ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.pod
(Generate patch)

Comparing libev/ev.pod (file contents):
Revision 1.316 by root, Fri Oct 22 09:34:01 2010 UTC vs.
Revision 1.368 by root, Thu Apr 14 23:02:33 2011 UTC

43 43
44 int 44 int
45 main (void) 45 main (void)
46 { 46 {
47 // use the default event loop unless you have special needs 47 // use the default event loop unless you have special needs
48 struct ev_loop *loop = ev_default_loop (0); 48 struct ev_loop *loop = EV_DEFAULT;
49 49
50 // initialise an io watcher, then start it 50 // initialise an io watcher, then start it
51 // this one will watch for stdin to become readable 51 // this one will watch for stdin to become readable
52 ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ); 52 ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
53 ev_io_start (loop, &stdin_watcher); 53 ev_io_start (loop, &stdin_watcher);
58 ev_timer_start (loop, &timeout_watcher); 58 ev_timer_start (loop, &timeout_watcher);
59 59
60 // now wait for events to arrive 60 // now wait for events to arrive
61 ev_run (loop, 0); 61 ev_run (loop, 0);
62 62
63 // unloop was called, so exit 63 // break was called, so exit
64 return 0; 64 return 0;
65 } 65 }
66 66
67=head1 ABOUT THIS DOCUMENT 67=head1 ABOUT THIS DOCUMENT
68 68
77on event-based programming, nor will it introduce event-based programming 77on event-based programming, nor will it introduce event-based programming
78with libev. 78with libev.
79 79
80Familiarity with event based programming techniques in general is assumed 80Familiarity with event based programming techniques in general is assumed
81throughout this document. 81throughout this document.
82
83=head1 WHAT TO READ WHEN IN A HURRY
84
85This manual tries to be very detailed, but unfortunately, this also makes
86it very long. If you just want to know the basics of libev, I suggest
87reading L<ANATOMY OF A WATCHER>, then the L<EXAMPLE PROGRAM> above and
88look up the missing functions in L<GLOBAL FUNCTIONS> and the C<ev_io> and
89C<ev_timer> sections in L<WATCHER TYPES>.
82 90
83=head1 ABOUT LIBEV 91=head1 ABOUT LIBEV
84 92
85Libev is an event loop: you register interest in certain events (such as a 93Libev is an event loop: you register interest in certain events (such as a
86file descriptor being readable or a timeout occurring), and it will manage 94file descriptor being readable or a timeout occurring), and it will manage
124this argument. 132this argument.
125 133
126=head2 TIME REPRESENTATION 134=head2 TIME REPRESENTATION
127 135
128Libev represents time as a single floating point number, representing 136Libev represents time as a single floating point number, representing
129the (fractional) number of seconds since the (POSIX) epoch (in practise 137the (fractional) number of seconds since the (POSIX) epoch (in practice
130somewhere near the beginning of 1970, details are complicated, don't 138somewhere near the beginning of 1970, details are complicated, don't
131ask). This type is called C<ev_tstamp>, which is what you should use 139ask). This type is called C<ev_tstamp>, which is what you should use
132too. It usually aliases to the C<double> type in C. When you need to do 140too. It usually aliases to the C<double> type in C. When you need to do
133any calculations on it, you should treat it as some floating point value. 141any calculations on it, you should treat it as some floating point value.
134 142
165 173
166=item ev_tstamp ev_time () 174=item ev_tstamp ev_time ()
167 175
168Returns the current time as libev would use it. Please note that the 176Returns the current time as libev would use it. Please note that the
169C<ev_now> function is usually faster and also often returns the timestamp 177C<ev_now> function is usually faster and also often returns the timestamp
170you actually want to know. 178you actually want to know. Also interesting is the combination of
179C<ev_update_now> and C<ev_now>.
171 180
172=item ev_sleep (ev_tstamp interval) 181=item ev_sleep (ev_tstamp interval)
173 182
174Sleep for the given interval: The current thread will be blocked until 183Sleep for the given interval: The current thread will be blocked until
175either it is interrupted or the given time interval has passed. Basically 184either it is interrupted or the given time interval has passed. Basically
192as this indicates an incompatible change. Minor versions are usually 201as this indicates an incompatible change. Minor versions are usually
193compatible to older versions, so a larger minor version alone is usually 202compatible to older versions, so a larger minor version alone is usually
194not a problem. 203not a problem.
195 204
196Example: Make sure we haven't accidentally been linked against the wrong 205Example: Make sure we haven't accidentally been linked against the wrong
197version (note, however, that this will not detect ABI mismatches :). 206version (note, however, that this will not detect other ABI mismatches,
207such as LFS or reentrancy).
198 208
199 assert (("libev version mismatch", 209 assert (("libev version mismatch",
200 ev_version_major () == EV_VERSION_MAJOR 210 ev_version_major () == EV_VERSION_MAJOR
201 && ev_version_minor () >= EV_VERSION_MINOR)); 211 && ev_version_minor () >= EV_VERSION_MINOR));
202 212
213 assert (("sorry, no epoll, no sex", 223 assert (("sorry, no epoll, no sex",
214 ev_supported_backends () & EVBACKEND_EPOLL)); 224 ev_supported_backends () & EVBACKEND_EPOLL));
215 225
216=item unsigned int ev_recommended_backends () 226=item unsigned int ev_recommended_backends ()
217 227
218Return the set of all backends compiled into this binary of libev and also 228Return the set of all backends compiled into this binary of libev and
219recommended for this platform. This set is often smaller than the one 229also recommended for this platform, meaning it will work for most file
230descriptor types. This set is often smaller than the one returned by
220returned by C<ev_supported_backends>, as for example kqueue is broken on 231C<ev_supported_backends>, as for example kqueue is broken on most BSDs
221most BSDs and will not be auto-detected unless you explicitly request it 232and will not be auto-detected unless you explicitly request it (assuming
222(assuming you know what you are doing). This is the set of backends that 233you know what you are doing). This is the set of backends that libev will
223libev will probe for if you specify no backends explicitly. 234probe for if you specify no backends explicitly.
224 235
225=item unsigned int ev_embeddable_backends () 236=item unsigned int ev_embeddable_backends ()
226 237
227Returns the set of backends that are embeddable in other event loops. This 238Returns the set of backends that are embeddable in other event loops. This
228is the theoretical, all-platform, value. To find which backends 239value is platform-specific but can include backends not available on the
229might be supported on the current system, you would need to look at 240current system. To find which embeddable backends might be supported on
230C<ev_embeddable_backends () & ev_supported_backends ()>, likewise for 241the current system, you would need to look at C<ev_embeddable_backends ()
231recommended ones. 242& ev_supported_backends ()>, likewise for recommended ones.
232 243
233See the description of C<ev_embed> watchers for more info. 244See the description of C<ev_embed> watchers for more info.
234 245
235=item ev_set_allocator (void *(*cb)(void *ptr, long size)) [NOT REENTRANT] 246=item ev_set_allocator (void *(*cb)(void *ptr, long size))
236 247
237Sets the allocation function to use (the prototype is similar - the 248Sets the allocation function to use (the prototype is similar - the
238semantics are identical to the C<realloc> C89/SuS/POSIX function). It is 249semantics are identical to the C<realloc> C89/SuS/POSIX function). It is
239used to allocate and free memory (no surprises here). If it returns zero 250used to allocate and free memory (no surprises here). If it returns zero
240when memory needs to be allocated (C<size != 0>), the library might abort 251when memory needs to be allocated (C<size != 0>), the library might abort
266 } 277 }
267 278
268 ... 279 ...
269 ev_set_allocator (persistent_realloc); 280 ev_set_allocator (persistent_realloc);
270 281
271=item ev_set_syserr_cb (void (*cb)(const char *msg)); [NOT REENTRANT] 282=item ev_set_syserr_cb (void (*cb)(const char *msg))
272 283
273Set the callback function to call on a retryable system call error (such 284Set the callback function to call on a retryable system call error (such
274as failed select, poll, epoll_wait). The message is a printable string 285as failed select, poll, epoll_wait). The message is a printable string
275indicating the system call or subsystem causing the problem. If this 286indicating the system call or subsystem causing the problem. If this
276callback is set, then libev will expect it to remedy the situation, no 287callback is set, then libev will expect it to remedy the situation, no
288 } 299 }
289 300
290 ... 301 ...
291 ev_set_syserr_cb (fatal_error); 302 ev_set_syserr_cb (fatal_error);
292 303
304=item ev_feed_signal (int signum)
305
306This function can be used to "simulate" a signal receive. It is completely
307safe to call this function at any time, from any context, including signal
308handlers or random threads.
309
310Its main use is to customise signal handling in your process, especially
311in the presence of threads. For example, you could block signals
312by default in all threads (and specifying C<EVFLAG_NOSIGMASK> when
313creating any loops), and in one thread, use C<sigwait> or any other
314mechanism to wait for signals, then "deliver" them to libev by calling
315C<ev_feed_signal>.
316
293=back 317=back
294 318
295=head1 FUNCTIONS CONTROLLING THE EVENT LOOP 319=head1 FUNCTIONS CONTROLLING EVENT LOOPS
296 320
297An event loop is described by a C<struct ev_loop *> (the C<struct> is 321An event loop is described by a C<struct ev_loop *> (the C<struct> is
298I<not> optional in this case unless libev 3 compatibility is disabled, as 322I<not> optional in this case unless libev 3 compatibility is disabled, as
299libev 3 had an C<ev_loop> function colliding with the struct name). 323libev 3 had an C<ev_loop> function colliding with the struct name).
300 324
301The library knows two types of such loops, the I<default> loop, which 325The library knows two types of such loops, the I<default> loop, which
302supports signals and child events, and dynamically created event loops 326supports child process events, and dynamically created event loops which
303which do not. 327do not.
304 328
305=over 4 329=over 4
306 330
307=item struct ev_loop *ev_default_loop (unsigned int flags) 331=item struct ev_loop *ev_default_loop (unsigned int flags)
308 332
309This will initialise the default event loop if it hasn't been initialised 333This returns the "default" event loop object, which is what you should
310yet and return it. If the default loop could not be initialised, returns 334normally use when you just need "the event loop". Event loop objects and
311false. If it already was initialised it simply returns it (and ignores the 335the C<flags> parameter are described in more detail in the entry for
312flags. If that is troubling you, check C<ev_backend ()> afterwards). 336C<ev_loop_new>.
337
338If the default loop is already initialised then this function simply
339returns it (and ignores the flags. If that is troubling you, check
340C<ev_backend ()> afterwards). Otherwise it will create it with the given
341flags, which should almost always be C<0>, unless the caller is also the
342one calling C<ev_run> or otherwise qualifies as "the main program".
313 343
314If you don't know what event loop to use, use the one returned from this 344If you don't know what event loop to use, use the one returned from this
315function. 345function (or via the C<EV_DEFAULT> macro).
316 346
317Note that this function is I<not> thread-safe, so if you want to use it 347Note that this function is I<not> thread-safe, so if you want to use it
318from multiple threads, you have to lock (note also that this is unlikely, 348from multiple threads, you have to employ some kind of mutex (note also
319as loops cannot be shared easily between threads anyway). 349that this case is unlikely, as loops cannot be shared easily between
350threads anyway).
320 351
321The default loop is the only loop that can handle C<ev_signal> and 352The default loop is the only loop that can handle C<ev_child> watchers,
322C<ev_child> watchers, and to do this, it always registers a handler 353and to do this, it always registers a handler for C<SIGCHLD>. If this is
323for C<SIGCHLD>. If this is a problem for your application you can either 354a problem for your application you can either create a dynamic loop with
324create a dynamic loop with C<ev_loop_new> that doesn't do that, or you 355C<ev_loop_new> which doesn't do that, or you can simply overwrite the
325can simply overwrite the C<SIGCHLD> signal handler I<after> calling 356C<SIGCHLD> signal handler I<after> calling C<ev_default_init>.
326C<ev_default_init>. 357
358Example: This is the most typical usage.
359
360 if (!ev_default_loop (0))
361 fatal ("could not initialise libev, bad $LIBEV_FLAGS in environment?");
362
363Example: Restrict libev to the select and poll backends, and do not allow
364environment settings to be taken into account:
365
366 ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
367
368=item struct ev_loop *ev_loop_new (unsigned int flags)
369
370This will create and initialise a new event loop object. If the loop
371could not be initialised, returns false.
372
373This function is thread-safe, and one common way to use libev with
374threads is indeed to create one loop per thread, and using the default
375loop in the "main" or "initial" thread.
327 376
328The flags argument can be used to specify special behaviour or specific 377The flags argument can be used to specify special behaviour or specific
329backends to use, and is usually specified as C<0> (or C<EVFLAG_AUTO>). 378backends to use, and is usually specified as C<0> (or C<EVFLAG_AUTO>).
330 379
331The following flags are supported: 380The following flags are supported:
366environment variable. 415environment variable.
367 416
368=item C<EVFLAG_NOINOTIFY> 417=item C<EVFLAG_NOINOTIFY>
369 418
370When this flag is specified, then libev will not attempt to use the 419When this flag is specified, then libev will not attempt to use the
371I<inotify> API for it's C<ev_stat> watchers. Apart from debugging and 420I<inotify> API for its C<ev_stat> watchers. Apart from debugging and
372testing, this flag can be useful to conserve inotify file descriptors, as 421testing, this flag can be useful to conserve inotify file descriptors, as
373otherwise each loop using C<ev_stat> watchers consumes one inotify handle. 422otherwise each loop using C<ev_stat> watchers consumes one inotify handle.
374 423
375=item C<EVFLAG_SIGNALFD> 424=item C<EVFLAG_SIGNALFD>
376 425
377When this flag is specified, then libev will attempt to use the 426When this flag is specified, then libev will attempt to use the
378I<signalfd> API for it's C<ev_signal> (and C<ev_child>) watchers. This API 427I<signalfd> API for its C<ev_signal> (and C<ev_child>) watchers. This API
379delivers signals synchronously, which makes it both faster and might make 428delivers signals synchronously, which makes it both faster and might make
380it possible to get the queued signal data. It can also simplify signal 429it possible to get the queued signal data. It can also simplify signal
381handling with threads, as long as you properly block signals in your 430handling with threads, as long as you properly block signals in your
382threads that are not interested in handling them. 431threads that are not interested in handling them.
383 432
384Signalfd will not be used by default as this changes your signal mask, and 433Signalfd will not be used by default as this changes your signal mask, and
385there are a lot of shoddy libraries and programs (glib's threadpool for 434there are a lot of shoddy libraries and programs (glib's threadpool for
386example) that can't properly initialise their signal masks. 435example) that can't properly initialise their signal masks.
436
437=item C<EVFLAG_NOSIGMASK>
438
439When this flag is specified, then libev will avoid to modify the signal
440mask. Specifically, this means you ahve to make sure signals are unblocked
441when you want to receive them.
442
443This behaviour is useful when you want to do your own signal handling, or
444want to handle signals only in specific threads and want to avoid libev
445unblocking the signals.
446
447It's also required by POSIX in a threaded program, as libev calls
448C<sigprocmask>, whose behaviour is officially unspecified.
449
450This flag's behaviour will become the default in future versions of libev.
387 451
388=item C<EVBACKEND_SELECT> (value 1, portable select backend) 452=item C<EVBACKEND_SELECT> (value 1, portable select backend)
389 453
390This is your standard select(2) backend. Not I<completely> standard, as 454This is your standard select(2) backend. Not I<completely> standard, as
391libev tries to roll its own fd_set with no limits on the number of fds, 455libev tries to roll its own fd_set with no limits on the number of fds,
419=item C<EVBACKEND_EPOLL> (value 4, Linux) 483=item C<EVBACKEND_EPOLL> (value 4, Linux)
420 484
421Use the linux-specific epoll(7) interface (for both pre- and post-2.6.9 485Use the linux-specific epoll(7) interface (for both pre- and post-2.6.9
422kernels). 486kernels).
423 487
424For few fds, this backend is a bit little slower than poll and select, 488For few fds, this backend is a bit little slower than poll and select, but
425but it scales phenomenally better. While poll and select usually scale 489it scales phenomenally better. While poll and select usually scale like
426like O(total_fds) where n is the total number of fds (or the highest fd), 490O(total_fds) where total_fds is the total number of fds (or the highest
427epoll scales either O(1) or O(active_fds). 491fd), epoll scales either O(1) or O(active_fds).
428 492
429The epoll mechanism deserves honorable mention as the most misdesigned 493The epoll mechanism deserves honorable mention as the most misdesigned
430of the more advanced event mechanisms: mere annoyances include silently 494of the more advanced event mechanisms: mere annoyances include silently
431dropping file descriptors, requiring a system call per change per file 495dropping file descriptors, requiring a system call per change per file
432descriptor (and unnecessary guessing of parameters), problems with dup and 496descriptor (and unnecessary guessing of parameters), problems with dup,
497returning before the timeout value, resulting in additional iterations
498(and only giving 5ms accuracy while select on the same platform gives
433so on. The biggest issue is fork races, however - if a program forks then 4990.1ms) and so on. The biggest issue is fork races, however - if a program
434I<both> parent and child process have to recreate the epoll set, which can 500forks then I<both> parent and child process have to recreate the epoll
435take considerable time (one syscall per file descriptor) and is of course 501set, which can take considerable time (one syscall per file descriptor)
436hard to detect. 502and is of course hard to detect.
437 503
438Epoll is also notoriously buggy - embedding epoll fds I<should> work, but 504Epoll is also notoriously buggy - embedding epoll fds I<should> work, but
439of course I<doesn't>, and epoll just loves to report events for totally 505of course I<doesn't>, and epoll just loves to report events for totally
440I<different> file descriptors (even already closed ones, so one cannot 506I<different> file descriptors (even already closed ones, so one cannot
441even remove them from the set) than registered in the set (especially 507even remove them from the set) than registered in the set (especially
443employing an additional generation counter and comparing that against the 509employing an additional generation counter and comparing that against the
444events to filter out spurious ones, recreating the set when required. Last 510events to filter out spurious ones, recreating the set when required. Last
445not least, it also refuses to work with some file descriptors which work 511not least, it also refuses to work with some file descriptors which work
446perfectly fine with C<select> (files, many character devices...). 512perfectly fine with C<select> (files, many character devices...).
447 513
514Epoll is truly the train wreck analog among event poll mechanisms,
515a frankenpoll, cobbled together in a hurry, no thought to design or
516interaction with others.
517
448While stopping, setting and starting an I/O watcher in the same iteration 518While stopping, setting and starting an I/O watcher in the same iteration
449will result in some caching, there is still a system call per such 519will result in some caching, there is still a system call per such
450incident (because the same I<file descriptor> could point to a different 520incident (because the same I<file descriptor> could point to a different
451I<file description> now), so its best to avoid that. Also, C<dup ()>'ed 521I<file description> now), so its best to avoid that. Also, C<dup ()>'ed
452file descriptors might not work very well if you register events for both 522file descriptors might not work very well if you register events for both
517=item C<EVBACKEND_PORT> (value 32, Solaris 10) 587=item C<EVBACKEND_PORT> (value 32, Solaris 10)
518 588
519This uses the Solaris 10 event port mechanism. As with everything on Solaris, 589This uses the Solaris 10 event port mechanism. As with everything on Solaris,
520it's really slow, but it still scales very well (O(active_fds)). 590it's really slow, but it still scales very well (O(active_fds)).
521 591
522Please note that Solaris event ports can deliver a lot of spurious
523notifications, so you need to use non-blocking I/O or other means to avoid
524blocking when no data (or space) is available.
525
526While this backend scales well, it requires one system call per active 592While this backend scales well, it requires one system call per active
527file descriptor per loop iteration. For small and medium numbers of file 593file descriptor per loop iteration. For small and medium numbers of file
528descriptors a "slow" C<EVBACKEND_SELECT> or C<EVBACKEND_POLL> backend 594descriptors a "slow" C<EVBACKEND_SELECT> or C<EVBACKEND_POLL> backend
529might perform better. 595might perform better.
530 596
531On the positive side, with the exception of the spurious readiness 597On the positive side, this backend actually performed fully to
532notifications, this backend actually performed fully to specification
533in all tests and is fully embeddable, which is a rare feat among the 598specification in all tests and is fully embeddable, which is a rare feat
534OS-specific backends (I vastly prefer correctness over speed hacks). 599among the OS-specific backends (I vastly prefer correctness over speed
600hacks).
601
602On the negative side, the interface is I<bizarre> - so bizarre that
603even sun itself gets it wrong in their code examples: The event polling
604function sometimes returning events to the caller even though an error
605occurred, but with no indication whether it has done so or not (yes, it's
606even documented that way) - deadly for edge-triggered interfaces where
607you absolutely have to know whether an event occurred or not because you
608have to re-arm the watcher.
609
610Fortunately libev seems to be able to work around these idiocies.
535 611
536This backend maps C<EV_READ> and C<EV_WRITE> in the same way as 612This backend maps C<EV_READ> and C<EV_WRITE> in the same way as
537C<EVBACKEND_POLL>. 613C<EVBACKEND_POLL>.
538 614
539=item C<EVBACKEND_ALL> 615=item C<EVBACKEND_ALL>
540 616
541Try all backends (even potentially broken ones that wouldn't be tried 617Try all backends (even potentially broken ones that wouldn't be tried
542with C<EVFLAG_AUTO>). Since this is a mask, you can do stuff such as 618with C<EVFLAG_AUTO>). Since this is a mask, you can do stuff such as
543C<EVBACKEND_ALL & ~EVBACKEND_KQUEUE>. 619C<EVBACKEND_ALL & ~EVBACKEND_KQUEUE>.
544 620
545It is definitely not recommended to use this flag. 621It is definitely not recommended to use this flag, use whatever
622C<ev_recommended_backends ()> returns, or simply do not specify a backend
623at all.
624
625=item C<EVBACKEND_MASK>
626
627Not a backend at all, but a mask to select all backend bits from a
628C<flags> value, in case you want to mask out any backends from a flags
629value (e.g. when modifying the C<LIBEV_FLAGS> environment variable).
546 630
547=back 631=back
548 632
549If one or more of the backend flags are or'ed into the flags value, 633If one or more of the backend flags are or'ed into the flags value,
550then only these backends will be tried (in the reverse order as listed 634then only these backends will be tried (in the reverse order as listed
551here). If none are specified, all backends in C<ev_recommended_backends 635here). If none are specified, all backends in C<ev_recommended_backends
552()> will be tried. 636()> will be tried.
553 637
554Example: This is the most typical usage.
555
556 if (!ev_default_loop (0))
557 fatal ("could not initialise libev, bad $LIBEV_FLAGS in environment?");
558
559Example: Restrict libev to the select and poll backends, and do not allow
560environment settings to be taken into account:
561
562 ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
563
564Example: Use whatever libev has to offer, but make sure that kqueue is
565used if available (warning, breaks stuff, best use only with your own
566private event loop and only if you know the OS supports your types of
567fds):
568
569 ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
570
571=item struct ev_loop *ev_loop_new (unsigned int flags)
572
573Similar to C<ev_default_loop>, but always creates a new event loop that is
574always distinct from the default loop.
575
576Note that this function I<is> thread-safe, and one common way to use
577libev with threads is indeed to create one loop per thread, and using the
578default loop in the "main" or "initial" thread.
579
580Example: Try to create a event loop that uses epoll and nothing else. 638Example: Try to create a event loop that uses epoll and nothing else.
581 639
582 struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV); 640 struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
583 if (!epoller) 641 if (!epoller)
584 fatal ("no epoll found here, maybe it hides under your chair"); 642 fatal ("no epoll found here, maybe it hides under your chair");
585 643
644Example: Use whatever libev has to offer, but make sure that kqueue is
645used if available.
646
647 struct ev_loop *loop = ev_loop_new (ev_recommended_backends () | EVBACKEND_KQUEUE);
648
586=item ev_default_destroy () 649=item ev_loop_destroy (loop)
587 650
588Destroys the default loop (frees all memory and kernel state etc.). None 651Destroys an event loop object (frees all memory and kernel state
589of the active event watchers will be stopped in the normal sense, so 652etc.). None of the active event watchers will be stopped in the normal
590e.g. C<ev_is_active> might still return true. It is your responsibility to 653sense, so e.g. C<ev_is_active> might still return true. It is your
591either stop all watchers cleanly yourself I<before> calling this function, 654responsibility to either stop all watchers cleanly yourself I<before>
592or cope with the fact afterwards (which is usually the easiest thing, you 655calling this function, or cope with the fact afterwards (which is usually
593can just ignore the watchers and/or C<free ()> them for example). 656the easiest thing, you can just ignore the watchers and/or C<free ()> them
657for example).
594 658
595Note that certain global state, such as signal state (and installed signal 659Note that certain global state, such as signal state (and installed signal
596handlers), will not be freed by this function, and related watchers (such 660handlers), will not be freed by this function, and related watchers (such
597as signal and child watchers) would need to be stopped manually. 661as signal and child watchers) would need to be stopped manually.
598 662
599In general it is not advisable to call this function except in the 663This function is normally used on loop objects allocated by
600rare occasion where you really need to free e.g. the signal handling 664C<ev_loop_new>, but it can also be used on the default loop returned by
665C<ev_default_loop>, in which case it is not thread-safe.
666
667Note that it is not advisable to call this function on the default loop
668except in the rare occasion where you really need to free its resources.
601pipe fds. If you need dynamically allocated loops it is better to use 669If you need dynamically allocated loops it is better to use C<ev_loop_new>
602C<ev_loop_new> and C<ev_loop_destroy>. 670and C<ev_loop_destroy>.
603 671
604=item ev_loop_destroy (loop) 672=item ev_loop_fork (loop)
605 673
606Like C<ev_default_destroy>, but destroys an event loop created by an
607earlier call to C<ev_loop_new>.
608
609=item ev_default_fork ()
610
611This function sets a flag that causes subsequent C<ev_run> iterations 674This function sets a flag that causes subsequent C<ev_run> iterations to
612to reinitialise the kernel state for backends that have one. Despite the 675reinitialise the kernel state for backends that have one. Despite the
613name, you can call it anytime, but it makes most sense after forking, in 676name, you can call it anytime, but it makes most sense after forking, in
614the child process (or both child and parent, but that again makes little 677the child process. You I<must> call it (or use C<EVFLAG_FORKCHECK>) in the
615sense). You I<must> call it in the child before using any of the libev 678child before resuming or calling C<ev_run>.
616functions, and it will only take effect at the next C<ev_run> iteration.
617 679
618Again, you I<have> to call it on I<any> loop that you want to re-use after 680Again, you I<have> to call it on I<any> loop that you want to re-use after
619a fork, I<even if you do not plan to use the loop in the parent>. This is 681a fork, I<even if you do not plan to use the loop in the parent>. This is
620because some kernel interfaces *cough* I<kqueue> *cough* do funny things 682because some kernel interfaces *cough* I<kqueue> *cough* do funny things
621during fork. 683during fork.
626call it at all (in fact, C<epoll> is so badly broken that it makes a 688call it at all (in fact, C<epoll> is so badly broken that it makes a
627difference, but libev will usually detect this case on its own and do a 689difference, but libev will usually detect this case on its own and do a
628costly reset of the backend). 690costly reset of the backend).
629 691
630The function itself is quite fast and it's usually not a problem to call 692The function itself is quite fast and it's usually not a problem to call
631it just in case after a fork. To make this easy, the function will fit in 693it just in case after a fork.
632quite nicely into a call to C<pthread_atfork>:
633 694
695Example: Automate calling C<ev_loop_fork> on the default loop when
696using pthreads.
697
698 static void
699 post_fork_child (void)
700 {
701 ev_loop_fork (EV_DEFAULT);
702 }
703
704 ...
634 pthread_atfork (0, 0, ev_default_fork); 705 pthread_atfork (0, 0, post_fork_child);
635
636=item ev_loop_fork (loop)
637
638Like C<ev_default_fork>, but acts on an event loop created by
639C<ev_loop_new>. Yes, you have to call this on every allocated event loop
640after fork that you want to re-use in the child, and how you keep track of
641them is entirely your own problem.
642 706
643=item int ev_is_default_loop (loop) 707=item int ev_is_default_loop (loop)
644 708
645Returns true when the given loop is, in fact, the default loop, and false 709Returns true when the given loop is, in fact, the default loop, and false
646otherwise. 710otherwise.
657prepare and check phases. 721prepare and check phases.
658 722
659=item unsigned int ev_depth (loop) 723=item unsigned int ev_depth (loop)
660 724
661Returns the number of times C<ev_run> was entered minus the number of 725Returns the number of times C<ev_run> was entered minus the number of
662times C<ev_run> was exited, in other words, the recursion depth. 726times C<ev_run> was exited normally, in other words, the recursion depth.
663 727
664Outside C<ev_run>, this number is zero. In a callback, this number is 728Outside C<ev_run>, this number is zero. In a callback, this number is
665C<1>, unless C<ev_run> was invoked recursively (or from another thread), 729C<1>, unless C<ev_run> was invoked recursively (or from another thread),
666in which case it is higher. 730in which case it is higher.
667 731
668Leaving C<ev_run> abnormally (setjmp/longjmp, cancelling the thread 732Leaving C<ev_run> abnormally (setjmp/longjmp, cancelling the thread,
669etc.), doesn't count as "exit" - consider this as a hint to avoid such 733throwing an exception etc.), doesn't count as "exit" - consider this
670ungentleman-like behaviour unless it's really convenient. 734as a hint to avoid such ungentleman-like behaviour unless it's really
735convenient, in which case it is fully supported.
671 736
672=item unsigned int ev_backend (loop) 737=item unsigned int ev_backend (loop)
673 738
674Returns one of the C<EVBACKEND_*> flags indicating the event backend in 739Returns one of the C<EVBACKEND_*> flags indicating the event backend in
675use. 740use.
736relying on all watchers to be stopped when deciding when a program has 801relying on all watchers to be stopped when deciding when a program has
737finished (especially in interactive programs), but having a program 802finished (especially in interactive programs), but having a program
738that automatically loops as long as it has to and no longer by virtue 803that automatically loops as long as it has to and no longer by virtue
739of relying on its watchers stopping correctly, that is truly a thing of 804of relying on its watchers stopping correctly, that is truly a thing of
740beauty. 805beauty.
806
807This function is also I<mostly> exception-safe - you can break out of
808a C<ev_run> call by calling C<longjmp> in a callback, throwing a C++
809exception and so on. This does not decrement the C<ev_depth> value, nor
810will it clear any outstanding C<EVBREAK_ONE> breaks.
741 811
742A flags value of C<EVRUN_NOWAIT> will look for new events, will handle 812A flags value of C<EVRUN_NOWAIT> will look for new events, will handle
743those events and any already outstanding ones, but will not wait and 813those events and any already outstanding ones, but will not wait and
744block your process in case there are no events and will return after one 814block your process in case there are no events and will return after one
745iteration of the loop. This is sometimes useful to poll and handle new 815iteration of the loop. This is sometimes useful to poll and handle new
798anymore. 868anymore.
799 869
800 ... queue jobs here, make sure they register event watchers as long 870 ... queue jobs here, make sure they register event watchers as long
801 ... as they still have work to do (even an idle watcher will do..) 871 ... as they still have work to do (even an idle watcher will do..)
802 ev_run (my_loop, 0); 872 ev_run (my_loop, 0);
803 ... jobs done or somebody called unloop. yeah! 873 ... jobs done or somebody called break. yeah!
804 874
805=item ev_break (loop, how) 875=item ev_break (loop, how)
806 876
807Can be used to make a call to C<ev_run> return early (but only after it 877Can be used to make a call to C<ev_run> return early (but only after it
808has processed all outstanding events). The C<how> argument must be either 878has processed all outstanding events). The C<how> argument must be either
809C<EVBREAK_ONE>, which will make the innermost C<ev_run> call return, or 879C<EVBREAK_ONE>, which will make the innermost C<ev_run> call return, or
810C<EVBREAK_ALL>, which will make all nested C<ev_run> calls return. 880C<EVBREAK_ALL>, which will make all nested C<ev_run> calls return.
811 881
812This "unloop state" will be cleared when entering C<ev_run> again. 882This "break state" will be cleared on the next call to C<ev_run>.
813 883
814It is safe to call C<ev_break> from outside any C<ev_run> calls. ##TODO## 884It is safe to call C<ev_break> from outside any C<ev_run> calls, too, in
885which case it will have no effect.
815 886
816=item ev_ref (loop) 887=item ev_ref (loop)
817 888
818=item ev_unref (loop) 889=item ev_unref (loop)
819 890
840running when nothing else is active. 911running when nothing else is active.
841 912
842 ev_signal exitsig; 913 ev_signal exitsig;
843 ev_signal_init (&exitsig, sig_cb, SIGINT); 914 ev_signal_init (&exitsig, sig_cb, SIGINT);
844 ev_signal_start (loop, &exitsig); 915 ev_signal_start (loop, &exitsig);
845 evf_unref (loop); 916 ev_unref (loop);
846 917
847Example: For some weird reason, unregister the above signal handler again. 918Example: For some weird reason, unregister the above signal handler again.
848 919
849 ev_ref (loop); 920 ev_ref (loop);
850 ev_signal_stop (loop, &exitsig); 921 ev_signal_stop (loop, &exitsig);
962See also the locking example in the C<THREADS> section later in this 1033See also the locking example in the C<THREADS> section later in this
963document. 1034document.
964 1035
965=item ev_set_userdata (loop, void *data) 1036=item ev_set_userdata (loop, void *data)
966 1037
967=item ev_userdata (loop) 1038=item void *ev_userdata (loop)
968 1039
969Set and retrieve a single C<void *> associated with a loop. When 1040Set and retrieve a single C<void *> associated with a loop. When
970C<ev_set_userdata> has never been called, then C<ev_userdata> returns 1041C<ev_set_userdata> has never been called, then C<ev_userdata> returns
971C<0.> 1042C<0>.
972 1043
973These two functions can be used to associate arbitrary data with a loop, 1044These two functions can be used to associate arbitrary data with a loop,
974and are intended solely for the C<invoke_pending_cb>, C<release> and 1045and are intended solely for the C<invoke_pending_cb>, C<release> and
975C<acquire> callbacks described above, but of course can be (ab-)used for 1046C<acquire> callbacks described above, but of course can be (ab-)used for
976any other purpose as well. 1047any other purpose as well.
1104=item C<EV_FORK> 1175=item C<EV_FORK>
1105 1176
1106The event loop has been resumed in the child process after fork (see 1177The event loop has been resumed in the child process after fork (see
1107C<ev_fork>). 1178C<ev_fork>).
1108 1179
1180=item C<EV_CLEANUP>
1181
1182The event loop is about to be destroyed (see C<ev_cleanup>).
1183
1109=item C<EV_ASYNC> 1184=item C<EV_ASYNC>
1110 1185
1111The given async watcher has been asynchronously notified (see C<ev_async>). 1186The given async watcher has been asynchronously notified (see C<ev_async>).
1112 1187
1113=item C<EV_CUSTOM> 1188=item C<EV_CUSTOM>
1134programs, though, as the fd could already be closed and reused for another 1209programs, though, as the fd could already be closed and reused for another
1135thing, so beware. 1210thing, so beware.
1136 1211
1137=back 1212=back
1138 1213
1214=head2 GENERIC WATCHER FUNCTIONS
1215
1216=over 4
1217
1218=item C<ev_init> (ev_TYPE *watcher, callback)
1219
1220This macro initialises the generic portion of a watcher. The contents
1221of the watcher object can be arbitrary (so C<malloc> will do). Only
1222the generic parts of the watcher are initialised, you I<need> to call
1223the type-specific C<ev_TYPE_set> macro afterwards to initialise the
1224type-specific parts. For each type there is also a C<ev_TYPE_init> macro
1225which rolls both calls into one.
1226
1227You can reinitialise a watcher at any time as long as it has been stopped
1228(or never started) and there are no pending events outstanding.
1229
1230The callback is always of type C<void (*)(struct ev_loop *loop, ev_TYPE *watcher,
1231int revents)>.
1232
1233Example: Initialise an C<ev_io> watcher in two steps.
1234
1235 ev_io w;
1236 ev_init (&w, my_cb);
1237 ev_io_set (&w, STDIN_FILENO, EV_READ);
1238
1239=item C<ev_TYPE_set> (ev_TYPE *watcher, [args])
1240
1241This macro initialises the type-specific parts of a watcher. You need to
1242call C<ev_init> at least once before you call this macro, but you can
1243call C<ev_TYPE_set> any number of times. You must not, however, call this
1244macro on a watcher that is active (it can be pending, however, which is a
1245difference to the C<ev_init> macro).
1246
1247Although some watcher types do not have type-specific arguments
1248(e.g. C<ev_prepare>) you still need to call its C<set> macro.
1249
1250See C<ev_init>, above, for an example.
1251
1252=item C<ev_TYPE_init> (ev_TYPE *watcher, callback, [args])
1253
1254This convenience macro rolls both C<ev_init> and C<ev_TYPE_set> macro
1255calls into a single call. This is the most convenient method to initialise
1256a watcher. The same limitations apply, of course.
1257
1258Example: Initialise and set an C<ev_io> watcher in one step.
1259
1260 ev_io_init (&w, my_cb, STDIN_FILENO, EV_READ);
1261
1262=item C<ev_TYPE_start> (loop, ev_TYPE *watcher)
1263
1264Starts (activates) the given watcher. Only active watchers will receive
1265events. If the watcher is already active nothing will happen.
1266
1267Example: Start the C<ev_io> watcher that is being abused as example in this
1268whole section.
1269
1270 ev_io_start (EV_DEFAULT_UC, &w);
1271
1272=item C<ev_TYPE_stop> (loop, ev_TYPE *watcher)
1273
1274Stops the given watcher if active, and clears the pending status (whether
1275the watcher was active or not).
1276
1277It is possible that stopped watchers are pending - for example,
1278non-repeating timers are being stopped when they become pending - but
1279calling C<ev_TYPE_stop> ensures that the watcher is neither active nor
1280pending. If you want to free or reuse the memory used by the watcher it is
1281therefore a good idea to always call its C<ev_TYPE_stop> function.
1282
1283=item bool ev_is_active (ev_TYPE *watcher)
1284
1285Returns a true value iff the watcher is active (i.e. it has been started
1286and not yet been stopped). As long as a watcher is active you must not modify
1287it.
1288
1289=item bool ev_is_pending (ev_TYPE *watcher)
1290
1291Returns a true value iff the watcher is pending, (i.e. it has outstanding
1292events but its callback has not yet been invoked). As long as a watcher
1293is pending (but not active) you must not call an init function on it (but
1294C<ev_TYPE_set> is safe), you must not change its priority, and you must
1295make sure the watcher is available to libev (e.g. you cannot C<free ()>
1296it).
1297
1298=item callback ev_cb (ev_TYPE *watcher)
1299
1300Returns the callback currently set on the watcher.
1301
1302=item ev_cb_set (ev_TYPE *watcher, callback)
1303
1304Change the callback. You can change the callback at virtually any time
1305(modulo threads).
1306
1307=item ev_set_priority (ev_TYPE *watcher, int priority)
1308
1309=item int ev_priority (ev_TYPE *watcher)
1310
1311Set and query the priority of the watcher. The priority is a small
1312integer between C<EV_MAXPRI> (default: C<2>) and C<EV_MINPRI>
1313(default: C<-2>). Pending watchers with higher priority will be invoked
1314before watchers with lower priority, but priority will not keep watchers
1315from being executed (except for C<ev_idle> watchers).
1316
1317If you need to suppress invocation when higher priority events are pending
1318you need to look at C<ev_idle> watchers, which provide this functionality.
1319
1320You I<must not> change the priority of a watcher as long as it is active or
1321pending.
1322
1323Setting a priority outside the range of C<EV_MINPRI> to C<EV_MAXPRI> is
1324fine, as long as you do not mind that the priority value you query might
1325or might not have been clamped to the valid range.
1326
1327The default priority used by watchers when no priority has been set is
1328always C<0>, which is supposed to not be too high and not be too low :).
1329
1330See L<WATCHER PRIORITY MODELS>, below, for a more thorough treatment of
1331priorities.
1332
1333=item ev_invoke (loop, ev_TYPE *watcher, int revents)
1334
1335Invoke the C<watcher> with the given C<loop> and C<revents>. Neither
1336C<loop> nor C<revents> need to be valid as long as the watcher callback
1337can deal with that fact, as both are simply passed through to the
1338callback.
1339
1340=item int ev_clear_pending (loop, ev_TYPE *watcher)
1341
1342If the watcher is pending, this function clears its pending status and
1343returns its C<revents> bitset (as if its callback was invoked). If the
1344watcher isn't pending it does nothing and returns C<0>.
1345
1346Sometimes it can be useful to "poll" a watcher instead of waiting for its
1347callback to be invoked, which can be accomplished with this function.
1348
1349=item ev_feed_event (loop, ev_TYPE *watcher, int revents)
1350
1351Feeds the given event set into the event loop, as if the specified event
1352had happened for the specified watcher (which must be a pointer to an
1353initialised but not necessarily started event watcher). Obviously you must
1354not free the watcher as long as it has pending events.
1355
1356Stopping the watcher, letting libev invoke it, or calling
1357C<ev_clear_pending> will clear the pending event, even if the watcher was
1358not started in the first place.
1359
1360See also C<ev_feed_fd_event> and C<ev_feed_signal_event> for related
1361functions that do not need a watcher.
1362
1363=back
1364
1365See also the L<ASSOCIATING CUSTOM DATA WITH A WATCHER> and L<BUILDING YOUR
1366OWN COMPOSITE WATCHERS> idioms.
1367
1139=head2 WATCHER STATES 1368=head2 WATCHER STATES
1140 1369
1141There are various watcher states mentioned throughout this manual - 1370There are various watcher states mentioned throughout this manual -
1142active, pending and so on. In this section these states and the rules to 1371active, pending and so on. In this section these states and the rules to
1143transition between them will be described in more detail - and while these 1372transition between them will be described in more detail - and while these
1149 1378
1150Before a watcher can be registered with the event looop it has to be 1379Before a watcher can be registered with the event looop it has to be
1151initialised. This can be done with a call to C<ev_TYPE_init>, or calls to 1380initialised. This can be done with a call to C<ev_TYPE_init>, or calls to
1152C<ev_init> followed by the watcher-specific C<ev_TYPE_set> function. 1381C<ev_init> followed by the watcher-specific C<ev_TYPE_set> function.
1153 1382
1154In this state it is simply some block of memory that is suitable for use 1383In this state it is simply some block of memory that is suitable for
1155in an event loop. It can be moved around, freed, reused etc. at will. 1384use in an event loop. It can be moved around, freed, reused etc. at
1385will - as long as you either keep the memory contents intact, or call
1386C<ev_TYPE_init> again.
1156 1387
1157=item started/running/active 1388=item started/running/active
1158 1389
1159Once a watcher has been started with a call to C<ev_TYPE_start> it becomes 1390Once a watcher has been started with a call to C<ev_TYPE_start> it becomes
1160property of the event loop, and is actively waiting for events. While in 1391property of the event loop, and is actively waiting for events. While in
1188latter will clear any pending state the watcher might be in, regardless 1419latter will clear any pending state the watcher might be in, regardless
1189of whether it was active or not, so stopping a watcher explicitly before 1420of whether it was active or not, so stopping a watcher explicitly before
1190freeing it is often a good idea. 1421freeing it is often a good idea.
1191 1422
1192While stopped (and not pending) the watcher is essentially in the 1423While stopped (and not pending) the watcher is essentially in the
1193initialised state, that is it can be reused, moved, modified in any way 1424initialised state, that is, it can be reused, moved, modified in any way
1194you wish. 1425you wish (but when you trash the memory block, you need to C<ev_TYPE_init>
1426it again).
1195 1427
1196=back 1428=back
1197
1198=head2 GENERIC WATCHER FUNCTIONS
1199
1200=over 4
1201
1202=item C<ev_init> (ev_TYPE *watcher, callback)
1203
1204This macro initialises the generic portion of a watcher. The contents
1205of the watcher object can be arbitrary (so C<malloc> will do). Only
1206the generic parts of the watcher are initialised, you I<need> to call
1207the type-specific C<ev_TYPE_set> macro afterwards to initialise the
1208type-specific parts. For each type there is also a C<ev_TYPE_init> macro
1209which rolls both calls into one.
1210
1211You can reinitialise a watcher at any time as long as it has been stopped
1212(or never started) and there are no pending events outstanding.
1213
1214The callback is always of type C<void (*)(struct ev_loop *loop, ev_TYPE *watcher,
1215int revents)>.
1216
1217Example: Initialise an C<ev_io> watcher in two steps.
1218
1219 ev_io w;
1220 ev_init (&w, my_cb);
1221 ev_io_set (&w, STDIN_FILENO, EV_READ);
1222
1223=item C<ev_TYPE_set> (ev_TYPE *watcher, [args])
1224
1225This macro initialises the type-specific parts of a watcher. You need to
1226call C<ev_init> at least once before you call this macro, but you can
1227call C<ev_TYPE_set> any number of times. You must not, however, call this
1228macro on a watcher that is active (it can be pending, however, which is a
1229difference to the C<ev_init> macro).
1230
1231Although some watcher types do not have type-specific arguments
1232(e.g. C<ev_prepare>) you still need to call its C<set> macro.
1233
1234See C<ev_init>, above, for an example.
1235
1236=item C<ev_TYPE_init> (ev_TYPE *watcher, callback, [args])
1237
1238This convenience macro rolls both C<ev_init> and C<ev_TYPE_set> macro
1239calls into a single call. This is the most convenient method to initialise
1240a watcher. The same limitations apply, of course.
1241
1242Example: Initialise and set an C<ev_io> watcher in one step.
1243
1244 ev_io_init (&w, my_cb, STDIN_FILENO, EV_READ);
1245
1246=item C<ev_TYPE_start> (loop, ev_TYPE *watcher)
1247
1248Starts (activates) the given watcher. Only active watchers will receive
1249events. If the watcher is already active nothing will happen.
1250
1251Example: Start the C<ev_io> watcher that is being abused as example in this
1252whole section.
1253
1254 ev_io_start (EV_DEFAULT_UC, &w);
1255
1256=item C<ev_TYPE_stop> (loop, ev_TYPE *watcher)
1257
1258Stops the given watcher if active, and clears the pending status (whether
1259the watcher was active or not).
1260
1261It is possible that stopped watchers are pending - for example,
1262non-repeating timers are being stopped when they become pending - but
1263calling C<ev_TYPE_stop> ensures that the watcher is neither active nor
1264pending. If you want to free or reuse the memory used by the watcher it is
1265therefore a good idea to always call its C<ev_TYPE_stop> function.
1266
1267=item bool ev_is_active (ev_TYPE *watcher)
1268
1269Returns a true value iff the watcher is active (i.e. it has been started
1270and not yet been stopped). As long as a watcher is active you must not modify
1271it.
1272
1273=item bool ev_is_pending (ev_TYPE *watcher)
1274
1275Returns a true value iff the watcher is pending, (i.e. it has outstanding
1276events but its callback has not yet been invoked). As long as a watcher
1277is pending (but not active) you must not call an init function on it (but
1278C<ev_TYPE_set> is safe), you must not change its priority, and you must
1279make sure the watcher is available to libev (e.g. you cannot C<free ()>
1280it).
1281
1282=item callback ev_cb (ev_TYPE *watcher)
1283
1284Returns the callback currently set on the watcher.
1285
1286=item ev_cb_set (ev_TYPE *watcher, callback)
1287
1288Change the callback. You can change the callback at virtually any time
1289(modulo threads).
1290
1291=item ev_set_priority (ev_TYPE *watcher, int priority)
1292
1293=item int ev_priority (ev_TYPE *watcher)
1294
1295Set and query the priority of the watcher. The priority is a small
1296integer between C<EV_MAXPRI> (default: C<2>) and C<EV_MINPRI>
1297(default: C<-2>). Pending watchers with higher priority will be invoked
1298before watchers with lower priority, but priority will not keep watchers
1299from being executed (except for C<ev_idle> watchers).
1300
1301If you need to suppress invocation when higher priority events are pending
1302you need to look at C<ev_idle> watchers, which provide this functionality.
1303
1304You I<must not> change the priority of a watcher as long as it is active or
1305pending.
1306
1307Setting a priority outside the range of C<EV_MINPRI> to C<EV_MAXPRI> is
1308fine, as long as you do not mind that the priority value you query might
1309or might not have been clamped to the valid range.
1310
1311The default priority used by watchers when no priority has been set is
1312always C<0>, which is supposed to not be too high and not be too low :).
1313
1314See L<WATCHER PRIORITY MODELS>, below, for a more thorough treatment of
1315priorities.
1316
1317=item ev_invoke (loop, ev_TYPE *watcher, int revents)
1318
1319Invoke the C<watcher> with the given C<loop> and C<revents>. Neither
1320C<loop> nor C<revents> need to be valid as long as the watcher callback
1321can deal with that fact, as both are simply passed through to the
1322callback.
1323
1324=item int ev_clear_pending (loop, ev_TYPE *watcher)
1325
1326If the watcher is pending, this function clears its pending status and
1327returns its C<revents> bitset (as if its callback was invoked). If the
1328watcher isn't pending it does nothing and returns C<0>.
1329
1330Sometimes it can be useful to "poll" a watcher instead of waiting for its
1331callback to be invoked, which can be accomplished with this function.
1332
1333=item ev_feed_event (loop, ev_TYPE *watcher, int revents)
1334
1335Feeds the given event set into the event loop, as if the specified event
1336had happened for the specified watcher (which must be a pointer to an
1337initialised but not necessarily started event watcher). Obviously you must
1338not free the watcher as long as it has pending events.
1339
1340Stopping the watcher, letting libev invoke it, or calling
1341C<ev_clear_pending> will clear the pending event, even if the watcher was
1342not started in the first place.
1343
1344See also C<ev_feed_fd_event> and C<ev_feed_signal_event> for related
1345functions that do not need a watcher.
1346
1347=back
1348
1349
1350=head2 ASSOCIATING CUSTOM DATA WITH A WATCHER
1351
1352Each watcher has, by default, a member C<void *data> that you can change
1353and read at any time: libev will completely ignore it. This can be used
1354to associate arbitrary data with your watcher. If you need more data and
1355don't want to allocate memory and store a pointer to it in that data
1356member, you can also "subclass" the watcher type and provide your own
1357data:
1358
1359 struct my_io
1360 {
1361 ev_io io;
1362 int otherfd;
1363 void *somedata;
1364 struct whatever *mostinteresting;
1365 };
1366
1367 ...
1368 struct my_io w;
1369 ev_io_init (&w.io, my_cb, fd, EV_READ);
1370
1371And since your callback will be called with a pointer to the watcher, you
1372can cast it back to your own type:
1373
1374 static void my_cb (struct ev_loop *loop, ev_io *w_, int revents)
1375 {
1376 struct my_io *w = (struct my_io *)w_;
1377 ...
1378 }
1379
1380More interesting and less C-conformant ways of casting your callback type
1381instead have been omitted.
1382
1383Another common scenario is to use some data structure with multiple
1384embedded watchers:
1385
1386 struct my_biggy
1387 {
1388 int some_data;
1389 ev_timer t1;
1390 ev_timer t2;
1391 }
1392
1393In this case getting the pointer to C<my_biggy> is a bit more
1394complicated: Either you store the address of your C<my_biggy> struct
1395in the C<data> member of the watcher (for woozies), or you need to use
1396some pointer arithmetic using C<offsetof> inside your watchers (for real
1397programmers):
1398
1399 #include <stddef.h>
1400
1401 static void
1402 t1_cb (EV_P_ ev_timer *w, int revents)
1403 {
1404 struct my_biggy big = (struct my_biggy *)
1405 (((char *)w) - offsetof (struct my_biggy, t1));
1406 }
1407
1408 static void
1409 t2_cb (EV_P_ ev_timer *w, int revents)
1410 {
1411 struct my_biggy big = (struct my_biggy *)
1412 (((char *)w) - offsetof (struct my_biggy, t2));
1413 }
1414 1429
1415=head2 WATCHER PRIORITY MODELS 1430=head2 WATCHER PRIORITY MODELS
1416 1431
1417Many event loops support I<watcher priorities>, which are usually small 1432Many event loops support I<watcher priorities>, which are usually small
1418integers that influence the ordering of event callback invocation 1433integers that influence the ordering of event callback invocation
1545In general you can register as many read and/or write event watchers per 1560In general you can register as many read and/or write event watchers per
1546fd as you want (as long as you don't confuse yourself). Setting all file 1561fd as you want (as long as you don't confuse yourself). Setting all file
1547descriptors to non-blocking mode is also usually a good idea (but not 1562descriptors to non-blocking mode is also usually a good idea (but not
1548required if you know what you are doing). 1563required if you know what you are doing).
1549 1564
1550If you cannot use non-blocking mode, then force the use of a
1551known-to-be-good backend (at the time of this writing, this includes only
1552C<EVBACKEND_SELECT> and C<EVBACKEND_POLL>). The same applies to file
1553descriptors for which non-blocking operation makes no sense (such as
1554files) - libev doesn't guarantee any specific behaviour in that case.
1555
1556Another thing you have to watch out for is that it is quite easy to 1565Another thing you have to watch out for is that it is quite easy to
1557receive "spurious" readiness notifications, that is your callback might 1566receive "spurious" readiness notifications, that is, your callback might
1558be called with C<EV_READ> but a subsequent C<read>(2) will actually block 1567be called with C<EV_READ> but a subsequent C<read>(2) will actually block
1559because there is no data. Not only are some backends known to create a 1568because there is no data. It is very easy to get into this situation even
1560lot of those (for example Solaris ports), it is very easy to get into 1569with a relatively standard program structure. Thus it is best to always
1561this situation even with a relatively standard program structure. Thus 1570use non-blocking I/O: An extra C<read>(2) returning C<EAGAIN> is far
1562it is best to always use non-blocking I/O: An extra C<read>(2) returning
1563C<EAGAIN> is far preferable to a program hanging until some data arrives. 1571preferable to a program hanging until some data arrives.
1564 1572
1565If you cannot run the fd in non-blocking mode (for example you should 1573If you cannot run the fd in non-blocking mode (for example you should
1566not play around with an Xlib connection), then you have to separately 1574not play around with an Xlib connection), then you have to separately
1567re-test whether a file descriptor is really ready with a known-to-be good 1575re-test whether a file descriptor is really ready with a known-to-be good
1568interface such as poll (fortunately in our Xlib example, Xlib already 1576interface such as poll (fortunately in the case of Xlib, it already does
1569does this on its own, so its quite safe to use). Some people additionally 1577this on its own, so its quite safe to use). Some people additionally
1570use C<SIGALRM> and an interval timer, just to be sure you won't block 1578use C<SIGALRM> and an interval timer, just to be sure you won't block
1571indefinitely. 1579indefinitely.
1572 1580
1573But really, best use non-blocking mode. 1581But really, best use non-blocking mode.
1574 1582
1602 1610
1603There is no workaround possible except not registering events 1611There is no workaround possible except not registering events
1604for potentially C<dup ()>'ed file descriptors, or to resort to 1612for potentially C<dup ()>'ed file descriptors, or to resort to
1605C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>. 1613C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>.
1606 1614
1615=head3 The special problem of files
1616
1617Many people try to use C<select> (or libev) on file descriptors
1618representing files, and expect it to become ready when their program
1619doesn't block on disk accesses (which can take a long time on their own).
1620
1621However, this cannot ever work in the "expected" way - you get a readiness
1622notification as soon as the kernel knows whether and how much data is
1623there, and in the case of open files, that's always the case, so you
1624always get a readiness notification instantly, and your read (or possibly
1625write) will still block on the disk I/O.
1626
1627Another way to view it is that in the case of sockets, pipes, character
1628devices and so on, there is another party (the sender) that delivers data
1629on its own, but in the case of files, there is no such thing: the disk
1630will not send data on its own, simply because it doesn't know what you
1631wish to read - you would first have to request some data.
1632
1633Since files are typically not-so-well supported by advanced notification
1634mechanism, libev tries hard to emulate POSIX behaviour with respect
1635to files, even though you should not use it. The reason for this is
1636convenience: sometimes you want to watch STDIN or STDOUT, which is
1637usually a tty, often a pipe, but also sometimes files or special devices
1638(for example, C<epoll> on Linux works with F</dev/random> but not with
1639F</dev/urandom>), and even though the file might better be served with
1640asynchronous I/O instead of with non-blocking I/O, it is still useful when
1641it "just works" instead of freezing.
1642
1643So avoid file descriptors pointing to files when you know it (e.g. use
1644libeio), but use them when it is convenient, e.g. for STDIN/STDOUT, or
1645when you rarely read from a file instead of from a socket, and want to
1646reuse the same code path.
1647
1607=head3 The special problem of fork 1648=head3 The special problem of fork
1608 1649
1609Some backends (epoll, kqueue) do not support C<fork ()> at all or exhibit 1650Some backends (epoll, kqueue) do not support C<fork ()> at all or exhibit
1610useless behaviour. Libev fully supports fork, but needs to be told about 1651useless behaviour. Libev fully supports fork, but needs to be told about
1611it in the child. 1652it in the child if you want to continue to use it in the child.
1612 1653
1613To support fork in your programs, you either have to call 1654To support fork in your child processes, you have to call C<ev_loop_fork
1614C<ev_default_fork ()> or C<ev_loop_fork ()> after a fork in the child, 1655()> after a fork in the child, enable C<EVFLAG_FORKCHECK>, or resort to
1615enable C<EVFLAG_FORKCHECK>, or resort to C<EVBACKEND_SELECT> or 1656C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>.
1616C<EVBACKEND_POLL>.
1617 1657
1618=head3 The special problem of SIGPIPE 1658=head3 The special problem of SIGPIPE
1619 1659
1620While not really specific to libev, it is easy to forget about C<SIGPIPE>: 1660While not really specific to libev, it is easy to forget about C<SIGPIPE>:
1621when writing to a pipe whose other end has been closed, your program gets 1661when writing to a pipe whose other end has been closed, your program gets
2111 2151
2112Another way to think about it (for the mathematically inclined) is that 2152Another way to think about it (for the mathematically inclined) is that
2113C<ev_periodic> will try to run the callback in this mode at the next possible 2153C<ev_periodic> will try to run the callback in this mode at the next possible
2114time where C<time = offset (mod interval)>, regardless of any time jumps. 2154time where C<time = offset (mod interval)>, regardless of any time jumps.
2115 2155
2116For numerical stability it is preferable that the C<offset> value is near 2156The C<interval> I<MUST> be positive, and for numerical stability, the
2117C<ev_now ()> (the current time), but there is no range requirement for 2157interval value should be higher than C<1/8192> (which is around 100
2118this value, and in fact is often specified as zero. 2158microseconds) and C<offset> should be higher than C<0> and should have
2159at most a similar magnitude as the current time (say, within a factor of
2160ten). Typical values for offset are, in fact, C<0> or something between
2161C<0> and C<interval>, which is also the recommended range.
2119 2162
2120Note also that there is an upper limit to how often a timer can fire (CPU 2163Note also that there is an upper limit to how often a timer can fire (CPU
2121speed for example), so if C<interval> is very small then timing stability 2164speed for example), so if C<interval> is very small then timing stability
2122will of course deteriorate. Libev itself tries to be exact to be about one 2165will of course deteriorate. Libev itself tries to be exact to be about one
2123millisecond (if the OS supports it and the machine is fast enough). 2166millisecond (if the OS supports it and the machine is fast enough).
2237 2280
2238=head2 C<ev_signal> - signal me when a signal gets signalled! 2281=head2 C<ev_signal> - signal me when a signal gets signalled!
2239 2282
2240Signal watchers will trigger an event when the process receives a specific 2283Signal watchers will trigger an event when the process receives a specific
2241signal one or more times. Even though signals are very asynchronous, libev 2284signal one or more times. Even though signals are very asynchronous, libev
2242will try it's best to deliver signals synchronously, i.e. as part of the 2285will try its best to deliver signals synchronously, i.e. as part of the
2243normal event processing, like any other event. 2286normal event processing, like any other event.
2244 2287
2245If you want signals to be delivered truly asynchronously, just use 2288If you want signals to be delivered truly asynchronously, just use
2246C<sigaction> as you would do without libev and forget about sharing 2289C<sigaction> as you would do without libev and forget about sharing
2247the signal. You can even use C<ev_async> from a signal handler to 2290the signal. You can even use C<ev_async> from a signal handler to
2266=head3 The special problem of inheritance over fork/execve/pthread_create 2309=head3 The special problem of inheritance over fork/execve/pthread_create
2267 2310
2268Both the signal mask (C<sigprocmask>) and the signal disposition 2311Both the signal mask (C<sigprocmask>) and the signal disposition
2269(C<sigaction>) are unspecified after starting a signal watcher (and after 2312(C<sigaction>) are unspecified after starting a signal watcher (and after
2270stopping it again), that is, libev might or might not block the signal, 2313stopping it again), that is, libev might or might not block the signal,
2271and might or might not set or restore the installed signal handler. 2314and might or might not set or restore the installed signal handler (but
2315see C<EVFLAG_NOSIGMASK>).
2272 2316
2273While this does not matter for the signal disposition (libev never 2317While this does not matter for the signal disposition (libev never
2274sets signals to C<SIG_IGN>, so handlers will be reset to C<SIG_DFL> on 2318sets signals to C<SIG_IGN>, so handlers will be reset to C<SIG_DFL> on
2275C<execve>), this matters for the signal mask: many programs do not expect 2319C<execve>), this matters for the signal mask: many programs do not expect
2276certain signals to be blocked. 2320certain signals to be blocked.
2289I<has> to modify the signal mask, at least temporarily. 2333I<has> to modify the signal mask, at least temporarily.
2290 2334
2291So I can't stress this enough: I<If you do not reset your signal mask when 2335So I can't stress this enough: I<If you do not reset your signal mask when
2292you expect it to be empty, you have a race condition in your code>. This 2336you expect it to be empty, you have a race condition in your code>. This
2293is not a libev-specific thing, this is true for most event libraries. 2337is not a libev-specific thing, this is true for most event libraries.
2338
2339=head3 The special problem of threads signal handling
2340
2341POSIX threads has problematic signal handling semantics, specifically,
2342a lot of functionality (sigfd, sigwait etc.) only really works if all
2343threads in a process block signals, which is hard to achieve.
2344
2345When you want to use sigwait (or mix libev signal handling with your own
2346for the same signals), you can tackle this problem by globally blocking
2347all signals before creating any threads (or creating them with a fully set
2348sigprocmask) and also specifying the C<EVFLAG_NOSIGMASK> when creating
2349loops. Then designate one thread as "signal receiver thread" which handles
2350these signals. You can pass on any signals that libev might be interested
2351in by calling C<ev_feed_signal>.
2294 2352
2295=head3 Watcher-Specific Functions and Data Members 2353=head3 Watcher-Specific Functions and Data Members
2296 2354
2297=over 4 2355=over 4
2298 2356
3072disadvantage of having to use multiple event loops (which do not support 3130disadvantage of having to use multiple event loops (which do not support
3073signal watchers). 3131signal watchers).
3074 3132
3075When this is not possible, or you want to use the default loop for 3133When this is not possible, or you want to use the default loop for
3076other reasons, then in the process that wants to start "fresh", call 3134other reasons, then in the process that wants to start "fresh", call
3077C<ev_default_destroy ()> followed by C<ev_default_loop (...)>. Destroying 3135C<ev_loop_destroy (EV_DEFAULT)> followed by C<ev_default_loop (...)>.
3078the default loop will "orphan" (not stop) all registered watchers, so you 3136Destroying the default loop will "orphan" (not stop) all registered
3079have to be careful not to execute code that modifies those watchers. Note 3137watchers, so you have to be careful not to execute code that modifies
3080also that in that case, you have to re-register any signal watchers. 3138those watchers. Note also that in that case, you have to re-register any
3139signal watchers.
3081 3140
3082=head3 Watcher-Specific Functions and Data Members 3141=head3 Watcher-Specific Functions and Data Members
3083 3142
3084=over 4 3143=over 4
3085 3144
3086=item ev_fork_init (ev_signal *, callback) 3145=item ev_fork_init (ev_fork *, callback)
3087 3146
3088Initialises and configures the fork watcher - it has no parameters of any 3147Initialises and configures the fork watcher - it has no parameters of any
3089kind. There is a C<ev_fork_set> macro, but using it is utterly pointless, 3148kind. There is a C<ev_fork_set> macro, but using it is utterly pointless,
3090believe me. 3149really.
3091 3150
3092=back 3151=back
3093 3152
3094 3153
3154=head2 C<ev_cleanup> - even the best things end
3155
3156Cleanup watchers are called just before the event loop is being destroyed
3157by a call to C<ev_loop_destroy>.
3158
3159While there is no guarantee that the event loop gets destroyed, cleanup
3160watchers provide a convenient method to install cleanup hooks for your
3161program, worker threads and so on - you just to make sure to destroy the
3162loop when you want them to be invoked.
3163
3164Cleanup watchers are invoked in the same way as any other watcher. Unlike
3165all other watchers, they do not keep a reference to the event loop (which
3166makes a lot of sense if you think about it). Like all other watchers, you
3167can call libev functions in the callback, except C<ev_cleanup_start>.
3168
3169=head3 Watcher-Specific Functions and Data Members
3170
3171=over 4
3172
3173=item ev_cleanup_init (ev_cleanup *, callback)
3174
3175Initialises and configures the cleanup watcher - it has no parameters of
3176any kind. There is a C<ev_cleanup_set> macro, but using it is utterly
3177pointless, I assure you.
3178
3179=back
3180
3181Example: Register an atexit handler to destroy the default loop, so any
3182cleanup functions are called.
3183
3184 static void
3185 program_exits (void)
3186 {
3187 ev_loop_destroy (EV_DEFAULT_UC);
3188 }
3189
3190 ...
3191 atexit (program_exits);
3192
3193
3095=head2 C<ev_async> - how to wake up an event loop 3194=head2 C<ev_async> - how to wake up an event loop
3096 3195
3097In general, you cannot use an C<ev_run> from multiple threads or other 3196In general, you cannot use an C<ev_loop> from multiple threads or other
3098asynchronous sources such as signal handlers (as opposed to multiple event 3197asynchronous sources such as signal handlers (as opposed to multiple event
3099loops - those are of course safe to use in different threads). 3198loops - those are of course safe to use in different threads).
3100 3199
3101Sometimes, however, you need to wake up an event loop you do not control, 3200Sometimes, however, you need to wake up an event loop you do not control,
3102for example because it belongs to another thread. This is what C<ev_async> 3201for example because it belongs to another thread. This is what C<ev_async>
3104it by calling C<ev_async_send>, which is thread- and signal safe. 3203it by calling C<ev_async_send>, which is thread- and signal safe.
3105 3204
3106This functionality is very similar to C<ev_signal> watchers, as signals, 3205This functionality is very similar to C<ev_signal> watchers, as signals,
3107too, are asynchronous in nature, and signals, too, will be compressed 3206too, are asynchronous in nature, and signals, too, will be compressed
3108(i.e. the number of callback invocations may be less than the number of 3207(i.e. the number of callback invocations may be less than the number of
3109C<ev_async_sent> calls). 3208C<ev_async_sent> calls). In fact, you could use signal watchers as a kind
3209of "global async watchers" by using a watcher on an otherwise unused
3210signal, and C<ev_feed_signal> to signal this watcher from another thread,
3211even without knowing which loop owns the signal.
3110 3212
3111Unlike C<ev_signal> watchers, C<ev_async> works with any event loop, not 3213Unlike C<ev_signal> watchers, C<ev_async> works with any event loop, not
3112just the default loop. 3214just the default loop.
3113 3215
3114=head3 Queueing 3216=head3 Queueing
3209trust me. 3311trust me.
3210 3312
3211=item ev_async_send (loop, ev_async *) 3313=item ev_async_send (loop, ev_async *)
3212 3314
3213Sends/signals/activates the given C<ev_async> watcher, that is, feeds 3315Sends/signals/activates the given C<ev_async> watcher, that is, feeds
3214an C<EV_ASYNC> event on the watcher into the event loop. Unlike 3316an C<EV_ASYNC> event on the watcher into the event loop, and instantly
3317returns.
3318
3215C<ev_feed_event>, this call is safe to do from other threads, signal or 3319Unlike C<ev_feed_event>, this call is safe to do from other threads,
3216similar contexts (see the discussion of C<EV_ATOMIC_T> in the embedding 3320signal or similar contexts (see the discussion of C<EV_ATOMIC_T> in the
3217section below on what exactly this means). 3321embedding section below on what exactly this means).
3218 3322
3219Note that, as with other watchers in libev, multiple events might get 3323Note that, as with other watchers in libev, multiple events might get
3220compressed into a single callback invocation (another way to look at this 3324compressed into a single callback invocation (another way to look at this
3221is that C<ev_async> watchers are level-triggered, set on C<ev_async_send>, 3325is that C<ev_async> watchers are level-triggered, set on C<ev_async_send>,
3222reset when the event loop detects that). 3326reset when the event loop detects that).
3290Feed an event on the given fd, as if a file descriptor backend detected 3394Feed an event on the given fd, as if a file descriptor backend detected
3291the given events it. 3395the given events it.
3292 3396
3293=item ev_feed_signal_event (loop, int signum) 3397=item ev_feed_signal_event (loop, int signum)
3294 3398
3295Feed an event as if the given signal occurred (C<loop> must be the default 3399Feed an event as if the given signal occurred. See also C<ev_feed_signal>,
3296loop!). 3400which is async-safe.
3297 3401
3298=back 3402=back
3403
3404
3405=head1 COMMON OR USEFUL IDIOMS (OR BOTH)
3406
3407This section explains some common idioms that are not immediately
3408obvious. Note that examples are sprinkled over the whole manual, and this
3409section only contains stuff that wouldn't fit anywhere else.
3410
3411=head2 ASSOCIATING CUSTOM DATA WITH A WATCHER
3412
3413Each watcher has, by default, a C<void *data> member that you can read
3414or modify at any time: libev will completely ignore it. This can be used
3415to associate arbitrary data with your watcher. If you need more data and
3416don't want to allocate memory separately and store a pointer to it in that
3417data member, you can also "subclass" the watcher type and provide your own
3418data:
3419
3420 struct my_io
3421 {
3422 ev_io io;
3423 int otherfd;
3424 void *somedata;
3425 struct whatever *mostinteresting;
3426 };
3427
3428 ...
3429 struct my_io w;
3430 ev_io_init (&w.io, my_cb, fd, EV_READ);
3431
3432And since your callback will be called with a pointer to the watcher, you
3433can cast it back to your own type:
3434
3435 static void my_cb (struct ev_loop *loop, ev_io *w_, int revents)
3436 {
3437 struct my_io *w = (struct my_io *)w_;
3438 ...
3439 }
3440
3441More interesting and less C-conformant ways of casting your callback
3442function type instead have been omitted.
3443
3444=head2 BUILDING YOUR OWN COMPOSITE WATCHERS
3445
3446Another common scenario is to use some data structure with multiple
3447embedded watchers, in effect creating your own watcher that combines
3448multiple libev event sources into one "super-watcher":
3449
3450 struct my_biggy
3451 {
3452 int some_data;
3453 ev_timer t1;
3454 ev_timer t2;
3455 }
3456
3457In this case getting the pointer to C<my_biggy> is a bit more
3458complicated: Either you store the address of your C<my_biggy> struct in
3459the C<data> member of the watcher (for woozies or C++ coders), or you need
3460to use some pointer arithmetic using C<offsetof> inside your watchers (for
3461real programmers):
3462
3463 #include <stddef.h>
3464
3465 static void
3466 t1_cb (EV_P_ ev_timer *w, int revents)
3467 {
3468 struct my_biggy big = (struct my_biggy *)
3469 (((char *)w) - offsetof (struct my_biggy, t1));
3470 }
3471
3472 static void
3473 t2_cb (EV_P_ ev_timer *w, int revents)
3474 {
3475 struct my_biggy big = (struct my_biggy *)
3476 (((char *)w) - offsetof (struct my_biggy, t2));
3477 }
3478
3479=head2 MODEL/NESTED EVENT LOOP INVOCATIONS AND EXIT CONDITIONS
3480
3481Often (especially in GUI toolkits) there are places where you have
3482I<modal> interaction, which is most easily implemented by recursively
3483invoking C<ev_run>.
3484
3485This brings the problem of exiting - a callback might want to finish the
3486main C<ev_run> call, but not the nested one (e.g. user clicked "Quit", but
3487a modal "Are you sure?" dialog is still waiting), or just the nested one
3488and not the main one (e.g. user clocked "Ok" in a modal dialog), or some
3489other combination: In these cases, C<ev_break> will not work alone.
3490
3491The solution is to maintain "break this loop" variable for each C<ev_run>
3492invocation, and use a loop around C<ev_run> until the condition is
3493triggered, using C<EVRUN_ONCE>:
3494
3495 // main loop
3496 int exit_main_loop = 0;
3497
3498 while (!exit_main_loop)
3499 ev_run (EV_DEFAULT_ EVRUN_ONCE);
3500
3501 // in a model watcher
3502 int exit_nested_loop = 0;
3503
3504 while (!exit_nested_loop)
3505 ev_run (EV_A_ EVRUN_ONCE);
3506
3507To exit from any of these loops, just set the corresponding exit variable:
3508
3509 // exit modal loop
3510 exit_nested_loop = 1;
3511
3512 // exit main program, after modal loop is finished
3513 exit_main_loop = 1;
3514
3515 // exit both
3516 exit_main_loop = exit_nested_loop = 1;
3517
3518=head2 THREAD LOCKING EXAMPLE
3519
3520Here is a fictitious example of how to run an event loop in a different
3521thread from where callbacks are being invoked and watchers are
3522created/added/removed.
3523
3524For a real-world example, see the C<EV::Loop::Async> perl module,
3525which uses exactly this technique (which is suited for many high-level
3526languages).
3527
3528The example uses a pthread mutex to protect the loop data, a condition
3529variable to wait for callback invocations, an async watcher to notify the
3530event loop thread and an unspecified mechanism to wake up the main thread.
3531
3532First, you need to associate some data with the event loop:
3533
3534 typedef struct {
3535 mutex_t lock; /* global loop lock */
3536 ev_async async_w;
3537 thread_t tid;
3538 cond_t invoke_cv;
3539 } userdata;
3540
3541 void prepare_loop (EV_P)
3542 {
3543 // for simplicity, we use a static userdata struct.
3544 static userdata u;
3545
3546 ev_async_init (&u->async_w, async_cb);
3547 ev_async_start (EV_A_ &u->async_w);
3548
3549 pthread_mutex_init (&u->lock, 0);
3550 pthread_cond_init (&u->invoke_cv, 0);
3551
3552 // now associate this with the loop
3553 ev_set_userdata (EV_A_ u);
3554 ev_set_invoke_pending_cb (EV_A_ l_invoke);
3555 ev_set_loop_release_cb (EV_A_ l_release, l_acquire);
3556
3557 // then create the thread running ev_run
3558 pthread_create (&u->tid, 0, l_run, EV_A);
3559 }
3560
3561The callback for the C<ev_async> watcher does nothing: the watcher is used
3562solely to wake up the event loop so it takes notice of any new watchers
3563that might have been added:
3564
3565 static void
3566 async_cb (EV_P_ ev_async *w, int revents)
3567 {
3568 // just used for the side effects
3569 }
3570
3571The C<l_release> and C<l_acquire> callbacks simply unlock/lock the mutex
3572protecting the loop data, respectively.
3573
3574 static void
3575 l_release (EV_P)
3576 {
3577 userdata *u = ev_userdata (EV_A);
3578 pthread_mutex_unlock (&u->lock);
3579 }
3580
3581 static void
3582 l_acquire (EV_P)
3583 {
3584 userdata *u = ev_userdata (EV_A);
3585 pthread_mutex_lock (&u->lock);
3586 }
3587
3588The event loop thread first acquires the mutex, and then jumps straight
3589into C<ev_run>:
3590
3591 void *
3592 l_run (void *thr_arg)
3593 {
3594 struct ev_loop *loop = (struct ev_loop *)thr_arg;
3595
3596 l_acquire (EV_A);
3597 pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0);
3598 ev_run (EV_A_ 0);
3599 l_release (EV_A);
3600
3601 return 0;
3602 }
3603
3604Instead of invoking all pending watchers, the C<l_invoke> callback will
3605signal the main thread via some unspecified mechanism (signals? pipe
3606writes? C<Async::Interrupt>?) and then waits until all pending watchers
3607have been called (in a while loop because a) spurious wakeups are possible
3608and b) skipping inter-thread-communication when there are no pending
3609watchers is very beneficial):
3610
3611 static void
3612 l_invoke (EV_P)
3613 {
3614 userdata *u = ev_userdata (EV_A);
3615
3616 while (ev_pending_count (EV_A))
3617 {
3618 wake_up_other_thread_in_some_magic_or_not_so_magic_way ();
3619 pthread_cond_wait (&u->invoke_cv, &u->lock);
3620 }
3621 }
3622
3623Now, whenever the main thread gets told to invoke pending watchers, it
3624will grab the lock, call C<ev_invoke_pending> and then signal the loop
3625thread to continue:
3626
3627 static void
3628 real_invoke_pending (EV_P)
3629 {
3630 userdata *u = ev_userdata (EV_A);
3631
3632 pthread_mutex_lock (&u->lock);
3633 ev_invoke_pending (EV_A);
3634 pthread_cond_signal (&u->invoke_cv);
3635 pthread_mutex_unlock (&u->lock);
3636 }
3637
3638Whenever you want to start/stop a watcher or do other modifications to an
3639event loop, you will now have to lock:
3640
3641 ev_timer timeout_watcher;
3642 userdata *u = ev_userdata (EV_A);
3643
3644 ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
3645
3646 pthread_mutex_lock (&u->lock);
3647 ev_timer_start (EV_A_ &timeout_watcher);
3648 ev_async_send (EV_A_ &u->async_w);
3649 pthread_mutex_unlock (&u->lock);
3650
3651Note that sending the C<ev_async> watcher is required because otherwise
3652an event loop currently blocking in the kernel will have no knowledge
3653about the newly added timer. By waking up the loop it will pick up any new
3654watchers in the next event loop iteration.
3655
3656=head2 THREADS, COROUTINES, CONTINUATIONS, QUEUES... INSTEAD OF CALLBACKS
3657
3658While the overhead of a callback that e.g. schedules a thread is small, it
3659is still an overhead. If you embed libev, and your main usage is with some
3660kind of threads or coroutines, you might want to customise libev so that
3661doesn't need callbacks anymore.
3662
3663Imagine you have coroutines that you can switch to using a function
3664C<switch_to (coro)>, that libev runs in a coroutine called C<libev_coro>
3665and that due to some magic, the currently active coroutine is stored in a
3666global called C<current_coro>. Then you can build your own "wait for libev
3667event" primitive by changing C<EV_CB_DECLARE> and C<EV_CB_INVOKE> (note
3668the differing C<;> conventions):
3669
3670 #define EV_CB_DECLARE(type) struct my_coro *cb;
3671 #define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb)
3672
3673That means instead of having a C callback function, you store the
3674coroutine to switch to in each watcher, and instead of having libev call
3675your callback, you instead have it switch to that coroutine.
3676
3677A coroutine might now wait for an event with a function called
3678C<wait_for_event>. (the watcher needs to be started, as always, but it doesn't
3679matter when, or whether the watcher is active or not when this function is
3680called):
3681
3682 void
3683 wait_for_event (ev_watcher *w)
3684 {
3685 ev_cb_set (w) = current_coro;
3686 switch_to (libev_coro);
3687 }
3688
3689That basically suspends the coroutine inside C<wait_for_event> and
3690continues the libev coroutine, which, when appropriate, switches back to
3691this or any other coroutine. I am sure if you sue this your own :)
3692
3693You can do similar tricks if you have, say, threads with an event queue -
3694instead of storing a coroutine, you store the queue object and instead of
3695switching to a coroutine, you push the watcher onto the queue and notify
3696any waiters.
3697
3698To embed libev, see L<EMBEDDING>, but in short, it's easiest to create two
3699files, F<my_ev.h> and F<my_ev.c> that include the respective libev files:
3700
3701 // my_ev.h
3702 #define EV_CB_DECLARE(type) struct my_coro *cb;
3703 #define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb);
3704 #include "../libev/ev.h"
3705
3706 // my_ev.c
3707 #define EV_H "my_ev.h"
3708 #include "../libev/ev.c"
3709
3710And then use F<my_ev.h> when you would normally use F<ev.h>, and compile
3711F<my_ev.c> into your project. When properly specifying include paths, you
3712can even use F<ev.h> as header file name directly.
3299 3713
3300 3714
3301=head1 LIBEVENT EMULATION 3715=head1 LIBEVENT EMULATION
3302 3716
3303Libev offers a compatibility emulation layer for libevent. It cannot 3717Libev offers a compatibility emulation layer for libevent. It cannot
3304emulate the internals of libevent, so here are some usage hints: 3718emulate the internals of libevent, so here are some usage hints:
3305 3719
3306=over 4 3720=over 4
3721
3722=item * Only the libevent-1.4.1-beta API is being emulated.
3723
3724This was the newest libevent version available when libev was implemented,
3725and is still mostly unchanged in 2010.
3307 3726
3308=item * Use it by including <event.h>, as usual. 3727=item * Use it by including <event.h>, as usual.
3309 3728
3310=item * The following members are fully supported: ev_base, ev_callback, 3729=item * The following members are fully supported: ev_base, ev_callback,
3311ev_arg, ev_fd, ev_res, ev_events. 3730ev_arg, ev_fd, ev_res, ev_events.
3317=item * Priorities are not currently supported. Initialising priorities 3736=item * Priorities are not currently supported. Initialising priorities
3318will fail and all watchers will have the same priority, even though there 3737will fail and all watchers will have the same priority, even though there
3319is an ev_pri field. 3738is an ev_pri field.
3320 3739
3321=item * In libevent, the last base created gets the signals, in libev, the 3740=item * In libevent, the last base created gets the signals, in libev, the
3322first base created (== the default loop) gets the signals. 3741base that registered the signal gets the signals.
3323 3742
3324=item * Other members are not supported. 3743=item * Other members are not supported.
3325 3744
3326=item * The libev emulation is I<not> ABI compatible to libevent, you need 3745=item * The libev emulation is I<not> ABI compatible to libevent, you need
3327to use the libev header file and library. 3746to use the libev header file and library.
3346Care has been taken to keep the overhead low. The only data member the C++ 3765Care has been taken to keep the overhead low. The only data member the C++
3347classes add (compared to plain C-style watchers) is the event loop pointer 3766classes add (compared to plain C-style watchers) is the event loop pointer
3348that the watcher is associated with (or no additional members at all if 3767that the watcher is associated with (or no additional members at all if
3349you disable C<EV_MULTIPLICITY> when embedding libev). 3768you disable C<EV_MULTIPLICITY> when embedding libev).
3350 3769
3351Currently, functions, and static and non-static member functions can be 3770Currently, functions, static and non-static member functions and classes
3352used as callbacks. Other types should be easy to add as long as they only 3771with C<operator ()> can be used as callbacks. Other types should be easy
3353need one additional pointer for context. If you need support for other 3772to add as long as they only need one additional pointer for context. If
3354types of functors please contact the author (preferably after implementing 3773you need support for other types of functors please contact the author
3355it). 3774(preferably after implementing it).
3356 3775
3357Here is a list of things available in the C<ev> namespace: 3776Here is a list of things available in the C<ev> namespace:
3358 3777
3359=over 4 3778=over 4
3360 3779
3788F<event.h> that are not directly supported by the libev core alone. 4207F<event.h> that are not directly supported by the libev core alone.
3789 4208
3790In standalone mode, libev will still try to automatically deduce the 4209In standalone mode, libev will still try to automatically deduce the
3791configuration, but has to be more conservative. 4210configuration, but has to be more conservative.
3792 4211
4212=item EV_USE_FLOOR
4213
4214If defined to be C<1>, libev will use the C<floor ()> function for its
4215periodic reschedule calculations, otherwise libev will fall back on a
4216portable (slower) implementation. If you enable this, you usually have to
4217link against libm or something equivalent. Enabling this when the C<floor>
4218function is not available will fail, so the safe default is to not enable
4219this.
4220
3793=item EV_USE_MONOTONIC 4221=item EV_USE_MONOTONIC
3794 4222
3795If defined to be C<1>, libev will try to detect the availability of the 4223If defined to be C<1>, libev will try to detect the availability of the
3796monotonic clock option at both compile time and runtime. Otherwise no 4224monotonic clock option at both compile time and runtime. Otherwise no
3797use of the monotonic clock option will be attempted. If you enable this, 4225use of the monotonic clock option will be attempted. If you enable this,
4228And a F<ev_cpp.C> implementation file that contains libev proper and is compiled: 4656And a F<ev_cpp.C> implementation file that contains libev proper and is compiled:
4229 4657
4230 #include "ev_cpp.h" 4658 #include "ev_cpp.h"
4231 #include "ev.c" 4659 #include "ev.c"
4232 4660
4233=head1 INTERACTION WITH OTHER PROGRAMS OR LIBRARIES 4661=head1 INTERACTION WITH OTHER PROGRAMS, LIBRARIES OR THE ENVIRONMENT
4234 4662
4235=head2 THREADS AND COROUTINES 4663=head2 THREADS AND COROUTINES
4236 4664
4237=head3 THREADS 4665=head3 THREADS
4238 4666
4289default loop and triggering an C<ev_async> watcher from the default loop 4717default loop and triggering an C<ev_async> watcher from the default loop
4290watcher callback into the event loop interested in the signal. 4718watcher callback into the event loop interested in the signal.
4291 4719
4292=back 4720=back
4293 4721
4294=head4 THREAD LOCKING EXAMPLE 4722See also L<THREAD LOCKING EXAMPLE>.
4295
4296Here is a fictitious example of how to run an event loop in a different
4297thread than where callbacks are being invoked and watchers are
4298created/added/removed.
4299
4300For a real-world example, see the C<EV::Loop::Async> perl module,
4301which uses exactly this technique (which is suited for many high-level
4302languages).
4303
4304The example uses a pthread mutex to protect the loop data, a condition
4305variable to wait for callback invocations, an async watcher to notify the
4306event loop thread and an unspecified mechanism to wake up the main thread.
4307
4308First, you need to associate some data with the event loop:
4309
4310 typedef struct {
4311 mutex_t lock; /* global loop lock */
4312 ev_async async_w;
4313 thread_t tid;
4314 cond_t invoke_cv;
4315 } userdata;
4316
4317 void prepare_loop (EV_P)
4318 {
4319 // for simplicity, we use a static userdata struct.
4320 static userdata u;
4321
4322 ev_async_init (&u->async_w, async_cb);
4323 ev_async_start (EV_A_ &u->async_w);
4324
4325 pthread_mutex_init (&u->lock, 0);
4326 pthread_cond_init (&u->invoke_cv, 0);
4327
4328 // now associate this with the loop
4329 ev_set_userdata (EV_A_ u);
4330 ev_set_invoke_pending_cb (EV_A_ l_invoke);
4331 ev_set_loop_release_cb (EV_A_ l_release, l_acquire);
4332
4333 // then create the thread running ev_loop
4334 pthread_create (&u->tid, 0, l_run, EV_A);
4335 }
4336
4337The callback for the C<ev_async> watcher does nothing: the watcher is used
4338solely to wake up the event loop so it takes notice of any new watchers
4339that might have been added:
4340
4341 static void
4342 async_cb (EV_P_ ev_async *w, int revents)
4343 {
4344 // just used for the side effects
4345 }
4346
4347The C<l_release> and C<l_acquire> callbacks simply unlock/lock the mutex
4348protecting the loop data, respectively.
4349
4350 static void
4351 l_release (EV_P)
4352 {
4353 userdata *u = ev_userdata (EV_A);
4354 pthread_mutex_unlock (&u->lock);
4355 }
4356
4357 static void
4358 l_acquire (EV_P)
4359 {
4360 userdata *u = ev_userdata (EV_A);
4361 pthread_mutex_lock (&u->lock);
4362 }
4363
4364The event loop thread first acquires the mutex, and then jumps straight
4365into C<ev_run>:
4366
4367 void *
4368 l_run (void *thr_arg)
4369 {
4370 struct ev_loop *loop = (struct ev_loop *)thr_arg;
4371
4372 l_acquire (EV_A);
4373 pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0);
4374 ev_run (EV_A_ 0);
4375 l_release (EV_A);
4376
4377 return 0;
4378 }
4379
4380Instead of invoking all pending watchers, the C<l_invoke> callback will
4381signal the main thread via some unspecified mechanism (signals? pipe
4382writes? C<Async::Interrupt>?) and then waits until all pending watchers
4383have been called (in a while loop because a) spurious wakeups are possible
4384and b) skipping inter-thread-communication when there are no pending
4385watchers is very beneficial):
4386
4387 static void
4388 l_invoke (EV_P)
4389 {
4390 userdata *u = ev_userdata (EV_A);
4391
4392 while (ev_pending_count (EV_A))
4393 {
4394 wake_up_other_thread_in_some_magic_or_not_so_magic_way ();
4395 pthread_cond_wait (&u->invoke_cv, &u->lock);
4396 }
4397 }
4398
4399Now, whenever the main thread gets told to invoke pending watchers, it
4400will grab the lock, call C<ev_invoke_pending> and then signal the loop
4401thread to continue:
4402
4403 static void
4404 real_invoke_pending (EV_P)
4405 {
4406 userdata *u = ev_userdata (EV_A);
4407
4408 pthread_mutex_lock (&u->lock);
4409 ev_invoke_pending (EV_A);
4410 pthread_cond_signal (&u->invoke_cv);
4411 pthread_mutex_unlock (&u->lock);
4412 }
4413
4414Whenever you want to start/stop a watcher or do other modifications to an
4415event loop, you will now have to lock:
4416
4417 ev_timer timeout_watcher;
4418 userdata *u = ev_userdata (EV_A);
4419
4420 ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
4421
4422 pthread_mutex_lock (&u->lock);
4423 ev_timer_start (EV_A_ &timeout_watcher);
4424 ev_async_send (EV_A_ &u->async_w);
4425 pthread_mutex_unlock (&u->lock);
4426
4427Note that sending the C<ev_async> watcher is required because otherwise
4428an event loop currently blocking in the kernel will have no knowledge
4429about the newly added timer. By waking up the loop it will pick up any new
4430watchers in the next event loop iteration.
4431 4723
4432=head3 COROUTINES 4724=head3 COROUTINES
4433 4725
4434Libev is very accommodating to coroutines ("cooperative threads"): 4726Libev is very accommodating to coroutines ("cooperative threads"):
4435libev fully supports nesting calls to its functions from different 4727libev fully supports nesting calls to its functions from different
4704structure (guaranteed by POSIX but not by ISO C for example), but it also 4996structure (guaranteed by POSIX but not by ISO C for example), but it also
4705assumes that the same (machine) code can be used to call any watcher 4997assumes that the same (machine) code can be used to call any watcher
4706callback: The watcher callbacks have different type signatures, but libev 4998callback: The watcher callbacks have different type signatures, but libev
4707calls them using an C<ev_watcher *> internally. 4999calls them using an C<ev_watcher *> internally.
4708 5000
5001=item pointer accesses must be thread-atomic
5002
5003Accessing a pointer value must be atomic, it must both be readable and
5004writable in one piece - this is the case on all current architectures.
5005
4709=item C<sig_atomic_t volatile> must be thread-atomic as well 5006=item C<sig_atomic_t volatile> must be thread-atomic as well
4710 5007
4711The type C<sig_atomic_t volatile> (or whatever is defined as 5008The type C<sig_atomic_t volatile> (or whatever is defined as
4712C<EV_ATOMIC_T>) must be atomic with respect to accesses from different 5009C<EV_ATOMIC_T>) must be atomic with respect to accesses from different
4713threads. This is not part of the specification for C<sig_atomic_t>, but is 5010threads. This is not part of the specification for C<sig_atomic_t>, but is
4819=back 5116=back
4820 5117
4821 5118
4822=head1 PORTING FROM LIBEV 3.X TO 4.X 5119=head1 PORTING FROM LIBEV 3.X TO 4.X
4823 5120
4824The major version 4 introduced some minor incompatible changes to the API. 5121The major version 4 introduced some incompatible changes to the API.
4825 5122
4826At the moment, the C<ev.h> header file tries to implement superficial 5123At the moment, the C<ev.h> header file provides compatibility definitions
4827compatibility, so most programs should still compile. Those might be 5124for all changes, so most programs should still compile. The compatibility
4828removed in later versions of libev, so better update early than late. 5125layer might be removed in later versions of libev, so better update to the
5126new API early than late.
4829 5127
4830=over 4 5128=over 4
5129
5130=item C<EV_COMPAT3> backwards compatibility mechanism
5131
5132The backward compatibility mechanism can be controlled by
5133C<EV_COMPAT3>. See L<PREPROCESSOR SYMBOLS/MACROS> in the L<EMBEDDING>
5134section.
5135
5136=item C<ev_default_destroy> and C<ev_default_fork> have been removed
5137
5138These calls can be replaced easily by their C<ev_loop_xxx> counterparts:
5139
5140 ev_loop_destroy (EV_DEFAULT_UC);
5141 ev_loop_fork (EV_DEFAULT);
4831 5142
4832=item function/symbol renames 5143=item function/symbol renames
4833 5144
4834A number of functions and symbols have been renamed: 5145A number of functions and symbols have been renamed:
4835 5146
4854ev_loop> anymore and C<EV_TIMER> now follows the same naming scheme 5165ev_loop> anymore and C<EV_TIMER> now follows the same naming scheme
4855as all other watcher types. Note that C<ev_loop_fork> is still called 5166as all other watcher types. Note that C<ev_loop_fork> is still called
4856C<ev_loop_fork> because it would otherwise clash with the C<ev_fork> 5167C<ev_loop_fork> because it would otherwise clash with the C<ev_fork>
4857typedef. 5168typedef.
4858 5169
4859=item C<EV_COMPAT3> backwards compatibility mechanism
4860
4861The backward compatibility mechanism can be controlled by
4862C<EV_COMPAT3>. See L<PREPROCESSOR SYMBOLS/MACROS> in the L<EMBEDDING>
4863section.
4864
4865=item C<EV_MINIMAL> mechanism replaced by C<EV_FEATURES> 5170=item C<EV_MINIMAL> mechanism replaced by C<EV_FEATURES>
4866 5171
4867The preprocessor symbol C<EV_MINIMAL> has been replaced by a different 5172The preprocessor symbol C<EV_MINIMAL> has been replaced by a different
4868mechanism, C<EV_FEATURES>. Programs using C<EV_MINIMAL> usually compile 5173mechanism, C<EV_FEATURES>. Programs using C<EV_MINIMAL> usually compile
4869and work, but the library code will of course be larger. 5174and work, but the library code will of course be larger.
4931The physical time that is observed. It is apparently strictly monotonic :) 5236The physical time that is observed. It is apparently strictly monotonic :)
4932 5237
4933=item wall-clock time 5238=item wall-clock time
4934 5239
4935The time and date as shown on clocks. Unlike real time, it can actually 5240The time and date as shown on clocks. Unlike real time, it can actually
4936be wrong and jump forwards and backwards, e.g. when the you adjust your 5241be wrong and jump forwards and backwards, e.g. when you adjust your
4937clock. 5242clock.
4938 5243
4939=item watcher 5244=item watcher
4940 5245
4941A data structure that describes interest in certain events. Watchers need 5246A data structure that describes interest in certain events. Watchers need
4943 5248
4944=back 5249=back
4945 5250
4946=head1 AUTHOR 5251=head1 AUTHOR
4947 5252
4948Marc Lehmann <libev@schmorp.de>, with repeated corrections by Mikael Magnusson. 5253Marc Lehmann <libev@schmorp.de>, with repeated corrections by Mikael
5254Magnusson and Emanuele Giaquinta, and minor corrections by many others.
4949 5255

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines