its |
350 |
root |
1.94 |
best to avoid that. Also, C<dup ()>'ed file descriptors might not work |
351 |
|
|
very well if you register events for both fds. |
352 |
root |
1.29 |
|
353 |
root |
1.32 |
Please note that epoll sometimes generates spurious notifications, so you |
354 |
|
|
need to use non-blocking I/O or other means to avoid blocking when no data |
355 |
|
|
(or space) is available. |
356 |
|
|
|
357 |
root |
1.102 |
Best performance from this backend is achieved by not unregistering all |
358 |
|
|
watchers for a file descriptor until it has been closed, if possible, i.e. |
359 |
|
|
keep at least one watcher active per fd at all times. |
360 |
|
|
|
361 |
|
|
While nominally embeddeble in other event loops, this feature is broken in |
362 |
|
|
all kernel versions tested so far. |
363 |
|
|
|
364 |
root |
1.31 |
=item C<EVBACKEND_KQUEUE> (value 8, most BSD clones) |
365 |
root |
1.29 |
|
366 |
|
|
Kqueue deserves special mention, as at the time of this writing, it |
367 |
root |
1.100 |
was broken on all BSDs except NetBSD (usually it doesn't work reliably |
368 |
|
|
with anything but sockets and pipes, except on Darwin, where of course |
369 |
|
|
it's completely useless). For this reason it's not being "autodetected" |
370 |
root |
1.33 |
unless you explicitly specify it explicitly in the flags (i.e. using |
371 |
root |
1.94 |
C<EVBACKEND_KQUEUE>) or libev was compiled on a known-to-be-good (-enough) |
372 |
|
|
system like NetBSD. |
373 |
root |
1.29 |
|
374 |
root |
1.100 |
You still can embed kqueue into a normal poll or select backend and use it |
375 |
|
|
only for sockets (after having made sure that sockets work with kqueue on |
376 |
|
|
the target platform). See C<ev_embed> watchers for more info. |
377 |
|
|
|
378 |
root |
1.29 |
It scales in the same way as the epoll backend, but the interface to the |
379 |
root |
1.100 |
kernel is more efficient (which says nothing about its actual speed, of |
380 |
|
|
course). While stopping, setting and starting an I/O watcher does never |
381 |
|
|
cause an extra syscall as with C<EVBACKEND_EPOLL>, it still adds up to |
382 |
|
|
two event changes per incident, support for C<fork ()> is very bad and it |
383 |
|
|
drops fds silently in similarly hard-to-detect cases. |
384 |
root |
1.29 |
|
385 |
root |
1.102 |
This backend usually performs well under most conditions. |
386 |
|
|
|
387 |
|
|
While nominally embeddable in other event loops, this doesn't work |
388 |
|
|
everywhere, so you might need to test for this. And since it is broken |
389 |
|
|
almost everywhere, you should only use it when you have a lot of sockets |
390 |
|
|
(for which it usually works), by embedding it into another event loop |
391 |
|
|
(e.g. C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>) and using it only for |
392 |
|
|
sockets. |
393 |
|
|
|
394 |
root |
1.31 |
=item C<EVBACKEND_DEVPOLL> (value 16, Solaris 8) |
395 |
root |
1.29 |
|
396 |
root |
1.102 |
This is not implemented yet (and might never be, unless you send me an |
397 |
|
|
implementation). According to reports, C</dev/poll> only supports sockets |
398 |
|
|
and is not embeddable, which would limit the usefulness of this backend |
399 |
|
|
immensely. |
400 |
root |
1.29 |
|
401 |
root |
1.31 |
=item C<EVBACKEND_PORT> (value 32, Solaris 10) |
402 |
root |
1.29 |
|
403 |
root |
1.94 |
This uses the Solaris 10 event port mechanism. As with everything on Solaris, |
404 |
root |
1.29 |
it's really slow, but it still scales very well (O(active_fds)). |
405 |
|
|
|
406 |
root |
1.94 |
Please note that solaris event ports can deliver a lot of spurious |
407 |
root |
1.32 |
notifications, so you need to use non-blocking I/O or other means to avoid |
408 |
|
|
blocking when no data (or space) is available. |
409 |
|
|
|
410 |
root |
1.102 |
While this backend scales well, it requires one system call per active |
411 |
|
|
file descriptor per loop iteration. For small and medium numbers of file |
412 |
|
|
descriptors a "slow" C<EVBACKEND_SELECT> or C<EVBACKEND_POLL> backend |
413 |
|
|
might perform better. |
414 |
|
|
|
415 |
root |
1.117 |
On the positive side, ignoring the spurious readyness notifications, this |
416 |
|
|
backend actually performed to specification in all tests and is fully |
417 |
|
|
embeddable, which is a rare feat among the OS-specific backends. |
418 |
|
|
|
419 |
root |
1.31 |
=item C<EVBACKEND_ALL> |
420 |
root |
1.29 |
|
421 |
|
|
Try all backends (even potentially broken ones that wouldn't be tried |
422 |
|
|
with C<EVFLAG_AUTO>). Since this is a mask, you can do stuff such as |
423 |
root |
1.31 |
C<EVBACKEND_ALL & ~EVBACKEND_KQUEUE>. |
424 |
root |
1.1 |
|
425 |
root |
1.102 |
It is definitely not recommended to use this flag. |
426 |
|
|
|
427 |
root |
1.1 |
=back |
428 |
|
|
|
429 |
root |
1.29 |
If one or more of these are ored into the flags value, then only these |
430 |
root |
1.117 |
backends will be tried (in the reverse order as listed here). If none are |
431 |
|
|
specified, all backends in C<ev_recommended_backends ()> will be tried. |
432 |
root |
1.29 |
|
433 |
root |
1.33 |
The most typical usage is like this: |
434 |
|
|
|
435 |
|
|
if (!ev_default_loop (0)) |
436 |
|
|
fatal ("could not initialise libev, bad $LIBEV_FLAGS in environment?"); |
437 |
|
|
|
438 |
|
|
Restrict libev to the select and poll backends, and do not allow |
439 |
|
|
environment settings to be taken into account: |
440 |
|
|
|
441 |
|
|
ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV); |
442 |
|
|
|
443 |
|
|
Use whatever libev has to offer, but make sure that kqueue is used if |
444 |
|
|
available (warning, breaks stuff, best use only with your own private |
445 |
|
|
event loop and only if you know the OS supports your types of fds): |
446 |
|
|
|
447 |
|
|
ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE); |
448 |
|
|
|
449 |
root |
1.1 |
=item struct ev_loop *ev_loop_new (unsigned int flags) |
450 |
|
|
|
451 |
|
|
Similar to C<ev_default_loop>, but always creates a new event loop that is |
452 |
|
|
always distinct from the default loop. Unlike the default loop, it cannot |
453 |
|
|
handle signal and child watchers, and attempts to do so will be greeted by |
454 |
|
|
undefined behaviour (or a failed assertion if assertions are enabled). |
455 |
|
|
|
456 |
root |
1.54 |
Example: Try to create a event loop that uses epoll and nothing else. |
457 |
root |
1.34 |
|
458 |
|
|
struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV); |
459 |
|
|
if (!epoller) |
460 |
|
|
fatal ("no epoll found here, maybe it hides under your chair"); |
461 |
|
|
|
462 |
root |
1.1 |
=item ev_default_destroy () |
463 |
|
|
|
464 |
|
|
Destroys the default loop again (frees all memory and kernel state |
465 |
root |
1.37 |
etc.). None of the active event watchers will be stopped in the normal |
466 |
|
|
sense, so e.g. C<ev_is_active> might still return true. It is your |
467 |
|
|
responsibility to either stop all watchers cleanly yoursef I<before> |
468 |
|
|
calling this function, or cope with the fact afterwards (which is usually |
469 |
root |
1.87 |
the easiest thing, you can just ignore the watchers and/or C<free ()> them |
470 |
root |
1.37 |
for example). |
471 |
root |
1.1 |
|
472 |
ayin |
1.88 |
Note that certain global state, such as signal state, will not be freed by |
473 |
root |
1.87 |
this function, and related watchers (such as signal and child watchers) |
474 |
|
|
would need to be stopped manually. |
475 |
|
|
|
476 |
|
|
In general it is not advisable to call this function except in the |
477 |
|
|
rare occasion where you really need to free e.g. the signal handling |
478 |
|
|
pipe fds. If you need dynamically allocated loops it is better to use |
479 |
|
|
C<ev_loop_new> and C<ev_loop_destroy>). |
480 |
|
|
|
481 |
root |
1.1 |
=item ev_loop_destroy (loop) |
482 |
|
|
|
483 |
|
|
Like C<ev_default_destroy>, but destroys an event loop created by an |
484 |
|
|
earlier call to C<ev_loop_new>. |
485 |
|
|
|
486 |
|
|
=item ev_default_fork () |
487 |
|
|
|
488 |
root |
1.119 |
This function sets a flag that causes subsequent C<ev_loop> iterations |
489 |
|
|
to reinitialise the kernel state for backends that have one. Despite the |
490 |
|
|
name, you can call it anytime, but it makes most sense after forking, in |
491 |
|
|
the child process (or both child and parent, but that again makes little |
492 |
|
|
sense). You I<must> call it in the child before using any of the libev |
493 |
|
|
functions, and it will only take effect at the next C<ev_loop> iteration. |
494 |
|
|
|
495 |
|
|
On the other hand, you only need to call this function in the child |
496 |
|
|
process if and only if you want to use the event library in the child. If |
497 |
|
|
you just fork+exec, you don't have to call it at all. |
498 |
root |
1.1 |
|
499 |
root |
1.9 |
The function itself is quite fast and it's usually not a problem to call |
500 |
root |
1.1 |
it just in case after a fork. To make this easy, the function will fit in |
501 |
|
|
quite nicely into a call to C<pthread_atfork>: |
502 |
|
|
|
503 |
|
|
pthread_atfork (0, 0, ev_default_fork); |
504 |
|
|
|
505 |
|
|
=item ev_loop_fork (loop) |
506 |
|
|
|
507 |
|
|
Like C<ev_default_fork>, but acts on an event loop created by |
508 |
|
|
C<ev_loop_new>. Yes, you have to call this on every allocated event loop |
509 |
|
|
after fork, and how you do this is entirely your own problem. |
510 |
|
|
|
511 |
root |
1.66 |
=item unsigned int ev_loop_count (loop) |
512 |
|
|
|
513 |
|
|
Returns the count of loop iterations for the loop, which is identical to |
514 |
|
|
the number of times libev did poll for new events. It starts at C<0> and |
515 |
|
|
happily wraps around with enough iterations. |
516 |
|
|
|
517 |
|
|
This value can sometimes be useful as a generation counter of sorts (it |
518 |
|
|
"ticks" the number of loop iterations), as it roughly corresponds with |
519 |
|
|
C<ev_prepare> and C<ev_check> calls. |
520 |
|
|
|
521 |
root |
1.31 |
=item unsigned int ev_backend (loop) |
522 |
root |
1.1 |
|
523 |
root |
1.31 |
Returns one of the C<EVBACKEND_*> flags indicating the event backend in |
524 |
root |
1.1 |
use. |
525 |
|
|
|
526 |
root |
1.9 |
=item ev_tstamp ev_now (loop) |
527 |
root |
1.1 |
|
528 |
|
|
Returns the current "event loop time", which is the time the event loop |
529 |
root |
1.34 |
received events and started processing them. This timestamp does not |
530 |
|
|
change as long as callbacks are being processed, and this is also the base |
531 |
|
|
time used for relative timers. You can treat it as the timestamp of the |
532 |
root |
1.92 |
event occurring (or more correctly, libev finding out about it). |
533 |
root |
1.1 |
|
534 |
|
|
=item ev_loop (loop, int flags) |
535 |
|
|
|
536 |
|
|
Finally, this is it, the event handler. This function usually is called |
537 |
|
|
after you initialised all your watchers and you want to start handling |
538 |
|
|
events. |
539 |
|
|
|
540 |
root |
1.33 |
If the flags argument is specified as C<0>, it will not return until |
541 |
|
|
either no event watchers are active anymore or C<ev_unloop> was called. |
542 |
root |
1.1 |
|
543 |
root |
1.34 |
Please note that an explicit C<ev_unloop> is usually better than |
544 |
|
|
relying on all watchers to be stopped when deciding when a program has |
545 |
|
|
finished (especially in interactive programs), but having a program that |
546 |
|
|
automatically loops as long as it has to and no longer by virtue of |
547 |
|
|
relying on its watchers stopping correctly is a thing of beauty. |
548 |
|
|
|
549 |
root |
1.1 |
A flags value of C<EVLOOP_NONBLOCK> will look for new events, will handle |
550 |
|
|
those events and any outstanding ones, but will not block your process in |
551 |
root |
1.9 |
case there are no events and will return after one iteration of the loop. |
552 |
root |
1.1 |
|
553 |
|
|
A flags value of C<EVLOOP_ONESHOT> will look for new events (waiting if |
554 |
|
|
neccessary) and will handle those and any outstanding ones. It will block |
555 |
root |
1.9 |
your process until at least one new event arrives, and will return after |
556 |
root |
1.33 |
one iteration of the loop. This is useful if you are waiting for some |
557 |
|
|
external event in conjunction with something not expressible using other |
558 |
|
|
libev watchers. However, a pair of C<ev_prepare>/C<ev_check> watchers is |
559 |
|
|
usually a better approach for this kind of thing. |
560 |
|
|
|
561 |
|
|
Here are the gory details of what C<ev_loop> does: |
562 |
|
|
|
563 |
root |
1.77 |
- Before the first iteration, call any pending watchers. |
564 |
root |
1.113 |
* If EVFLAG_FORKCHECK was used, check for a fork. |
565 |
|
|
- If a fork was detected, queue and call all fork watchers. |
566 |
|
|
- Queue and call all prepare watchers. |
567 |
root |
1.33 |
- If we have been forked, recreate the kernel state. |
568 |
|
|
- Update the kernel state with all outstanding changes. |
569 |
|
|
- Update the "event loop time". |
570 |
root |
1.113 |
- Calculate for how long to sleep or block, if at all |
571 |
|
|
(active idle watchers, EVLOOP_NONBLOCK or not having |
572 |
|
|
any active watchers at all will result in not sleeping). |
573 |
|
|
- Sleep if the I/O and timer collect interval say so. |
574 |
root |
1.33 |
- Block the process, waiting for any events. |
575 |
|
|
- Queue all outstanding I/O (fd) events. |
576 |
|
|
- Update the "event loop time" and do time jump handling. |
577 |
|
|
- Queue all outstanding timers. |
578 |
|
|
- Queue all outstanding periodics. |
579 |
|
|
- If no events are pending now, queue all idle watchers. |
580 |
|
|
- Queue all check watchers. |
581 |
|
|
- Call all queued watchers in reverse order (i.e. check watchers first). |
582 |
|
|
Signals and child watchers are implemented as I/O watchers, and will |
583 |
|
|
be handled here by queueing them when their watcher gets executed. |
584 |
root |
1.113 |
- If ev_unloop has been called, or EVLOOP_ONESHOT or EVLOOP_NONBLOCK |
585 |
|
|
were used, or there are no active watchers, return, otherwise |
586 |
|
|
continue with step *. |
587 |
root |
1.27 |
|
588 |
root |
1.114 |
Example: Queue some jobs and then loop until no events are outstanding |
589 |
root |
1.34 |
anymore. |
590 |
|
|
|
591 |
|
|
... queue jobs here, make sure they register event watchers as long |
592 |
|
|
... as they still have work to do (even an idle watcher will do..) |
593 |
|
|
ev_loop (my_loop, 0); |
594 |
|
|
... jobs done. yeah! |
595 |
|
|
|
596 |
root |
1.1 |
=item ev_unloop (loop, how) |
597 |
|
|
|
598 |
root |
1.9 |
Can be used to make a call to C<ev_loop> return early (but only after it |
599 |
|
|
has processed all outstanding events). The C<how> argument must be either |
600 |
root |
1.25 |
C<EVUNLOOP_ONE>, which will make the innermost C<ev_loop> call return, or |
601 |
root |
1.9 |
C<EVUNLOOP_ALL>, which will make all nested C<ev_loop> calls return. |
602 |
root |
1.1 |
|
603 |
root |
1.115 |
This "unloop state" will be cleared when entering C<ev_loop> again. |
604 |
|
|
|
605 |
root |
1.1 |
=item ev_ref (loop) |
606 |
|
|
|
607 |
|
|
=item ev_unref (loop) |
608 |
|
|
|
609 |
root |
1.9 |
Ref/unref can be used to add or remove a reference count on the event |
610 |
|
|
loop: Every watcher keeps one reference, and as long as the reference |
611 |
|
|
count is nonzero, C<ev_loop> will not return on its own. If you have |
612 |
|
|
a watcher you never unregister that should not keep C<ev_loop> from |
613 |
|
|
returning, ev_unref() after starting, and ev_ref() before stopping it. For |
614 |
|
|
example, libev itself uses this for its internal signal pipe: It is not |
615 |
|
|
visible to the libev user and should not keep C<ev_loop> from exiting if |
616 |
|
|
no event watchers registered by it are active. It is also an excellent |
617 |
|
|
way to do this for generic recurring timers or from within third-party |
618 |
root |
1.116 |
libraries. Just remember to I<unref after start> and I<ref before stop> |
619 |
|
|
(but only if the watcher wasn't active before, or was active before, |
620 |
|
|
respectively). |
621 |
root |
1.1 |
|
622 |
root |
1.54 |
Example: Create a signal watcher, but keep it from keeping C<ev_loop> |
623 |
root |
1.34 |
running when nothing else is active. |
624 |
|
|
|
625 |
root |
1.54 |
struct ev_signal exitsig; |
626 |
root |
1.34 |
ev_signal_init (&exitsig, sig_cb, SIGINT); |
627 |
root |
1.54 |
ev_signal_start (loop, &exitsig); |
628 |
|
|
evf_unref (loop); |
629 |
root |
1.34 |
|
630 |
root |
1.54 |
Example: For some weird reason, unregister the above signal handler again. |
631 |
root |
1.34 |
|
632 |
root |
1.54 |
ev_ref (loop); |
633 |
|
|
ev_signal_stop (loop, &exitsig); |
634 |
root |
1.34 |
|
635 |
root |
1.97 |
=item ev_set_io_collect_interval (loop, ev_tstamp interval) |
636 |
|
|
|
637 |
|
|
=item ev_set_timeout_collect_interval (loop, ev_tstamp interval) |
638 |
|
|
|
639 |
|
|
These advanced functions influence the time that libev will spend waiting |
640 |
|
|
for events. Both are by default C<0>, meaning that libev will try to |
