ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.pod
(Generate patch)

Comparing libev/ev.pod (file contents):
Revision 1.335 by root, Mon Oct 25 10:32:05 2010 UTC vs.
Revision 1.361 by root, Sun Jan 23 18:53:06 2011 UTC

241the current system, you would need to look at C<ev_embeddable_backends () 241the current system, you would need to look at C<ev_embeddable_backends ()
242& ev_supported_backends ()>, likewise for recommended ones. 242& ev_supported_backends ()>, likewise for recommended ones.
243 243
244See the description of C<ev_embed> watchers for more info. 244See the description of C<ev_embed> watchers for more info.
245 245
246=item ev_set_allocator (void *(*cb)(void *ptr, long size)) [NOT REENTRANT] 246=item ev_set_allocator (void *(*cb)(void *ptr, long size))
247 247
248Sets the allocation function to use (the prototype is similar - the 248Sets the allocation function to use (the prototype is similar - the
249semantics are identical to the C<realloc> C89/SuS/POSIX function). It is 249semantics are identical to the C<realloc> C89/SuS/POSIX function). It is
250used to allocate and free memory (no surprises here). If it returns zero 250used to allocate and free memory (no surprises here). If it returns zero
251when memory needs to be allocated (C<size != 0>), the library might abort 251when memory needs to be allocated (C<size != 0>), the library might abort
277 } 277 }
278 278
279 ... 279 ...
280 ev_set_allocator (persistent_realloc); 280 ev_set_allocator (persistent_realloc);
281 281
282=item ev_set_syserr_cb (void (*cb)(const char *msg)); [NOT REENTRANT] 282=item ev_set_syserr_cb (void (*cb)(const char *msg))
283 283
284Set the callback function to call on a retryable system call error (such 284Set the callback function to call on a retryable system call error (such
285as failed select, poll, epoll_wait). The message is a printable string 285as failed select, poll, epoll_wait). The message is a printable string
286indicating the system call or subsystem causing the problem. If this 286indicating the system call or subsystem causing the problem. If this
287callback is set, then libev will expect it to remedy the situation, no 287callback is set, then libev will expect it to remedy the situation, no
299 } 299 }
300 300
301 ... 301 ...
302 ev_set_syserr_cb (fatal_error); 302 ev_set_syserr_cb (fatal_error);
303 303
304=item ev_feed_signal (int signum)
305
306This function can be used to "simulate" a signal receive. It is completely
307safe to call this function at any time, from any context, including signal
308handlers or random threads.
309
310Its main use is to customise signal handling in your process, especially
311in the presence of threads. For example, you could block signals
312by default in all threads (and specifying C<EVFLAG_NOSIGMASK> when
313creating any loops), and in one thread, use C<sigwait> or any other
314mechanism to wait for signals, then "deliver" them to libev by calling
315C<ev_feed_signal>.
316
304=back 317=back
305 318
306=head1 FUNCTIONS CONTROLLING EVENT LOOPS 319=head1 FUNCTIONS CONTROLLING EVENT LOOPS
307 320
308An event loop is described by a C<struct ev_loop *> (the C<struct> is 321An event loop is described by a C<struct ev_loop *> (the C<struct> is
355=item struct ev_loop *ev_loop_new (unsigned int flags) 368=item struct ev_loop *ev_loop_new (unsigned int flags)
356 369
357This will create and initialise a new event loop object. If the loop 370This will create and initialise a new event loop object. If the loop
358could not be initialised, returns false. 371could not be initialised, returns false.
359 372
360Note that this function I<is> thread-safe, and one common way to use 373This function is thread-safe, and one common way to use libev with
361libev with threads is indeed to create one loop per thread, and using the 374threads is indeed to create one loop per thread, and using the default
362default loop in the "main" or "initial" thread. 375loop in the "main" or "initial" thread.
363 376
364The flags argument can be used to specify special behaviour or specific 377The flags argument can be used to specify special behaviour or specific
365backends to use, and is usually specified as C<0> (or C<EVFLAG_AUTO>). 378backends to use, and is usually specified as C<0> (or C<EVFLAG_AUTO>).
366 379
367The following flags are supported: 380The following flags are supported:
402environment variable. 415environment variable.
403 416
404=item C<EVFLAG_NOINOTIFY> 417=item C<EVFLAG_NOINOTIFY>
405 418
406When this flag is specified, then libev will not attempt to use the 419When this flag is specified, then libev will not attempt to use the
407I<inotify> API for it's C<ev_stat> watchers. Apart from debugging and 420I<inotify> API for its C<ev_stat> watchers. Apart from debugging and
408testing, this flag can be useful to conserve inotify file descriptors, as 421testing, this flag can be useful to conserve inotify file descriptors, as
409otherwise each loop using C<ev_stat> watchers consumes one inotify handle. 422otherwise each loop using C<ev_stat> watchers consumes one inotify handle.
410 423
411=item C<EVFLAG_SIGNALFD> 424=item C<EVFLAG_SIGNALFD>
412 425
413When this flag is specified, then libev will attempt to use the 426When this flag is specified, then libev will attempt to use the
414I<signalfd> API for it's C<ev_signal> (and C<ev_child>) watchers. This API 427I<signalfd> API for its C<ev_signal> (and C<ev_child>) watchers. This API
415delivers signals synchronously, which makes it both faster and might make 428delivers signals synchronously, which makes it both faster and might make
416it possible to get the queued signal data. It can also simplify signal 429it possible to get the queued signal data. It can also simplify signal
417handling with threads, as long as you properly block signals in your 430handling with threads, as long as you properly block signals in your
418threads that are not interested in handling them. 431threads that are not interested in handling them.
419 432
420Signalfd will not be used by default as this changes your signal mask, and 433Signalfd will not be used by default as this changes your signal mask, and
421there are a lot of shoddy libraries and programs (glib's threadpool for 434there are a lot of shoddy libraries and programs (glib's threadpool for
422example) that can't properly initialise their signal masks. 435example) that can't properly initialise their signal masks.
436
437=item C<EVFLAG_NOSIGMASK>
438
439When this flag is specified, then libev will avoid to modify the signal
440mask. Specifically, this means you ahve to make sure signals are unblocked
441when you want to receive them.
442
443This behaviour is useful when you want to do your own signal handling, or
444want to handle signals only in specific threads and want to avoid libev
445unblocking the signals.
446
447It's also required by POSIX in a threaded program, as libev calls
448C<sigprocmask>, whose behaviour is officially unspecified.
449
450This flag's behaviour will become the default in future versions of libev.
423 451
424=item C<EVBACKEND_SELECT> (value 1, portable select backend) 452=item C<EVBACKEND_SELECT> (value 1, portable select backend)
425 453
426This is your standard select(2) backend. Not I<completely> standard, as 454This is your standard select(2) backend. Not I<completely> standard, as
427libev tries to roll its own fd_set with no limits on the number of fds, 455libev tries to roll its own fd_set with no limits on the number of fds,
463epoll scales either O(1) or O(active_fds). 491epoll scales either O(1) or O(active_fds).
464 492
465The epoll mechanism deserves honorable mention as the most misdesigned 493The epoll mechanism deserves honorable mention as the most misdesigned
466of the more advanced event mechanisms: mere annoyances include silently 494of the more advanced event mechanisms: mere annoyances include silently
467dropping file descriptors, requiring a system call per change per file 495dropping file descriptors, requiring a system call per change per file
468descriptor (and unnecessary guessing of parameters), problems with dup and 496descriptor (and unnecessary guessing of parameters), problems with dup,
497returning before the timeout value, resulting in additional iterations
498(and only giving 5ms accuracy while select on the same platform gives
469so on. The biggest issue is fork races, however - if a program forks then 4990.1ms) and so on. The biggest issue is fork races, however - if a program
470I<both> parent and child process have to recreate the epoll set, which can 500forks then I<both> parent and child process have to recreate the epoll
471take considerable time (one syscall per file descriptor) and is of course 501set, which can take considerable time (one syscall per file descriptor)
472hard to detect. 502and is of course hard to detect.
473 503
474Epoll is also notoriously buggy - embedding epoll fds I<should> work, but 504Epoll is also notoriously buggy - embedding epoll fds I<should> work, but
475of course I<doesn't>, and epoll just loves to report events for totally 505of course I<doesn't>, and epoll just loves to report events for totally
476I<different> file descriptors (even already closed ones, so one cannot 506I<different> file descriptors (even already closed ones, so one cannot
477even remove them from the set) than registered in the set (especially 507even remove them from the set) than registered in the set (especially
479employing an additional generation counter and comparing that against the 509employing an additional generation counter and comparing that against the
480events to filter out spurious ones, recreating the set when required. Last 510events to filter out spurious ones, recreating the set when required. Last
481not least, it also refuses to work with some file descriptors which work 511not least, it also refuses to work with some file descriptors which work
482perfectly fine with C<select> (files, many character devices...). 512perfectly fine with C<select> (files, many character devices...).
483 513
514Epoll is truly the train wreck analog among event poll mechanisms,
515a frankenpoll, cobbled together in a hurry, no thought to design or
516interaction with others.
517
484While stopping, setting and starting an I/O watcher in the same iteration 518While stopping, setting and starting an I/O watcher in the same iteration
485will result in some caching, there is still a system call per such 519will result in some caching, there is still a system call per such
486incident (because the same I<file descriptor> could point to a different 520incident (because the same I<file descriptor> could point to a different
487I<file description> now), so its best to avoid that. Also, C<dup ()>'ed 521I<file description> now), so its best to avoid that. Also, C<dup ()>'ed
488file descriptors might not work very well if you register events for both 522file descriptors might not work very well if you register events for both
553=item C<EVBACKEND_PORT> (value 32, Solaris 10) 587=item C<EVBACKEND_PORT> (value 32, Solaris 10)
554 588
555This uses the Solaris 10 event port mechanism. As with everything on Solaris, 589This uses the Solaris 10 event port mechanism. As with everything on Solaris,
556it's really slow, but it still scales very well (O(active_fds)). 590it's really slow, but it still scales very well (O(active_fds)).
557 591
558Please note that Solaris event ports can deliver a lot of spurious
559notifications, so you need to use non-blocking I/O or other means to avoid
560blocking when no data (or space) is available.
561
562While this backend scales well, it requires one system call per active 592While this backend scales well, it requires one system call per active
563file descriptor per loop iteration. For small and medium numbers of file 593file descriptor per loop iteration. For small and medium numbers of file
564descriptors a "slow" C<EVBACKEND_SELECT> or C<EVBACKEND_POLL> backend 594descriptors a "slow" C<EVBACKEND_SELECT> or C<EVBACKEND_POLL> backend
565might perform better. 595might perform better.
566 596
567On the positive side, with the exception of the spurious readiness 597On the positive side, this backend actually performed fully to
568notifications, this backend actually performed fully to specification
569in all tests and is fully embeddable, which is a rare feat among the 598specification in all tests and is fully embeddable, which is a rare feat
570OS-specific backends (I vastly prefer correctness over speed hacks). 599among the OS-specific backends (I vastly prefer correctness over speed
600hacks).
601
602On the negative side, the interface is I<bizarre> - so bizarre that
603even sun itself gets it wrong in their code examples: The event polling
604function sometimes returning events to the caller even though an error
605occurred, but with no indication whether it has done so or not (yes, it's
606even documented that way) - deadly for edge-triggered interfaces where
607you absolutely have to know whether an event occurred or not because you
608have to re-arm the watcher.
609
610Fortunately libev seems to be able to work around these idiocies.
571 611
572This backend maps C<EV_READ> and C<EV_WRITE> in the same way as 612This backend maps C<EV_READ> and C<EV_WRITE> in the same way as
573C<EVBACKEND_POLL>. 613C<EVBACKEND_POLL>.
574 614
575=item C<EVBACKEND_ALL> 615=item C<EVBACKEND_ALL>
576 616
577Try all backends (even potentially broken ones that wouldn't be tried 617Try all backends (even potentially broken ones that wouldn't be tried
578with C<EVFLAG_AUTO>). Since this is a mask, you can do stuff such as 618with C<EVFLAG_AUTO>). Since this is a mask, you can do stuff such as
579C<EVBACKEND_ALL & ~EVBACKEND_KQUEUE>. 619C<EVBACKEND_ALL & ~EVBACKEND_KQUEUE>.
580 620
581It is definitely not recommended to use this flag. 621It is definitely not recommended to use this flag, use whatever
622C<ev_recommended_backends ()> returns, or simply do not specify a backend
623at all.
624
625=item C<EVBACKEND_MASK>
626
627Not a backend at all, but a mask to select all backend bits from a
628C<flags> value, in case you want to mask out any backends from a flags
629value (e.g. when modifying the C<LIBEV_FLAGS> environment variable).
582 630
583=back 631=back
584 632
585If one or more of the backend flags are or'ed into the flags value, 633If one or more of the backend flags are or'ed into the flags value,
586then only these backends will be tried (in the reverse order as listed 634then only these backends will be tried (in the reverse order as listed
615This function is normally used on loop objects allocated by 663This function is normally used on loop objects allocated by
616C<ev_loop_new>, but it can also be used on the default loop returned by 664C<ev_loop_new>, but it can also be used on the default loop returned by
617C<ev_default_loop>, in which case it is not thread-safe. 665C<ev_default_loop>, in which case it is not thread-safe.
618 666
619Note that it is not advisable to call this function on the default loop 667Note that it is not advisable to call this function on the default loop
620except in the rare occasion where you really need to free it's resources. 668except in the rare occasion where you really need to free its resources.
621If you need dynamically allocated loops it is better to use C<ev_loop_new> 669If you need dynamically allocated loops it is better to use C<ev_loop_new>
622and C<ev_loop_destroy>. 670and C<ev_loop_destroy>.
623 671
624=item ev_loop_fork (loop) 672=item ev_loop_fork (loop)
625 673
673prepare and check phases. 721prepare and check phases.
674 722
675=item unsigned int ev_depth (loop) 723=item unsigned int ev_depth (loop)
676 724
677Returns the number of times C<ev_run> was entered minus the number of 725Returns the number of times C<ev_run> was entered minus the number of
678times C<ev_run> was exited, in other words, the recursion depth. 726times C<ev_run> was exited normally, in other words, the recursion depth.
679 727
680Outside C<ev_run>, this number is zero. In a callback, this number is 728Outside C<ev_run>, this number is zero. In a callback, this number is
681C<1>, unless C<ev_run> was invoked recursively (or from another thread), 729C<1>, unless C<ev_run> was invoked recursively (or from another thread),
682in which case it is higher. 730in which case it is higher.
683 731
684Leaving C<ev_run> abnormally (setjmp/longjmp, cancelling the thread 732Leaving C<ev_run> abnormally (setjmp/longjmp, cancelling the thread,
685etc.), doesn't count as "exit" - consider this as a hint to avoid such 733throwing an exception etc.), doesn't count as "exit" - consider this
686ungentleman-like behaviour unless it's really convenient. 734as a hint to avoid such ungentleman-like behaviour unless it's really
735convenient, in which case it is fully supported.
687 736
688=item unsigned int ev_backend (loop) 737=item unsigned int ev_backend (loop)
689 738
690Returns one of the C<EVBACKEND_*> flags indicating the event backend in 739Returns one of the C<EVBACKEND_*> flags indicating the event backend in
691use. 740use.
752relying on all watchers to be stopped when deciding when a program has 801relying on all watchers to be stopped when deciding when a program has
753finished (especially in interactive programs), but having a program 802finished (especially in interactive programs), but having a program
754that automatically loops as long as it has to and no longer by virtue 803that automatically loops as long as it has to and no longer by virtue
755of relying on its watchers stopping correctly, that is truly a thing of 804of relying on its watchers stopping correctly, that is truly a thing of
756beauty. 805beauty.
806
807This function is also I<mostly> exception-safe - you can break out of
808a C<ev_run> call by calling C<longjmp> in a callback, throwing a C++
809exception and so on. This does not decrement the C<ev_depth> value, nor
810will it clear any outstanding C<EVBREAK_ONE> breaks.
757 811
758A flags value of C<EVRUN_NOWAIT> will look for new events, will handle 812A flags value of C<EVRUN_NOWAIT> will look for new events, will handle
759those events and any already outstanding ones, but will not wait and 813those events and any already outstanding ones, but will not wait and
760block your process in case there are no events and will return after one 814block your process in case there are no events and will return after one
761iteration of the loop. This is sometimes useful to poll and handle new 815iteration of the loop. This is sometimes useful to poll and handle new
823Can be used to make a call to C<ev_run> return early (but only after it 877Can be used to make a call to C<ev_run> return early (but only after it
824has processed all outstanding events). The C<how> argument must be either 878has processed all outstanding events). The C<how> argument must be either
825C<EVBREAK_ONE>, which will make the innermost C<ev_run> call return, or 879C<EVBREAK_ONE>, which will make the innermost C<ev_run> call return, or
826C<EVBREAK_ALL>, which will make all nested C<ev_run> calls return. 880C<EVBREAK_ALL>, which will make all nested C<ev_run> calls return.
827 881
828This "unloop state" will be cleared when entering C<ev_run> again. 882This "break state" will be cleared on the next call to C<ev_run>.
829 883
830It is safe to call C<ev_break> from outside any C<ev_run> calls. ##TODO## 884It is safe to call C<ev_break> from outside any C<ev_run> calls, too, in
885which case it will have no effect.
831 886
832=item ev_ref (loop) 887=item ev_ref (loop)
833 888
834=item ev_unref (loop) 889=item ev_unref (loop)
835 890
856running when nothing else is active. 911running when nothing else is active.
857 912
858 ev_signal exitsig; 913 ev_signal exitsig;
859 ev_signal_init (&exitsig, sig_cb, SIGINT); 914 ev_signal_init (&exitsig, sig_cb, SIGINT);
860 ev_signal_start (loop, &exitsig); 915 ev_signal_start (loop, &exitsig);
861 evf_unref (loop); 916 ev_unref (loop);
862 917
863Example: For some weird reason, unregister the above signal handler again. 918Example: For some weird reason, unregister the above signal handler again.
864 919
865 ev_ref (loop); 920 ev_ref (loop);
866 ev_signal_stop (loop, &exitsig); 921 ev_signal_stop (loop, &exitsig);
978See also the locking example in the C<THREADS> section later in this 1033See also the locking example in the C<THREADS> section later in this
979document. 1034document.
980 1035
981=item ev_set_userdata (loop, void *data) 1036=item ev_set_userdata (loop, void *data)
982 1037
983=item ev_userdata (loop) 1038=item void *ev_userdata (loop)
984 1039
985Set and retrieve a single C<void *> associated with a loop. When 1040Set and retrieve a single C<void *> associated with a loop. When
986C<ev_set_userdata> has never been called, then C<ev_userdata> returns 1041C<ev_set_userdata> has never been called, then C<ev_userdata> returns
987C<0.> 1042C<0>.
988 1043
989These two functions can be used to associate arbitrary data with a loop, 1044These two functions can be used to associate arbitrary data with a loop,
990and are intended solely for the C<invoke_pending_cb>, C<release> and 1045and are intended solely for the C<invoke_pending_cb>, C<release> and
991C<acquire> callbacks described above, but of course can be (ab-)used for 1046C<acquire> callbacks described above, but of course can be (ab-)used for
992any other purpose as well. 1047any other purpose as well.
1305See also C<ev_feed_fd_event> and C<ev_feed_signal_event> for related 1360See also C<ev_feed_fd_event> and C<ev_feed_signal_event> for related
1306functions that do not need a watcher. 1361functions that do not need a watcher.
1307 1362
1308=back 1363=back
1309 1364
1310=head2 ASSOCIATING CUSTOM DATA WITH A WATCHER 1365See also the L<ASSOCIATING CUSTOM DATA WITH A WATCHER> and L<BUILDING YOUR
1311 1366OWN COMPOSITE WATCHERS> idioms.
1312Each watcher has, by default, a member C<void *data> that you can change
1313and read at any time: libev will completely ignore it. This can be used
1314to associate arbitrary data with your watcher. If you need more data and
1315don't want to allocate memory and store a pointer to it in that data
1316member, you can also "subclass" the watcher type and provide your own
1317data:
1318
1319 struct my_io
1320 {
1321 ev_io io;
1322 int otherfd;
1323 void *somedata;
1324 struct whatever *mostinteresting;
1325 };
1326
1327 ...
1328 struct my_io w;
1329 ev_io_init (&w.io, my_cb, fd, EV_READ);
1330
1331And since your callback will be called with a pointer to the watcher, you
1332can cast it back to your own type:
1333
1334 static void my_cb (struct ev_loop *loop, ev_io *w_, int revents)
1335 {
1336 struct my_io *w = (struct my_io *)w_;
1337 ...
1338 }
1339
1340More interesting and less C-conformant ways of casting your callback type
1341instead have been omitted.
1342
1343Another common scenario is to use some data structure with multiple
1344embedded watchers:
1345
1346 struct my_biggy
1347 {
1348 int some_data;
1349 ev_timer t1;
1350 ev_timer t2;
1351 }
1352
1353In this case getting the pointer to C<my_biggy> is a bit more
1354complicated: Either you store the address of your C<my_biggy> struct
1355in the C<data> member of the watcher (for woozies), or you need to use
1356some pointer arithmetic using C<offsetof> inside your watchers (for real
1357programmers):
1358
1359 #include <stddef.h>
1360
1361 static void
1362 t1_cb (EV_P_ ev_timer *w, int revents)
1363 {
1364 struct my_biggy big = (struct my_biggy *)
1365 (((char *)w) - offsetof (struct my_biggy, t1));
1366 }
1367
1368 static void
1369 t2_cb (EV_P_ ev_timer *w, int revents)
1370 {
1371 struct my_biggy big = (struct my_biggy *)
1372 (((char *)w) - offsetof (struct my_biggy, t2));
1373 }
1374 1367
1375=head2 WATCHER STATES 1368=head2 WATCHER STATES
1376 1369
1377There are various watcher states mentioned throughout this manual - 1370There are various watcher states mentioned throughout this manual -
1378active, pending and so on. In this section these states and the rules to 1371active, pending and so on. In this section these states and the rules to
1385 1378
1386Before a watcher can be registered with the event looop it has to be 1379Before a watcher can be registered with the event looop it has to be
1387initialised. This can be done with a call to C<ev_TYPE_init>, or calls to 1380initialised. This can be done with a call to C<ev_TYPE_init>, or calls to
1388C<ev_init> followed by the watcher-specific C<ev_TYPE_set> function. 1381C<ev_init> followed by the watcher-specific C<ev_TYPE_set> function.
1389 1382
1390In this state it is simply some block of memory that is suitable for use 1383In this state it is simply some block of memory that is suitable for
1391in an event loop. It can be moved around, freed, reused etc. at will. 1384use in an event loop. It can be moved around, freed, reused etc. at
1385will - as long as you either keep the memory contents intact, or call
1386C<ev_TYPE_init> again.
1392 1387
1393=item started/running/active 1388=item started/running/active
1394 1389
1395Once a watcher has been started with a call to C<ev_TYPE_start> it becomes 1390Once a watcher has been started with a call to C<ev_TYPE_start> it becomes
1396property of the event loop, and is actively waiting for events. While in 1391property of the event loop, and is actively waiting for events. While in
1424latter will clear any pending state the watcher might be in, regardless 1419latter will clear any pending state the watcher might be in, regardless
1425of whether it was active or not, so stopping a watcher explicitly before 1420of whether it was active or not, so stopping a watcher explicitly before
1426freeing it is often a good idea. 1421freeing it is often a good idea.
1427 1422
1428While stopped (and not pending) the watcher is essentially in the 1423While stopped (and not pending) the watcher is essentially in the
1429initialised state, that is it can be reused, moved, modified in any way 1424initialised state, that is, it can be reused, moved, modified in any way
1430you wish. 1425you wish (but when you trash the memory block, you need to C<ev_TYPE_init>
1426it again).
1431 1427
1432=back 1428=back
1433 1429
1434=head2 WATCHER PRIORITY MODELS 1430=head2 WATCHER PRIORITY MODELS
1435 1431
1564In general you can register as many read and/or write event watchers per 1560In general you can register as many read and/or write event watchers per
1565fd as you want (as long as you don't confuse yourself). Setting all file 1561fd as you want (as long as you don't confuse yourself). Setting all file
1566descriptors to non-blocking mode is also usually a good idea (but not 1562descriptors to non-blocking mode is also usually a good idea (but not
1567required if you know what you are doing). 1563required if you know what you are doing).
1568 1564
1569If you cannot use non-blocking mode, then force the use of a
1570known-to-be-good backend (at the time of this writing, this includes only
1571C<EVBACKEND_SELECT> and C<EVBACKEND_POLL>). The same applies to file
1572descriptors for which non-blocking operation makes no sense (such as
1573files) - libev doesn't guarantee any specific behaviour in that case.
1574
1575Another thing you have to watch out for is that it is quite easy to 1565Another thing you have to watch out for is that it is quite easy to
1576receive "spurious" readiness notifications, that is your callback might 1566receive "spurious" readiness notifications, that is, your callback might
1577be called with C<EV_READ> but a subsequent C<read>(2) will actually block 1567be called with C<EV_READ> but a subsequent C<read>(2) will actually block
1578because there is no data. Not only are some backends known to create a 1568because there is no data. It is very easy to get into this situation even
1579lot of those (for example Solaris ports), it is very easy to get into 1569with a relatively standard program structure. Thus it is best to always
1580this situation even with a relatively standard program structure. Thus 1570use non-blocking I/O: An extra C<read>(2) returning C<EAGAIN> is far
1581it is best to always use non-blocking I/O: An extra C<read>(2) returning
1582C<EAGAIN> is far preferable to a program hanging until some data arrives. 1571preferable to a program hanging until some data arrives.
1583 1572
1584If you cannot run the fd in non-blocking mode (for example you should 1573If you cannot run the fd in non-blocking mode (for example you should
1585not play around with an Xlib connection), then you have to separately 1574not play around with an Xlib connection), then you have to separately
1586re-test whether a file descriptor is really ready with a known-to-be good 1575re-test whether a file descriptor is really ready with a known-to-be good
1587interface such as poll (fortunately in our Xlib example, Xlib already 1576interface such as poll (fortunately in the case of Xlib, it already does
1588does this on its own, so its quite safe to use). Some people additionally 1577this on its own, so its quite safe to use). Some people additionally
1589use C<SIGALRM> and an interval timer, just to be sure you won't block 1578use C<SIGALRM> and an interval timer, just to be sure you won't block
1590indefinitely. 1579indefinitely.
1591 1580
1592But really, best use non-blocking mode. 1581But really, best use non-blocking mode.
1593 1582
1621 1610
1622There is no workaround possible except not registering events 1611There is no workaround possible except not registering events
1623for potentially C<dup ()>'ed file descriptors, or to resort to 1612for potentially C<dup ()>'ed file descriptors, or to resort to
1624C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>. 1613C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>.
1625 1614
1615=head3 The special problem of files
1616
1617Many people try to use C<select> (or libev) on file descriptors
1618representing files, and expect it to become ready when their program
1619doesn't block on disk accesses (which can take a long time on their own).
1620
1621However, this cannot ever work in the "expected" way - you get a readiness
1622notification as soon as the kernel knows whether and how much data is
1623there, and in the case of open files, that's always the case, so you
1624always get a readiness notification instantly, and your read (or possibly
1625write) will still block on the disk I/O.
1626
1627Another way to view it is that in the case of sockets, pipes, character
1628devices and so on, there is another party (the sender) that delivers data
1629on its own, but in the case of files, there is no such thing: the disk
1630will not send data on its own, simply because it doesn't know what you
1631wish to read - you would first have to request some data.
1632
1633Since files are typically not-so-well supported by advanced notification
1634mechanism, libev tries hard to emulate POSIX behaviour with respect
1635to files, even though you should not use it. The reason for this is
1636convenience: sometimes you want to watch STDIN or STDOUT, which is
1637usually a tty, often a pipe, but also sometimes files or special devices
1638(for example, C<epoll> on Linux works with F</dev/random> but not with
1639F</dev/urandom>), and even though the file might better be served with
1640asynchronous I/O instead of with non-blocking I/O, it is still useful when
1641it "just works" instead of freezing.
1642
1643So avoid file descriptors pointing to files when you know it (e.g. use
1644libeio), but use them when it is convenient, e.g. for STDIN/STDOUT, or
1645when you rarely read from a file instead of from a socket, and want to
1646reuse the same code path.
1647
1626=head3 The special problem of fork 1648=head3 The special problem of fork
1627 1649
1628Some backends (epoll, kqueue) do not support C<fork ()> at all or exhibit 1650Some backends (epoll, kqueue) do not support C<fork ()> at all or exhibit
1629useless behaviour. Libev fully supports fork, but needs to be told about 1651useless behaviour. Libev fully supports fork, but needs to be told about
1630it in the child. 1652it in the child if you want to continue to use it in the child.
1631 1653
1632To support fork in your programs, you either have to call 1654To support fork in your child processes, you have to call C<ev_loop_fork
1633C<ev_default_fork ()> or C<ev_loop_fork ()> after a fork in the child, 1655()> after a fork in the child, enable C<EVFLAG_FORKCHECK>, or resort to
1634enable C<EVFLAG_FORKCHECK>, or resort to C<EVBACKEND_SELECT> or 1656C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>.
1635C<EVBACKEND_POLL>.
1636 1657
1637=head3 The special problem of SIGPIPE 1658=head3 The special problem of SIGPIPE
1638 1659
1639While not really specific to libev, it is easy to forget about C<SIGPIPE>: 1660While not really specific to libev, it is easy to forget about C<SIGPIPE>:
1640when writing to a pipe whose other end has been closed, your program gets 1661when writing to a pipe whose other end has been closed, your program gets
2256 2277
2257=head2 C<ev_signal> - signal me when a signal gets signalled! 2278=head2 C<ev_signal> - signal me when a signal gets signalled!
2258 2279
2259Signal watchers will trigger an event when the process receives a specific 2280Signal watchers will trigger an event when the process receives a specific
2260signal one or more times. Even though signals are very asynchronous, libev 2281signal one or more times. Even though signals are very asynchronous, libev
2261will try it's best to deliver signals synchronously, i.e. as part of the 2282will try its best to deliver signals synchronously, i.e. as part of the
2262normal event processing, like any other event. 2283normal event processing, like any other event.
2263 2284
2264If you want signals to be delivered truly asynchronously, just use 2285If you want signals to be delivered truly asynchronously, just use
2265C<sigaction> as you would do without libev and forget about sharing 2286C<sigaction> as you would do without libev and forget about sharing
2266the signal. You can even use C<ev_async> from a signal handler to 2287the signal. You can even use C<ev_async> from a signal handler to
2285=head3 The special problem of inheritance over fork/execve/pthread_create 2306=head3 The special problem of inheritance over fork/execve/pthread_create
2286 2307
2287Both the signal mask (C<sigprocmask>) and the signal disposition 2308Both the signal mask (C<sigprocmask>) and the signal disposition
2288(C<sigaction>) are unspecified after starting a signal watcher (and after 2309(C<sigaction>) are unspecified after starting a signal watcher (and after
2289stopping it again), that is, libev might or might not block the signal, 2310stopping it again), that is, libev might or might not block the signal,
2290and might or might not set or restore the installed signal handler. 2311and might or might not set or restore the installed signal handler (but
2312see C<EVFLAG_NOSIGMASK>).
2291 2313
2292While this does not matter for the signal disposition (libev never 2314While this does not matter for the signal disposition (libev never
2293sets signals to C<SIG_IGN>, so handlers will be reset to C<SIG_DFL> on 2315sets signals to C<SIG_IGN>, so handlers will be reset to C<SIG_DFL> on
2294C<execve>), this matters for the signal mask: many programs do not expect 2316C<execve>), this matters for the signal mask: many programs do not expect
2295certain signals to be blocked. 2317certain signals to be blocked.
2308I<has> to modify the signal mask, at least temporarily. 2330I<has> to modify the signal mask, at least temporarily.
2309 2331
2310So I can't stress this enough: I<If you do not reset your signal mask when 2332So I can't stress this enough: I<If you do not reset your signal mask when
2311you expect it to be empty, you have a race condition in your code>. This 2333you expect it to be empty, you have a race condition in your code>. This
2312is not a libev-specific thing, this is true for most event libraries. 2334is not a libev-specific thing, this is true for most event libraries.
2335
2336=head3 The special problem of threads signal handling
2337
2338POSIX threads has problematic signal handling semantics, specifically,
2339a lot of functionality (sigfd, sigwait etc.) only really works if all
2340threads in a process block signals, which is hard to achieve.
2341
2342When you want to use sigwait (or mix libev signal handling with your own
2343for the same signals), you can tackle this problem by globally blocking
2344all signals before creating any threads (or creating them with a fully set
2345sigprocmask) and also specifying the C<EVFLAG_NOSIGMASK> when creating
2346loops. Then designate one thread as "signal receiver thread" which handles
2347these signals. You can pass on any signals that libev might be interested
2348in by calling C<ev_feed_signal>.
2313 2349
2314=head3 Watcher-Specific Functions and Data Members 2350=head3 Watcher-Specific Functions and Data Members
2315 2351
2316=over 4 2352=over 4
2317 2353
3164it by calling C<ev_async_send>, which is thread- and signal safe. 3200it by calling C<ev_async_send>, which is thread- and signal safe.
3165 3201
3166This functionality is very similar to C<ev_signal> watchers, as signals, 3202This functionality is very similar to C<ev_signal> watchers, as signals,
3167too, are asynchronous in nature, and signals, too, will be compressed 3203too, are asynchronous in nature, and signals, too, will be compressed
3168(i.e. the number of callback invocations may be less than the number of 3204(i.e. the number of callback invocations may be less than the number of
3169C<ev_async_sent> calls). 3205C<ev_async_sent> calls). In fact, you could use signal watchers as a kind
3206of "global async watchers" by using a watcher on an otherwise unused
3207signal, and C<ev_feed_signal> to signal this watcher from another thread,
3208even without knowing which loop owns the signal.
3170 3209
3171Unlike C<ev_signal> watchers, C<ev_async> works with any event loop, not 3210Unlike C<ev_signal> watchers, C<ev_async> works with any event loop, not
3172just the default loop. 3211just the default loop.
3173 3212
3174=head3 Queueing 3213=head3 Queueing
3350Feed an event on the given fd, as if a file descriptor backend detected 3389Feed an event on the given fd, as if a file descriptor backend detected
3351the given events it. 3390the given events it.
3352 3391
3353=item ev_feed_signal_event (loop, int signum) 3392=item ev_feed_signal_event (loop, int signum)
3354 3393
3355Feed an event as if the given signal occurred (C<loop> must be the default 3394Feed an event as if the given signal occurred. See also C<ev_feed_signal>,
3356loop!). 3395which is async-safe.
3357 3396
3358=back 3397=back
3398
3399
3400=head1 COMMON OR USEFUL IDIOMS (OR BOTH)
3401
3402This section explains some common idioms that are not immediately
3403obvious. Note that examples are sprinkled over the whole manual, and this
3404section only contains stuff that wouldn't fit anywhere else.
3405
3406=head2 ASSOCIATING CUSTOM DATA WITH A WATCHER
3407
3408Each watcher has, by default, a C<void *data> member that you can read
3409or modify at any time: libev will completely ignore it. This can be used
3410to associate arbitrary data with your watcher. If you need more data and
3411don't want to allocate memory separately and store a pointer to it in that
3412data member, you can also "subclass" the watcher type and provide your own
3413data:
3414
3415 struct my_io
3416 {
3417 ev_io io;
3418 int otherfd;
3419 void *somedata;
3420 struct whatever *mostinteresting;
3421 };
3422
3423 ...
3424 struct my_io w;
3425 ev_io_init (&w.io, my_cb, fd, EV_READ);
3426
3427And since your callback will be called with a pointer to the watcher, you
3428can cast it back to your own type:
3429
3430 static void my_cb (struct ev_loop *loop, ev_io *w_, int revents)
3431 {
3432 struct my_io *w = (struct my_io *)w_;
3433 ...
3434 }
3435
3436More interesting and less C-conformant ways of casting your callback
3437function type instead have been omitted.
3438
3439=head2 BUILDING YOUR OWN COMPOSITE WATCHERS
3440
3441Another common scenario is to use some data structure with multiple
3442embedded watchers, in effect creating your own watcher that combines
3443multiple libev event sources into one "super-watcher":
3444
3445 struct my_biggy
3446 {
3447 int some_data;
3448 ev_timer t1;
3449 ev_timer t2;
3450 }
3451
3452In this case getting the pointer to C<my_biggy> is a bit more
3453complicated: Either you store the address of your C<my_biggy> struct in
3454the C<data> member of the watcher (for woozies or C++ coders), or you need
3455to use some pointer arithmetic using C<offsetof> inside your watchers (for
3456real programmers):
3457
3458 #include <stddef.h>
3459
3460 static void
3461 t1_cb (EV_P_ ev_timer *w, int revents)
3462 {
3463 struct my_biggy big = (struct my_biggy *)
3464 (((char *)w) - offsetof (struct my_biggy, t1));
3465 }
3466
3467 static void
3468 t2_cb (EV_P_ ev_timer *w, int revents)
3469 {
3470 struct my_biggy big = (struct my_biggy *)
3471 (((char *)w) - offsetof (struct my_biggy, t2));
3472 }
3473
3474=head2 MODEL/NESTED EVENT LOOP INVOCATIONS AND EXIT CONDITIONS
3475
3476Often (especially in GUI toolkits) there are places where you have
3477I<modal> interaction, which is most easily implemented by recursively
3478invoking C<ev_run>.
3479
3480This brings the problem of exiting - a callback might want to finish the
3481main C<ev_run> call, but not the nested one (e.g. user clicked "Quit", but
3482a modal "Are you sure?" dialog is still waiting), or just the nested one
3483and not the main one (e.g. user clocked "Ok" in a modal dialog), or some
3484other combination: In these cases, C<ev_break> will not work alone.
3485
3486The solution is to maintain "break this loop" variable for each C<ev_run>
3487invocation, and use a loop around C<ev_run> until the condition is
3488triggered, using C<EVRUN_ONCE>:
3489
3490 // main loop
3491 int exit_main_loop = 0;
3492
3493 while (!exit_main_loop)
3494 ev_run (EV_DEFAULT_ EVRUN_ONCE);
3495
3496 // in a model watcher
3497 int exit_nested_loop = 0;
3498
3499 while (!exit_nested_loop)
3500 ev_run (EV_A_ EVRUN_ONCE);
3501
3502To exit from any of these loops, just set the corresponding exit variable:
3503
3504 // exit modal loop
3505 exit_nested_loop = 1;
3506
3507 // exit main program, after modal loop is finished
3508 exit_main_loop = 1;
3509
3510 // exit both
3511 exit_main_loop = exit_nested_loop = 1;
3512
3513=head2 THREAD LOCKING EXAMPLE
3514
3515Here is a fictitious example of how to run an event loop in a different
3516thread from where callbacks are being invoked and watchers are
3517created/added/removed.
3518
3519For a real-world example, see the C<EV::Loop::Async> perl module,
3520which uses exactly this technique (which is suited for many high-level
3521languages).
3522
3523The example uses a pthread mutex to protect the loop data, a condition
3524variable to wait for callback invocations, an async watcher to notify the
3525event loop thread and an unspecified mechanism to wake up the main thread.
3526
3527First, you need to associate some data with the event loop:
3528
3529 typedef struct {
3530 mutex_t lock; /* global loop lock */
3531 ev_async async_w;
3532 thread_t tid;
3533 cond_t invoke_cv;
3534 } userdata;
3535
3536 void prepare_loop (EV_P)
3537 {
3538 // for simplicity, we use a static userdata struct.
3539 static userdata u;
3540
3541 ev_async_init (&u->async_w, async_cb);
3542 ev_async_start (EV_A_ &u->async_w);
3543
3544 pthread_mutex_init (&u->lock, 0);
3545 pthread_cond_init (&u->invoke_cv, 0);
3546
3547 // now associate this with the loop
3548 ev_set_userdata (EV_A_ u);
3549 ev_set_invoke_pending_cb (EV_A_ l_invoke);
3550 ev_set_loop_release_cb (EV_A_ l_release, l_acquire);
3551
3552 // then create the thread running ev_loop
3553 pthread_create (&u->tid, 0, l_run, EV_A);
3554 }
3555
3556The callback for the C<ev_async> watcher does nothing: the watcher is used
3557solely to wake up the event loop so it takes notice of any new watchers
3558that might have been added:
3559
3560 static void
3561 async_cb (EV_P_ ev_async *w, int revents)
3562 {
3563 // just used for the side effects
3564 }
3565
3566The C<l_release> and C<l_acquire> callbacks simply unlock/lock the mutex
3567protecting the loop data, respectively.
3568
3569 static void
3570 l_release (EV_P)
3571 {
3572 userdata *u = ev_userdata (EV_A);
3573 pthread_mutex_unlock (&u->lock);
3574 }
3575
3576 static void
3577 l_acquire (EV_P)
3578 {
3579 userdata *u = ev_userdata (EV_A);
3580 pthread_mutex_lock (&u->lock);
3581 }
3582
3583The event loop thread first acquires the mutex, and then jumps straight
3584into C<ev_run>:
3585
3586 void *
3587 l_run (void *thr_arg)
3588 {
3589 struct ev_loop *loop = (struct ev_loop *)thr_arg;
3590
3591 l_acquire (EV_A);
3592 pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0);
3593 ev_run (EV_A_ 0);
3594 l_release (EV_A);
3595
3596 return 0;
3597 }
3598
3599Instead of invoking all pending watchers, the C<l_invoke> callback will
3600signal the main thread via some unspecified mechanism (signals? pipe
3601writes? C<Async::Interrupt>?) and then waits until all pending watchers
3602have been called (in a while loop because a) spurious wakeups are possible
3603and b) skipping inter-thread-communication when there are no pending
3604watchers is very beneficial):
3605
3606 static void
3607 l_invoke (EV_P)
3608 {
3609 userdata *u = ev_userdata (EV_A);
3610
3611 while (ev_pending_count (EV_A))
3612 {
3613 wake_up_other_thread_in_some_magic_or_not_so_magic_way ();
3614 pthread_cond_wait (&u->invoke_cv, &u->lock);
3615 }
3616 }
3617
3618Now, whenever the main thread gets told to invoke pending watchers, it
3619will grab the lock, call C<ev_invoke_pending> and then signal the loop
3620thread to continue:
3621
3622 static void
3623 real_invoke_pending (EV_P)
3624 {
3625 userdata *u = ev_userdata (EV_A);
3626
3627 pthread_mutex_lock (&u->lock);
3628 ev_invoke_pending (EV_A);
3629 pthread_cond_signal (&u->invoke_cv);
3630 pthread_mutex_unlock (&u->lock);
3631 }
3632
3633Whenever you want to start/stop a watcher or do other modifications to an
3634event loop, you will now have to lock:
3635
3636 ev_timer timeout_watcher;
3637 userdata *u = ev_userdata (EV_A);
3638
3639 ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
3640
3641 pthread_mutex_lock (&u->lock);
3642 ev_timer_start (EV_A_ &timeout_watcher);
3643 ev_async_send (EV_A_ &u->async_w);
3644 pthread_mutex_unlock (&u->lock);
3645
3646Note that sending the C<ev_async> watcher is required because otherwise
3647an event loop currently blocking in the kernel will have no knowledge
3648about the newly added timer. By waking up the loop it will pick up any new
3649watchers in the next event loop iteration.
3650
3651=head2 THREADS, COROUTINES, CONTINUATIONS, QUEUES... INSTEAD OF CALLBACKS
3652
3653While the overhead of a callback that e.g. schedules a thread is small, it
3654is still an overhead. If you embed libev, and your main usage is with some
3655kind of threads or coroutines, you might want to customise libev so that
3656doesn't need callbacks anymore.
3657
3658Imagine you have coroutines that you can switch to using a function
3659C<switch_to (coro)>, that libev runs in a coroutine called C<libev_coro>
3660and that due to some magic, the currently active coroutine is stored in a
3661global called C<current_coro>. Then you can build your own "wait for libev
3662event" primitive by changing C<EV_CB_DECLARE> and C<EV_CB_INVOKE> (note
3663the differing C<;> conventions):
3664
3665 #define EV_CB_DECLARE(type) struct my_coro *cb;
3666 #define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb)
3667
3668That means instead of having a C callback function, you store the
3669coroutine to switch to in each watcher, and instead of having libev call
3670your callback, you instead have it switch to that coroutine.
3671
3672A coroutine might now wait for an event with a function called
3673C<wait_for_event>. (the watcher needs to be started, as always, but it doesn't
3674matter when, or whether the watcher is active or not when this function is
3675called):
3676
3677 void
3678 wait_for_event (ev_watcher *w)
3679 {
3680 ev_cb_set (w) = current_coro;
3681 switch_to (libev_coro);
3682 }
3683
3684That basically suspends the coroutine inside C<wait_for_event> and
3685continues the libev coroutine, which, when appropriate, switches back to
3686this or any other coroutine. I am sure if you sue this your own :)
3687
3688You can do similar tricks if you have, say, threads with an event queue -
3689instead of storing a coroutine, you store the queue object and instead of
3690switching to a coroutine, you push the watcher onto the queue and notify
3691any waiters.
3692
3693To embed libev, see L<EMBEDDING>, but in short, it's easiest to create two
3694files, F<my_ev.h> and F<my_ev.c> that include the respective libev files:
3695
3696 // my_ev.h
3697 #define EV_CB_DECLARE(type) struct my_coro *cb;
3698 #define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb);
3699 #include "../libev/ev.h"
3700
3701 // my_ev.c
3702 #define EV_H "my_ev.h"
3703 #include "../libev/ev.c"
3704
3705And then use F<my_ev.h> when you would normally use F<ev.h>, and compile
3706F<my_ev.c> into your project. When properly specifying include paths, you
3707can even use F<ev.h> as header file name directly.
3359 3708
3360 3709
3361=head1 LIBEVENT EMULATION 3710=head1 LIBEVENT EMULATION
3362 3711
3363Libev offers a compatibility emulation layer for libevent. It cannot 3712Libev offers a compatibility emulation layer for libevent. It cannot
3364emulate the internals of libevent, so here are some usage hints: 3713emulate the internals of libevent, so here are some usage hints:
3365 3714
3366=over 4 3715=over 4
3716
3717=item * Only the libevent-1.4.1-beta API is being emulated.
3718
3719This was the newest libevent version available when libev was implemented,
3720and is still mostly unchanged in 2010.
3367 3721
3368=item * Use it by including <event.h>, as usual. 3722=item * Use it by including <event.h>, as usual.
3369 3723
3370=item * The following members are fully supported: ev_base, ev_callback, 3724=item * The following members are fully supported: ev_base, ev_callback,
3371ev_arg, ev_fd, ev_res, ev_events. 3725ev_arg, ev_fd, ev_res, ev_events.
3377=item * Priorities are not currently supported. Initialising priorities 3731=item * Priorities are not currently supported. Initialising priorities
3378will fail and all watchers will have the same priority, even though there 3732will fail and all watchers will have the same priority, even though there
3379is an ev_pri field. 3733is an ev_pri field.
3380 3734
3381=item * In libevent, the last base created gets the signals, in libev, the 3735=item * In libevent, the last base created gets the signals, in libev, the
3382first base created (== the default loop) gets the signals. 3736base that registered the signal gets the signals.
3383 3737
3384=item * Other members are not supported. 3738=item * Other members are not supported.
3385 3739
3386=item * The libev emulation is I<not> ABI compatible to libevent, you need 3740=item * The libev emulation is I<not> ABI compatible to libevent, you need
3387to use the libev header file and library. 3741to use the libev header file and library.
3406Care has been taken to keep the overhead low. The only data member the C++ 3760Care has been taken to keep the overhead low. The only data member the C++
3407classes add (compared to plain C-style watchers) is the event loop pointer 3761classes add (compared to plain C-style watchers) is the event loop pointer
3408that the watcher is associated with (or no additional members at all if 3762that the watcher is associated with (or no additional members at all if
3409you disable C<EV_MULTIPLICITY> when embedding libev). 3763you disable C<EV_MULTIPLICITY> when embedding libev).
3410 3764
3411Currently, functions, and static and non-static member functions can be 3765Currently, functions, static and non-static member functions and classes
3412used as callbacks. Other types should be easy to add as long as they only 3766with C<operator ()> can be used as callbacks. Other types should be easy
3413need one additional pointer for context. If you need support for other 3767to add as long as they only need one additional pointer for context. If
3414types of functors please contact the author (preferably after implementing 3768you need support for other types of functors please contact the author
3415it). 3769(preferably after implementing it).
3416 3770
3417Here is a list of things available in the C<ev> namespace: 3771Here is a list of things available in the C<ev> namespace:
3418 3772
3419=over 4 3773=over 4
3420 3774
4288And a F<ev_cpp.C> implementation file that contains libev proper and is compiled: 4642And a F<ev_cpp.C> implementation file that contains libev proper and is compiled:
4289 4643
4290 #include "ev_cpp.h" 4644 #include "ev_cpp.h"
4291 #include "ev.c" 4645 #include "ev.c"
4292 4646
4293=head1 INTERACTION WITH OTHER PROGRAMS OR LIBRARIES 4647=head1 INTERACTION WITH OTHER PROGRAMS, LIBRARIES OR THE ENVIRONMENT
4294 4648
4295=head2 THREADS AND COROUTINES 4649=head2 THREADS AND COROUTINES
4296 4650
4297=head3 THREADS 4651=head3 THREADS
4298 4652
4349default loop and triggering an C<ev_async> watcher from the default loop 4703default loop and triggering an C<ev_async> watcher from the default loop
4350watcher callback into the event loop interested in the signal. 4704watcher callback into the event loop interested in the signal.
4351 4705
4352=back 4706=back
4353 4707
4354=head4 THREAD LOCKING EXAMPLE 4708See also L<THREAD LOCKING EXAMPLE>.
4355
4356Here is a fictitious example of how to run an event loop in a different
4357thread than where callbacks are being invoked and watchers are
4358created/added/removed.
4359
4360For a real-world example, see the C<EV::Loop::Async> perl module,
4361which uses exactly this technique (which is suited for many high-level
4362languages).
4363
4364The example uses a pthread mutex to protect the loop data, a condition
4365variable to wait for callback invocations, an async watcher to notify the
4366event loop thread and an unspecified mechanism to wake up the main thread.
4367
4368First, you need to associate some data with the event loop:
4369
4370 typedef struct {
4371 mutex_t lock; /* global loop lock */
4372 ev_async async_w;
4373 thread_t tid;
4374 cond_t invoke_cv;
4375 } userdata;
4376
4377 void prepare_loop (EV_P)
4378 {
4379 // for simplicity, we use a static userdata struct.
4380 static userdata u;
4381
4382 ev_async_init (&u->async_w, async_cb);
4383 ev_async_start (EV_A_ &u->async_w);
4384
4385 pthread_mutex_init (&u->lock, 0);
4386 pthread_cond_init (&u->invoke_cv, 0);
4387
4388 // now associate this with the loop
4389 ev_set_userdata (EV_A_ u);
4390 ev_set_invoke_pending_cb (EV_A_ l_invoke);
4391 ev_set_loop_release_cb (EV_A_ l_release, l_acquire);
4392
4393 // then create the thread running ev_loop
4394 pthread_create (&u->tid, 0, l_run, EV_A);
4395 }
4396
4397The callback for the C<ev_async> watcher does nothing: the watcher is used
4398solely to wake up the event loop so it takes notice of any new watchers
4399that might have been added:
4400
4401 static void
4402 async_cb (EV_P_ ev_async *w, int revents)
4403 {
4404 // just used for the side effects
4405 }
4406
4407The C<l_release> and C<l_acquire> callbacks simply unlock/lock the mutex
4408protecting the loop data, respectively.
4409
4410 static void
4411 l_release (EV_P)
4412 {
4413 userdata *u = ev_userdata (EV_A);
4414 pthread_mutex_unlock (&u->lock);
4415 }
4416
4417 static void
4418 l_acquire (EV_P)
4419 {
4420 userdata *u = ev_userdata (EV_A);
4421 pthread_mutex_lock (&u->lock);
4422 }
4423
4424The event loop thread first acquires the mutex, and then jumps straight
4425into C<ev_run>:
4426
4427 void *
4428 l_run (void *thr_arg)
4429 {
4430 struct ev_loop *loop = (struct ev_loop *)thr_arg;
4431
4432 l_acquire (EV_A);
4433 pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0);
4434 ev_run (EV_A_ 0);
4435 l_release (EV_A);
4436
4437 return 0;
4438 }
4439
4440Instead of invoking all pending watchers, the C<l_invoke> callback will
4441signal the main thread via some unspecified mechanism (signals? pipe
4442writes? C<Async::Interrupt>?) and then waits until all pending watchers
4443have been called (in a while loop because a) spurious wakeups are possible
4444and b) skipping inter-thread-communication when there are no pending
4445watchers is very beneficial):
4446
4447 static void
4448 l_invoke (EV_P)
4449 {
4450 userdata *u = ev_userdata (EV_A);
4451
4452 while (ev_pending_count (EV_A))
4453 {
4454 wake_up_other_thread_in_some_magic_or_not_so_magic_way ();
4455 pthread_cond_wait (&u->invoke_cv, &u->lock);
4456 }
4457 }
4458
4459Now, whenever the main thread gets told to invoke pending watchers, it
4460will grab the lock, call C<ev_invoke_pending> and then signal the loop
4461thread to continue:
4462
4463 static void
4464 real_invoke_pending (EV_P)
4465 {
4466 userdata *u = ev_userdata (EV_A);
4467
4468 pthread_mutex_lock (&u->lock);
4469 ev_invoke_pending (EV_A);
4470 pthread_cond_signal (&u->invoke_cv);
4471 pthread_mutex_unlock (&u->lock);
4472 }
4473
4474Whenever you want to start/stop a watcher or do other modifications to an
4475event loop, you will now have to lock:
4476
4477 ev_timer timeout_watcher;
4478 userdata *u = ev_userdata (EV_A);
4479
4480 ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
4481
4482 pthread_mutex_lock (&u->lock);
4483 ev_timer_start (EV_A_ &timeout_watcher);
4484 ev_async_send (EV_A_ &u->async_w);
4485 pthread_mutex_unlock (&u->lock);
4486
4487Note that sending the C<ev_async> watcher is required because otherwise
4488an event loop currently blocking in the kernel will have no knowledge
4489about the newly added timer. By waking up the loop it will pick up any new
4490watchers in the next event loop iteration.
4491 4709
4492=head3 COROUTINES 4710=head3 COROUTINES
4493 4711
4494Libev is very accommodating to coroutines ("cooperative threads"): 4712Libev is very accommodating to coroutines ("cooperative threads"):
4495libev fully supports nesting calls to its functions from different 4713libev fully supports nesting calls to its functions from different

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines