--- libev/ev.pod 2008/04/06 09:53:18 1.142 +++ libev/ev.pod 2008/05/06 23:34:16 1.150 @@ -198,18 +198,21 @@ =item ev_set_allocator (void *(*cb)(void *ptr, long size)) Sets the allocation function to use (the prototype is similar - the -semantics is identical - to the realloc C function). It is used to -allocate and free memory (no surprises here). If it returns zero when -memory needs to be allocated, the library might abort or take some -potentially destructive action. The default is your system realloc -function. +semantics are identical to the C C89/SuS/POSIX function). It is +used to allocate and free memory (no surprises here). If it returns zero +when memory needs to be allocated (C), the library might abort +or take some potentially destructive action. + +Since some systems (at least OpenBSD and Darwin) fail to implement +correct C semantics, libev will use a wrapper around the system +C and C functions by default. You could override this function in high-availability programs to, say, free some memory if it cannot allocate memory, to use a special allocator, or even to sleep a while and retry until some memory is available. Example: Replace the libev allocator with one that waits a bit and then -retries). +retries (example requires a standards-compliant C). static void * persistent_realloc (void *ptr, size_t size) @@ -258,13 +261,6 @@ types of such loops, the I loop, which supports signals and child events, and dynamically created loops which do not. -If you use threads, a common model is to run the default event loop -in your main thread (or in a separate thread) and for each thread you -create, you also create another event loop. Libev itself does no locking -whatsoever, so if you mix calls to the same event loop in different -threads, make sure you lock (this is usually a bad idea, though, even if -done correctly, because it's hideous and inefficient). - =over 4 =item struct ev_loop *ev_default_loop (unsigned int flags) @@ -1379,6 +1375,11 @@ a different time than the last time it was called (e.g. in a crond like program when the crontabs have changed). +=item ev_tstamp ev_periodic_at (ev_periodic *) + +When active, returns the absolute time that the watcher is supposed to +trigger next. + =item ev_tstamp offset [read-write] When repeating, this contains the offset value, otherwise this is the @@ -1399,11 +1400,6 @@ switched off. Can be changed any time, but changes only take effect when the periodic timer fires or C is being called. -=item ev_tstamp at [read-only] - -When active, contains the absolute time that the watcher is supposed to -trigger next. - =back =head3 Examples @@ -1616,11 +1612,12 @@ At the time of this writing, only the Linux inotify interface is implemented (implementing kqueue support is left as an exercise for the -reader). Inotify will be used to give hints only and should not change the -semantics of C watchers, which means that libev sometimes needs -to fall back to regular polling again even with inotify, but changes are -usually detected immediately, and if the file exists there will be no -polling. +reader, note, however, that the author sees no way of implementing ev_stat +semantics with kqueue). Inotify will be used to give hints only and should +not change the semantics of C watchers, which means that libev +sometimes needs to fall back to regular polling again even with inotify, +but changes are usually detected immediately, and if the file exists there +will be no polling. =head3 ABI Issues (Largefile Support) @@ -1640,9 +1637,9 @@ change detection where possible. The inotify descriptor will be created lazily when the first C watcher is being started. -Inotify presense does not change the semantics of C watchers +Inotify presence does not change the semantics of C watchers except that changes might be detected earlier, and in some cases, to avoid -making regular C calls. Even in the presense of inotify support +making regular C calls. Even in the presence of inotify support there are many cases where libev has to resort to regular C polling. (There is no support for kqueue, as apparently it cannot be used to @@ -1655,16 +1652,25 @@ even on systems where the resolution is higher, many filesystems still only support whole seconds. -That means that, if the time is the only thing that changes, you might -miss updates: on the first update, C detects a change and calls -your callback, which does something. When there is another update within -the same second, C will be unable to detect it. - -The solution to this is to delay acting on a change for a second (or till -the next second boundary), using a roughly one-second delay C -(C). The C<.01> -is added to work around small timing inconsistencies of some operating -systems. +That means that, if the time is the only thing that changes, you can +easily miss updates: on the first update, C detects a change and +calls your callback, which does something. When there is another update +within the same second, C will be unable to detect it as the stat +data does not change. + +The solution to this is to delay acting on a change for slightly more +than second (or till slightly after the next full second boundary), using +a roughly one-second-delay C (e.g. C). + +The C<.02> offset is added to work around small timing inconsistencies +of some operating systems (where the second counter of the current time +might be be delayed. One such system is the Linux kernel, where a call to +C might return a timestamp with a full second later than +a subsequent C