641 |
|
|
invoke timer/periodic callbacks and I/O callbacks with minimum latency. |
642 |
|
|
|
643 |
|
|
Setting these to a higher value (the C<interval> I<must> be >= C<0>) |
644 |
|
|
allows libev to delay invocation of I/O and timer/periodic callbacks to |
645 |
|
|
increase efficiency of loop iterations. |
646 |
|
|
|
647 |
|
|
The background is that sometimes your program runs just fast enough to |
648 |
|
|
handle one (or very few) event(s) per loop iteration. While this makes |
649 |
|
|
the program responsive, it also wastes a lot of CPU time to poll for new |
650 |
|
|
events, especially with backends like C<select ()> which have a high |
651 |
|
|
overhead for the actual polling but can deliver many events at once. |
652 |
|
|
|
653 |
|
|
By setting a higher I<io collect interval> you allow libev to spend more |
654 |
|
|
time collecting I/O events, so you can handle more events per iteration, |
655 |
|
|
at the cost of increasing latency. Timeouts (both C<ev_periodic> and |
656 |
ayin |
1.101 |
C<ev_timer>) will be not affected. Setting this to a non-null value will |
657 |
root |
1.99 |
introduce an additional C<ev_sleep ()> call into most loop iterations. |
658 |
root |
1.97 |
|
659 |
|
|
Likewise, by setting a higher I<timeout collect interval> you allow libev |
660 |
|
|
to spend more time collecting timeouts, at the expense of increased |
661 |
|
|
latency (the watcher callback will be called later). C<ev_io> watchers |
662 |
root |
1.99 |
will not be affected. Setting this to a non-null value will not introduce |
663 |
|
|
any overhead in libev. |
664 |
root |
1.97 |
|
665 |
root |
1.98 |
Many (busy) programs can usually benefit by setting the io collect |
666 |
|
|
interval to a value near C<0.1> or so, which is often enough for |
667 |
|
|
interactive servers (of course not for games), likewise for timeouts. It |
668 |
|
|
usually doesn't make much sense to set it to a lower value than C<0.01>, |
669 |
|
|
as this approsaches the timing granularity of most systems. |
670 |
root |
1.97 |
|
671 |
root |
1.1 |
=back |
672 |
|
|
|
673 |
root |
1.42 |
|
674 |
root |
1.1 |
=head1 ANATOMY OF A WATCHER |
675 |
|
|
|
676 |
|
|
A watcher is a structure that you create and register to record your |
677 |
|
|
interest in some event. For instance, if you want to wait for STDIN to |
678 |
root |
1.10 |
become readable, you would create an C<ev_io> watcher for that: |
679 |
root |
1.1 |
|
680 |
|
|
static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents) |
681 |
|
|
{ |
682 |
|
|
ev_io_stop (w); |
683 |
|
|
ev_unloop (loop, EVUNLOOP_ALL); |
684 |
|
|
} |
685 |
|
|
|
686 |
|
|
struct ev_loop *loop = ev_default_loop (0); |
687 |
|
|
struct ev_io stdin_watcher; |
688 |
|
|
ev_init (&stdin_watcher, my_cb); |
689 |
|
|
ev_io_set (&stdin_watcher, STDIN_FILENO, EV_READ); |
690 |
|
|
ev_io_start (loop, &stdin_watcher); |
691 |
|
|
ev_loop (loop, 0); |
692 |
|
|
|
693 |
|
|
As you can see, you are responsible for allocating the memory for your |
694 |
|
|
watcher structures (and it is usually a bad idea to do this on the stack, |
695 |
|
|
although this can sometimes be quite valid). |
696 |
|
|
|
697 |
|
|
Each watcher structure must be initialised by a call to C<ev_init |
698 |
|
|
(watcher *, callback)>, which expects a callback to be provided. This |
699 |
|
|
callback gets invoked each time the event occurs (or, in the case of io |
700 |
|
|
watchers, each time the event loop detects that the file descriptor given |
701 |
|
|
is readable and/or writable). |
702 |
|
|
|
703 |
|
|
Each watcher type has its own C<< ev_<type>_set (watcher *, ...) >> macro |
704 |
|
|
with arguments specific to this watcher type. There is also a macro |
705 |
|
|
to combine initialisation and setting in one call: C<< ev_<type>_init |
706 |
|
|
(watcher *, callback, ...) >>. |
707 |
|
|
|
708 |
|
|
To make the watcher actually watch out for events, you have to start it |
709 |
|
|
with a watcher-specific start function (C<< ev_<type>_start (loop, watcher |
710 |
|
|
*) >>), and you can stop watching for events at any time by calling the |
711 |
|
|
corresponding stop function (C<< ev_<type>_stop (loop, watcher *) >>. |
712 |
|
|
|
713 |
|
|
As long as your watcher is active (has been started but not stopped) you |
714 |
|
|
must not touch the values stored in it. Most specifically you must never |
715 |
root |
1.36 |
reinitialise it or call its C<set> macro. |
716 |
root |
1.1 |
|
717 |
|
|
Each and every callback receives the event loop pointer as first, the |
718 |
|
|
registered watcher structure as second, and a bitset of received events as |
719 |
|
|
third argument. |
720 |
|
|
|
721 |
root |
1.14 |
The received events usually include a single bit per event type received |
722 |
root |
1.1 |
(you can receive multiple events at the same time). The possible bit masks |
723 |
|
|
are: |
724 |
|
|
|
725 |
|
|
=over 4 |
726 |
|
|
|
727 |
root |
1.10 |
=item C<EV_READ> |
728 |
root |
1.1 |
|
729 |
root |
1.10 |
=item C<EV_WRITE> |
730 |
root |
1.1 |
|
731 |
root |
1.10 |
The file descriptor in the C<ev_io> watcher has become readable and/or |
732 |
root |
1.1 |
writable. |
733 |
|
|
|
734 |
root |
1.10 |
=item C<EV_TIMEOUT> |
735 |
root |
1.1 |
|
736 |
root |
1.10 |
The C<ev_timer> watcher has timed out. |
737 |
root |
1.1 |
|
738 |
root |
1.10 |
=item C<EV_PERIODIC> |
739 |
root |
1.1 |
|
740 |
root |
1.10 |
The C<ev_periodic> watcher has timed out. |
741 |
root |
1.1 |
|
742 |
root |
1.10 |
=item C<EV_SIGNAL> |
743 |
root |
1.1 |
|
744 |
root |
1.10 |
The signal specified in the C<ev_signal> watcher has been received by a thread. |
745 |
root |
1.1 |
|
746 |
root |
1.10 |
=item C<EV_CHILD> |
747 |
root |
1.1 |
|
748 |
root |
1.10 |
The pid specified in the C<ev_child> watcher has received a status change. |
749 |
root |
1.1 |
|
750 |
root |
1.48 |
=item C<EV_STAT> |
751 |
|
|
|
752 |
|
|
The path specified in the C<ev_stat> watcher changed its attributes somehow. |
753 |
|
|
|
754 |
root |
1.10 |
=item C<EV_IDLE> |
755 |
root |
1.1 |
|
756 |
root |
1.10 |
The C<ev_idle> watcher has determined that you have nothing better to do. |
757 |
root |
1.1 |
|
758 |
root |
1.10 |
=item C<EV_PREPARE> |
759 |
root |
1.1 |
|
760 |
root |
1.10 |
=item C<EV_CHECK> |
761 |
root |
1.1 |
|
762 |
root |
1.10 |
All C<ev_prepare> watchers are invoked just I<before> C<ev_loop> starts |
763 |
|
|
to gather new events, and all C<ev_check> watchers are invoked just after |
764 |
root |
1.1 |
C<ev_loop> has gathered them, but before it invokes any callbacks for any |
765 |
|
|
received events. Callbacks of both watcher types can start and stop as |
766 |
|
|
many watchers as they want, and all of them will be taken into account |
767 |
root |
1.10 |
(for example, a C<ev_prepare> watcher might start an idle watcher to keep |
768 |
root |
1.1 |
C<ev_loop> from blocking). |
769 |
|
|
|
770 |
root |
1.50 |
=item C<EV_EMBED> |
771 |
|
|
|
772 |
|
|
The embedded event loop specified in the C<ev_embed> watcher needs attention. |
773 |
|
|
|
774 |
|
|
=item C<EV_FORK> |
775 |
|
|
|
776 |
|
|
The event loop has been resumed in the child process after fork (see |
777 |
|
|
C<ev_fork>). |
778 |
|
|
|
779 |
root |
1.122 |
=item C<EV_ASYNC> |
780 |
|
|
|
781 |
|
|
The given async watcher has been asynchronously notified (see C<ev_async>). |
782 |
|
|
|
783 |
root |
1.10 |
=item C<EV_ERROR> |
784 |
root |
1.1 |
|
785 |
|
|
An unspecified error has occured, the watcher has been stopped. This might |
786 |
|
|
happen because the watcher could not be properly started because libev |
787 |
|
|
ran out of memory, a file descriptor was found to be closed or any other |
788 |
|
|
problem. You best act on it by reporting the problem and somehow coping |
789 |
|
|
with the watcher being stopped. |
790 |
|
|
|
791 |
|
|
Libev will usually signal a few "dummy" events together with an error, |
792 |
|
|
for example it might indicate that a fd is readable or writable, and if |
793 |
|
|
your callbacks is well-written it can just attempt the operation and cope |
794 |
|
|
with the error from read() or write(). This will not work in multithreaded |
795 |
|
|
programs, though, so beware. |
796 |
|
|
|
797 |
|
|
=back |
798 |
|
|
|
799 |
root |
1.42 |
=head2 GENERIC WATCHER FUNCTIONS |
800 |
root |
1.36 |
|
801 |
|
|
In the following description, C<TYPE> stands for the watcher type, |
802 |
|
|
e.g. C<timer> for C<ev_timer> watchers and C<io> for C<ev_io> watchers. |
803 |
|
|
|
804 |
|
|
=over 4 |
805 |
|
|
|
806 |
|
|
=item C<ev_init> (ev_TYPE *watcher, callback) |
807 |
|
|
|
808 |
|
|
This macro initialises the generic portion of a watcher. The contents |
809 |
|
|
of the watcher object can be arbitrary (so C<malloc> will do). Only |
810 |
|
|
the generic parts of the watcher are initialised, you I<need> to call |
811 |
|
|
the type-specific C<ev_TYPE_set> macro afterwards to initialise the |
812 |
|
|
type-specific parts. For each type there is also a C<ev_TYPE_init> macro |
813 |
|
|
which rolls both calls into one. |
814 |
|
|
|
815 |
|
|
You can reinitialise a watcher at any time as long as it has been stopped |
816 |
|
|
(or never started) and there are no pending events outstanding. |
817 |
|
|
|
818 |
root |
1.42 |
The callback is always of type C<void (*)(ev_loop *loop, ev_TYPE *watcher, |
819 |
root |
1.36 |
int revents)>. |
820 |
|
|
|
821 |
|
|
=item C<ev_TYPE_set> (ev_TYPE *, [args]) |
822 |
|
|
|
823 |
|
|
This macro initialises the type-specific parts of a watcher. You need to |
824 |
|
|
call C<ev_init> at least once before you call this macro, but you can |
825 |
|
|
call C<ev_TYPE_set> any number of times. You must not, however, call this |
826 |
|
|
macro on a watcher that is active (it can be pending, however, which is a |
827 |
|
|
difference to the C<ev_init> macro). |
828 |
|
|
|
829 |
|
|
Although some watcher types do not have type-specific arguments |
830 |
|
|
(e.g. C<ev_prepare>) you still need to call its C<set> macro. |
831 |
|
|
|
832 |
|
|
=item C<ev_TYPE_init> (ev_TYPE *watcher, callback, [args]) |
833 |
|
|
|
834 |
|
|
This convinience macro rolls both C<ev_init> and C<ev_TYPE_set> macro |
835 |
|
|
calls into a single call. This is the most convinient method to initialise |
836 |
|
|
a watcher. The same limitations apply, of course. |
837 |
|
|
|
838 |
|
|
=item C<ev_TYPE_start> (loop *, ev_TYPE *watcher) |
839 |
|
|
|
840 |
|
|
Starts (activates) the given watcher. Only active watchers will receive |
841 |
|
|
events. If the watcher is already active nothing will happen. |
842 |
|
|
|
843 |
|
|
=item C<ev_TYPE_stop> (loop *, ev_TYPE *watcher) |
844 |
|
|
|
845 |
|
|
Stops the given watcher again (if active) and clears the pending |
846 |
|
|
status. It is possible that stopped watchers are pending (for example, |
847 |
|
|
non-repeating timers are being stopped when they become pending), but |
848 |
|
|
C<ev_TYPE_stop> ensures that the watcher is neither active nor pending. If |
849 |
|
|
you want to free or reuse the memory used by the watcher it is therefore a |
850 |
|
|
good idea to always call its C<ev_TYPE_stop> function. |
851 |
|
|
|
852 |
|
|
=item bool ev_is_active (ev_TYPE *watcher) |
853 |
|
|
|
854 |
|
|
Returns a true value iff the watcher is active (i.e. it has been started |
855 |
|
|
and not yet been stopped). As long as a watcher is active you must not modify |
856 |
|
|
it. |
857 |
|
|
|
858 |
|
|
=item bool ev_is_pending (ev_TYPE *watcher) |
859 |
|
|
|
860 |
|
|
Returns a true value iff the watcher is pending, (i.e. it has outstanding |
861 |
|
|
events but its callback has not yet been invoked). As long as a watcher |
862 |
|
|
is pending (but not active) you must not call an init function on it (but |
863 |
root |
1.73 |
C<ev_TYPE_set> is safe), you must not change its priority, and you must |
864 |
|
|
make sure the watcher is available to libev (e.g. you cannot C<free ()> |
865 |
|
|
it). |
866 |
root |
1.36 |
|
867 |
root |
1.55 |
=item callback ev_cb (ev_TYPE *watcher) |
868 |
root |
1.36 |
|
869 |
|
|
Returns the callback currently set on the watcher. |
870 |
|
|
|
871 |
|
|
=item ev_cb_set (ev_TYPE *watcher, callback) |
872 |
|
|
|
873 |
|
|
Change the callback. You can change the callback at virtually any time |
874 |
|
|
(modulo threads). |
875 |
|
|
|
876 |
root |
1.67 |
=item ev_set_priority (ev_TYPE *watcher, priority) |
877 |
|
|
|
878 |
|
|
=item int ev_priority (ev_TYPE *watcher) |
879 |
|
|
|
880 |
|
|
Set and query the priority of the watcher. The priority is a small |
881 |
|
|
integer between C<EV_MAXPRI> (default: C<2>) and C<EV_MINPRI> |
882 |
|
|
(default: C<-2>). Pending watchers with higher priority will be invoked |
883 |
|
|
before watchers with lower priority, but priority will not keep watchers |
884 |
|
|
from being executed (except for C<ev_idle> watchers). |
885 |
|
|
|
886 |
|
|
This means that priorities are I<only> used for ordering callback |
887 |
|
|
invocation after new events have been received. This is useful, for |
888 |
|
|
example, to reduce latency after idling, or more often, to bind two |
889 |
|
|
watchers on the same event and make sure one is called first. |
890 |
|
|
|
891 |
|
|
If you need to suppress invocation when higher priority events are pending |
892 |
|
|
you need to look at C<ev_idle> watchers, which provide this functionality. |
893 |
|
|
|
894 |
root |
1.73 |
You I<must not> change the priority of a watcher as long as it is active or |
895 |
|
|
pending. |
896 |
|
|
|
897 |
root |
1.67 |
The default priority used by watchers when no priority has been set is |
898 |
|
|
always C<0>, which is supposed to not be too high and not be too low :). |
899 |
|
|
|
900 |
|
|
Setting a priority outside the range of C<EV_MINPRI> to C<EV_MAXPRI> is |
901 |
|
|
fine, as long as you do not mind that the priority value you query might |
902 |
|
|
or might not have been adjusted to be within valid range. |
903 |
|
|
|
904 |
root |
1.74 |
=item ev_invoke (loop, ev_TYPE *watcher, int revents) |
905 |
|
|
|
906 |
|
|
Invoke the C<watcher> with the given C<loop> and C<revents>. Neither |
907 |
|
|
C<loop> nor C<revents> need to be valid as long as the watcher callback |
908 |
|
|
can deal with that fact. |
909 |
|
|
|
910 |
|
|
=item int ev_clear_pending (loop, ev_TYPE *watcher) |
911 |
|
|
|
912 |
|
|
If the watcher is pending, this function returns clears its pending status |
913 |
|
|
and returns its C<revents> bitset (as if its callback was invoked). If the |
914 |
|
|
watcher isn't pending it does nothing and returns C<0>. |
915 |
|
|
|
916 |
root |
1.36 |
=back |
917 |
|
|
|
918 |
|
|
|
919 |
root |
1.1 |
=head2 ASSOCIATING CUSTOM DATA WITH A WATCHER |
920 |
|
|
|
921 |
|
|
Each watcher has, by default, a member C<void *data> that you can change |
922 |
root |
1.14 |
and read at any time, libev will completely ignore it. This can be used |
923 |
root |
1.1 |
to associate arbitrary data with your watcher. If you need more data and |
924 |
|
|
don't want to allocate memory and store a pointer to it in that data |
925 |
|
|
member, you can also "subclass" the watcher type and provide your own |
926 |
|
|
data: |
927 |
|
|
|
928 |
|
|
struct my_io |
929 |
|
|
{ |
930 |
|
|
struct ev_io io; |
931 |
|
|
int otherfd; |
932 |
|
|
void *somedata; |
933 |
|
|
struct whatever *mostinteresting; |
934 |
|
|
} |
935 |
|
|
|
936 |
|
|
And since your callback will be called with a pointer to the watcher, you |
937 |
|
|
can cast it back to your own type: |
938 |
|
|
|
939 |
|
|
static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents) |
940 |
|
|
{ |
941 |
|
|
struct my_io *w = (struct my_io *)w_; |
942 |
|
|
... |
943 |
|
|
} |
944 |
|
|
|
945 |
root |
1.55 |
More interesting and less C-conformant ways of casting your callback type |
946 |
|
|
instead have been omitted. |
947 |
|
|
|
948 |
|
|
Another common scenario is having some data structure with multiple |
949 |
|
|
watchers: |
950 |
|
|
|
951 |
|
|
struct my_biggy |
952 |
|
|
{ |
953 |
|
|
int some_data; |
954 |
|
|
ev_timer t1; |
955 |
|
|
ev_timer t2; |
956 |
|
|
} |
957 |
|
|
|
958 |
|
|
In this case getting the pointer to C<my_biggy> is a bit more complicated, |
959 |
|
|
you need to use C<offsetof>: |
960 |
|
|
|
961 |
|
|
#include <stddef.h> |
962 |
|
|
|
963 |
|
|
static void |
964 |
|
|
t1_cb (EV_P_ struct ev_timer *w, int revents) |
965 |
|
|
{ |
966 |
|
|
struct my_biggy big = (struct my_biggy * |
967 |
|
|
(((char *)w) - offsetof (struct my_biggy, t1)); |
968 |
|
|
} |
969 |
|
|
|
970 |
|
|
static void |
971 |
|
|
t2_cb (EV_P_ struct ev_timer *w, int revents) |
972 |
|
|
{ |
973 |
|
|
struct my_biggy big = (struct my_biggy * |
974 |
|
|
(((char *)w) - offsetof (struct my_biggy, t2)); |
975 |
|
|
} |
976 |
root |
1.1 |
|
977 |
|
|
|
978 |
|
|
=head1 WATCHER TYPES |
979 |
|
|
|
980 |
|
|
This section describes each watcher in detail, but will not repeat |
981 |
root |
1.48 |
information given in the last section. Any initialisation/set macros, |
982 |
|
|
functions and members specific to the watcher type are explained. |
983 |
|
|
|
984 |
|
|
Members are additionally marked with either I<[read-only]>, meaning that, |
985 |
|
|
while the watcher is active, you can look at the member and expect some |
986 |
|
|
sensible content, but you must not modify it (you can modify it while the |
987 |
|
|
watcher is stopped to your hearts content), or I<[read-write]>, which |
988 |
|
|
means you can expect it to have some sensible content while the watcher |
989 |
|
|
is active, but you can also modify it. Modifying it may not do something |
990 |
|
|
sensible or take immediate effect (or do anything at all), but libev will |
991 |
|
|
not crash or malfunction in any way. |
992 |
root |
1.1 |
|
993 |
root |
1.34 |
|
994 |
root |
1.42 |
=head2 C<ev_io> - is this file descriptor readable or writable? |
995 |
root |
1.1 |
|
996 |
root |
1.4 |
I/O watchers check whether a file descriptor is readable or writable |
997 |
root |
1.42 |
in each iteration of the event loop, or, more precisely, when reading |
998 |
|
|
would not block the process and writing would at least be able to write |
999 |
|
|
some data. This behaviour is called level-triggering because you keep |
1000 |
|
|
receiving events as long as the condition persists. Remember you can stop |
1001 |
|
|
the watcher if you don't want to act on the event and neither want to |
1002 |
|
|
receive future events. |
1003 |
root |
1.1 |
|
1004 |
root |
1.23 |
In general you can register as many read and/or write event watchers per |
1005 |
root |
1.8 |
fd as you want (as long as you don't confuse yourself). Setting all file |
1006 |
|
|
descriptors to non-blocking mode is also usually a good idea (but not |
1007 |
|
|
required if you know what you are doing). |
1008 |
|
|
|
1009 |
|
|
If you must do this, then force the use of a known-to-be-good backend |
1010 |
root |
1.31 |
(at the time of this writing, this includes only C<EVBACKEND_SELECT> and |
1011 |
|
|
C<EVBACKEND_POLL>). |
1012 |
root |
1.8 |
|
1013 |
root |
1.42 |
Another thing you have to watch out for is that it is quite easy to |
1014 |
|
|
receive "spurious" readyness notifications, that is your callback might |
1015 |
|
|
be called with C<EV_READ> but a subsequent C<read>(2) will actually block |
1016 |
|
|
because there is no data. Not only are some backends known to create a |
1017 |
|
|
lot of those (for example solaris ports), it is very easy to get into |
1018 |
|
|
this situation even with a relatively standard program structure. Thus |
1019 |
|
|
it is best to always use non-blocking I/O: An extra C<read>(2) returning |
1020 |
|
|
C<EAGAIN> is far preferable to a program hanging until some data arrives. |
1021 |
|
|
|
1022 |
|
|
If you cannot run the fd in non-blocking mode (for example you should not |
1023 |
|
|
play around with an Xlib connection), then you have to seperately re-test |
1024 |
root |
1.68 |
whether a file descriptor is really ready with a known-to-be good interface |
1025 |
root |
1.42 |
such as poll (fortunately in our Xlib example, Xlib already does this on |
1026 |
|
|
its own, so its quite safe to use). |
1027 |
|
|
|
1028 |
root |
1.81 |
=head3 The special problem of disappearing file descriptors |
1029 |
|
|
|
1030 |
root |
1.94 |
Some backends (e.g. kqueue, epoll) need to be told about closing a file |
1031 |
root |
1.81 |
descriptor (either by calling C<close> explicitly or by any other means, |
1032 |
|
|
such as C<dup>). The reason is that you register interest in some file |
1033 |
|
|
descriptor, but when it goes away, the operating system will silently drop |
1034 |
|
|
this interest. If another file descriptor with the same number then is |
1035 |
|
|
registered with libev, there is no efficient way to see that this is, in |
1036 |
|
|
fact, a different file descriptor. |
1037 |
|
|
|
1038 |
|
|
To avoid having to explicitly tell libev about such cases, libev follows |
1039 |
|
|
the following policy: Each time C<ev_io_set> is being called, libev |
1040 |
|
|
will assume that this is potentially a new file descriptor, otherwise |
1041 |
|
|
it is assumed that the file descriptor stays the same. That means that |
1042 |
|
|
you I<have> to call C<ev_io_set> (or C<ev_io_init>) when you change the |
1043 |
|
|
descriptor even if the file descriptor number itself did not change. |
1044 |
|
|
|
1045 |
|
|
This is how one would do it normally anyway, the important point is that |
1046 |
|
|
the libev application should not optimise around libev but should leave |
1047 |
|
|
optimisations to libev. |
1048 |
|
|
|
1049 |
root |
1.95 |
=head3 The special problem of dup'ed file descriptors |
1050 |
root |
1.94 |
|
1051 |
|
|
Some backends (e.g. epoll), cannot register events for file descriptors, |
1052 |
root |
1.103 |
but only events for the underlying file descriptions. That means when you |
1053 |
root |
1.109 |
have C<dup ()>'ed file descriptors or weirder constellations, and register |
1054 |
|
|
events for them, only one file descriptor might actually receive events. |
1055 |
root |
1.94 |
|
1056 |
root |
1.103 |
There is no workaround possible except not registering events |
1057 |
|
|
for potentially C<dup ()>'ed file descriptors, or to resort to |
1058 |
root |
1.94 |
C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>. |
1059 |
|
|
|
1060 |
|
|
=head3 The special problem of fork |
1061 |
|
|
|
1062 |
|
|
Some backends (epoll, kqueue) do not support C<fork ()> at all or exhibit |
1063 |
|
|
useless behaviour. Libev fully supports fork, but needs to be told about |
1064 |
|
|
it in the child. |
1065 |
|
|
|
1066 |
|
|
To support fork in your programs, you either have to call |
1067 |
|
|
C<ev_default_fork ()> or C<ev_loop_fork ()> after a fork in the child, |
1068 |
|
|
enable C<EVFLAG_FORKCHECK>, or resort to C<EVBACKEND_SELECT> or |
1069 |
|
|
C<EVBACKEND_POLL>. |
1070 |
|
|
|
1071 |
root |
1.81 |
|
1072 |
root |
1.82 |
=head3 Watcher-Specific Functions |
1073 |
|
|
|
1074 |
root |
1.1 |
=over 4 |
1075 |
|
|
|
1076 |
|
|
=item ev_io_init (ev_io *, callback, int fd, int events) |
1077 |
|
|
|
1078 |
|
|
=item ev_io_set (ev_io *, int fd, int events) |
1079 |
|
|
|
1080 |
root |
1.42 |
Configures an C<ev_io> watcher. The C<fd> is the file descriptor to |
1081 |
|
|
rceeive events for and events is either C<EV_READ>, C<EV_WRITE> or |
1082 |
|
|
C<EV_READ | EV_WRITE> to receive the given events. |
1083 |
root |
1.32 |
|
1084 |
root |
1.48 |
=item int fd [read-only] |
1085 |
|
|
|
1086 |
|
|
The file descriptor being watched. |
1087 |
|
|
|
1088 |
|
|
=item int events [read-only] |
1089 |
|
|
|
1090 |
|
|
The events being watched. |
1091 |
|
|
|
1092 |
root |
1.1 |
=back |
1093 |
|
|
|
1094 |
root |
1.111 |
=head3 Examples |
1095 |
|
|
|
1096 |
root |
1.54 |
Example: Call C<stdin_readable_cb> when STDIN_FILENO has become, well |
1097 |
root |
1.34 |
readable, but only once. Since it is likely line-buffered, you could |
1098 |
root |
1.54 |
attempt to read a whole line in the callback. |
1099 |
root |
1.34 |
|
1100 |
|
|
static void |
1101 |
|
|
stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents) |
1102 |
|
|
{ |
1103 |
|
|
ev_io_stop (loop, w); |
1104 |
|
|
.. read from stdin here (or from w->fd) and haqndle any I/O errors |
1105 |
|
|
} |
1106 |
|
|
|
1107 |
|
|
... |
1108 |
|
|
struct ev_loop *loop = ev_default_init (0); |
1109 |
|
|
struct ev_io stdin_readable; |
1110 |
|
|
ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ); |
1111 |
|
|
ev_io_start (loop, &stdin_readable); |
1112 |
|
|
ev_loop (loop, 0); |
1113 |
|
|
|
1114 |
|
|
|
1115 |
root |
1.42 |
=head2 C<ev_timer> - relative and optionally repeating timeouts |
1116 |
root |
1.1 |
|
1117 |
|
|
Timer watchers are simple relative timers that generate an event after a |
1118 |
|
|
given time, and optionally repeating in regular intervals after that. |
1119 |
|
|
|
1120 |
|
|
The timers are based on real time, that is, if you register an event that |
1121 |
root |
1.22 |
times out after an hour and you reset your system clock to last years |
1122 |
root |
1.1 |
time, it will still time out after (roughly) and hour. "Roughly" because |
1123 |
root |
1.28 |
detecting time jumps is hard, and some inaccuracies are unavoidable (the |
1124 |
root |
1.1 |
monotonic clock option helps a lot here). |
1125 |
|
|
|
1126 |
root |
1.9 |
The relative timeouts are calculated relative to the C<ev_now ()> |
1127 |
|
|
time. This is usually the right thing as this timestamp refers to the time |
1128 |
root |
1.28 |
of the event triggering whatever timeout you are modifying/starting. If |
1129 |
|
|
you suspect event processing to be delayed and you I<need> to base the timeout |
1130 |
root |
1.22 |
on the current time, use something like this to adjust for this: |
1131 |
root |
1.9 |
|
1132 |
|
|
ev_timer_set (&timer, after + ev_now () - ev_time (), 0.); |
1133 |
|
|
|
1134 |
root |
1.28 |
The callback is guarenteed to be invoked only when its timeout has passed, |
1135 |
|
|
but if multiple timers become ready during the same loop iteration then |
1136 |
|
|
order of execution is undefined. |
1137 |
|
|
|
1138 |
root |
1.82 |
=head3 Watcher-Specific Functions and Data Members |
1139 |
|
|
|
1140 |
root |
1.1 |
=over 4 |
1141 |
|
|
|
1142 |
|
|
=item ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat) |
1143 |
|
|
|
1144 |
|
|
=item ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat) |
1145 |
|
|
|
1146 |
|
|
Configure the timer to trigger after C<after> seconds. If C<repeat> is |
1147 |
|
|
C<0.>, then it will automatically be stopped. If it is positive, then the |
1148 |
|
|
timer will automatically be configured to trigger again C<repeat> seconds |
1149 |
|
|
later, again, and again, until stopped manually. |
1150 |
|
|
|
1151 |
|
|
The timer itself will do a best-effort at avoiding drift, that is, if you |
1152 |
|
|
configure a timer to trigger every 10 seconds, then it will trigger at |
1153 |
|
|
exactly 10 second intervals. If, however, your program cannot keep up with |
1154 |
root |
1.22 |
the timer (because it takes longer than those 10 seconds to do stuff) the |
1155 |
root |
1.1 |
timer will not fire more than once per event loop iteration. |
1156 |
|
|
|
1157 |
|
|
=item ev_timer_again (loop) |
1158 |
|
|
|
1159 |
|
|
This will act as if the timer timed out and restart it again if it is |
1160 |
|
|
repeating. The exact semantics are: |
1161 |
|
|
|
1162 |
root |
1.61 |
If the timer is pending, its pending status is cleared. |
1163 |
root |
1.1 |
|
1164 |
root |
1.61 |
If the timer is started but nonrepeating, stop it (as if it timed out). |
1165 |
|
|
|
1166 |
|
|
If the timer is repeating, either start it if necessary (with the |
1167 |
|
|
C<repeat> value), or reset the running timer to the C<repeat> value. |
1168 |
root |
1.1 |
|
1169 |
|
|
This sounds a bit complicated, but here is a useful and typical |
1170 |
root |
1.61 |
example: Imagine you have a tcp connection and you want a so-called idle |
1171 |
|
|
timeout, that is, you want to be called when there have been, say, 60 |
1172 |
|
|
seconds of inactivity on the socket. The easiest way to do this is to |
1173 |
|
|
configure an C<ev_timer> with a C<repeat> value of C<60> and then call |
1174 |
root |
1.48 |
C<ev_timer_again> each time you successfully read or write some data. If |
1175 |
|
|
you go into an idle state where you do not expect data to travel on the |
1176 |
root |
1.61 |
socket, you can C<ev_timer_stop> the timer, and C<ev_timer_again> will |
1177 |
|
|
automatically restart it if need be. |
1178 |
root |
1.48 |
|
1179 |
root |
1.61 |
That means you can ignore the C<after> value and C<ev_timer_start> |
1180 |
|
|
altogether and only ever use the C<repeat> value and C<ev_timer_again>: |
1181 |
root |
1.48 |
|
1182 |
|
|
ev_timer_init (timer, callback, 0., 5.); |
1183 |
|
|
ev_timer_again (loop, timer); |
1184 |
|
|
... |
1185 |
|
|
timer->again = 17.; |
1186 |
|
|
ev_timer_again (loop, timer); |
1187 |
|
|
... |
1188 |
|
|
timer->again = 10.; |
1189 |
|
|
ev_timer_again (loop, timer); |
1190 |
|
|
|
1191 |
root |
1.61 |
This is more slightly efficient then stopping/starting the timer each time |
1192 |
|
|
you want to modify its timeout value. |
1193 |
root |
1.48 |
|
1194 |
|
|
=item ev_tstamp repeat [read-write] |
1195 |
|
|
|
1196 |
|
|
The current C<repeat> value. Will be used each time the watcher times out |
1197 |
|
|
or C<ev_timer_again> is called and determines the next timeout (if any), |
1198 |
|
|
which is also when any modifications are taken into account. |
1199 |
root |
1.1 |
|
1200 |
|
|
=back |
1201 |
|
|
|
1202 |
root |
1.111 |
=head3 Examples |
1203 |
|
|
|
1204 |
root |
1.54 |
Example: Create a timer that fires after 60 seconds. |
1205 |
root |
1.34 |
|
1206 |
|
|
static void |
1207 |
|
|
one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) |
1208 |
|
|
{ |
1209 |
|
|
.. one minute over, w is actually stopped right here |
1210 |
|
|
} |
1211 |
|
|
|
1212 |
|
|
struct ev_timer mytimer; |
1213 |
|
|
ev_timer_init (&mytimer, one_minute_cb, 60., 0.); |
1214 |
|
|
ev_timer_start (loop, &mytimer); |
1215 |
|
|
|
1216 |
root |
1.54 |
Example: Create a timeout timer that times out after 10 seconds of |
1217 |
root |
1.34 |
inactivity. |
1218 |
|
|
|
1219 |
|
|
static void |
1220 |
|
|
timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents) |
1221 |
|
|
{ |
1222 |
|
|
.. ten seconds without any activity |
1223 |
|
|
} |
1224 |
|
|
|
1225 |
|
|
struct ev_timer mytimer; |
1226 |
|
|
ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used */ |
1227 |
|
|
ev_timer_again (&mytimer); /* start timer */ |
1228 |
|
|
ev_loop (loop, 0); |
1229 |
|
|
|
1230 |
|
|
// and in some piece of code that gets executed on any "activity": |
1231 |
|
|
// reset the timeout to start ticking again at 10 seconds |
1232 |
|
|
ev_timer_again (&mytimer); |
1233 |
|
|
|
1234 |
|
|
|
1235 |
root |
1.42 |
=head2 C<ev_periodic> - to cron or not to cron? |
1236 |
root |
1.1 |
|
1237 |
|
|
Periodic watchers are also timers of a kind, but they are very versatile |
1238 |
|
|
(and unfortunately a bit complex). |
1239 |
|
|
|
1240 |
root |
1.10 |
Unlike C<ev_timer>'s, they are not based on real time (or relative time) |
1241 |
root |
1.1 |
but on wallclock time (absolute time). You can tell a periodic watcher |
1242 |
|
|
to trigger "at" some specific point in time. For example, if you tell a |
1243 |
root |
1.38 |
periodic watcher to trigger in 10 seconds (by specifiying e.g. C<ev_now () |
1244 |
root |
1.1 |
+ 10.>) and then reset your system clock to the last year, then it will |
1245 |
root |
1.10 |
take a year to trigger the event (unlike an C<ev_timer>, which would trigger |
1246 |
root |
1.78 |
roughly 10 seconds later). |
1247 |
root |
1.1 |
|
1248 |
|
|
They can also be used to implement vastly more complex timers, such as |
1249 |
root |
1.78 |
triggering an event on each midnight, local time or other, complicated, |
1250 |
|
|
rules. |
1251 |
root |
1.1 |
|
1252 |
root |
1.28 |
As with timers, the callback is guarenteed to be invoked only when the |
1253 |
|
|
time (C<at>) has been passed, but if multiple periodic timers become ready |
1254 |
|
|
during the same loop iteration then order of execution is undefined. |
1255 |
|
|
|
1256 |
root |
1.82 |
=head3 Watcher-Specific Functions and Data Members |
1257 |
|
|
|
1258 |
root |
1.1 |
=over 4 |
1259 |
|
|
|
1260 |
|
|
=item ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb) |
1261 |
|
|
|
1262 |
|
|
=item ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb) |
1263 |
|
|
|
1264 |
|
|
Lots of arguments, lets sort it out... There are basically three modes of |
1265 |
|
|
operation, and we will explain them from simplest to complex: |
1266 |
|
|
|
1267 |
|
|
=over 4 |
1268 |
|
|
|
1269 |
root |
1.78 |
=item * absolute timer (at = time, interval = reschedule_cb = 0) |
1270 |
root |
1.1 |
|
1271 |
|
|
In this configuration the watcher triggers an event at the wallclock time |
1272 |
|
|
C<at> and doesn't repeat. It will not adjust when a time jump occurs, |
1273 |
|
|
that is, if it is to be run at January 1st 2011 then it will run when the |
1274 |
|
|
system time reaches or surpasses this time. |
1275 |
|
|
|
1276 |
root |
1.78 |
=item * non-repeating interval timer (at = offset, interval > 0, reschedule_cb = 0) |
1277 |
root |
1.1 |
|
1278 |
|
|
In this mode the watcher will always be scheduled to time out at the next |
1279 |
root |
1.78 |
C<at + N * interval> time (for some integer N, which can also be negative) |
1280 |
|
|
and then repeat, regardless of any time jumps. |
1281 |
root |
1.1 |
|
1282 |
|
|
This can be used to create timers that do not drift with respect to system |
1283 |
|
|
time: |
1284 |
|
|
|
1285 |
|
|
ev_periodic_set (&periodic, 0., 3600., 0); |
1286 |
|
|
|
1287 |
|
|
This doesn't mean there will always be 3600 seconds in between triggers, |
1288 |
|
|
but only that the the callback will be called when the system time shows a |
1289 |
root |
1.12 |
full hour (UTC), or more correctly, when the system time is evenly divisible |
1290 |
root |
1.1 |
by 3600. |
1291 |
|
|
|
1292 |
|
|
Another way to think about it (for the mathematically inclined) is that |
1293 |
root |
1.10 |
C<ev_periodic> will try to run the callback in this mode at the next possible |
1294 |
root |
1.1 |
time where C<time = at (mod interval)>, regardless of any time jumps. |
1295 |
|
|
|
1296 |
root |
1.78 |
For numerical stability it is preferable that the C<at> value is near |
1297 |
|
|
C<ev_now ()> (the current time), but there is no range requirement for |
1298 |
|
|
this value. |
1299 |
|
|
|
1300 |
|
|
=item * manual reschedule mode (at and interval ignored, reschedule_cb = callback) |
1301 |
root |
1.1 |
|
1302 |
|
|
In this mode the values for C<interval> and C<at> are both being |
1303 |
|
|
ignored. Instead, each time the periodic watcher gets scheduled, the |
1304 |
|
|
reschedule callback will be called with the watcher as first, and the |
1305 |
|
|
current time as second argument. |
1306 |
|
|
|
1307 |
root |
1.18 |
NOTE: I<This callback MUST NOT stop or destroy any periodic watcher, |
1308 |
|
|
ever, or make any event loop modifications>. If you need to stop it, |
1309 |
|
|
return C<now + 1e30> (or so, fudge fudge) and stop it afterwards (e.g. by |
1310 |
root |
1.78 |
starting an C<ev_prepare> watcher, which is legal). |
1311 |
root |
1.1 |
|
1312 |
root |
1.13 |
Its prototype is C<ev_tstamp (*reschedule_cb)(struct ev_periodic *w, |
1313 |
root |
1.1 |
ev_tstamp now)>, e.g.: |
1314 |
|
|
|
1315 |
|
|
static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now) |
1316 |
|
|
{ |
1317 |
|
|
return now + 60.; |
1318 |
|
|
} |
1319 |
|
|
|
1320 |
|
|
It must return the next time to trigger, based on the passed time value |
1321 |
|
|
(that is, the lowest time value larger than to the second argument). It |
1322 |
|
|
will usually be called just before the callback will be triggered, but |
1323 |
|
|
might be called at other times, too. |
1324 |
|
|
|
1325 |
root |
1.18 |
NOTE: I<< This callback must always return a time that is later than the |
1326 |
root |
1.19 |
passed C<now> value >>. Not even C<now> itself will do, it I<must> be larger. |
1327 |
root |
1.18 |
|
1328 |
root |
1.1 |
This can be used to create very complex timers, such as a timer that |
1329 |
|
|
triggers on each midnight, local time. To do this, you would calculate the |
1330 |
root |
1.19 |
next midnight after C<now> and return the timestamp value for this. How |
1331 |
|
|
you do this is, again, up to you (but it is not trivial, which is the main |
1332 |
|
|
reason I omitted it as an example). |
1333 |
root |
1.1 |
|
1334 |
|
|
=back |
1335 |
|
|
|
1336 |
|
|
=item ev_periodic_again (loop, ev_periodic *) |
1337 |
|
|
|
1338 |
|
|
Simply stops and restarts the periodic watcher again. This is only useful |
1339 |
|
|
when you changed some parameters or the reschedule callback would return |
1340 |
|
|
a different time than the last time it was called (e.g. in a crond like |
1341 |
|
|
program when the crontabs have changed). |
1342 |
|
|
|
1343 |
root |
1.78 |
=item ev_tstamp offset [read-write] |
1344 |
|
|
|
1345 |
|
|
When repeating, this contains the offset value, otherwise this is the |
1346 |
|
|
absolute point in time (the C<at> value passed to C<ev_periodic_set>). |
1347 |
|
|
|
1348 |
|
|
Can be modified any time, but changes only take effect when the periodic |
1349 |
|
|
timer fires or C<ev_periodic_again> is being called. |
1350 |
|
|
|
1351 |
root |
1.48 |
=item ev_tstamp interval [read-write] |
1352 |
|
|
|
1353 |
|
|
The current interval value. Can be modified any time, but changes only |
1354 |
|
|
take effect when the periodic timer fires or C<ev_periodic_again> is being |
1355 |
|
|
called. |
1356 |
|
|
|
1357 |
|
|
=item ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write] |
1358 |
|
|
|
1359 |
|
|
The current reschedule callback, or C<0>, if this functionality is |
1360 |
|
|
switched off. Can be changed any time, but changes only take effect when |
1361 |
|
|
the periodic timer fires or C<ev_periodic_again> is being called. |
1362 |
|
|
|
1363 |
root |
1.85 |
=item ev_tstamp at [read-only] |
1364 |
|
|
|
1365 |
|
|
When active, contains the absolute time that the watcher is supposed to |
1366 |
|
|
trigger next. |
1367 |
|
|
|
1368 |
root |
1.1 |
=back |
1369 |
|
|
|
1370 |
root |
1.111 |
=head3 Examples |
1371 |
|
|
|
1372 |
root |
1.54 |
Example: Call a callback every hour, or, more precisely, whenever the |
1373 |
root |
1.34 |
system clock is divisible by 3600. The callback invocation times have |
1374 |
|
|
potentially a lot of jittering, but good long-term stability. |
1375 |
|
|
|
1376 |
|
|
static void |
1377 |
|
|
clock_cb (struct ev_loop *loop, struct ev_io *w, int revents) |
1378 |
|
|
{ |
1379 |
|
|
... its now a full hour (UTC, or TAI or whatever your clock follows) |
1380 |
|
|
} |
1381 |
|
|
|
1382 |
|
|
struct ev_periodic hourly_tick; |
1383 |
|
|
ev_periodic_init (&hourly_tick, clock_cb, 0., 3600., 0); |
1384 |
|
|
ev_periodic_start (loop, &hourly_tick); |
1385 |
|
|
|
1386 |
root |
1.54 |
Example: The same as above, but use a reschedule callback to do it: |
1387 |
root |
1.34 |
|
1388 |
|
|
#include <math.h> |
1389 |
|
|
|
1390 |
|
|
static ev_tstamp |
1391 |
|
|
my_scheduler_cb (struct ev_periodic *w, ev_tstamp now) |
1392 |
|
|
{ |
1393 |
|
|
return fmod (now, 3600.) + 3600.; |
1394 |
|
|
} |
1395 |
|
|
|
1396 |
|
|
ev_periodic_init (&hourly_tick, clock_cb, 0., 0., my_scheduler_cb); |
1397 |
|
|
|
1398 |
root |
1.54 |
Example: Call a callback every hour, starting now: |
1399 |
root |
1.34 |
|
1400 |
|
|
struct ev_periodic hourly_tick; |
1401 |
|
|
ev_periodic_init (&hourly_tick, clock_cb, |
1402 |
|
|
fmod (ev_now (loop), 3600.), 3600., 0); |
1403 |
|
|
ev_periodic_start (loop, &hourly_tick); |
1404 |
|
|
|
1405 |
|
|
|
1406 |
root |
1.42 |
=head2 C<ev_signal> - signal me when a signal gets signalled! |
1407 |
root |
1.1 |
|
1408 |
|
|
Signal watchers will trigger an event when the process receives a specific |
1409 |
|
|
signal one or more times. Even though signals are very asynchronous, libev |
1410 |
root |
1.9 |
will try it's best to deliver signals synchronously, i.e. as part of the |
1411 |
root |
1.1 |
normal event processing, like any other event. |
1412 |
|
|
|
1413 |
root |
1.14 |
You can configure as many watchers as you like per signal. Only when the |
1414 |
root |
1.1 |
first watcher gets started will libev actually register a signal watcher |
1415 |
|
|
with the kernel (thus it coexists with your own signal handlers as long |
1416 |
|
|
as you don't register any with libev). Similarly, when the last signal |
1417 |
|
|
watcher for a signal is stopped libev will reset the signal handler to |
1418 |
|
|
SIG_DFL (regardless of what it was set to before). |
1419 |
|
|
|
1420 |
root |
1.82 |
=head3 Watcher-Specific Functions and Data Members |
1421 |
|
|
|
1422 |
root |
1.1 |
=over 4 |
1423 |
|
|
|
1424 |
|
|
=item ev_signal_init (ev_signal *, callback, int signum) |
1425 |
|
|
|
1426 |
|
|
=item ev_signal_set (ev_signal *, int signum) |
1427 |
|
|
|
1428 |
|
|
Configures the watcher to trigger on the given signal number (usually one |
1429 |
|
|
of the C<SIGxxx> constants). |
1430 |
|
|
|
1431 |
root |
1.48 |
=item int signum [read-only] |
1432 |
|
|
|
1433 |
|
|
The signal the watcher watches out for. |
1434 |
|
|
|
1435 |
root |
1.1 |
=back |
1436 |
|
|
|
1437 |
root |
1.35 |
|
1438 |
root |
1.42 |
=head2 C<ev_child> - watch out for process status changes |
1439 |
root |
1.1 |
|
1440 |
|
|
Child watchers trigger when your process receives a SIGCHLD in response to |
1441 |
|
|
some child status changes (most typically when a child of yours dies). |
1442 |
|
|
|
1443 |
root |
1.82 |
=head3 Watcher-Specific Functions and Data Members |
1444 |
|
|
|
1445 |
root |
1.1 |
=over 4 |
1446 |
|
|
|
1447 |
root |
1.120 |
=item ev_child_init (ev_child *, callback, int pid, int trace) |
1448 |
root |
1.1 |
|
1449 |
root |
1.120 |
=item ev_child_set (ev_child *, int pid, int trace) |
1450 |
root |
1.1 |
|
1451 |
|
|
Configures the watcher to wait for status changes of process C<pid> (or |
1452 |
|
|
I<any> process if C<pid> is specified as C<0>). The callback can look |
1453 |
|
|
at the C<rstatus> member of the C<ev_child> watcher structure to see |
1454 |
root |
1.14 |
the status word (use the macros from C<sys/wait.h> and see your systems |
1455 |
|
|
C<waitpid> documentation). The C<rpid> member contains the pid of the |
1456 |
root |
1.120 |
process causing the status change. C<trace> must be either C<0> (only |
1457 |
|
|
activate the watcher when the process terminates) or C<1> (additionally |
1458 |
|
|
activate the watcher when the process is stopped or continued). |
1459 |
root |
1.1 |
|
1460 |
root |
1.48 |
=item int pid [read-only] |
1461 |
|
|
|
1462 |
|
|
The process id this watcher watches out for, or C<0>, meaning any process id. |
1463 |
|
|
|
1464 |
|
|
=item int rpid [read-write] |
1465 |
|
|
|
1466 |
|
|
The process id that detected a status change. |
1467 |
|
|
|
1468 |
|
|
=item int rstatus [read-write] |
1469 |
|
|
|
1470 |
|
|
The process exit/trace status caused by C<rpid> (see your systems |
1471 |
|
|
C<waitpid> and C<sys/wait.h> documentation for details). |
1472 |
|
|
|
1473 |
root |
1.1 |
=back |
1474 |
|
|
|
1475 |
root |
1.111 |
=head3 Examples |
1476 |
|
|
|
1477 |
root |
1.54 |
Example: Try to exit cleanly on SIGINT and SIGTERM. |
1478 |
root |
1.34 |
|
1479 |
|
|
static void |
1480 |
|
|
sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents) |
1481 |
|
|
{ |
1482 |
|
|
ev_unloop (loop, EVUNLOOP_ALL); |
1483 |
|
|
} |
1484 |
|
|
|
1485 |
|
|
struct ev_signal signal_watcher; |
1486 |
|
|
ev_signal_init (&signal_watcher, sigint_cb, SIGINT); |
1487 |
|
|
ev_signal_start (loop, &sigint_cb); |
1488 |
|
|
|
1489 |
|
|
|
1490 |
root |
1.48 |
=head2 C<ev_stat> - did the file attributes just change? |
1491 |
|
|
|
1492 |
|
|
This watches a filesystem path for attribute changes. That is, it calls |
1493 |
|
|
C<stat> regularly (or when the OS says it changed) and sees if it changed |
1494 |
|
|
compared to the last time, invoking the callback if it did. |
1495 |
|
|
|
1496 |
|
|
The path does not need to exist: changing from "path exists" to "path does |
1497 |
|
|
not exist" is a status change like any other. The condition "path does |
1498 |
|
|
not exist" is signified by the C<st_nlink> field being zero (which is |
1499 |
|
|
otherwise always forced to be at least one) and all the other fields of |
1500 |
|
|
the stat buffer having unspecified contents. |
1501 |
|
|
|
1502 |
root |
1.60 |
The path I<should> be absolute and I<must not> end in a slash. If it is |
1503 |
|
|
relative and your working directory changes, the behaviour is undefined. |
1504 |
|
|
|
1505 |
root |
1.48 |
Since there is no standard to do this, the portable implementation simply |
1506 |
root |
1.57 |
calls C<stat (2)> regularly on the path to see if it changed somehow. You |
1507 |
root |
1.48 |
can specify a recommended polling interval for this case. If you specify |
1508 |
|
|
a polling interval of C<0> (highly recommended!) then a I<suitable, |
1509 |
|
|
unspecified default> value will be used (which you can expect to be around |
1510 |
|
|
five seconds, although this might change dynamically). Libev will also |
1511 |
|
|
impose a minimum interval which is currently around C<0.1>, but thats |
1512 |
|
|
usually overkill. |
1513 |
|
|
|
1514 |
|
|
This watcher type is not meant for massive numbers of stat watchers, |
1515 |
|
|
as even with OS-supported change notifications, this can be |
1516 |
|
|
resource-intensive. |
1517 |
|
|
|
1518 |
root |
1.57 |
At the time of this writing, only the Linux inotify interface is |
1519 |
|
|
implemented (implementing kqueue support is left as an exercise for the |
1520 |
|
|
reader). Inotify will be used to give hints only and should not change the |
1521 |
|
|
semantics of C<ev_stat> watchers, which means that libev sometimes needs |
1522 |
|
|
to fall back to regular polling again even with inotify, but changes are |
1523 |
|
|
usually detected immediately, and if the file exists there will be no |
1524 |
|
|
polling. |
1525 |
root |
1.48 |
|
1526 |
root |
1.108 |
=head3 Inotify |
1527 |
|
|
|
1528 |
|
|
When C<inotify (7)> support has been compiled into libev (generally only |
1529 |
|
|
available on Linux) and present at runtime, it will be used to speed up |
1530 |
|
|
change detection where possible. The inotify descriptor will be created lazily |
1531 |
|
|
when the first C<ev_stat> watcher is being started. |
1532 |
|
|
|
1533 |
|
|
Inotify presense does not change the semantics of C<ev_stat> watchers |
1534 |
|
|
except that changes might be detected earlier, and in some cases, to avoid |
1535 |
|
|
making regular C<stat> calls. Even in the presense of inotify support |
1536 |
|
|
there are many cases where libev has to resort to regular C<stat> polling. |
1537 |
|
|
|
1538 |
|
|
(There is no support for kqueue, as apparently it cannot be used to |
1539 |
|
|
implement this functionality, due to the requirement of having a file |
1540 |
|
|
descriptor open on the object at all times). |
1541 |
|
|
|
1542 |
root |
1.107 |
=head3 The special problem of stat time resolution |
1543 |
|
|
|
1544 |
|
|
The C<stat ()> syscall only supports full-second resolution portably, and |
1545 |
|
|
even on systems where the resolution is higher, many filesystems still |
1546 |
|
|
only support whole seconds. |
1547 |
|
|
|
1548 |
|
|
That means that, if the time is the only thing that changes, you might |
1549 |
|
|
miss updates: on the first update, C<ev_stat> detects a change and calls |
1550 |
|
|
your callback, which does something. When there is another update within |
1551 |
|
|
the same second, C<ev_stat> will be unable to detect it. |
1552 |
|
|
|
1553 |
|
|
The solution to this is to delay acting on a change for a second (or till |
1554 |
|
|
the next second boundary), using a roughly one-second delay C<ev_timer> |
1555 |
|
|
(C<ev_timer_set (w, 0., 1.01); ev_timer_again (loop, w)>). The C<.01> |
1556 |
|
|
is added to work around small timing inconsistencies of some operating |
1557 |
|
|
systems. |
1558 |
|
|
|
1559 |
root |
1.82 |
=head3 Watcher-Specific Functions and Data Members |
1560 |
|
|
|
1561 |
root |
1.48 |
=over 4 |
1562 |
|
|
|
1563 |
|
|
=item ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval) |
1564 |
|
|
|
1565 |
|
|
=item ev_stat_set (ev_stat *, const char *path, ev_tstamp interval) |
1566 |
|
|
|
1567 |
|
|
Configures the watcher to wait for status changes of the given |
1568 |
|
|
C<path>. The C<interval> is a hint on how quickly a change is expected to |
1569 |
|
|
be detected and should normally be specified as C<0> to let libev choose |
1570 |
|
|
a suitable value. The memory pointed to by C<path> must point to the same |
1571 |
|
|
path for as long as the watcher is active. |
1572 |
|
|
|
1573 |
|
|
The callback will be receive C<EV_STAT> when a change was detected, |
1574 |
|
|
relative to the attributes at the time the watcher was started (or the |
1575 |
|
|
last change was detected). |
1576 |
|
|
|
1577 |
|
|
=item ev_stat_stat (ev_stat *) |
1578 |
|
|
|
1579 |
|
|
Updates the stat buffer immediately with new values. If you change the |
1580 |
|
|
watched path in your callback, you could call this fucntion to avoid |
1581 |
|
|
detecting this change (while introducing a race condition). Can also be |
1582 |
|
|
useful simply to find out the new values. |
1583 |
|
|
|
1584 |
|
|
=item ev_statdata attr [read-only] |
1585 |
|
|
|
1586 |
|
|
The most-recently detected attributes of the file. Although the type is of |
1587 |
|
|
C<ev_statdata>, this is usually the (or one of the) C<struct stat> types |
1588 |
|
|
suitable for your system. If the C<st_nlink> member is C<0>, then there |
1589 |
|
|
was some error while C<stat>ing the file. |
1590 |
|
|
|
1591 |
|
|
=item ev_statdata prev [read-only] |
1592 |
|
|
|
1593 |
|
|
The previous attributes of the file. The callback gets invoked whenever |
1594 |
|
|
C<prev> != C<attr>. |
1595 |
|
|
|
1596 |
|
|
=item ev_tstamp interval [read-only] |
1597 |
|
|
|
1598 |
|
|
The specified interval. |
1599 |
|
|
|
1600 |
|
|
=item const char *path [read-only] |
1601 |
|
|
|
1602 |
|
|
The filesystem path that is being watched. |
1603 |
|
|
|
1604 |
|
|
=back |
1605 |
|
|
|
1606 |
root |
1.108 |
=head3 Examples |
1607 |
|
|
|
1608 |
root |
1.48 |
Example: Watch C</etc/passwd> for attribute changes. |
1609 |
|
|
|
1610 |
|
|
static void |
1611 |
|
|
passwd_cb (struct ev_loop *loop, ev_stat *w, int revents) |
1612 |
|
|
{ |
1613 |
|
|
/* /etc/passwd changed in some way */ |
1614 |
|
|
if (w->attr.st_nlink) |
1615 |
|
|
{ |
1616 |
|
|
printf ("passwd current size %ld\n", (long)w->attr.st_size); |
1617 |
|
|
printf ("passwd current atime %ld\n", (long)w->attr.st_mtime); |
1618 |
|
|
printf ("passwd current mtime %ld\n", (long)w->attr.st_mtime); |
1619 |
|
|
} |
1620 |
|
|
else |
1621 |
|
|
/* you shalt not abuse printf for puts */ |
1622 |
|
|
puts ("wow, /etc/passwd is not there, expect problems. " |
1623 |
|
|
"if this is windows, they already arrived\n"); |
1624 |
|
|
} |
1625 |
|
|
|
1626 |
|
|
... |
1627 |
|
|
ev_stat passwd; |
1628 |
|
|
|
1629 |
root |
1.107 |
ev_stat_init (&passwd, passwd_cb, "/etc/passwd", 0.); |
1630 |
|
|
ev_stat_start (loop, &passwd); |
1631 |
|
|
|
1632 |
|
|
Example: Like above, but additionally use a one-second delay so we do not |
1633 |
|
|
miss updates (however, frequent updates will delay processing, too, so |
1634 |
|
|
one might do the work both on C<ev_stat> callback invocation I<and> on |
1635 |
|
|
C<ev_timer> callback invocation). |
1636 |
|
|
|
1637 |
|
|
static ev_stat passwd; |
1638 |
|
|
static ev_timer timer; |
1639 |
|
|
|
1640 |
|
|
static void |
1641 |
|
|
timer_cb (EV_P_ ev_timer *w, int revents) |
1642 |
|
|
{ |
1643 |
|
|
ev_timer_stop (EV_A_ w); |
1644 |
|
|
|
1645 |
|
|
/* now it's one second after the most recent passwd change */ |
1646 |
|
|
} |
1647 |
|
|
|
1648 |
|
|
static void |
1649 |
|
|
stat_cb (EV_P_ ev_stat *w, int revents) |
1650 |
|
|
{ |
1651 |
|
|
/* reset the one-second timer */ |
1652 |
|
|
ev_timer_again (EV_A_ &timer); |
1653 |
|
|
} |
1654 |
|
|
|
1655 |
|
|
... |
1656 |
|
|
ev_stat_init (&passwd, stat_cb, "/etc/passwd", 0.); |
1657 |
root |
1.48 |
ev_stat_start (loop, &passwd); |
1658 |
root |
1.107 |
ev_timer_init (&timer, timer_cb, 0., 1.01); |
1659 |
root |
1.48 |
|
1660 |
|
|
|
1661 |
root |
1.42 |
=head2 C<ev_idle> - when you've got nothing better to do... |
1662 |
root |
1.1 |
|
1663 |
root |
1.67 |
Idle watchers trigger events when no other events of the same or higher |
1664 |
|
|
priority are pending (prepare, check and other idle watchers do not |
1665 |
|
|
count). |
1666 |
|
|
|
1667 |
|
|
That is, as long as your process is busy handling sockets or timeouts |
1668 |
|
|
(or even signals, imagine) of the same or higher priority it will not be |
1669 |
|
|
triggered. But when your process is idle (or only lower-priority watchers |
1670 |
|
|
are pending), the idle watchers are being called once per event loop |
1671 |
|
|
iteration - until stopped, that is, or your process receives more events |
1672 |
|
|
and becomes busy again with higher priority stuff. |
1673 |
root |
1.1 |
|
1674 |
|
|
The most noteworthy effect is that as long as any idle watchers are |
1675 |
|
|
active, the process will not block when waiting for new events. |
1676 |
|
|
|
1677 |
|
|
Apart from keeping your process non-blocking (which is a useful |
1678 |
|
|
effect on its own sometimes), idle watchers are a good place to do |
1679 |
|
|
"pseudo-background processing", or delay processing stuff to after the |
1680 |
|
|
event loop has handled all outstanding events. |
1681 |
|
|
|
1682 |
root |
1.82 |
=head3 Watcher-Specific Functions and Data Members |
1683 |
|
|
|
1684 |
root |
1.1 |
=over 4 |
1685 |
|
|
|
1686 |
|
|
=item ev_idle_init (ev_signal *, callback) |
1687 |
|
|
|
1688 |
|
|
Initialises and configures the idle watcher - it has no parameters of any |
1689 |
|
|
kind. There is a C<ev_idle_set> macro, but using it is utterly pointless, |
1690 |
|
|
believe me. |
1691 |
|
|
|
1692 |
|
|
=back |
1693 |
|
|
|
1694 |
root |
1.111 |
=head3 Examples |
1695 |
|
|
|
1696 |
root |
1.54 |
Example: Dynamically allocate an C<ev_idle> watcher, start it, and in the |
1697 |
|
|
callback, free it. Also, use no error checking, as usual. |
1698 |
root |
1.34 |
|
1699 |
|
|
static void |
1700 |
|
|
idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents) |
1701 |
|
|
{ |
1702 |
|
|
free (w); |
1703 |
|
|
// now do something you wanted to do when the program has |
1704 |
root |
1.121 |
// no longer anything immediate to do. |
1705 |
root |
1.34 |
} |
1706 |
|
|
|
1707 |
|
|
struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle)); |
1708 |
|
|
ev_idle_init (idle_watcher, idle_cb); |
1709 |
|
|
ev_idle_start (loop, idle_cb); |
1710 |
|
|
|
1711 |
|
|
|
1712 |
root |
1.42 |
=head2 C<ev_prepare> and C<ev_check> - customise your event loop! |
1713 |
root |
1.1 |
|
1714 |
root |
1.14 |
Prepare and check watchers are usually (but not always) used in tandem: |
1715 |
root |
1.20 |
prepare watchers get invoked before the process blocks and check watchers |
1716 |
root |
1.14 |
afterwards. |
1717 |
root |
1.1 |
|
1718 |
root |
1.45 |
You I<must not> call C<ev_loop> or similar functions that enter |
1719 |
|
|
the current event loop from either C<ev_prepare> or C<ev_check> |
1720 |
|
|
watchers. Other loops than the current one are fine, however. The |
1721 |
|
|
rationale behind this is that you do not need to check for recursion in |
1722 |
|
|
those watchers, i.e. the sequence will always be C<ev_prepare>, blocking, |
1723 |
|
|
C<ev_check> so if you have one watcher of each kind they will always be |
1724 |
|
|
called in pairs bracketing the blocking call. |
1725 |
|
|
|
1726 |
root |
1.35 |
Their main purpose is to integrate other event mechanisms into libev and |
1727 |
|
|
their use is somewhat advanced. This could be used, for example, to track |
1728 |
|
|
variable changes, implement your own watchers, integrate net-snmp or a |
1729 |
root |
1.45 |
coroutine library and lots more. They are also occasionally useful if |
1730 |
|
|
you cache some data and want to flush it before blocking (for example, |
1731 |
|
|
in X programs you might want to do an C<XFlush ()> in an C<ev_prepare> |
1732 |
|
|
watcher). |
1733 |
root |
1.1 |
|
1734 |
|
|
This is done by examining in each prepare call which file descriptors need |
1735 |
root |
1.14 |
to be watched by the other library, registering C<ev_io> watchers for |
1736 |
|
|
them and starting an C<ev_timer> watcher for any timeouts (many libraries |
1737 |
|
|
provide just this functionality). Then, in the check watcher you check for |
1738 |
|
|
any events that occured (by checking the pending status of all watchers |
1739 |
|
|
and stopping them) and call back into the library. The I/O and timer |
1740 |
root |
1.20 |
callbacks will never actually be called (but must be valid nevertheless, |
1741 |
root |
1.14 |
because you never know, you know?). |
1742 |
root |
1.1 |
|
1743 |
root |
1.14 |
As another example, the Perl Coro module uses these hooks to integrate |
1744 |
root |
1.1 |
coroutines into libev programs, by yielding to other active coroutines |
1745 |
|
|
during each prepare and only letting the process block if no coroutines |
1746 |
root |
1.20 |
are ready to run (it's actually more complicated: it only runs coroutines |
1747 |
|
|
with priority higher than or equal to the event loop and one coroutine |
1748 |
|
|
of lower priority, but only once, using idle watchers to keep the event |
1749 |
|
|
loop from blocking if lower-priority coroutines are active, thus mapping |
1750 |
|
|
low-priority coroutines to idle/background tasks). |
1751 |
root |
1.1 |
|
1752 |
root |
1.77 |
It is recommended to give C<ev_check> watchers highest (C<EV_MAXPRI>) |
1753 |
|
|
priority, to ensure that they are being run before any other watchers |
1754 |
|
|
after the poll. Also, C<ev_check> watchers (and C<ev_prepare> watchers, |
1755 |
|
|
too) should not activate ("feed") events into libev. While libev fully |
1756 |
root |
1.100 |
supports this, they will be called before other C<ev_check> watchers |
1757 |
|
|
did their job. As C<ev_check> watchers are often used to embed other |
1758 |
|
|
(non-libev) event loops those other event loops might be in an unusable |
1759 |
|
|
state until their C<ev_check> watcher ran (always remind yourself to |
1760 |
|
|
coexist peacefully with others). |
1761 |
root |
1.77 |
|
1762 |
root |
1.82 |
=head3 Watcher-Specific Functions and Data Members |
1763 |
|
|
|
1764 |
root |
1.1 |
=over 4 |
1765 |
|
|
|
1766 |
|
|
=item ev_prepare_init (ev_prepare *, callback) |
1767 |
|
|
|
1768 |
|
|
=item ev_check_init (ev_check *, callback) |
1769 |
|
|
|
1770 |
|
|
Initialises and configures the prepare or check watcher - they have no |
1771 |
|
|
parameters of any kind. There are C<ev_prepare_set> and C<ev_check_set> |
1772 |
root |
1.14 |
macros, but using them is utterly, utterly and completely pointless. |
1773 |
root |
1.1 |
|
1774 |
|
|
=back |
1775 |
|
|
|
1776 |
root |
1.111 |
=head3 Examples |
1777 |
|
|
|
1778 |
root |
1.76 |
There are a number of principal ways to embed other event loops or modules |
1779 |
|
|
into libev. Here are some ideas on how to include libadns into libev |
1780 |
|
|
(there is a Perl module named C<EV::ADNS> that does this, which you could |
1781 |
|
|
use for an actually working example. Another Perl module named C<EV::Glib> |
1782 |
|
|
embeds a Glib main context into libev, and finally, C<Glib::EV> embeds EV |
1783 |
|
|
into the Glib event loop). |
1784 |
|
|
|
1785 |
|
|
Method 1: Add IO watchers and a timeout watcher in a prepare handler, |
1786 |
|
|
and in a check watcher, destroy them and call into libadns. What follows |
1787 |
|
|
is pseudo-code only of course. This requires you to either use a low |
1788 |
|
|
priority for the check watcher or use C<ev_clear_pending> explicitly, as |
1789 |
|
|
the callbacks for the IO/timeout watchers might not have been called yet. |
1790 |
root |
1.45 |
|
1791 |
|
|
static ev_io iow [nfd]; |
1792 |
|
|
static ev_timer tw; |
1793 |
|
|
|
1794 |
|
|
static void |
1795 |
|
|
io_cb (ev_loop *loop, ev_io *w, int revents) |
1796 |
|
|
{ |
1797 |
|
|
} |
1798 |
|
|
|
1799 |
|
|
// create io watchers for each fd and a timer before blocking |
1800 |
|
|
static void |
1801 |
|
|
adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents) |
1802 |
|
|
{ |
1803 |
root |
1.64 |
int timeout = 3600000; |
1804 |
|
|
struct pollfd fds [nfd]; |
1805 |
root |
1.45 |
// actual code will need to loop here and realloc etc. |
1806 |
|
|
adns_beforepoll (ads, fds, &nfd, &timeout, timeval_from (ev_time ())); |
1807 |
|
|
|
1808 |
|
|
/* the callback is illegal, but won't be called as we stop during check */ |
1809 |
|
|
ev_timer_init (&tw, 0, timeout * 1e-3); |
1810 |
|
|
ev_timer_start (loop, &tw); |
1811 |
|
|
|
1812 |
root |
1.76 |
// create one ev_io per pollfd |
1813 |
root |
1.45 |
for (int i = 0; i < nfd; ++i) |
1814 |
|
|
{ |
1815 |
|
|
ev_io_init (iow + i, io_cb, fds [i].fd, |
1816 |
|
|
((fds [i].events & POLLIN ? EV_READ : 0) |
1817 |
|
|
| (fds [i].events & POLLOUT ? EV_WRITE : 0))); |
1818 |
|
|
|
1819 |
|
|
fds [i].revents = 0; |
1820 |
|
|
ev_io_start (loop, iow + i); |
1821 |
|
|
} |
1822 |
|
|
} |
1823 |
|
|
|
1824 |
|
|
// stop all watchers after blocking |
1825 |
|
|
static void |
1826 |
|
|
adns_check_cb (ev_loop *loop, ev_check *w, int revents) |
1827 |
|
|
{ |
1828 |
|
|
ev_timer_stop (loop, &tw); |
1829 |
|
|
|
1830 |
|
|
for (int i = 0; i < nfd; ++i) |
1831 |
root |
1.76 |
{ |
1832 |
|
|
// set the relevant poll flags |
1833 |
|
|
// could also call adns_processreadable etc. here |
1834 |
|
|
struct pollfd *fd = fds + i; |
1835 |
|
|
int revents = ev_clear_pending (iow + i); |
1836 |
|
|
if (revents & EV_READ ) fd->revents |= fd->events & POLLIN; |
1837 |
|
|
if (revents & EV_WRITE) fd->revents |= fd->events & POLLOUT; |
1838 |
|
|
|
1839 |
|
|
// now stop the watcher |
1840 |
|
|
ev_io_stop (loop, iow + i); |
1841 |
|
|
} |
1842 |
root |
1.45 |
|
1843 |
|
|
adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop)); |
1844 |
|
|
} |
1845 |
root |
1.34 |
|
1846 |
root |
1.76 |
Method 2: This would be just like method 1, but you run C<adns_afterpoll> |
1847 |
|
|
in the prepare watcher and would dispose of the check watcher. |
1848 |
|
|
|
1849 |
|
|
Method 3: If the module to be embedded supports explicit event |
1850 |
|
|
notification (adns does), you can also make use of the actual watcher |
1851 |
|
|
callbacks, and only destroy/create the watchers in the prepare watcher. |
1852 |
|
|
|
1853 |
|
|
static void |
1854 |
|
|
timer_cb (EV_P_ ev_timer *w, int revents) |
1855 |
|
|
{ |
1856 |
|
|
adns_state ads = (adns_state)w->data; |
1857 |
|
|
update_now (EV_A); |
1858 |
|
|
|
1859 |
|
|
adns_processtimeouts (ads, &tv_now); |
1860 |
|
|
} |
1861 |
|
|
|
1862 |
|
|
static void |
1863 |
|
|
io_cb (EV_P_ ev_io *w, int revents) |
1864 |
|
|
{ |
1865 |
|
|
adns_state ads = (adns_state)w->data; |
1866 |
|
|
update_now (EV_A); |
1867 |
|
|
|
1868 |
|
|
if (revents & EV_READ ) adns_processreadable (ads, w->fd, &tv_now); |
1869 |
|
|
if (revents & EV_WRITE) adns_processwriteable (ads, w->fd, &tv_now); |
1870 |
|
|
} |
1871 |
|
|
|
1872 |
|
|
// do not ever call adns_afterpoll |
1873 |
|
|
|
1874 |
|
|
Method 4: Do not use a prepare or check watcher because the module you |
1875 |
|
|
want to embed is too inflexible to support it. Instead, youc na override |
1876 |
|
|
their poll function. The drawback with this solution is that the main |
1877 |
|
|
loop is now no longer controllable by EV. The C<Glib::EV> module does |
1878 |
|
|
this. |
1879 |
|
|
|
1880 |
|
|
static gint |
1881 |
|
|
event_poll_func (GPollFD *fds, guint nfds, gint timeout) |
1882 |
|
|
{ |
1883 |
|
|
int got_events = 0; |
1884 |
|
|
|
1885 |
|
|
for (n = 0; n < nfds; ++n) |
1886 |
|
|
// create/start io watcher that sets the relevant bits in fds[n] and increment got_events |
1887 |
|
|
|
1888 |
|
|
if (timeout >= 0) |
1889 |
|
|
// create/start timer |
1890 |
|
|
|
1891 |
|
|
// poll |
1892 |
|
|
ev_loop (EV_A_ 0); |
1893 |
|
|
|
1894 |
|
|
// stop timer again |
1895 |
|
|
if (timeout >= 0) |
1896 |
|
|
ev_timer_stop (EV_A_ &to); |
1897 |
|
|
|
1898 |
|
|
// stop io watchers again - their callbacks should have set |
1899 |
|
|
for (n = 0; n < nfds; ++n) |
1900 |
|
|
ev_io_stop (EV_A_ iow [n]); |
1901 |
|
|
|
1902 |
|
|
return got_events; |
1903 |
|
|
} |
1904 |
|
|
|
1905 |
root |
1.34 |
|
1906 |
root |
1.42 |
=head2 C<ev_embed> - when one backend isn't enough... |
1907 |
root |
1.35 |
|
1908 |
|
|
This is a rather advanced watcher type that lets you embed one event loop |
1909 |
root |
1.36 |
into another (currently only C<ev_io> events are supported in the embedded |
1910 |
|
|
loop, other types of watchers might be handled in a delayed or incorrect |
1911 |
root |
1.100 |
fashion and must not be used). |
1912 |
root |
1.35 |
|
1913 |
|
|
There are primarily two reasons you would want that: work around bugs and |
1914 |
|
|
prioritise I/O. |
1915 |
|
|
|
1916 |
|
|
As an example for a bug workaround, the kqueue backend might only support |
1917 |
|
|
sockets on some platform, so it is unusable as generic backend, but you |
1918 |
|
|
still want to make use of it because you have many sockets and it scales |
1919 |
|
|
so nicely. In this case, you would create a kqueue-based loop and embed it |
1920 |
|
|
into your default loop (which might use e.g. poll). Overall operation will |
1921 |
|
|
be a bit slower because first libev has to poll and then call kevent, but |
1922 |
|
|
at least you can use both at what they are best. |
1923 |
|
|
|
1924 |
|
|
As for prioritising I/O: rarely you have the case where some fds have |
1925 |
|
|
to be watched and handled very quickly (with low latency), and even |
1926 |
|
|
priorities and idle watchers might have too much overhead. In this case |
1927 |
|
|
you would put all the high priority stuff in one loop and all the rest in |
1928 |
|
|
a second one, and embed the second one in the first. |
1929 |
|
|
|
1930 |
root |
1.36 |
As long as the watcher is active, the callback will be invoked every time |
1931 |
|
|
there might be events pending in the embedded loop. The callback must then |
1932 |
|
|
call C<ev_embed_sweep (mainloop, watcher)> to make a single sweep and invoke |
1933 |
|
|
their callbacks (you could also start an idle watcher to give the embedded |
1934 |
|
|
loop strictly lower priority for example). You can also set the callback |
1935 |
|
|
to C<0>, in which case the embed watcher will automatically execute the |
1936 |
|
|
embedded loop sweep. |
1937 |
|
|
|
1938 |
root |
1.35 |
As long as the watcher is started it will automatically handle events. The |
1939 |
|
|
callback will be invoked whenever some events have been handled. You can |
1940 |
|
|
set the callback to C<0> to avoid having to specify one if you are not |
1941 |
|
|
interested in that. |
1942 |
|
|
|
1943 |
|
|
Also, there have not currently been made special provisions for forking: |
1944 |
|
|
when you fork, you not only have to call C<ev_loop_fork> on both loops, |
1945 |
|
|
but you will also have to stop and restart any C<ev_embed> watchers |
1946 |
|
|
yourself. |
1947 |
|
|
|
1948 |
|
|
Unfortunately, not all backends are embeddable, only the ones returned by |
1949 |
|
|
C<ev_embeddable_backends> are, which, unfortunately, does not include any |
1950 |
|
|
portable one. |
1951 |
|
|
|
1952 |
|
|
So when you want to use this feature you will always have to be prepared |
1953 |
|
|
that you cannot get an embeddable loop. The recommended way to get around |
1954 |
|
|
this is to have a separate variables for your embeddable loop, try to |
1955 |
root |
1.111 |
create it, and if that fails, use the normal loop for everything. |
1956 |
root |
1.35 |
|
1957 |
root |
1.82 |
=head3 Watcher-Specific Functions and Data Members |
1958 |
|
|
|
1959 |
root |
1.35 |
=over 4 |
1960 |
|
|
|
1961 |
root |
1.36 |
=item ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop) |
1962 |
|
|
|
1963 |
|
|
=item ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop) |
1964 |
|
|
|
1965 |
|
|
Configures the watcher to embed the given loop, which must be |
1966 |
|
|
embeddable. If the callback is C<0>, then C<ev_embed_sweep> will be |
1967 |
|
|
invoked automatically, otherwise it is the responsibility of the callback |
1968 |
|
|
to invoke it (it will continue to be called until the sweep has been done, |
1969 |
|
|
if you do not want thta, you need to temporarily stop the embed watcher). |
1970 |
root |
1.35 |
|
1971 |
root |
1.36 |
=item ev_embed_sweep (loop, ev_embed *) |
1972 |
root |
1.35 |
|
1973 |
root |
1.36 |
Make a single, non-blocking sweep over the embedded loop. This works |
1974 |
|
|
similarly to C<ev_loop (embedded_loop, EVLOOP_NONBLOCK)>, but in the most |
1975 |
|
|
apropriate way for embedded loops. |
1976 |
root |
1.35 |
|
1977 |
root |
1.91 |
=item struct ev_loop *other [read-only] |
1978 |
root |
1.48 |
|
1979 |
|
|
The embedded event loop. |
1980 |
|
|
|
1981 |
root |
1.35 |
=back |
1982 |
|
|
|
1983 |
root |
1.111 |
=head3 Examples |
1984 |
|
|
|
1985 |
|
|
Example: Try to get an embeddable event loop and embed it into the default |
1986 |
|
|
event loop. If that is not possible, use the default loop. The default |
1987 |
|
|
loop is stored in C<loop_hi>, while the mebeddable loop is stored in |
1988 |
|
|
C<loop_lo> (which is C<loop_hi> in the acse no embeddable loop can be |
1989 |
|
|
used). |
1990 |
|
|
|
1991 |
|
|
struct ev_loop *loop_hi = ev_default_init (0); |
1992 |
|
|
struct ev_loop *loop_lo = 0; |
1993 |
|
|
struct ev_embed embed; |
1994 |
|
|
|
1995 |
|
|
// see if there is a chance of getting one that works |
1996 |
|
|
// (remember that a flags value of 0 means autodetection) |
1997 |
|
|
loop_lo = ev_embeddable_backends () & ev_recommended_backends () |
1998 |
|
|
? ev_loop_new (ev_embeddable_backends () & ev_recommended_backends ()) |
1999 |
|
|
: 0; |
2000 |
|
|
|
2001 |
|
|
// if we got one, then embed it, otherwise default to loop_hi |
2002 |
|
|
if (loop_lo) |
2003 |
|
|
{ |
2004 |
|
|
ev_embed_init (&embed, 0, loop_lo); |
2005 |
|
|
ev_embed_start (loop_hi, &embed); |
2006 |
|
|
} |
2007 |
|
|
else |
2008 |
|
|
loop_lo = loop_hi; |
2009 |
|
|
|
2010 |
|
|
Example: Check if kqueue is available but not recommended and create |
2011 |
|
|
a kqueue backend for use with sockets (which usually work with any |
2012 |
|
|
kqueue implementation). Store the kqueue/socket-only event loop in |
2013 |
|
|
C<loop_socket>. (One might optionally use C<EVFLAG_NOENV>, too). |
2014 |
|
|
|
2015 |
|
|
struct ev_loop *loop = ev_default_init (0); |
2016 |
|
|
struct ev_loop *loop_socket = 0; |
2017 |
|
|
struct ev_embed embed; |
2018 |
|
|
|
2019 |
|
|
if (ev_supported_backends () & ~ev_recommended_backends () & EVBACKEND_KQUEUE) |
2020 |
|
|
if ((loop_socket = ev_loop_new (EVBACKEND_KQUEUE)) |
2021 |
|
|
{ |
2022 |
|
|
ev_embed_init (&embed, 0, loop_socket); |
2023 |
|
|
ev_embed_start (loop, &embed); |
2024 |
|
|
} |
2025 |
|
|
|
2026 |
|
|
if (!loop_socket) |
2027 |
|
|
loop_socket = loop; |
2028 |
|
|
|
2029 |
|
|
// now use loop_socket for all sockets, and loop for everything else |
2030 |
|
|
|
2031 |
root |
1.35 |
|
2032 |
root |
1.50 |
=head2 C<ev_fork> - the audacity to resume the event loop after a fork |
2033 |
|
|
|
2034 |
|
|
Fork watchers are called when a C<fork ()> was detected (usually because |
2035 |
|
|
whoever is a good citizen cared to tell libev about it by calling |
2036 |
|
|
C<ev_default_fork> or C<ev_loop_fork>). The invocation is done before the |
2037 |
|
|
event loop blocks next and before C<ev_check> watchers are being called, |
2038 |
|
|
and only in the child after the fork. If whoever good citizen calling |
2039 |
|
|
C<ev_default_fork> cheats and calls it in the wrong process, the fork |
2040 |
|
|
handlers will be invoked, too, of course. |
2041 |
|
|
|
2042 |
root |
1.83 |
=head3 Watcher-Specific Functions and Data Members |
2043 |
|
|
|
2044 |
root |
1.50 |
=over 4 |
2045 |
|
|
|
2046 |
|
|
=item ev_fork_init (ev_signal *, callback) |
2047 |
|
|
|
2048 |
|
|
Initialises and configures the fork watcher - it has no parameters of any |
2049 |
|
|
kind. There is a C<ev_fork_set> macro, but using it is utterly pointless, |
2050 |
|
|
believe me. |
2051 |
|
|
|
2052 |
|
|
=back |
2053 |
|
|
|
2054 |
|
|
|
2055 |
root |
1.122 |
=head2 C<ev_async> - how to wake up another event loop |
2056 |
|
|
|
2057 |
|
|
In general, you cannot use an C<ev_loop> from multiple threads or other |
2058 |
|
|
asynchronous sources such as signal handlers (as opposed to multiple event |
2059 |
|
|
loops - those are of course safe to use in different threads). |
2060 |
|
|
|
2061 |
|
|
Sometimes, however, you need to wake up another event loop you do not |
2062 |
|
|
control, for example because it belongs to another thread. This is what |
2063 |
|
|
C<ev_async> watchers do: as long as the C<ev_async> watcher is active, you |
2064 |
|
|
can signal it by calling C<ev_async_send>, which is thread- and signal |
2065 |
|
|
safe. |
2066 |
|
|
|
2067 |
|
|
This functionality is very similar to C<ev_signal> watchers, as signals, |
2068 |
|
|
too, are asynchronous in nature, and signals, too, will be compressed |
2069 |
|
|
(i.e. the number of callback invocations may be less than the number of |
2070 |
|
|
C<ev_async_sent> calls). |
2071 |
|
|
|
2072 |
|
|
Unlike C<ev_signal> watchers, C<ev_async> works with any event loop, not |
2073 |
|
|
just the default loop. |
2074 |
|
|
|
2075 |
root |
1.124 |
=head3 Queueing |
2076 |
|
|
|
2077 |
|
|
C<ev_async> does not support queueing of data in any way. The reason |
2078 |
|
|
is that the author does not know of a simple (or any) algorithm for a |
2079 |
|
|
multiple-writer-single-reader queue that works in all cases and doesn't |
2080 |
|
|
need elaborate support such as pthreads. |
2081 |
|
|
|
2082 |
|
|
That means that if you want to queue data, you have to provide your own |
2083 |
|
|
queue. And here is how you would implement locking: |
2084 |
|
|
|
2085 |
|
|
=over 4 |
2086 |
|
|
|
2087 |
|
|
=item queueing from a signal handler context |
2088 |
|
|
|
2089 |
|
|
To implement race-free queueing, you simply add to the queue in the signal |
2090 |
|
|
handler but you block the signal handler in the watcher callback. Here is an example that does that for |
2091 |
|
|
some fictitiuous SIGUSR1 handler: |
2092 |
|
|
|
2093 |
|
|
static ev_async mysig; |
2094 |
|
|
|
2095 |
|
|
static void |
2096 |
|
|
sigusr1_handler (void) |
2097 |
|
|
{ |
2098 |
|
|
sometype data; |
2099 |
|
|
|
2100 |
|
|
// no locking etc. |
2101 |
|
|
queue_put (data); |
2102 |
root |
1.125 |
ev_async_send (DEFAULT_ &mysig); |
2103 |
root |
1.124 |
} |
2104 |
|
|
|
2105 |
|
|
static void |
2106 |
|
|
mysig_cb (EV_P_ ev_async *w, int revents) |
2107 |
|
|
{ |
2108 |
|
|
sometype data; |
2109 |
|
|
sigset_t block, prev; |
2110 |
|
|
|
2111 |
|
|
sigemptyset (&block); |
2112 |
|
|
sigaddset (&block, SIGUSR1); |
2113 |
|
|
sigprocmask (SIG_BLOCK, &block, &prev); |
2114 |
|
|
|
2115 |
|
|
while (queue_get (&data)) |
2116 |
|
|
process (data); |
2117 |
|
|
|
2118 |
|
|
if (sigismember (&prev, SIGUSR1) |
2119 |
|
|
sigprocmask (SIG_UNBLOCK, &block, 0); |
2120 |
|
|
} |
2121 |
|
|
|
2122 |
|
|
(Note: pthreads in theory requires you to use C<pthread_setmask> |
2123 |
|
|
instead of C<sigprocmask> when you use threads, but libev doesn't do it |
2124 |
|
|
either...). |
2125 |
|
|
|
2126 |
|
|
=item queueing from a thread context |
2127 |
|
|
|
2128 |
|
|
The strategy for threads is different, as you cannot (easily) block |
2129 |
|
|
threads but you can easily preempt them, so to queue safely you need to |
2130 |
|
|
emply a traditional mutex lock, such as in this pthread example: |
2131 |
|
|
|
2132 |
|
|
static ev_async mysig; |
2133 |
|
|
static pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER; |
2134 |
|
|
|
2135 |
|
|
static void |
2136 |
|
|
otherthread (void) |
2137 |
|
|
{ |
2138 |
|
|
// only need to lock the actual queueing operation |
2139 |
|
|
pthread_mutex_lock (&mymutex); |
2140 |
|
|
queue_put (data); |
2141 |
|
|
pthread_mutex_unlock (&mymutex); |
2142 |
|
|
|
2143 |
root |
1.125 |
ev_async_send (DEFAULT_ &mysig); |
2144 |
root |
1.124 |
} |
2145 |
|
|
|
2146 |
|
|
static void |
2147 |
|
|
mysig_cb (EV_P_ ev_async *w, int revents) |
2148 |
|
|
{ |
2149 |
|
|
pthread_mutex_lock (&mymutex); |
2150 |
|
|
|
2151 |
|
|
while (queue_get (&data)) |
2152 |
|
|
process (data); |
2153 |
|
|
|
2154 |
|
|
pthread_mutex_unlock (&mymutex); |
2155 |
|
|
} |
2156 |
|
|
|
2157 |
|
|
=back |
2158 |
|
|
|
2159 |
|
|
|
2160 |
root |
1.122 |
=head3 Watcher-Specific Functions and Data Members |
2161 |
|
|
|
2162 |
|
|
=over 4 |
2163 |
|
|
|
2164 |
|
|
=item ev_async_init (ev_async *, callback) |
2165 |
|
|
|
2166 |
|
|
Initialises and configures the async watcher - it has no parameters of any |
2167 |
|
|
kind. There is a C<ev_asynd_set> macro, but using it is utterly pointless, |
2168 |
|
|
believe me. |
2169 |
|
|
|
2170 |
|
|
=item ev_async_send (loop, ev_async *) |
2171 |
|
|
|
2172 |
|
|
Sends/signals/activates the given C<ev_async> watcher, that is, feeds |
2173 |
|
|
an C<EV_ASYNC> event on the watcher into the event loop. Unlike |
2174 |
|
|
C<ev_feed_event>, this call is safe to do in other threads, signal or |
2175 |
|
|
similar contexts (see the dicusssion of C<EV_ATOMIC_T> in the embedding |
2176 |
|
|
section below on what exactly this means). |
2177 |
|
|
|
2178 |
|
|
This call incurs the overhead of a syscall only once per loop iteration, |
2179 |
|
|
so while the overhead might be noticable, it doesn't apply to repeated |
2180 |
|
|
calls to C<ev_async_send>. |
2181 |
|
|
|
2182 |
|
|
=back |
2183 |
|
|
|
2184 |
|
|
|
2185 |
root |
1.1 |
=head1 OTHER FUNCTIONS |
2186 |
|
|
|
2187 |
root |
1.14 |
There are some other functions of possible interest. Described. Here. Now. |
2188 |
root |
1.1 |
|
2189 |
|
|
=over 4 |
2190 |
|
|
|
2191 |
|
|
=item ev_once (loop, int fd, int events, ev_tstamp timeout, callback) |
2192 |
|
|
|
2193 |
|
|
This function combines a simple timer and an I/O watcher, calls your |
2194 |
|
|
callback on whichever event happens first and automatically stop both |
2195 |
|
|
watchers. This is useful if you want to wait for a single event on an fd |
2196 |
root |
1.22 |
or timeout without having to allocate/configure/start/stop/free one or |
2197 |
root |
1.1 |
more watchers yourself. |
2198 |
|
|
|
2199 |
root |
1.14 |
If C<fd> is less than 0, then no I/O watcher will be started and events |
2200 |
|
|
is being ignored. Otherwise, an C<ev_io> watcher for the given C<fd> and |
2201 |
|
|
C<events> set will be craeted and started. |
2202 |
root |
1.1 |
|
2203 |
|
|
If C<timeout> is less than 0, then no timeout watcher will be |
2204 |
root |
1.14 |
started. Otherwise an C<ev_timer> watcher with after = C<timeout> (and |
2205 |
|
|
repeat = 0) will be started. While C<0> is a valid timeout, it is of |
2206 |
|
|
dubious value. |
2207 |
|
|
|
2208 |
|
|
The callback has the type C<void (*cb)(int revents, void *arg)> and gets |
2209 |
root |
1.21 |
passed an C<revents> set like normal event callbacks (a combination of |
2210 |
root |
1.14 |
C<EV_ERROR>, C<EV_READ>, C<EV_WRITE> or C<EV_TIMEOUT>) and the C<arg> |
2211 |
|
|
value passed to C<ev_once>: |
2212 |
root |
1.1 |
|
2213 |
|
|
static void stdin_ready (int revents, void *arg) |
2214 |
|
|
{ |
2215 |
|
|
if (revents & EV_TIMEOUT) |
2216 |
root |
1.14 |
/* doh, nothing entered */; |
2217 |
root |
1.1 |
else if (revents & EV_READ) |
2218 |
root |
1.14 |
/* stdin might have data for us, joy! */; |
2219 |
root |
1.1 |
} |
2220 |
|
|
|
2221 |
root |
1.14 |
ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0); |
2222 |
root |
1.1 |
|
2223 |
root |
1.36 |
=item ev_feed_event (ev_loop *, watcher *, int revents) |
2224 |
root |
1.1 |
|
2225 |
|
|
Feeds the given event set into the event loop, as if the specified event |
2226 |
root |
1.14 |
had happened for the specified watcher (which must be a pointer to an |
2227 |
|
|
initialised but not necessarily started event watcher). |
2228 |
root |
1.1 |
|
2229 |
root |
1.36 |
=item ev_feed_fd_event (ev_loop *, int fd, int revents) |
2230 |
root |
1.1 |
|
2231 |
root |
1.14 |
Feed an event on the given fd, as if a file descriptor backend detected |
2232 |
|
|
the given events it. |
2233 |
root |
1.1 |
|
2234 |
root |
1.36 |
=item ev_feed_signal_event (ev_loop *loop, int signum) |
2235 |
root |
1.1 |
|
2236 |
root |
1.36 |
Feed an event as if the given signal occured (C<loop> must be the default |
2237 |
|
|
loop!). |
2238 |
root |
1.1 |
|
2239 |
|
|
=back |
2240 |
|
|
|
2241 |
root |
1.34 |
|
2242 |
root |
1.20 |
=head1 LIBEVENT EMULATION |
2243 |
|
|
|
2244 |
root |
1.24 |
Libev offers a compatibility emulation layer for libevent. It cannot |
2245 |
|
|
emulate the internals of libevent, so here are some usage hints: |
2246 |
|
|
|
2247 |
|
|
=over 4 |
2248 |
|
|
|
2249 |
|
|
=item * Use it by including <event.h>, as usual. |
2250 |
|
|
|
2251 |
|
|
=item * The following members are fully supported: ev_base, ev_callback, |
2252 |
|
|
ev_arg, ev_fd, ev_res, ev_events. |
2253 |
|
|
|
2254 |
|
|
=item * Avoid using ev_flags and the EVLIST_*-macros, while it is |
2255 |
|
|
maintained by libev, it does not work exactly the same way as in libevent (consider |
2256 |
|
|
it a private API). |
2257 |
|
|
|
2258 |
|
|
=item * Priorities are not currently supported. Initialising priorities |
2259 |
|
|
will fail and all watchers will have the same priority, even though there |
2260 |
|
|
is an ev_pri field. |
2261 |
|
|
|
2262 |
|
|
=item * Other members are not supported. |
2263 |
|
|
|
2264 |
|
|
=item * The libev emulation is I<not> ABI compatible to libevent, you need |
2265 |
|
|
to use the libev header file and library. |
2266 |
|
|
|
2267 |
|
|
=back |
2268 |
root |
1.20 |
|
2269 |
|
|
=head1 C++ SUPPORT |
2270 |
|
|
|
2271 |
root |
1.38 |
Libev comes with some simplistic wrapper classes for C++ that mainly allow |
2272 |
|
|
you to use some convinience methods to start/stop watchers and also change |
2273 |
|
|
the callback model to a model using method callbacks on objects. |
2274 |
|
|
|
2275 |
|
|
To use it, |
2276 |
|
|
|
2277 |
|
|
#include <ev++.h> |
2278 |
|
|
|
2279 |
root |
1.71 |
This automatically includes F<ev.h> and puts all of its definitions (many |
2280 |
|
|
of them macros) into the global namespace. All C++ specific things are |
2281 |
|
|
put into the C<ev> namespace. It should support all the same embedding |
2282 |
|
|
options as F<ev.h>, most notably C<EV_MULTIPLICITY>. |
2283 |
|
|
|
2284 |
root |
1.72 |
Care has been taken to keep the overhead low. The only data member the C++ |
2285 |
|
|
classes add (compared to plain C-style watchers) is the event loop pointer |
2286 |
|
|
that the watcher is associated with (or no additional members at all if |
2287 |
|
|
you disable C<EV_MULTIPLICITY> when embedding libev). |
2288 |
root |
1.71 |
|
2289 |
root |
1.72 |
Currently, functions, and static and non-static member functions can be |
2290 |
root |
1.71 |
used as callbacks. Other types should be easy to add as long as they only |
2291 |
|
|
need one additional pointer for context. If you need support for other |
2292 |
|
|
types of functors please contact the author (preferably after implementing |
2293 |
|
|
it). |
2294 |
root |
1.38 |
|
2295 |
|
|
Here is a list of things available in the C<ev> namespace: |
2296 |
|
|
|
2297 |
|
|
=over 4 |
2298 |
|
|
|
2299 |
|
|
=item C<ev::READ>, C<ev::WRITE> etc. |
2300 |
|
|
|
2301 |
|
|
These are just enum values with the same values as the C<EV_READ> etc. |
2302 |
|
|
macros from F<ev.h>. |
2303 |
|
|
|
2304 |
|
|
=item C<ev::tstamp>, C<ev::now> |
2305 |
|
|
|
2306 |
|
|
Aliases to the same types/functions as with the C<ev_> prefix. |
2307 |
|
|
|
2308 |
|
|
=item C<ev::io>, C<ev::timer>, C<ev::periodic>, C<ev::idle>, C<ev::sig> etc. |
2309 |
|
|
|
2310 |
|
|
For each C<ev_TYPE> watcher in F<ev.h> there is a corresponding class of |
2311 |
|
|
the same name in the C<ev> namespace, with the exception of C<ev_signal> |
2312 |
|
|
which is called C<ev::sig> to avoid clashes with the C<signal> macro |
2313 |
|
|
defines by many implementations. |
2314 |
|
|
|
2315 |
|
|
All of those classes have these methods: |
2316 |
|
|
|
2317 |
|
|
=over 4 |
2318 |
|
|
|
2319 |
root |
1.71 |
=item ev::TYPE::TYPE () |
2320 |
root |
1.38 |
|
2321 |
root |
1.71 |
=item ev::TYPE::TYPE (struct ev_loop *) |
2322 |
root |
1.38 |
|
2323 |
|
|
=item ev::TYPE::~TYPE |
2324 |
|
|
|
2325 |
root |
1.71 |
The constructor (optionally) takes an event loop to associate the watcher |
2326 |
|
|
with. If it is omitted, it will use C<EV_DEFAULT>. |
2327 |
|
|
|
2328 |
|
|
The constructor calls C<ev_init> for you, which means you have to call the |
2329 |
|
|
C<set> method before starting it. |
2330 |
|
|
|
2331 |
|
|
It will not set a callback, however: You have to call the templated C<set> |
2332 |
|
|
method to set a callback before you can start the watcher. |
2333 |
|
|
|
2334 |
|
|
(The reason why you have to use a method is a limitation in C++ which does |
2335 |
|
|
not allow explicit template arguments for constructors). |
2336 |
root |
1.38 |
|
2337 |
|
|
The destructor automatically stops the watcher if it is active. |
2338 |
|
|
|
2339 |
root |
1.71 |
=item w->set<class, &class::method> (object *) |
2340 |
|
|
|
2341 |
|
|
This method sets the callback method to call. The method has to have a |
2342 |
|
|
signature of C<void (*)(ev_TYPE &, int)>, it receives the watcher as |
2343 |
|
|
first argument and the C<revents> as second. The object must be given as |
2344 |
|
|
parameter and is stored in the C<data> member of the watcher. |
2345 |
|
|
|
2346 |
|
|
This method synthesizes efficient thunking code to call your method from |
2347 |
|
|
the C callback that libev requires. If your compiler can inline your |
2348 |
|
|
callback (i.e. it is visible to it at the place of the C<set> call and |
2349 |
|
|
your compiler is good :), then the method will be fully inlined into the |
2350 |
|
|
thunking function, making it as fast as a direct C callback. |
2351 |
|
|
|
2352 |
|
|
Example: simple class declaration and watcher initialisation |
2353 |
|
|
|
2354 |
|
|
struct myclass |
2355 |
|
|
{ |
2356 |
|
|
void io_cb (ev::io &w, int revents) { } |
2357 |
|
|
} |
2358 |
|
|
|
2359 |
|
|
myclass obj; |
2360 |
|
|
ev::io iow; |
2361 |
|
|
iow.set <myclass, &myclass::io_cb> (&obj); |
2362 |
|
|
|
2363 |
root |
1.75 |
=item w->set<function> (void *data = 0) |
2364 |
root |
1.71 |
|
2365 |
|
|
Also sets a callback, but uses a static method or plain function as |
2366 |
|
|
callback. The optional C<data> argument will be stored in the watcher's |
2367 |
|
|
C<data> member and is free for you to use. |
2368 |
|
|
|
2369 |
root |
1.75 |
The prototype of the C<function> must be C<void (*)(ev::TYPE &w, int)>. |
2370 |
|
|
|
2371 |
root |
1.71 |
See the method-C<set> above for more details. |
2372 |
|
|
|
2373 |
root |
1.75 |
Example: |
2374 |
|
|
|
2375 |
|
|
static void io_cb (ev::io &w, int revents) { } |
2376 |
|
|
iow.set <io_cb> (); |
2377 |
|
|
|
2378 |
root |
1.38 |
=item w->set (struct ev_loop *) |
2379 |
|
|
|
2380 |
|
|
Associates a different C<struct ev_loop> with this watcher. You can only |
2381 |
|
|
do this when the watcher is inactive (and not pending either). |
2382 |
|
|
|
2383 |
|
|
=item w->set ([args]) |
2384 |
|
|
|
2385 |
|
|
Basically the same as C<ev_TYPE_set>, with the same args. Must be |
2386 |
root |
1.71 |
called at least once. Unlike the C counterpart, an active watcher gets |
2387 |
|
|
automatically stopped and restarted when reconfiguring it with this |
2388 |
|
|
method. |
2389 |
root |
1.38 |
|
2390 |
|
|
=item w->start () |
2391 |
|
|
|
2392 |
root |
1.71 |
Starts the watcher. Note that there is no C<loop> argument, as the |
2393 |
|
|
constructor already stores the event loop. |
2394 |
root |
1.38 |
|
2395 |
|
|
=item w->stop () |
2396 |
|
|
|
2397 |
|
|
Stops the watcher if it is active. Again, no C<loop> argument. |
2398 |
|
|
|
2399 |
root |
1.84 |
=item w->again () (C<ev::timer>, C<ev::periodic> only) |
2400 |
root |
1.38 |
|
2401 |
|
|
For C<ev::timer> and C<ev::periodic>, this invokes the corresponding |
2402 |
|
|
C<ev_TYPE_again> function. |
2403 |
|
|
|
2404 |
root |
1.84 |
=item w->sweep () (C<ev::embed> only) |
2405 |
root |
1.38 |
|
2406 |
|
|
Invokes C<ev_embed_sweep>. |
2407 |
|
|
|
2408 |
root |
1.84 |
=item w->update () (C<ev::stat> only) |
2409 |
root |
1.49 |
|
2410 |
|
|
Invokes C<ev_stat_stat>. |
2411 |
|
|
|
2412 |
root |
1.38 |
=back |
2413 |
|
|
|
2414 |
|
|
=back |
2415 |
|
|
|
2416 |
|
|
Example: Define a class with an IO and idle watcher, start one of them in |
2417 |
|
|
the constructor. |
2418 |
|
|
|
2419 |
|
|
class myclass |
2420 |
|
|
{ |
2421 |
root |
1.121 |
ev::io io; void io_cb (ev::io &w, int revents); |
2422 |
|
|
ev:idle idle void idle_cb (ev::idle &w, int revents); |
2423 |
root |
1.38 |
|
2424 |
root |
1.121 |
myclass (int fd) |
2425 |
|
|
{ |
2426 |
|
|
io .set <myclass, &myclass::io_cb > (this); |
2427 |
|
|
idle.set <myclass, &myclass::idle_cb> (this); |
2428 |
root |
1.38 |
|
2429 |
root |
1.121 |
io.start (fd, ev::READ); |
2430 |
|
|
} |
2431 |
|
|
}; |
2432 |
root |
1.20 |
|
2433 |
root |
1.50 |
|
2434 |
|
|
=head1 MACRO MAGIC |
2435 |
|
|
|
2436 |
root |
1.84 |
Libev can be compiled with a variety of options, the most fundamantal |
2437 |
|
|
of which is C<EV_MULTIPLICITY>. This option determines whether (most) |
2438 |
|
|
functions and callbacks have an initial C<struct ev_loop *> argument. |
2439 |
root |
1.50 |
|
2440 |
|
|
To make it easier to write programs that cope with either variant, the |
2441 |
|
|
following macros are defined: |
2442 |
|
|
|
2443 |
|
|
=over 4 |
2444 |
|
|
|
2445 |
|
|
=item C<EV_A>, C<EV_A_> |
2446 |
|
|
|
2447 |
|
|
This provides the loop I<argument> for functions, if one is required ("ev |
2448 |
|
|
loop argument"). The C<EV_A> form is used when this is the sole argument, |
2449 |
|
|
C<EV_A_> is used when other arguments are following. Example: |
2450 |
|
|
|
2451 |
|
|
ev_unref (EV_A); |
2452 |
|
|
ev_timer_add (EV_A_ watcher); |
2453 |
|
|
ev_loop (EV_A_ 0); |
2454 |
|
|
|
2455 |
|
|
It assumes the variable C<loop> of type C<struct ev_loop *> is in scope, |
2456 |
|
|
which is often provided by the following macro. |
2457 |
|
|
|
2458 |
|
|
=item C<EV_P>, C<EV_P_> |
2459 |
|
|
|
2460 |
|
|
This provides the loop I<parameter> for functions, if one is required ("ev |
2461 |
|
|
loop parameter"). The C<EV_P> form is used when this is the sole parameter, |
2462 |
|
|
C<EV_P_> is used when other parameters are following. Example: |
2463 |
|
|
|
2464 |
|
|
// this is how ev_unref is being declared |
2465 |
|
|
static void ev_unref (EV_P); |
2466 |
|
|
|
2467 |
|
|
// this is how you can declare your typical callback |
2468 |
|
|
static void cb (EV_P_ ev_timer *w, int revents) |
2469 |
|
|
|
2470 |
|
|
It declares a parameter C<loop> of type C<struct ev_loop *>, quite |
2471 |
|
|
suitable for use with C<EV_A>. |
2472 |
|
|
|
2473 |
|
|
=item C<EV_DEFAULT>, C<EV_DEFAULT_> |
2474 |
|
|
|
2475 |
|
|
Similar to the other two macros, this gives you the value of the default |
2476 |
|
|
loop, if multiple loops are supported ("ev loop default"). |
2477 |
|
|
|
2478 |
|
|
=back |
2479 |
|
|
|
2480 |
root |
1.63 |
Example: Declare and initialise a check watcher, utilising the above |
2481 |
root |
1.68 |
macros so it will work regardless of whether multiple loops are supported |
2482 |
root |
1.63 |
or not. |
2483 |
root |
1.50 |
|
2484 |
|
|
static void |
2485 |
|
|
check_cb (EV_P_ ev_timer *w, int revents) |
2486 |
|
|
{ |
2487 |
|
|
ev_check_stop (EV_A_ w); |
2488 |
|
|
} |
2489 |
|
|
|
2490 |
|
|
ev_check check; |
2491 |
|
|
ev_check_init (&check, check_cb); |
2492 |
|
|
ev_check_start (EV_DEFAULT_ &check); |
2493 |
|
|
ev_loop (EV_DEFAULT_ 0); |
2494 |
|
|
|
2495 |
root |
1.39 |
=head1 EMBEDDING |
2496 |
|
|
|
2497 |
|
|
Libev can (and often is) directly embedded into host |
2498 |
|
|
applications. Examples of applications that embed it include the Deliantra |
2499 |
|
|
Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe) |
2500 |
|
|
and rxvt-unicode. |
2501 |
|
|
|
2502 |
root |
1.91 |
The goal is to enable you to just copy the necessary files into your |
2503 |
root |
1.39 |
source directory without having to change even a single line in them, so |
2504 |
|
|
you can easily upgrade by simply copying (or having a checked-out copy of |
2505 |
|
|
libev somewhere in your source tree). |
2506 |
|
|
|
2507 |
|
|
=head2 FILESETS |
2508 |
|
|
|
2509 |
|
|
Depending on what features you need you need to include one or more sets of files |
2510 |
|
|
in your app. |
2511 |
|
|
|
2512 |
|
|
=head3 CORE EVENT LOOP |
2513 |
|
|
|
2514 |
|
|
To include only the libev core (all the C<ev_*> functions), with manual |
2515 |
|
|
configuration (no autoconf): |
2516 |
|
|
|
2517 |
|
|
#define EV_STANDALONE 1 |
2518 |
|
|
#include "ev.c" |
2519 |
|
|
|
2520 |
|
|
This will automatically include F<ev.h>, too, and should be done in a |
2521 |
|
|
single C source file only to provide the function implementations. To use |
2522 |
|
|
it, do the same for F<ev.h> in all files wishing to use this API (best |
2523 |
|
|
done by writing a wrapper around F<ev.h> that you can include instead and |
2524 |
|
|
where you can put other configuration options): |
2525 |
|
|
|
2526 |
|
|
#define EV_STANDALONE 1 |
2527 |
|
|
#include "ev.h" |
2528 |
|
|
|
2529 |
|
|
Both header files and implementation files can be compiled with a C++ |
2530 |
|
|
compiler (at least, thats a stated goal, and breakage will be treated |
2531 |
|
|
as a bug). |
2532 |
|
|
|
2533 |
|
|
You need the following files in your source tree, or in a directory |
2534 |
|
|
in your include path (e.g. in libev/ when using -Ilibev): |
2535 |
|
|
|
2536 |
|
|
ev.h |
2537 |
|
|
ev.c |
2538 |
|
|
ev_vars.h |
2539 |
|
|
ev_wrap.h |
2540 |
|
|
|
2541 |
|
|
ev_win32.c required on win32 platforms only |
2542 |
|
|
|
2543 |
root |
1.63 |
ev_select.c only when select backend is enabled (which is enabled by default) |
2544 |
root |
1.39 |
ev_poll.c only when poll backend is enabled (disabled by default) |
2545 |
|
|
ev_epoll.c only when the epoll backend is enabled (disabled by default) |
2546 |
|
|
ev_kqueue.c only when the kqueue backend is enabled (disabled by default) |
2547 |
|
|
ev_port.c only when the solaris port backend is enabled (disabled by default) |
2548 |
|
|
|
2549 |
|
|
F<ev.c> includes the backend files directly when enabled, so you only need |
2550 |
root |
1.43 |
to compile this single file. |
2551 |
root |
1.39 |
|
2552 |
|
|
=head3 LIBEVENT COMPATIBILITY API |
2553 |
|
|
|
2554 |
|
|
To include the libevent compatibility API, also include: |
2555 |
|
|
|
2556 |
|
|
#include "event.c" |
2557 |
|
|
|
2558 |
|
|
in the file including F<ev.c>, and: |
2559 |
|
|
|
2560 |
|
|
#include "event.h" |
2561 |
|
|
|
2562 |
|
|
in the files that want to use the libevent API. This also includes F<ev.h>. |
2563 |
|
|
|
2564 |
|
|
You need the following additional files for this: |
2565 |
|
|
|
2566 |
|
|
event.h |
2567 |
|
|
event.c |
2568 |
|
|
|
2569 |
|
|
=head3 AUTOCONF SUPPORT |
2570 |
|
|
|
2571 |
|
|
Instead of using C<EV_STANDALONE=1> and providing your config in |
2572 |
|
|
whatever way you want, you can also C<m4_include([libev.m4])> in your |
2573 |
root |
1.43 |
F<configure.ac> and leave C<EV_STANDALONE> undefined. F<ev.c> will then |
2574 |
|
|
include F<config.h> and configure itself accordingly. |
2575 |
root |
1.39 |
|
2576 |
|
|
For this of course you need the m4 file: |
2577 |
|
|
|
2578 |
|
|
libev.m4 |
2579 |
|
|
|
2580 |
|
|
=head2 PREPROCESSOR SYMBOLS/MACROS |
2581 |
|
|
|
2582 |
|
|
Libev can be configured via a variety of preprocessor symbols you have to define |
2583 |
|
|
before including any of its files. The default is not to build for multiplicity |
2584 |
|
|
and only include the select backend. |
2585 |
|
|
|
2586 |
|
|
=over 4 |
2587 |
|
|
|
2588 |
|
|
=item EV_STANDALONE |
2589 |
|
|
|
2590 |
|
|
Must always be C<1> if you do not use autoconf configuration, which |
2591 |
|
|
keeps libev from including F<config.h>, and it also defines dummy |
2592 |
|
|
implementations for some libevent functions (such as logging, which is not |
2593 |
|
|
supported). It will also not define any of the structs usually found in |
2594 |
|
|
F<event.h> that are not directly supported by the libev core alone. |
2595 |
|
|
|
2596 |
|
|
=item EV_USE_MONOTONIC |
2597 |
|
|
|
2598 |
|
|
If defined to be C<1>, libev will try to detect the availability of the |
2599 |
|
|
monotonic clock option at both compiletime and runtime. Otherwise no use |
2600 |
|
|
of the monotonic clock option will be attempted. If you enable this, you |
2601 |
|
|
usually have to link against librt or something similar. Enabling it when |
2602 |
root |
1.92 |
the functionality isn't available is safe, though, although you have |
2603 |
root |
1.39 |
to make sure you link against any libraries where the C<clock_gettime> |
2604 |
|
|
function is hiding in (often F<-lrt>). |
2605 |
|
|
|
2606 |
|
|
=item EV_USE_REALTIME |
2607 |
|
|
|
2608 |
|
|
If defined to be C<1>, libev will try to detect the availability of the |
2609 |
|
|
realtime clock option at compiletime (and assume its availability at |
2610 |
|
|
runtime if successful). Otherwise no use of the realtime clock option will |
2611 |
|
|
be attempted. This effectively replaces C<gettimeofday> by C<clock_get |
2612 |
root |
1.90 |
(CLOCK_REALTIME, ...)> and will not normally affect correctness. See the |
2613 |
|
|
note about libraries in the description of C<EV_USE_MONOTONIC>, though. |
2614 |
root |
1.39 |
|
2615 |
root |
1.97 |
=item EV_USE_NANOSLEEP |
2616 |
|
|
|
2617 |
|
|
If defined to be C<1>, libev will assume that C<nanosleep ()> is available |
2618 |
|
|
and will use it for delays. Otherwise it will use C<select ()>. |
2619 |
|
|
|
2620 |
root |
1.39 |
=item EV_USE_SELECT |
2621 |
|
|
|
2622 |
|
|
If undefined or defined to be C<1>, libev will compile in support for the |
2623 |
|
|
C<select>(2) backend. No attempt at autodetection will be done: if no |
2624 |
|
|
other method takes over, select will be it. Otherwise the select backend |
2625 |
|
|
will not be compiled in. |
2626 |
|
|
|
2627 |
|
|
=item EV_SELECT_USE_FD_SET |
2628 |
|
|
|
2629 |
|
|
If defined to C<1>, then the select backend will use the system C<fd_set> |
2630 |
|
|
structure. This is useful if libev doesn't compile due to a missing |
2631 |
|
|
C<NFDBITS> or C<fd_mask> definition or it misguesses the bitset layout on |
2632 |
|
|
exotic systems. This usually limits the range of file descriptors to some |
2633 |
|
|
low limit such as 1024 or might have other limitations (winsocket only |
2634 |
|
|
allows 64 sockets). The C<FD_SETSIZE> macro, set before compilation, might |
2635 |
|
|
influence the size of the C<fd_set> used. |
2636 |
|
|
|
2637 |
|
|
=item EV_SELECT_IS_WINSOCKET |
2638 |
|
|
|
2639 |
|
|
When defined to C<1>, the select backend will assume that |
2640 |
|
|
select/socket/connect etc. don't understand file descriptors but |
2641 |
|
|
wants osf handles on win32 (this is the case when the select to |
2642 |
|
|
be used is the winsock select). This means that it will call |
2643 |
|
|
C<_get_osfhandle> on the fd to convert it to an OS handle. Otherwise, |
2644 |
|
|
it is assumed that all these functions actually work on fds, even |
2645 |
|
|
on win32. Should not be defined on non-win32 platforms. |
2646 |
|
|
|
2647 |
root |
1.112 |
=item EV_FD_TO_WIN32_HANDLE |
2648 |
|
|
|
2649 |
|
|
If C<EV_SELECT_IS_WINSOCKET> is enabled, then libev needs a way to map |
2650 |
|
|
file descriptors to socket handles. When not defining this symbol (the |
2651 |
|
|
default), then libev will call C<_get_osfhandle>, which is usually |
2652 |
|
|
correct. In some cases, programs use their own file descriptor management, |
2653 |
|
|
in which case they can provide this function to map fds to socket handles. |
2654 |
|
|
|
2655 |
root |
1.39 |
=item EV_USE_POLL |
2656 |
|
|
|
2657 |
|
|
If defined to be C<1>, libev will compile in support for the C<poll>(2) |
2658 |
|
|
backend. Otherwise it will be enabled on non-win32 platforms. It |
2659 |
|
|
takes precedence over select. |
2660 |
|
|
|
2661 |
|
|
=item EV_USE_EPOLL |
2662 |
|
|
|
2663 |
|
|
If defined to be C<1>, libev will compile in support for the Linux |
2664 |
|
|
C<epoll>(7) backend. Its availability will be detected at runtime, |
2665 |
|
|
otherwise another method will be used as fallback. This is the |
2666 |
|
|
preferred backend for GNU/Linux systems. |
2667 |
|
|
|
2668 |
|
|
=item EV_USE_KQUEUE |
2669 |
|
|
|
2670 |
|
|
If defined to be C<1>, libev will compile in support for the BSD style |
2671 |
|
|
C<kqueue>(2) backend. Its actual availability will be detected at runtime, |
2672 |
|
|
otherwise another method will be used as fallback. This is the preferred |
2673 |
|
|
backend for BSD and BSD-like systems, although on most BSDs kqueue only |
2674 |
|
|
supports some types of fds correctly (the only platform we found that |
2675 |
|
|
supports ptys for example was NetBSD), so kqueue might be compiled in, but |
2676 |
|
|
not be used unless explicitly requested. The best way to use it is to find |
2677 |
root |
1.41 |
out whether kqueue supports your type of fd properly and use an embedded |
2678 |
root |
1.39 |
kqueue loop. |
2679 |
|
|
|
2680 |
|
|
=item EV_USE_PORT |
2681 |
|
|
|
2682 |
|
|
If defined to be C<1>, libev will compile in support for the Solaris |
2683 |
|
|
10 port style backend. Its availability will be detected at runtime, |
2684 |
|
|
otherwise another method will be used as fallback. This is the preferred |
2685 |
|
|
backend for Solaris 10 systems. |
2686 |
|
|
|
2687 |
|
|
=item EV_USE_DEVPOLL |
2688 |
|
|
|
2689 |
|
|
reserved for future expansion, works like the USE symbols above. |
2690 |
|
|
|
2691 |
root |
1.56 |
=item EV_USE_INOTIFY |
2692 |
|
|
|
2693 |
|
|
If defined to be C<1>, libev will compile in support for the Linux inotify |
2694 |
|
|
interface to speed up C<ev_stat> watchers. Its actual availability will |
2695 |
|
|
be detected at runtime. |
2696 |
|
|
|
2697 |
root |
1.123 |
=item EV_ATOMIC_T |
2698 |
|
|
|
2699 |
|
|
Libev requires an integer type (suitable for storing C<0> or C<1>) whose |
2700 |
|
|
access is atomic with respect to other threads or signal contexts. No such type |
2701 |
|
|
is easily found using, so you cna provide your own type that you know is safe. |
2702 |
|
|
|
2703 |
|
|
In the absense of this define, libev will use C<sig_atomic_t volatile> |
2704 |
|
|
from F<signal.h>, which is usually good enough on most platforms. |
2705 |
|
|
|
2706 |
root |
1.39 |
=item EV_H |
2707 |
|
|
|
2708 |
|
|
The name of the F<ev.h> header file used to include it. The default if |
2709 |
root |
1.118 |
undefined is C<"ev.h"> in F<event.h>, F<ev.c> and F<ev++.h>. This can be |
2710 |
|
|
used to virtually rename the F<ev.h> header file in case of conflicts. |
2711 |
root |
1.39 |
|
2712 |
|
|
=item EV_CONFIG_H |
2713 |
|
|
|
2714 |
|
|
If C<EV_STANDALONE> isn't C<1>, this variable can be used to override |
2715 |
|
|
F<ev.c>'s idea of where to find the F<config.h> file, similarly to |
2716 |
|
|
C<EV_H>, above. |
2717 |
|
|
|
2718 |
|
|
=item EV_EVENT_H |
2719 |
|
|
|
2720 |
|
|
Similarly to C<EV_H>, this macro can be used to override F<event.c>'s idea |
2721 |
root |
1.118 |
of how the F<event.h> header can be found, the default is C<"event.h">. |
2722 |
root |
1.39 |
|
2723 |
|
|
=item EV_PROTOTYPES |
2724 |
|
|
|
2725 |
|
|
If defined to be C<0>, then F<ev.h> will not define any function |
2726 |
|
|
prototypes, but still define all the structs and other symbols. This is |
2727 |
|
|
occasionally useful if you want to provide your own wrapper functions |
2728 |
|
|
around libev functions. |
2729 |
|
|
|
2730 |
|
|
=item EV_MULTIPLICITY |
2731 |
|
|
|
2732 |
|
|
If undefined or defined to C<1>, then all event-loop-specific functions |
2733 |
|
|
will have the C<struct ev_loop *> as first argument, and you can create |
2734 |
|
|
additional independent event loops. Otherwise there will be no support |
2735 |
|
|
for multiple event loops and there is no first event loop pointer |
2736 |
|
|
argument. Instead, all functions act on the single default loop. |
2737 |
|
|
|
2738 |
root |
1.69 |
=item EV_MINPRI |
2739 |
|
|
|
2740 |
|
|
=item EV_MAXPRI |
2741 |
|
|
|
2742 |
|
|
The range of allowed priorities. C<EV_MINPRI> must be smaller or equal to |
2743 |
|
|
C<EV_MAXPRI>, but otherwise there are no non-obvious limitations. You can |
2744 |
|
|
provide for more priorities by overriding those symbols (usually defined |
2745 |
|
|
to be C<-2> and C<2>, respectively). |
2746 |
|
|
|
2747 |
|
|
When doing priority-based operations, libev usually has to linearly search |
2748 |
|
|
all the priorities, so having many of them (hundreds) uses a lot of space |
2749 |
|
|
and time, so using the defaults of five priorities (-2 .. +2) is usually |
2750 |
|
|
fine. |
2751 |
|
|
|
2752 |
|
|
If your embedding app does not need any priorities, defining these both to |
2753 |
|
|
C<0> will save some memory and cpu. |
2754 |
|
|
|
2755 |
root |
1.47 |
=item EV_PERIODIC_ENABLE |
2756 |
root |
1.39 |
|
2757 |
root |
1.47 |
If undefined or defined to be C<1>, then periodic timers are supported. If |
2758 |
|
|
defined to be C<0>, then they are not. Disabling them saves a few kB of |
2759 |
|
|
code. |
2760 |
|
|
|
2761 |
root |
1.67 |
=item EV_IDLE_ENABLE |
2762 |
|
|
|
2763 |
|
|
If undefined or defined to be C<1>, then idle watchers are supported. If |
2764 |
|
|
defined to be C<0>, then they are not. Disabling them saves a few kB of |
2765 |
|
|
code. |
2766 |
|
|
|
2767 |
root |
1.47 |
=item EV_EMBED_ENABLE |
2768 |
|
|
|
2769 |
|
|
If undefined or defined to be C<1>, then embed watchers are supported. If |
2770 |
|
|
defined to be C<0>, then they are not. |
2771 |
|
|
|
2772 |
|
|
=item EV_STAT_ENABLE |
2773 |
|
|
|
2774 |
|
|
If undefined or defined to be C<1>, then stat watchers are supported. If |
2775 |
|
|
defined to be C<0>, then they are not. |
2776 |
|
|
|
2777 |
root |
1.50 |
=item EV_FORK_ENABLE |
2778 |
|
|
|
2779 |
|
|
If undefined or defined to be C<1>, then fork watchers are supported. If |
2780 |
|
|
defined to be C<0>, then they are not. |
2781 |
|
|
|
2782 |
root |
1.123 |
=item EV_ASYNC_ENABLE |
2783 |
|
|
|
2784 |
|
|
If undefined or defined to be C<1>, then async watchers are supported. If |
2785 |
|
|
defined to be C<0>, then they are not. |
2786 |
|
|
|
2787 |
root |
1.47 |
=item EV_MINIMAL |
2788 |
|
|
|
2789 |
|
|
If you need to shave off some kilobytes of code at the expense of some |
2790 |
|
|
speed, define this symbol to C<1>. Currently only used for gcc to override |
2791 |
|
|
some inlining decisions, saves roughly 30% codesize of amd64. |
2792 |
root |
1.39 |
|
2793 |
root |
1.51 |
=item EV_PID_HASHSIZE |
2794 |
|
|
|
2795 |
|
|
C<ev_child> watchers use a small hash table to distribute workload by |
2796 |
|
|
pid. The default size is C<16> (or C<1> with C<EV_MINIMAL>), usually more |
2797 |
|
|
than enough. If you need to manage thousands of children you might want to |
2798 |
root |
1.56 |
increase this value (I<must> be a power of two). |
2799 |
|
|
|
2800 |
|
|
=item EV_INOTIFY_HASHSIZE |
2801 |
|
|
|
2802 |
root |
1.104 |
C<ev_stat> watchers use a small hash table to distribute workload by |
2803 |
root |
1.56 |
inotify watch id. The default size is C<16> (or C<1> with C<EV_MINIMAL>), |
2804 |
|
|
usually more than enough. If you need to manage thousands of C<ev_stat> |
2805 |
|
|
watchers you might want to increase this value (I<must> be a power of |
2806 |
|
|
two). |
2807 |
root |
1.51 |
|
2808 |
root |
1.39 |
=item EV_COMMON |
2809 |
|
|
|
2810 |
|
|
By default, all watchers have a C<void *data> member. By redefining |
2811 |
|
|
this macro to a something else you can include more and other types of |
2812 |
|
|
members. You have to define it each time you include one of the files, |
2813 |
|
|
though, and it must be identical each time. |
2814 |
|
|
|
2815 |
|
|
For example, the perl EV module uses something like this: |
2816 |
|
|
|
2817 |
|
|
#define EV_COMMON \ |
2818 |
|
|
SV *self; /* contains this struct */ \ |
2819 |
|
|
SV *cb_sv, *fh /* note no trailing ";" */ |
2820 |
|
|
|
2821 |
root |
1.44 |
=item EV_CB_DECLARE (type) |
2822 |
root |
1.39 |
|
2823 |
root |
1.44 |
=item EV_CB_INVOKE (watcher, revents) |
2824 |
root |
1.39 |
|
2825 |
root |
1.44 |
=item ev_set_cb (ev, cb) |
2826 |
root |
1.39 |
|
2827 |
|
|
Can be used to change the callback member declaration in each watcher, |
2828 |
|
|
and the way callbacks are invoked and set. Must expand to a struct member |
2829 |
root |
1.93 |
definition and a statement, respectively. See the F<ev.h> header file for |
2830 |
root |
1.39 |
their default definitions. One possible use for overriding these is to |
2831 |
root |
1.44 |
avoid the C<struct ev_loop *> as first argument in all cases, or to use |
2832 |
|
|
method calls instead of plain function calls in C++. |
2833 |
root |
1.39 |
|
2834 |
root |
1.89 |
=head2 EXPORTED API SYMBOLS |
2835 |
|
|
|
2836 |
|
|
If you need to re-export the API (e.g. via a dll) and you need a list of |
2837 |
|
|
exported symbols, you can use the provided F<Symbol.*> files which list |
2838 |
|
|
all public symbols, one per line: |
2839 |
|
|
|
2840 |
|
|
Symbols.ev for libev proper |
2841 |
|
|
Symbols.event for the libevent emulation |
2842 |
|
|
|
2843 |
|
|
This can also be used to rename all public symbols to avoid clashes with |
2844 |
|
|
multiple versions of libev linked together (which is obviously bad in |
2845 |
|
|
itself, but sometimes it is inconvinient to avoid this). |
2846 |
|
|
|
2847 |
root |
1.92 |
A sed command like this will create wrapper C<#define>'s that you need to |
2848 |
root |
1.89 |
include before including F<ev.h>: |
2849 |
|
|
|
2850 |
|
|
<Symbols.ev sed -e "s/.*/#define & myprefix_&/" >wrap.h |
2851 |
|
|
|
2852 |
|
|
This would create a file F<wrap.h> which essentially looks like this: |
2853 |
|
|
|
2854 |
|
|
#define ev_backend myprefix_ev_backend |
2855 |
|
|
#define ev_check_start myprefix_ev_check_start |
2856 |
|
|
#define ev_check_stop myprefix_ev_check_stop |
2857 |
|
|
... |
2858 |
|
|
|
2859 |
root |
1.39 |
=head2 EXAMPLES |
2860 |
|
|
|
2861 |
|
|
For a real-world example of a program the includes libev |
2862 |
|
|
verbatim, you can have a look at the EV perl module |
2863 |
|
|
(L<http://software.schmorp.de/pkg/EV.html>). It has the libev files in |
2864 |
|
|
the F<libev/> subdirectory and includes them in the F<EV/EVAPI.h> (public |
2865 |
|
|
interface) and F<EV.xs> (implementation) files. Only the F<EV.xs> file |
2866 |
|
|
will be compiled. It is pretty complex because it provides its own header |
2867 |
|
|
file. |
2868 |
|
|
|
2869 |
|
|
The usage in rxvt-unicode is simpler. It has a F<ev_cpp.h> header file |
2870 |
root |
1.63 |
that everybody includes and which overrides some configure choices: |
2871 |
root |
1.39 |
|
2872 |
root |
1.63 |
#define EV_MINIMAL 1 |
2873 |
root |
1.40 |
#define EV_USE_POLL 0 |
2874 |
|
|
#define EV_MULTIPLICITY 0 |
2875 |
root |
1.63 |
#define EV_PERIODIC_ENABLE 0 |
2876 |
|
|
#define EV_STAT_ENABLE 0 |
2877 |
|
|
#define EV_FORK_ENABLE 0 |
2878 |
root |
1.40 |
#define EV_CONFIG_H <config.h> |
2879 |
root |
1.63 |
#define EV_MINPRI 0 |
2880 |
|
|
#define EV_MAXPRI 0 |
2881 |
root |
1.39 |
|
2882 |
root |
1.40 |
#include "ev++.h" |
2883 |
root |
1.39 |
|
2884 |
|
|
And a F<ev_cpp.C> implementation file that contains libev proper and is compiled: |
2885 |
|
|
|
2886 |
root |
1.40 |
#include "ev_cpp.h" |
2887 |
|
|
#include "ev.c" |
2888 |
root |
1.39 |
|
2889 |
root |
1.46 |
|
2890 |
|
|
=head1 COMPLEXITIES |
2891 |
|
|
|
2892 |
|
|
In this section the complexities of (many of) the algorithms used inside |
2893 |
|
|
libev will be explained. For complexity discussions about backends see the |
2894 |
|
|
documentation for C<ev_default_init>. |
2895 |
|
|
|
2896 |
root |
1.70 |
All of the following are about amortised time: If an array needs to be |
2897 |
|
|
extended, libev needs to realloc and move the whole array, but this |
2898 |
|
|
happens asymptotically never with higher number of elements, so O(1) might |
2899 |
|
|
mean it might do a lengthy realloc operation in rare cases, but on average |
2900 |
|
|
it is much faster and asymptotically approaches constant time. |
2901 |
|
|
|
2902 |
root |
1.46 |
=over 4 |
2903 |
|
|
|
2904 |
|
|
=item Starting and stopping timer/periodic watchers: O(log skipped_other_timers) |
2905 |
|
|
|
2906 |
root |
1.69 |
This means that, when you have a watcher that triggers in one hour and |
2907 |
|
|
there are 100 watchers that would trigger before that then inserting will |
2908 |
root |
1.106 |
have to skip roughly seven (C<ld 100>) of these watchers. |
2909 |
root |
1.69 |
|
2910 |
root |
1.106 |
=item Changing timer/periodic watchers (by autorepeat or calling again): O(log skipped_other_timers) |
2911 |
root |
1.46 |
|
2912 |
root |
1.106 |
That means that changing a timer costs less than removing/adding them |
2913 |
root |
1.69 |
as only the relative motion in the event queue has to be paid for. |
2914 |
|
|
|
2915 |
root |
1.46 |
=item Starting io/check/prepare/idle/signal/child watchers: O(1) |
2916 |
|
|
|
2917 |
root |
1.70 |
These just add the watcher into an array or at the head of a list. |
2918 |
root |
1.106 |
|
2919 |
root |
1.46 |
=item Stopping check/prepare/idle watchers: O(1) |
2920 |
|
|
|
2921 |
root |
1.56 |
=item Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE)) |
2922 |
root |
1.46 |
|
2923 |
root |
1.69 |
These watchers are stored in lists then need to be walked to find the |
2924 |
|
|
correct watcher to remove. The lists are usually short (you don't usually |
2925 |
|
|
have many watchers waiting for the same fd or signal). |
2926 |
|
|
|
2927 |
root |
1.106 |
=item Finding the next timer in each loop iteration: O(1) |
2928 |
|
|
|
2929 |
|
|
By virtue of using a binary heap, the next timer is always found at the |
2930 |
|
|
beginning of the storage array. |
2931 |
root |
1.46 |
|
2932 |
|
|
=item Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd) |
2933 |
|
|
|
2934 |
root |
1.69 |
A change means an I/O watcher gets started or stopped, which requires |
2935 |
root |
1.106 |
libev to recalculate its status (and possibly tell the kernel, depending |
2936 |
|
|
on backend and wether C<ev_io_set> was used). |
2937 |
root |
1.69 |
|
2938 |
root |
1.106 |
=item Activating one watcher (putting it into the pending state): O(1) |
2939 |
root |
1.46 |
|
2940 |
root |
1.69 |
=item Priority handling: O(number_of_priorities) |
2941 |
|
|
|
2942 |
|
|
Priorities are implemented by allocating some space for each |
2943 |
|
|
priority. When doing priority-based operations, libev usually has to |
2944 |
root |
1.106 |
linearly search all the priorities, but starting/stopping and activating |
2945 |
|
|
watchers becomes O(1) w.r.t. prioritiy handling. |
2946 |
root |
1.69 |
|
2947 |
root |
1.46 |
=back |
2948 |
|
|
|
2949 |
|
|
|
2950 |
root |
1.112 |
=head1 Win32 platform limitations and workarounds |
2951 |
|
|
|
2952 |
|
|
Win32 doesn't support any of the standards (e.g. POSIX) that libev |
2953 |
|
|
requires, and its I/O model is fundamentally incompatible with the POSIX |
2954 |
|
|
model. Libev still offers limited functionality on this platform in |
2955 |
|
|
the form of the C<EVBACKEND_SELECT> backend, and only supports socket |
2956 |
|
|
descriptors. This only applies when using Win32 natively, not when using |
2957 |
|
|
e.g. cygwin. |
2958 |
|
|
|
2959 |
|
|
There is no supported compilation method available on windows except |
2960 |
|
|
embedding it into other applications. |
2961 |
|
|
|
2962 |
|
|
Due to the many, low, and arbitrary limits on the win32 platform and the |
2963 |
|
|
abysmal performance of winsockets, using a large number of sockets is not |
2964 |
|
|
recommended (and not reasonable). If your program needs to use more than |
2965 |
|
|
a hundred or so sockets, then likely it needs to use a totally different |
2966 |
|
|
implementation for windows, as libev offers the POSIX model, which cannot |
2967 |
|
|
be implemented efficiently on windows (microsoft monopoly games). |
2968 |
|
|
|
2969 |
|
|
=over 4 |
2970 |
|
|
|
2971 |
|
|
=item The winsocket select function |
2972 |
|
|
|
2973 |
|
|
The winsocket C<select> function doesn't follow POSIX in that it requires |
2974 |
|
|
socket I<handles> and not socket I<file descriptors>. This makes select |
2975 |
|
|
very inefficient, and also requires a mapping from file descriptors |
2976 |
|
|
to socket handles. See the discussion of the C<EV_SELECT_USE_FD_SET>, |
2977 |
|
|
C<EV_SELECT_IS_WINSOCKET> and C<EV_FD_TO_WIN32_HANDLE> preprocessor |
2978 |
|
|
symbols for more info. |
2979 |
|
|
|
2980 |
|
|
The configuration for a "naked" win32 using the microsoft runtime |
2981 |
|
|
libraries and raw winsocket select is: |
2982 |
|
|
|
2983 |
|
|
#define EV_USE_SELECT 1 |
2984 |
|
|
#define EV_SELECT_IS_WINSOCKET 1 /* forces EV_SELECT_USE_FD_SET, too */ |
2985 |
|
|
|
2986 |
|
|
Note that winsockets handling of fd sets is O(n), so you can easily get a |
2987 |
|
|
complexity in the O(n²) range when using win32. |
2988 |
|
|
|
2989 |
|
|
=item Limited number of file descriptors |
2990 |
|
|
|
2991 |
|
|
Windows has numerous arbitrary (and low) limits on things. Early versions |
2992 |
|
|
of winsocket's select only supported waiting for a max. of C<64> handles |
2993 |
|
|
(probably owning to the fact that all windows kernels can only wait for |
2994 |
|
|
C<64> things at the same time internally; microsoft recommends spawning a |
2995 |
|
|
chain of threads and wait for 63 handles and the previous thread in each). |
2996 |
|
|
|
2997 |
|
|
Newer versions support more handles, but you need to define C<FD_SETSIZE> |
2998 |
|
|
to some high number (e.g. C<2048>) before compiling the winsocket select |
2999 |
|
|
call (which might be in libev or elsewhere, for example, perl does its own |
3000 |
|
|
select emulation on windows). |
3001 |
|
|
|
3002 |
|
|
Another limit is the number of file descriptors in the microsoft runtime |
3003 |
|
|
libraries, which by default is C<64> (there must be a hidden I<64> fetish |
3004 |
|
|
or something like this inside microsoft). You can increase this by calling |
3005 |
|
|
C<_setmaxstdio>, which can increase this limit to C<2048> (another |
3006 |
|
|
arbitrary limit), but is broken in many versions of the microsoft runtime |
3007 |
|
|
libraries. |
3008 |
|
|
|
3009 |
|
|
This might get you to about C<512> or C<2048> sockets (depending on |
3010 |
|
|
windows version and/or the phase of the moon). To get more, you need to |
3011 |
|
|
wrap all I/O functions and provide your own fd management, but the cost of |
3012 |
|
|
calling select (O(n²)) will likely make this unworkable. |
3013 |
|
|
|
3014 |
|
|
=back |
3015 |
|
|
|
3016 |
|
|
|
3017 |
root |
1.1 |
=head1 AUTHOR |
3018 |
|
|
|
3019 |
|
|
Marc Lehmann <libev@schmorp.de>. |
3020 |
|
|
|