--- libev/ev.pod 2009/07/08 02:46:05 1.247 +++ libev/ev.pod 2010/10/18 07:36:05 1.306 @@ -77,7 +77,7 @@ on event-based programming, nor will it introduce event-based programming with libev. -Familarity with event based programming techniques in general is assumed +Familiarity with event based programming techniques in general is assumed throughout this document. =head1 ABOUT LIBEV @@ -100,13 +100,14 @@ Libev supports C (files, many character devices...). While stopping, setting and starting an I/O watcher in the same iteration will result in some caching, there is still a system call per such @@ -520,9 +546,10 @@ =back -If one or more of these are or'ed into the flags value, then only these -backends will be tried (in the reverse order as listed here). If none are -specified, all backends in C will be tried. +If one or more of the backend flags are or'ed into the flags value, +then only these backends will be tried (in the reverse order as listed +here). If none are specified, all backends in C will be tried. Example: This is the most typical usage. @@ -544,11 +571,9 @@ =item struct ev_loop *ev_loop_new (unsigned int flags) Similar to C, but always creates a new event loop that is -always distinct from the default loop. Unlike the default loop, it cannot -handle signal and child watchers, and attempts to do so will be greeted by -undefined behaviour (or a failed assertion if assertions are enabled). +always distinct from the default loop. -Note that this function I thread-safe, and the recommended way to use +Note that this function I thread-safe, and one common way to use libev with threads is indeed to create one loop per thread, and using the default loop in the "main" or "initial" thread. @@ -560,13 +585,12 @@ =item ev_default_destroy () -Destroys the default loop again (frees all memory and kernel state -etc.). None of the active event watchers will be stopped in the normal -sense, so e.g. C might still return true. It is your -responsibility to either stop all watchers cleanly yourself I -calling this function, or cope with the fact afterwards (which is usually -the easiest thing, you can just ignore the watchers and/or C them -for example). +Destroys the default loop (frees all memory and kernel state etc.). None +of the active event watchers will be stopped in the normal sense, so +e.g. C might still return true. It is your responsibility to +either stop all watchers cleanly yourself I calling this function, +or cope with the fact afterwards (which is usually the easiest thing, you +can just ignore the watchers and/or C them for example). Note that certain global state, such as signal state (and installed signal handlers), will not be freed by this function, and related watchers (such @@ -575,7 +599,7 @@ In general it is not advisable to call this function except in the rare occasion where you really need to free e.g. the signal handling pipe fds. If you need dynamically allocated loops it is better to use -C and C). +C and C. =item ev_loop_destroy (loop) @@ -591,9 +615,15 @@ sense). You I call it in the child before using any of the libev functions, and it will only take effect at the next C iteration. +Again, you I to call it on I loop that you want to re-use after +a fork, I. This is +because some kernel interfaces *cough* I *cough* do funny things +during fork. + On the other hand, you only need to call this function in the child -process if and only if you want to use the event library in the child. If -you just fork+exec, you don't have to call it at all. +process if and only if you want to use the event loop in the child. If you +just fork+exec or create a new loop in the child, you don't have to call +it at all. The function itself is quite fast and it's usually not a problem to call it just in case after a fork. To make this easy, the function will fit in @@ -605,25 +635,26 @@ Like C, but acts on an event loop created by C. Yes, you have to call this on every allocated event loop -after fork that you want to re-use in the child, and how you do this is -entirely your own problem. +after fork that you want to re-use in the child, and how you keep track of +them is entirely your own problem. =item int ev_is_default_loop (loop) Returns true when the given loop is, in fact, the default loop, and false otherwise. -=item unsigned int ev_loop_count (loop) +=item unsigned int ev_iteration (loop) -Returns the count of loop iterations for the loop, which is identical to +Returns the current iteration count for the loop, which is identical to the number of times libev did poll for new events. It starts at C<0> and happily wraps around with enough iterations. This value can sometimes be useful as a generation counter of sorts (it "ticks" the number of loop iterations), as it roughly corresponds with -C and C calls. +C and C calls - and is incremented between the +prepare and check phases. -=item unsigned int ev_loop_depth (loop) +=item unsigned int ev_depth (loop) Returns the number of times C was entered minus the number of times C was exited, in other words, the recursion depth. @@ -633,7 +664,8 @@ in which case it is higher. Leaving C abnormally (setjmp/longjmp, cancelling the thread -etc.), doesn't count as exit. +etc.), doesn't count as "exit" - consider this as a hint to avoid such +ungentleman behaviour unless it's really convenient. =item unsigned int ev_backend (loop) @@ -677,7 +709,7 @@ Effectively, all C watchers will be delayed by the time spend between C and C, and all C watchers will be rescheduled (that is, they will lose any events that would have -occured while suspended). +occurred while suspended). After calling C you B call I function on the given loop other than C, and you B call C @@ -689,8 +721,8 @@ =item ev_loop (loop, int flags) Finally, this is it, the event handler. This function usually is called -after you initialised all your watchers and you want to start handling -events. +after you have initialised all your watchers and you want to start +handling events. If the flags argument is specified as C<0>, it will not return until either no event watchers are active anymore or C was called. @@ -764,7 +796,7 @@ This "unloop state" will be cleared when entering C again. -It is safe to call C from otuside any C calls. +It is safe to call C from outside any C calls. =item ev_ref (loop) @@ -774,9 +806,10 @@ loop: Every watcher keeps one reference, and as long as the reference count is nonzero, C will not return on its own. -If you have a watcher you never unregister that should not keep C -from returning, call ev_unref() after starting, and ev_ref() before -stopping it. +This is useful when you have a watcher that you never intend to +unregister, but that nevertheless should not keep C from +returning. In such a case, call C after starting, and C +before stopping it. As an example, libev itself uses this for its internal signal pipe: It is not visible to the libev user and should not keep C from @@ -843,7 +876,7 @@ you do transactions with the outside world and you can't increase the parallelity, then this setting will limit your transaction rate (if you need to poll once per transaction and the I/O collect interval is 0.01, -then you can't do more than 100 transations per second). +then you can't do more than 100 transactions per second). Setting the I can improve the opportunity for saving power, as the program will "bundle" timer callback invocations that @@ -858,6 +891,71 @@ ev_set_timeout_collect_interval (EV_DEFAULT_UC_ 0.1); ev_set_io_collect_interval (EV_DEFAULT_UC_ 0.01); +=item ev_invoke_pending (loop) + +This call will simply invoke all pending watchers while resetting their +pending state. Normally, C does this automatically when required, +but when overriding the invoke callback this call comes handy. + +=item int ev_pending_count (loop) + +Returns the number of pending watchers - zero indicates that no watchers +are pending. + +=item ev_set_invoke_pending_cb (loop, void (*invoke_pending_cb)(EV_P)) + +This overrides the invoke pending functionality of the loop: Instead of +invoking all pending watchers when there are any, C will call +this callback instead. This is useful, for example, when you want to +invoke the actual watchers inside another context (another thread etc.). + +If you want to reset the callback, use C as new +callback. + +=item ev_set_loop_release_cb (loop, void (*release)(EV_P), void (*acquire)(EV_P)) + +Sometimes you want to share the same loop between multiple threads. This +can be done relatively simply by putting mutex_lock/unlock calls around +each call to a libev function. + +However, C can run an indefinite time, so it is not feasible to +wait for it to return. One way around this is to wake up the loop via +C and C, another way is to set these I +and I callbacks on the loop. + +When set, then C will be called just before the thread is +suspended waiting for new events, and C is called just +afterwards. + +Ideally, C will just call your mutex_unlock function, and +C will just call the mutex_lock function again. + +While event loop modifications are allowed between invocations of +C and C (that's their only purpose after all), no +modifications done will affect the event loop, i.e. adding watchers will +have no effect on the set of file descriptors being watched, or the time +waited. Use an C watcher to wake up C when you want it +to take note of any changes you made. + +In theory, threads executing C will be async-cancel safe between +invocations of C and C. + +See also the locking example in the C section later in this +document. + +=item ev_set_userdata (loop, void *data) + +=item ev_userdata (loop) + +Set and retrieve a single C associated with a loop. When +C has never been called, then C returns +C<0.> + +These two functions can be used to associate arbitrary data with a loop, +and are intended solely for the C, C and +C callbacks described above, but of course can be (ab-)used for +any other purpose as well. + =item ev_loop_verify (loop) This function only does something when C support has been @@ -943,7 +1041,7 @@ The file descriptor in the C watcher has become readable and/or writable. -=item C +=item C The C watcher has timed out. @@ -1043,7 +1141,7 @@ ev_init (&w, my_cb); ev_io_set (&w, STDIN_FILENO, EV_READ); -=item C (ev_TYPE *, [args]) +=item C (ev_TYPE *watcher, [args]) This macro initialises the type-specific parts of a watcher. You need to call C at least once before you call this macro, but you can @@ -1066,7 +1164,7 @@ ev_io_init (&w, my_cb, STDIN_FILENO, EV_READ); -=item C (loop *, ev_TYPE *watcher) +=item C (loop, ev_TYPE *watcher) Starts (activates) the given watcher. Only active watchers will receive events. If the watcher is already active nothing will happen. @@ -1076,7 +1174,7 @@ ev_io_start (EV_DEFAULT_UC, &w); -=item C (loop *, ev_TYPE *watcher) +=item C (loop, ev_TYPE *watcher) Stops the given watcher if active, and clears the pending status (whether the watcher was active or not). @@ -1111,7 +1209,7 @@ Change the callback. You can change the callback at virtually any time (modulo threads). -=item ev_set_priority (ev_TYPE *watcher, priority) +=item ev_set_priority (ev_TYPE *watcher, int priority) =item int ev_priority (ev_TYPE *watcher) @@ -1153,6 +1251,20 @@ Sometimes it can be useful to "poll" a watcher instead of waiting for its callback to be invoked, which can be accomplished with this function. +=item ev_feed_event (loop, ev_TYPE *watcher, int revents) + +Feeds the given event set into the event loop, as if the specified event +had happened for the specified watcher (which must be a pointer to an +initialised but not necessarily started event watcher). Obviously you must +not free the watcher as long as it has pending events. + +Stopping the watcher, letting libev invoke it, or calling +C will clear the pending event, even if the watcher was +not started in the first place. + +See also C and C for related +functions that do not need a watcher. + =back @@ -1272,7 +1384,7 @@ you can associate an C watcher to each such watcher, and in the normal watcher callback, you just start the idle watcher. The real processing is done in the idle watcher callback. This causes libev to -continously poll and process kernel event data for the watcher, but when +continuously poll and process kernel event data for the watcher, but when the lock-out case is known to be rare (which in turn is rare :), this is workable. @@ -1296,7 +1408,7 @@ // are not yet ready to handle it. ev_io_stop (EV_A_ w); - // start the idle watcher to ahndle the actual event. + // start the idle watcher to handle the actual event. // it will not be executed as long as other watchers // with the default priority are receiving events. ev_idle_start (EV_A_ &idle); @@ -1360,7 +1472,7 @@ known-to-be-good backend (at the time of this writing, this includes only C and C). The same applies to file descriptors for which non-blocking operation makes no sense (such as -files) - libev doesn't guarentee any specific behaviour in that case. +files) - libev doesn't guarantee any specific behaviour in that case. Another thing you have to watch out for is that it is quite easy to receive "spurious" readiness notifications, that is your callback might @@ -1435,6 +1547,44 @@ ignore SIGPIPE (and maybe make sure you log the exit status of your daemon somewhere, as that would have given you a big clue). +=head3 The special problem of accept()ing when you can't + +Many implementations of the POSIX C function (for example, +found in post-2004 Linux) have the peculiar behaviour of not removing a +connection from the pending queue in all error cases. + +For example, larger servers often run out of file descriptors (because +of resource limits), causing C to fail with C but not +rejecting the connection, leading to libev signalling readiness on +the next iteration again (the connection still exists after all), and +typically causing the program to loop at 100% CPU usage. + +Unfortunately, the set of errors that cause this issue differs between +operating systems, there is usually little the app can do to remedy the +situation, and no known thread-safe method of removing the connection to +cope with overload is known (to me). + +One of the easiest ways to handle this situation is to just ignore it +- when the program encounters an overload, it will just loop until the +situation is over. While this is a form of busy waiting, no OS offers an +event-based way to handle this situation, so it's the best one can do. + +A better way to handle the situation is to log any errors other than +C and C, making sure not to flood the log with such +messages, and continue as usual, which at least gives the user an idea of +what could be wrong ("raise the ulimit!"). For extra points one could stop +the C watcher on the listening fd "for a while", which reduces CPU +usage. + +If your program is single-threaded, then you could also keep a dummy file +descriptor for overload situations (e.g. by opening F), and +when you run into C or C, close it, run C, +close that fd, and create a new dummy fd. This will gracefully refuse +clients under typical overload conditions. + +The last way to handle it is to simply log the error and C, as +is often done with C failures, but this results in an easy +opportunity for a DoS attack. =head3 Watcher-Specific Functions @@ -1494,8 +1644,8 @@ passed (not I, so on systems with very low-resolution clocks this might introduce a small delay). If multiple timers become ready during the same loop iteration then the ones with earlier time-out values are invoked -before ones with later time-out values (but this is no longer true when a -callback calls C recursively). +before ones of the same priority with later time-out values (but this is +no longer true when a callback calls C recursively). =head3 Be smart about timeouts @@ -1591,7 +1741,7 @@ // if last_activity + 60. is older than now, we did time out if (timeout < now) { - // timeout occured, take action + // timeout occurred, take action } else { @@ -1623,12 +1773,12 @@ ev_init (timer, callback); last_activity = ev_now (loop); - callback (loop, timer, EV_TIMEOUT); + callback (loop, timer, EV_TIMER); And when there is some activity, simply store the current time in C, no libev calls at all: - last_actiivty = ev_now (loop); + last_activity = ev_now (loop); This technique is slightly more complex, but in most cases where the time-out is unlikely to be triggered, much more efficient. @@ -1692,6 +1842,36 @@ update of the time returned by C by calling C. +=head3 The special problems of suspended animation + +When you leave the server world it is quite customary to hit machines that +can suspend/hibernate - what happens to the clocks during such a suspend? + +Some quick tests made with a Linux 2.6.28 indicate that a suspend freezes +all processes, while the clocks (C, C) continue +to run until the system is suspended, but they will not advance while the +system is suspended. That means, on resume, it will be as if the program +was frozen for a few seconds, but the suspend time will not be counted +towards C when a monotonic clock source is used. The real time +clock advanced as expected, but if it is used as sole clocksource, then a +long suspend would be detected as a time jump by libev, and timers would +be adjusted accordingly. + +I would not be surprised to see different behaviour in different between +operating systems, OS versions or even different hardware. + +The other form of suspend (job control, or sending a SIGSTOP) will see a +time jump in the monotonic clocks and the realtime clock. If the program +is suspended for a very long time, and monotonic clock sources are in use, +then you can expect Cs to expire as the full suspension time +will be counted towards the timers. When no monotonic clock source is in +use, then libev will again assume a timejump and adjust accordingly. + +It might be beneficial for this latter case to call C +and C in code that handles C, to at least get +deterministic behaviour in this case (you can do nothing against +C). + =head3 Watcher-Specific Functions and Data Members =over 4 @@ -1727,6 +1907,18 @@ This sounds a bit complicated, see L, above, for a usage example. +=item ev_tstamp ev_timer_remaining (loop, ev_timer *) + +Returns the remaining time until a timer fires. If the timer is active, +then this time is relative to the current event loop time, otherwise it's +the timeout value currently configured. + +That is, after an C, C returns +C<5>. When the timer is started and one second passes, C +will return C<4>. When the timer expires and is restarted, it will return +roughly C<7> (likely slightly less as callback invocation takes some time, +too), and so on. + =item ev_tstamp repeat [read-write] The current C value. Will be used each time the watcher times out @@ -1935,7 +2127,7 @@ potentially a lot of jitter, but good long-term stability. static void - clock_cb (struct ev_loop *loop, ev_io *w, int revents) + clock_cb (struct ev_loop *loop, ev_periodic *w, int revents) { ... its now a full hour (UTC, or TAI or whatever your clock follows) } @@ -1971,22 +2163,55 @@ will try it's best to deliver signals synchronously, i.e. as part of the normal event processing, like any other event. -If you want signals asynchronously, just use C as you would -do without libev and forget about sharing the signal. You can even use -C from a signal handler to synchronously wake up an event loop. +If you want signals to be delivered truly asynchronously, just use +C as you would do without libev and forget about sharing +the signal. You can even use C from a signal handler to +synchronously wake up an event loop. + +You can configure as many watchers as you like for the same signal, but +only within the same loop, i.e. you can watch for C in your +default loop and for C in another loop, but you cannot watch for +C in both the default loop and another loop at the same time. At +the moment, C is permanently tied to the default loop. -You can configure as many watchers as you like per signal. Only when the -first watcher gets started will libev actually register a signal handler +When the first watcher gets started will libev actually register something with the kernel (thus it coexists with your own signal handlers as long as -you don't register any with libev for the same signal). Similarly, when -the last signal watcher for a signal is stopped, libev will reset the -signal handler to SIG_DFL (regardless of what it was set to before). +you don't register any with libev for the same signal). If possible and supported, libev will install its handlers with -C behaviour enabled, so system calls should not be unduly -interrupted. If you have a problem with system calls getting interrupted by -signals you can block all signals in an C watcher and unblock -them in an C watcher. +C (or equivalent) behaviour enabled, so system calls should +not be unduly interrupted. If you have a problem with system calls getting +interrupted by signals you can block all signals in an C watcher +and unblock them in an C watcher. + +=head3 The special problem of inheritance over fork/execve/pthread_create + +Both the signal mask (C) and the signal disposition +(C) are unspecified after starting a signal watcher (and after +stopping it again), that is, libev might or might not block the signal, +and might or might not set or restore the installed signal handler. + +While this does not matter for the signal disposition (libev never +sets signals to C, so handlers will be reset to C on +C), this matters for the signal mask: many programs do not expect +certain signals to be blocked. + +This means that before calling C (from the child) you should reset +the signal mask to whatever "default" you expect (all clear is a good +choice usually). + +The simplest way to ensure that the signal mask is reset in the child is +to install a fork handler with C that resets it. That will +catch fork calls done by libraries (such as the libc) as well. + +In current versions of libev, the signal will not be blocked indefinitely +unless you use the C API (C). While this reduces +the window of opportunity for problems, it will not go away, as libev +I to modify the signal mask, at least temporarily. + +So I can't stress this enough: I. This +is not a libev-specific thing, this is true for most event libraries. =head3 Watcher-Specific Functions and Data Members @@ -2034,11 +2259,15 @@ Only the default event loop is capable of handling signals, and therefore you can only register child watchers in the default event loop. +Due to some design glitches inside libev, child watchers will always be +handled at maximum priority (their priority is set to C by +libev) + =head3 Process Interaction Libev grabs C as soon as the default event loop is -initialised. This is necessary to guarantee proper behaviour even if -the first child watcher is started after the child exits. The occurrence +initialised. This is necessary to guarantee proper behaviour even if the +first child watcher is started after the child exits. The occurrence of C is recorded asynchronously, but child reaping is done synchronously as part of the event loop processing. Libev always reaps all children, even ones not watched. @@ -2058,7 +2287,8 @@ Currently, the child watcher never gets stopped, even when the child terminates, so normally one needs to stop the watcher in the callback. Future versions of libev might stop the watcher automatically -when a child exit is detected. +when a child exit is detected (calling C twice is not a +problem). =head3 Watcher-Specific Functions and Data Members @@ -2739,7 +2969,7 @@ =head3 The special problem of life after fork - how is it possible? -Most uses of C consist of forking, then some simple calls to ste +Most uses of C consist of forking, then some simple calls to set up/change the process environment, followed by a call to C. This sequence should be handled by libev without any problems. @@ -2783,17 +3013,16 @@ =back -=head2 C - how to wake up another event loop +=head2 C - how to wake up an event loop In general, you cannot use an C from multiple threads or other asynchronous sources such as signal handlers (as opposed to multiple event loops - those are of course safe to use in different threads). -Sometimes, however, you need to wake up another event loop you do not -control, for example because it belongs to another thread. This is what -C watchers do: as long as the C watcher is active, you -can signal it by calling C, which is thread- and signal -safe. +Sometimes, however, you need to wake up an event loop you do not control, +for example because it belongs to another thread. This is what C +watchers do: as long as the C watcher is active, you can signal +it by calling C, which is thread- and signal safe. This functionality is very similar to C watchers, as signals, too, are asynchronous in nature, and signals, too, will be compressed @@ -2808,7 +3037,8 @@ C does not support queueing of data in any way. The reason is that the author does not know of a simple (or any) algorithm for a multiple-writer-single-reader queue that works in all cases and doesn't -need elaborate support such as pthreads. +need elaborate support such as pthreads or unportable memory access +semantics. That means that if you want to queue data, you have to provide your own queue. But at least I can tell you how to implement locking around your @@ -2957,9 +3187,9 @@ started. Otherwise an C watcher with after = C (and repeat = 0) will be started. C<0> is a valid timeout. -The callback has the type C and gets +The callback has the type C and is passed an C set like normal event callbacks (a combination of -C, C, C or C) and the C +C, C, C or C) and the C value passed to C. Note that it is possible to receive I a timeout and an io event at the same time - you probably should give io events precedence. @@ -2970,24 +3200,18 @@ { if (revents & EV_READ) /* stdin might have data for us, joy! */; - else if (revents & EV_TIMEOUT) + else if (revents & EV_TIMER) /* doh, nothing entered */; } ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0); -=item ev_feed_event (struct ev_loop *, watcher *, int revents) - -Feeds the given event set into the event loop, as if the specified event -had happened for the specified watcher (which must be a pointer to an -initialised but not necessarily started event watcher). - -=item ev_feed_fd_event (struct ev_loop *, int fd, int revents) +=item ev_feed_fd_event (loop, int fd, int revents) Feed an event on the given fd, as if a file descriptor backend detected the given events it. -=item ev_feed_signal_event (struct ev_loop *loop, int signum) +=item ev_feed_signal_event (loop, int signum) Feed an event as if the given signal occurred (C must be the default loop!). @@ -3077,7 +3301,7 @@ =item ev::TYPE::TYPE () -=item ev::TYPE::TYPE (struct ev_loop *) +=item ev::TYPE::TYPE (loop) =item ev::TYPE::~TYPE @@ -3121,8 +3345,6 @@ =item w->set (object *) -This is an B feature that might go away in a future version. - This is a variation of a method callback - leaving out the method to call will default the method to C, which makes it possible to use functor objects without having to manually specify the C all @@ -3164,7 +3386,7 @@ static void io_cb (ev::io &w, int revents) { } iow.set (); -=item w->set (struct ev_loop *) +=item w->set (loop) Associates a different C with this watcher. You can only do this when the watcher is inactive (and not pending either). @@ -3271,6 +3493,12 @@ Erkki Seppala has written Ocaml bindings for libev, to be found at L. +=item Lua + +Brian Maher has written a partial interface to libev for lua (at the +time of this writing, only C and C), to be found at +L. + =back @@ -3433,12 +3661,19 @@ =head2 PREPROCESSOR SYMBOLS/MACROS Libev can be configured via a variety of preprocessor symbols you have to -define before including any of its files. The default in the absence of -autoconf is documented for every option. +define before including (or compiling) any of its files. The default in +the absence of autoconf is documented for every option. + +Symbols marked with "(h)" do not change the ABI, and can have different +values when compiling libev vs. including F, so it is permissible +to redefine them before including F without breaking compatibility +to a compiled library. All other symbols change the ABI, which means all +users of libev and the libev code itself must be compiled with compatible +settings. =over 4 -=item EV_STANDALONE +=item EV_STANDALONE (h) Must always be C<1> if you do not use autoconf configuration, which keeps libev from including F, and it also defines dummy @@ -3446,7 +3681,7 @@ supported). It will also not define any of the structs usually found in F that are not directly supported by the libev core alone. -In stanbdalone mode, libev will still try to automatically deduce the +In standalone mode, libev will still try to automatically deduce the configuration, but has to be more conservative. =item EV_USE_MONOTONIC @@ -3521,7 +3756,7 @@ it is assumed that all these functions actually work on fds, even on win32. Should not be defined on non-win32 platforms. -=item EV_FD_TO_WIN32_HANDLE +=item EV_FD_TO_WIN32_HANDLE(fd) If C is enabled, then libev needs a way to map file descriptors to socket handles. When not defining this symbol (the @@ -3529,6 +3764,20 @@ correct. In some cases, programs use their own file descriptor management, in which case they can provide this function to map fds to socket handles. +=item EV_WIN32_HANDLE_TO_FD(handle) + +If C then libev maps handles to file descriptors +using the standard C<_open_osfhandle> function. For programs implementing +their own fd to handle mapping, overwriting this function makes it easier +to do so. This can be done by defining this macro to an appropriate value. + +=item EV_WIN32_CLOSE_FD(fd) + +If programs implement their own fd to handle mapping on win32, then this +macro can be used to override the C function, useful to unregister +file descriptors again. Note that the replacement function has to close +the underlying OS handle. + =item EV_USE_POLL If defined to be C<1>, libev will compile in support for the C(2) @@ -3584,24 +3833,24 @@ In the absence of this define, libev will use C (from F), which is usually good enough on most platforms. -=item EV_H +=item EV_H (h) The name of the F header file used to include it. The default if undefined is C<"ev.h"> in F, F and F. This can be used to virtually rename the F header file in case of conflicts. -=item EV_CONFIG_H +=item EV_CONFIG_H (h) If C isn't C<1>, this variable can be used to override F's idea of where to find the F file, similarly to C, above. -=item EV_EVENT_H +=item EV_EVENT_H (h) Similarly to C, this macro can be used to override F's idea of how the F header can be found, the default is C<"event.h">. -=item EV_PROTOTYPES +=item EV_PROTOTYPES (h) If defined to be C<0>, then F will not define any function prototypes, but still define all the structs and other symbols. This is @@ -3633,60 +3882,130 @@ If your embedding application does not need any priorities, defining these both to C<0> will save some memory and CPU. -=item EV_PERIODIC_ENABLE +=item EV_PERIODIC_ENABLE, EV_IDLE_ENABLE, EV_EMBED_ENABLE, EV_STAT_ENABLE, +EV_PREPARE_ENABLE, EV_CHECK_ENABLE, EV_FORK_ENABLE, EV_SIGNAL_ENABLE, +EV_ASYNC_ENABLE, EV_CHILD_ENABLE. + +If undefined or defined to be C<1> (and the platform supports it), then +the respective watcher type is supported. If defined to be C<0>, then it +is not. Disabling watcher types mainly saves code size. -If undefined or defined to be C<1>, then periodic timers are supported. If -defined to be C<0>, then they are not. Disabling them saves a few kB of -code. +=item EV_FEATURES -=item EV_IDLE_ENABLE +If you need to shave off some kilobytes of code at the expense of some +speed (but with the full API), you can define this symbol to request +certain subsets of functionality. The default is to enable all features +that can be enabled on the platform. + +A typical way to use this symbol is to define it to C<0> (or to a bitset +with some broad features you want) and then selectively re-enable +additional parts you want, for example if you want everything minimal, +but multiple event loop support, async and child watchers and the poll +backend, use this: + + #define EV_FEATURES 0 + #define EV_MULTIPLICITY 1 + #define EV_USE_POLL 1 + #define EV_CHILD_ENABLE 1 + #define EV_ASYNC_ENABLE 1 -If undefined or defined to be C<1>, then idle watchers are supported. If -defined to be C<0>, then they are not. Disabling them saves a few kB of -code. +The actual value is a bitset, it can be a combination of the following +values: -=item EV_EMBED_ENABLE +=over 4 -If undefined or defined to be C<1>, then embed watchers are supported. If -defined to be C<0>, then they are not. Embed watchers rely on most other -watcher types, which therefore must not be disabled. +=item C<1> - faster/larger code -=item EV_STAT_ENABLE +Use larger code to speed up some operations. -If undefined or defined to be C<1>, then stat watchers are supported. If -defined to be C<0>, then they are not. +Currently this is used to override some inlining decisions (enlarging the +code size by roughly 30% on amd64). -=item EV_FORK_ENABLE +When optimising for size, use of compiler flags such as C<-Os> with +gcc is recommended, as well as C<-DNDEBUG>, as libev contains a number of +assertions. -If undefined or defined to be C<1>, then fork watchers are supported. If -defined to be C<0>, then they are not. +=item C<2> - faster/larger data structures -=item EV_ASYNC_ENABLE +Replaces the small 2-heap for timer management by a faster 4-heap, larger +hash table sizes and so on. This will usually further increase code size +and can additionally have an effect on the size of data structures at +runtime. -If undefined or defined to be C<1>, then async watchers are supported. If -defined to be C<0>, then they are not. +=item C<4> - full API configuration -=item EV_MINIMAL +This enables priorities (sets C=2 and C=-2), and +enables multiplicity (C=1). -If you need to shave off some kilobytes of code at the expense of some -speed, define this symbol to C<1>. Currently this is used to override some -inlining decisions, saves roughly 30% code size on amd64. It also selects a -much smaller 2-heap for timer management over the default 4-heap. +=item C<8> - full API + +This enables a lot of the "lesser used" API functions. See C for +details on which parts of the API are still available without this +feature, and do not complain if this subset changes over time. + +=item C<16> - enable all optional watcher types + +Enables all optional watcher types. If you want to selectively enable +only some watcher types other than I/O and timers (e.g. prepare, +embed, async, child...) you can enable them manually by defining +C to C<1> instead. + +=item C<32> - enable all backends + +This enables all backends - without this feature, you need to enable at +least one backend manually (C is a good choice). + +=item C<64> - enable OS-specific "helper" APIs + +Enable inotify, eventfd, signalfd and similar OS-specific helper APIs by +default. + +=back + +Compiling with C +reduces the compiled size of libev from 24.7Kb code/2.8Kb data to 6.5Kb +code/0.3Kb data on my GNU/Linux amd64 system, while still giving you I/O +watchers, timers and monotonic clock support. + +With an intelligent-enough linker (gcc+binutils are intelligent enough +when you use C<-Wl,--gc-sections -ffunction-sections>) functions unused by +your program might be left out as well - a binary starting a timer and an +I/O watcher then might come out at only 5Kb. + +=item EV_AVOID_STDIO + +If this is set to C<1> at compiletime, then libev will avoid using stdio +functions (printf, scanf, perror etc.). This will increase the code size +somewhat, but if your program doesn't otherwise depend on stdio and your +libc allows it, this avoids linking in the stdio library which is quite +big. + +Note that error messages might become less precise when this option is +enabled. + +=item EV_NSIG + +The highest supported signal number, +1 (or, the number of +signals): Normally, libev tries to deduce the maximum number of signals +automatically, but sometimes this fails, in which case it can be +specified. Also, using a lower number than detected (C<32> should be +good for about any system in existence) can save some memory, as libev +statically allocates some 12-24 bytes per signal number. =item EV_PID_HASHSIZE C watchers use a small hash table to distribute workload by -pid. The default size is C<16> (or C<1> with C), usually more -than enough. If you need to manage thousands of children you might want to -increase this value (I be a power of two). +pid. The default size is C<16> (or C<1> with C disabled), +usually more than enough. If you need to manage thousands of children you +might want to increase this value (I be a power of two). =item EV_INOTIFY_HASHSIZE C watchers use a small hash table to distribute workload by -inotify watch id. The default size is C<16> (or C<1> with C), -usually more than enough. If you need to manage thousands of C -watchers you might want to increase this value (I be a power of -two). +inotify watch id. The default size is C<16> (or C<1> with C +disabled), usually more than enough. If you need to manage thousands of +C watchers you might want to increase this value (I be a +power of two). =item EV_USE_4HEAP @@ -3695,8 +4014,8 @@ to C<1>. The 4-heap uses more complicated (longer) code but has noticeably faster performance with many (thousands) of watchers. -The default is C<1> unless C is set in which case it is C<0> -(disabled). +The default is C<1>, unless C overrides it, in which case it +will be C<0>. =item EV_HEAP_CACHE_AT @@ -3707,8 +4026,8 @@ but avoids random read accesses on heap changes. This improves performance noticeably with many (hundreds) of watchers. -The default is C<1> unless C is set in which case it is C<0> -(disabled). +The default is C<1>, unless C overrides it, in which case it +will be C<0>. =item EV_VERIFY @@ -3720,13 +4039,13 @@ verification code will be called very frequently, which will slow down libev considerably. -The default is C<1>, unless C is set, in which case it will be -C<0>. +The default is C<1>, unless C overrides it, in which case it +will be C<0>. =item EV_COMMON By default, all watchers have a C member. By redefining -this macro to a something else you can include more and other types of +this macro to something else you can include more and other types of members. You have to define it each time you include one of the files, though, and it must be identical each time. @@ -3789,15 +4108,14 @@ The usage in rxvt-unicode is simpler. It has a F header file that everybody includes and which overrides some configure choices: - #define EV_MINIMAL 1 - #define EV_USE_POLL 0 - #define EV_MULTIPLICITY 0 - #define EV_PERIODIC_ENABLE 0 - #define EV_STAT_ENABLE 0 - #define EV_FORK_ENABLE 0 + #define EV_FEATURES 8 + #define EV_USE_SELECT 1 + #define EV_PREPARE_ENABLE 1 + #define EV_IDLE_ENABLE 1 + #define EV_SIGNAL_ENABLE 1 + #define EV_CHILD_ENABLE 1 + #define EV_USE_STDEXCEPT 0 #define EV_CONFIG_H - #define EV_MINPRI 0 - #define EV_MAXPRI 0 #include "ev++.h" @@ -3867,14 +4185,152 @@ =back +=head4 THREAD LOCKING EXAMPLE + +Here is a fictitious example of how to run an event loop in a different +thread than where callbacks are being invoked and watchers are +created/added/removed. + +For a real-world example, see the C perl module, +which uses exactly this technique (which is suited for many high-level +languages). + +The example uses a pthread mutex to protect the loop data, a condition +variable to wait for callback invocations, an async watcher to notify the +event loop thread and an unspecified mechanism to wake up the main thread. + +First, you need to associate some data with the event loop: + + typedef struct { + mutex_t lock; /* global loop lock */ + ev_async async_w; + thread_t tid; + cond_t invoke_cv; + } userdata; + + void prepare_loop (EV_P) + { + // for simplicity, we use a static userdata struct. + static userdata u; + + ev_async_init (&u->async_w, async_cb); + ev_async_start (EV_A_ &u->async_w); + + pthread_mutex_init (&u->lock, 0); + pthread_cond_init (&u->invoke_cv, 0); + + // now associate this with the loop + ev_set_userdata (EV_A_ u); + ev_set_invoke_pending_cb (EV_A_ l_invoke); + ev_set_loop_release_cb (EV_A_ l_release, l_acquire); + + // then create the thread running ev_loop + pthread_create (&u->tid, 0, l_run, EV_A); + } + +The callback for the C watcher does nothing: the watcher is used +solely to wake up the event loop so it takes notice of any new watchers +that might have been added: + + static void + async_cb (EV_P_ ev_async *w, int revents) + { + // just used for the side effects + } + +The C and C callbacks simply unlock/lock the mutex +protecting the loop data, respectively. + + static void + l_release (EV_P) + { + userdata *u = ev_userdata (EV_A); + pthread_mutex_unlock (&u->lock); + } + + static void + l_acquire (EV_P) + { + userdata *u = ev_userdata (EV_A); + pthread_mutex_lock (&u->lock); + } + +The event loop thread first acquires the mutex, and then jumps straight +into C: + + void * + l_run (void *thr_arg) + { + struct ev_loop *loop = (struct ev_loop *)thr_arg; + + l_acquire (EV_A); + pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0); + ev_loop (EV_A_ 0); + l_release (EV_A); + + return 0; + } + +Instead of invoking all pending watchers, the C callback will +signal the main thread via some unspecified mechanism (signals? pipe +writes? C?) and then waits until all pending watchers +have been called (in a while loop because a) spurious wakeups are possible +and b) skipping inter-thread-communication when there are no pending +watchers is very beneficial): + + static void + l_invoke (EV_P) + { + userdata *u = ev_userdata (EV_A); + + while (ev_pending_count (EV_A)) + { + wake_up_other_thread_in_some_magic_or_not_so_magic_way (); + pthread_cond_wait (&u->invoke_cv, &u->lock); + } + } + +Now, whenever the main thread gets told to invoke pending watchers, it +will grab the lock, call C and then signal the loop +thread to continue: + + static void + real_invoke_pending (EV_P) + { + userdata *u = ev_userdata (EV_A); + + pthread_mutex_lock (&u->lock); + ev_invoke_pending (EV_A); + pthread_cond_signal (&u->invoke_cv); + pthread_mutex_unlock (&u->lock); + } + +Whenever you want to start/stop a watcher or do other modifications to an +event loop, you will now have to lock: + + ev_timer timeout_watcher; + userdata *u = ev_userdata (EV_A); + + ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.); + + pthread_mutex_lock (&u->lock); + ev_timer_start (EV_A_ &timeout_watcher); + ev_async_send (EV_A_ &u->async_w); + pthread_mutex_unlock (&u->lock); + +Note that sending the C watcher is required because otherwise +an event loop currently blocking in the kernel will have no knowledge +about the newly added timer. By waking up the loop it will pick up any new +watchers in the next event loop iteration. + =head3 COROUTINES Libev is very accommodating to coroutines ("cooperative threads"): libev fully supports nesting calls to its functions from different coroutines (e.g. you can call C on the same loop from two -different coroutines, and switch freely between both coroutines running the -loop, as long as you don't confuse yourself). The only exception is that -you must not do this from C reschedule callbacks. +different coroutines, and switch freely between both coroutines running +the loop, as long as you don't confuse yourself). The only exception is +that you must not do this from C reschedule callbacks. Care has been taken to ensure that libev does not keep local state inside C, and other calls do not usually allow for coroutine switches as @@ -3898,7 +4354,7 @@ And of course, some compiler warnings are just plain stupid, or simply wrong (because they don't actually warn about the condition their message seems to warn about). For example, certain older gcc versions had some -warnings that resulted an extreme number of false positives. These have +warnings that resulted in an extreme number of false positives. These have been fixed, but some people still insist on making code warn-free with such buggy versions. @@ -3944,19 +4400,106 @@ =head1 PORTABILITY NOTES +=head2 GNU/LINUX 32 BIT LIMITATIONS + +GNU/Linux is the only common platform that supports 64 bit file/large file +interfaces but I them by default. + +That means that libev compiled in the default environment doesn't support +files larger than 2GiB or so, which mainly affects C watchers. + +Unfortunately, many programs try to work around this GNU/Linux issue +by enabling the large file API, which makes them incompatible with the +standard libev compiled for their system. + +Likewise, libev cannot enable the large file API itself as this would +suddenly make it incompatible to the default compile time environment, +i.e. all programs not using special compile switches. + +=head2 OS/X AND DARWIN BUGS + +The whole thing is a bug if you ask me - basically any system interface +you touch is broken, whether it is locales, poll, kqueue or even the +OpenGL drivers. + +=head3 C is buggy + +The kqueue syscall is broken in all known versions - most versions support +only sockets, many support pipes. + +Libev tries to work around this by not using C by default on +this rotten platform, but of course you can still ask for it when creating +a loop. + +=head3 C is buggy + +Instead of fixing C, Apple replaced their (working) C +implementation by something calling C internally around the 10.5.6 +release, so now C I C are broken. + +Libev tries to work around this by not using C by default on +this rotten platform, but of course you can still ask for it when creating +a loop. + +=head3 C, and of course Apple found a way to fuck this +one up as well: On OS/X, C backends. + +=head2 AIX POLL BUG + +AIX unfortunately has a broken C header. Libev works around +this by trying to avoid the poll backend altogether (i.e. it's not even +compiled in), which normally isn't a big problem as C function The winsocket C