ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.pod
(Generate patch)

Comparing libev/ev.pod (file contents):
Revision 1.233 by root, Thu Apr 16 07:32:51 2009 UTC vs.
Revision 1.238 by root, Sat Apr 18 12:10:41 2009 UTC

62 62
63 // unloop was called, so exit 63 // unloop was called, so exit
64 return 0; 64 return 0;
65 } 65 }
66 66
67=head1 DESCRIPTION 67=head1 ABOUT THIS DOCUMENT
68
69This document documents the libev software package.
68 70
69The newest version of this document is also available as an html-formatted 71The newest version of this document is also available as an html-formatted
70web page you might find easier to navigate when reading it for the first 72web page you might find easier to navigate when reading it for the first
71time: L<http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod>. 73time: L<http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod>.
74
75While this document tries to be as complete as possible in documenting
76libev, its usage and the rationale behind its design, it is not a tutorial
77on event-based programming, nor will it introduce event-based programming
78with libev.
79
80Familarity with event based programming techniques in general is assumed
81throughout this document.
82
83=head1 ABOUT LIBEV
72 84
73Libev is an event loop: you register interest in certain events (such as a 85Libev is an event loop: you register interest in certain events (such as a
74file descriptor being readable or a timeout occurring), and it will manage 86file descriptor being readable or a timeout occurring), and it will manage
75these event sources and provide your program with events. 87these event sources and provide your program with events.
76 88
110name C<loop> (which is always of type C<ev_loop *>) will not have 122name C<loop> (which is always of type C<ev_loop *>) will not have
111this argument. 123this argument.
112 124
113=head2 TIME REPRESENTATION 125=head2 TIME REPRESENTATION
114 126
115Libev represents time as a single floating point number, representing the 127Libev represents time as a single floating point number, representing
116(fractional) number of seconds since the (POSIX) epoch (somewhere near 128the (fractional) number of seconds since the (POSIX) epoch (somewhere
117the beginning of 1970, details are complicated, don't ask). This type is 129near the beginning of 1970, details are complicated, don't ask). This
118called C<ev_tstamp>, which is what you should use too. It usually aliases 130type is called C<ev_tstamp>, which is what you should use too. It usually
119to the C<double> type in C, and when you need to do any calculations on 131aliases to the C<double> type in C. When you need to do any calculations
120it, you should treat it as some floating point value. Unlike the name 132on it, you should treat it as some floating point value. Unlike the name
121component C<stamp> might indicate, it is also used for time differences 133component C<stamp> might indicate, it is also used for time differences
122throughout libev. 134throughout libev.
123 135
124=head1 ERROR HANDLING 136=head1 ERROR HANDLING
125 137
632 644
633This function is rarely useful, but when some event callback runs for a 645This function is rarely useful, but when some event callback runs for a
634very long time without entering the event loop, updating libev's idea of 646very long time without entering the event loop, updating libev's idea of
635the current time is a good idea. 647the current time is a good idea.
636 648
637See also "The special problem of time updates" in the C<ev_timer> section. 649See also L<The special problem of time updates> in the C<ev_timer> section.
638 650
639=item ev_suspend (loop) 651=item ev_suspend (loop)
640 652
641=item ev_resume (loop) 653=item ev_resume (loop)
642 654
1096or might not have been clamped to the valid range. 1108or might not have been clamped to the valid range.
1097 1109
1098The default priority used by watchers when no priority has been set is 1110The default priority used by watchers when no priority has been set is
1099always C<0>, which is supposed to not be too high and not be too low :). 1111always C<0>, which is supposed to not be too high and not be too low :).
1100 1112
1101See L<WATCHER PRIORITIES>, below, for a more thorough treatment of 1113See L<WATCHER PRIORITY MODELS>, below, for a more thorough treatment of
1102priorities. 1114priorities.
1103 1115
1104=item ev_invoke (loop, ev_TYPE *watcher, int revents) 1116=item ev_invoke (loop, ev_TYPE *watcher, int revents)
1105 1117
1106Invoke the C<watcher> with the given C<loop> and C<revents>. Neither 1118Invoke the C<watcher> with the given C<loop> and C<revents>. Neither
2696event loop blocks next and before C<ev_check> watchers are being called, 2708event loop blocks next and before C<ev_check> watchers are being called,
2697and only in the child after the fork. If whoever good citizen calling 2709and only in the child after the fork. If whoever good citizen calling
2698C<ev_default_fork> cheats and calls it in the wrong process, the fork 2710C<ev_default_fork> cheats and calls it in the wrong process, the fork
2699handlers will be invoked, too, of course. 2711handlers will be invoked, too, of course.
2700 2712
2713=head3 The special problem of life after fork - how is it possible?
2714
2715Most uses of C<fork()> consist of forking, then some simple calls to ste
2716up/change the process environment, followed by a call to C<exec()>. This
2717sequence should be handled by libev without any problems.
2718
2719This changes when the application actually wants to do event handling
2720in the child, or both parent in child, in effect "continuing" after the
2721fork.
2722
2723The default mode of operation (for libev, with application help to detect
2724forks) is to duplicate all the state in the child, as would be expected
2725when I<either> the parent I<or> the child process continues.
2726
2727When both processes want to continue using libev, then this is usually the
2728wrong result. In that case, usually one process (typically the parent) is
2729supposed to continue with all watchers in place as before, while the other
2730process typically wants to start fresh, i.e. without any active watchers.
2731
2732The cleanest and most efficient way to achieve that with libev is to
2733simply create a new event loop, which of course will be "empty", and
2734use that for new watchers. This has the advantage of not touching more
2735memory than necessary, and thus avoiding the copy-on-write, and the
2736disadvantage of having to use multiple event loops (which do not support
2737signal watchers).
2738
2739When this is not possible, or you want to use the default loop for
2740other reasons, then in the process that wants to start "fresh", call
2741C<ev_default_destroy ()> followed by C<ev_default_loop (...)>. Destroying
2742the default loop will "orphan" (not stop) all registered watchers, so you
2743have to be careful not to execute code that modifies those watchers. Note
2744also that in that case, you have to re-register any signal watchers.
2745
2701=head3 Watcher-Specific Functions and Data Members 2746=head3 Watcher-Specific Functions and Data Members
2702 2747
2703=over 4 2748=over 4
2704 2749
2705=item ev_fork_init (ev_signal *, callback) 2750=item ev_fork_init (ev_signal *, callback)
4094involves iterating over all running async watchers or all signal numbers. 4139involves iterating over all running async watchers or all signal numbers.
4095 4140
4096=back 4141=back
4097 4142
4098 4143
4144=head1 GLOSSARY
4145
4146=over 4
4147
4148=item active
4149
4150A watcher is active as long as it has been started (has been attached to
4151an event loop) but not yet stopped (disassociated from the event loop).
4152
4153=item application
4154
4155In this document, an application is whatever is using libev.
4156
4157=item callback
4158
4159The address of a function that is called when some event has been
4160detected. Callbacks are being passed the event loop, the watcher that
4161received the event, and the actual event bitset.
4162
4163=item callback invocation
4164
4165The act of calling the callback associated with a watcher.
4166
4167=item event
4168
4169A change of state of some external event, such as data now being available
4170for reading on a file descriptor, time having passed or simply not having
4171any other events happening anymore.
4172
4173In libev, events are represented as single bits (such as C<EV_READ> or
4174C<EV_TIMEOUT>).
4175
4176=item event library
4177
4178A software package implementing an event model and loop.
4179
4180=item event loop
4181
4182An entity that handles and processes external events and converts them
4183into callback invocations.
4184
4185=item event model
4186
4187The model used to describe how an event loop handles and processes
4188watchers and events.
4189
4190=item pending
4191
4192A watcher is pending as soon as the corresponding event has been detected,
4193and stops being pending as soon as the watcher will be invoked or its
4194pending status is explicitly cleared by the application.
4195
4196A watcher can be pending, but not active. Stopping a watcher also clears
4197its pending status.
4198
4199=item real time
4200
4201The physical time that is observed. It is apparently strictly monotonic :)
4202
4203=item wall-clock time
4204
4205The time and date as shown on clocks. Unlike real time, it can actually
4206be wrong and jump forwards and backwards, e.g. when the you adjust your
4207clock.
4208
4209=item watcher
4210
4211A data structure that describes interest in certain events. Watchers need
4212to be started (attached to an event loop) before they can receive events.
4213
4214=item watcher invocation
4215
4216The act of calling the callback associated with a watcher.
4217
4218=back
4219
4099=head1 AUTHOR 4220=head1 AUTHOR
4100 4221
4101Marc Lehmann <libev@schmorp.de>, with repeated corrections by Mikael Magnusson. 4222Marc Lehmann <libev@schmorp.de>, with repeated corrections by Mikael Magnusson.
4102 4223

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines