ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.pod
(Generate patch)

Comparing libev/ev.pod (file contents):
Revision 1.111 by root, Tue Dec 25 18:01:20 2007 UTC vs.
Revision 1.115 by root, Mon Dec 31 01:32:59 2007 UTC

551usually a better approach for this kind of thing. 551usually a better approach for this kind of thing.
552 552
553Here are the gory details of what C<ev_loop> does: 553Here are the gory details of what C<ev_loop> does:
554 554
555 - Before the first iteration, call any pending watchers. 555 - Before the first iteration, call any pending watchers.
556 * If there are no active watchers (reference count is zero), return. 556 * If EVFLAG_FORKCHECK was used, check for a fork.
557 - Queue all prepare watchers and then call all outstanding watchers. 557 - If a fork was detected, queue and call all fork watchers.
558 - Queue and call all prepare watchers.
558 - If we have been forked, recreate the kernel state. 559 - If we have been forked, recreate the kernel state.
559 - Update the kernel state with all outstanding changes. 560 - Update the kernel state with all outstanding changes.
560 - Update the "event loop time". 561 - Update the "event loop time".
561 - Calculate for how long to block. 562 - Calculate for how long to sleep or block, if at all
563 (active idle watchers, EVLOOP_NONBLOCK or not having
564 any active watchers at all will result in not sleeping).
565 - Sleep if the I/O and timer collect interval say so.
562 - Block the process, waiting for any events. 566 - Block the process, waiting for any events.
563 - Queue all outstanding I/O (fd) events. 567 - Queue all outstanding I/O (fd) events.
564 - Update the "event loop time" and do time jump handling. 568 - Update the "event loop time" and do time jump handling.
565 - Queue all outstanding timers. 569 - Queue all outstanding timers.
566 - Queue all outstanding periodics. 570 - Queue all outstanding periodics.
567 - If no events are pending now, queue all idle watchers. 571 - If no events are pending now, queue all idle watchers.
568 - Queue all check watchers. 572 - Queue all check watchers.
569 - Call all queued watchers in reverse order (i.e. check watchers first). 573 - Call all queued watchers in reverse order (i.e. check watchers first).
570 Signals and child watchers are implemented as I/O watchers, and will 574 Signals and child watchers are implemented as I/O watchers, and will
571 be handled here by queueing them when their watcher gets executed. 575 be handled here by queueing them when their watcher gets executed.
572 - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK 576 - If ev_unloop has been called, or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
573 were used, return, otherwise continue with step *. 577 were used, or there are no active watchers, return, otherwise
578 continue with step *.
574 579
575Example: Queue some jobs and then loop until no events are outsanding 580Example: Queue some jobs and then loop until no events are outstanding
576anymore. 581anymore.
577 582
578 ... queue jobs here, make sure they register event watchers as long 583 ... queue jobs here, make sure they register event watchers as long
579 ... as they still have work to do (even an idle watcher will do..) 584 ... as they still have work to do (even an idle watcher will do..)
580 ev_loop (my_loop, 0); 585 ev_loop (my_loop, 0);
584 589
585Can be used to make a call to C<ev_loop> return early (but only after it 590Can be used to make a call to C<ev_loop> return early (but only after it
586has processed all outstanding events). The C<how> argument must be either 591has processed all outstanding events). The C<how> argument must be either
587C<EVUNLOOP_ONE>, which will make the innermost C<ev_loop> call return, or 592C<EVUNLOOP_ONE>, which will make the innermost C<ev_loop> call return, or
588C<EVUNLOOP_ALL>, which will make all nested C<ev_loop> calls return. 593C<EVUNLOOP_ALL>, which will make all nested C<ev_loop> calls return.
594
595This "unloop state" will be cleared when entering C<ev_loop> again.
589 596
590=item ev_ref (loop) 597=item ev_ref (loop)
591 598
592=item ev_unref (loop) 599=item ev_unref (loop)
593 600
2491be used is the winsock select). This means that it will call 2498be used is the winsock select). This means that it will call
2492C<_get_osfhandle> on the fd to convert it to an OS handle. Otherwise, 2499C<_get_osfhandle> on the fd to convert it to an OS handle. Otherwise,
2493it is assumed that all these functions actually work on fds, even 2500it is assumed that all these functions actually work on fds, even
2494on win32. Should not be defined on non-win32 platforms. 2501on win32. Should not be defined on non-win32 platforms.
2495 2502
2503=item EV_FD_TO_WIN32_HANDLE
2504
2505If C<EV_SELECT_IS_WINSOCKET> is enabled, then libev needs a way to map
2506file descriptors to socket handles. When not defining this symbol (the
2507default), then libev will call C<_get_osfhandle>, which is usually
2508correct. In some cases, programs use their own file descriptor management,
2509in which case they can provide this function to map fds to socket handles.
2510
2496=item EV_USE_POLL 2511=item EV_USE_POLL
2497 2512
2498If defined to be C<1>, libev will compile in support for the C<poll>(2) 2513If defined to be C<1>, libev will compile in support for the C<poll>(2)
2499backend. Otherwise it will be enabled on non-win32 platforms. It 2514backend. Otherwise it will be enabled on non-win32 platforms. It
2500takes precedence over select. 2515takes precedence over select.
2772watchers becomes O(1) w.r.t. prioritiy handling. 2787watchers becomes O(1) w.r.t. prioritiy handling.
2773 2788
2774=back 2789=back
2775 2790
2776 2791
2792=head1 Win32 platform limitations and workarounds
2793
2794Win32 doesn't support any of the standards (e.g. POSIX) that libev
2795requires, and its I/O model is fundamentally incompatible with the POSIX
2796model. Libev still offers limited functionality on this platform in
2797the form of the C<EVBACKEND_SELECT> backend, and only supports socket
2798descriptors. This only applies when using Win32 natively, not when using
2799e.g. cygwin.
2800
2801There is no supported compilation method available on windows except
2802embedding it into other applications.
2803
2804Due to the many, low, and arbitrary limits on the win32 platform and the
2805abysmal performance of winsockets, using a large number of sockets is not
2806recommended (and not reasonable). If your program needs to use more than
2807a hundred or so sockets, then likely it needs to use a totally different
2808implementation for windows, as libev offers the POSIX model, which cannot
2809be implemented efficiently on windows (microsoft monopoly games).
2810
2811=over 4
2812
2813=item The winsocket select function
2814
2815The winsocket C<select> function doesn't follow POSIX in that it requires
2816socket I<handles> and not socket I<file descriptors>. This makes select
2817very inefficient, and also requires a mapping from file descriptors
2818to socket handles. See the discussion of the C<EV_SELECT_USE_FD_SET>,
2819C<EV_SELECT_IS_WINSOCKET> and C<EV_FD_TO_WIN32_HANDLE> preprocessor
2820symbols for more info.
2821
2822The configuration for a "naked" win32 using the microsoft runtime
2823libraries and raw winsocket select is:
2824
2825 #define EV_USE_SELECT 1
2826 #define EV_SELECT_IS_WINSOCKET 1 /* forces EV_SELECT_USE_FD_SET, too */
2827
2828Note that winsockets handling of fd sets is O(n), so you can easily get a
2829complexity in the O(n²) range when using win32.
2830
2831=item Limited number of file descriptors
2832
2833Windows has numerous arbitrary (and low) limits on things. Early versions
2834of winsocket's select only supported waiting for a max. of C<64> handles
2835(probably owning to the fact that all windows kernels can only wait for
2836C<64> things at the same time internally; microsoft recommends spawning a
2837chain of threads and wait for 63 handles and the previous thread in each).
2838
2839Newer versions support more handles, but you need to define C<FD_SETSIZE>
2840to some high number (e.g. C<2048>) before compiling the winsocket select
2841call (which might be in libev or elsewhere, for example, perl does its own
2842select emulation on windows).
2843
2844Another limit is the number of file descriptors in the microsoft runtime
2845libraries, which by default is C<64> (there must be a hidden I<64> fetish
2846or something like this inside microsoft). You can increase this by calling
2847C<_setmaxstdio>, which can increase this limit to C<2048> (another
2848arbitrary limit), but is broken in many versions of the microsoft runtime
2849libraries.
2850
2851This might get you to about C<512> or C<2048> sockets (depending on
2852windows version and/or the phase of the moon). To get more, you need to
2853wrap all I/O functions and provide your own fd management, but the cost of
2854calling select (O(n²)) will likely make this unworkable.
2855
2856=back
2857
2858
2777=head1 AUTHOR 2859=head1 AUTHOR
2778 2860
2779Marc Lehmann <libev@schmorp.de>. 2861Marc Lehmann <libev@schmorp.de>.
2780 2862

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines