--- libev/ev.pod 2011/01/10 14:30:15 1.352 +++ libev/ev.pod 2011/06/13 09:52:36 1.375 @@ -60,7 +60,7 @@ // now wait for events to arrive ev_run (loop, 0); - // unloop was called, so exit + // break was called, so exit return 0; } @@ -180,9 +180,15 @@ =item ev_sleep (ev_tstamp interval) -Sleep for the given interval: The current thread will be blocked until -either it is interrupted or the given time interval has passed. Basically -this is a sub-second-resolution C. +Sleep for the given interval: The current thread will be blocked +until either it is interrupted or the given time interval has +passed (approximately - it might return a bit earlier even if not +interrupted). Returns immediately if C<< interval <= 0 >>. + +Basically this is a sub-second-resolution C. + +The range of the C is limited - libev only guarantees to work +with sleep times of up to one day (C<< interval <= 86400 >>). =item int ev_version_major () @@ -437,13 +443,16 @@ =item C When this flag is specified, then libev will avoid to modify the signal -mask. Specifically, this means you ahve to make sure signals are unblocked +mask. Specifically, this means you have to make sure signals are unblocked when you want to receive them. This behaviour is useful when you want to do your own signal handling, or want to handle signals only in specific threads and want to avoid libev unblocking the signals. +It's also required by POSIX in a threaded program, as libev calls +C, whose behaviour is officially unspecified. + This flag's behaviour will become the default in future versions of libev. =item C (value 1, portable select backend) @@ -482,10 +491,10 @@ Use the linux-specific epoll(7) interface (for both pre- and post-2.6.9 kernels). -For few fds, this backend is a bit little slower than poll and select, -but it scales phenomenally better. While poll and select usually scale -like O(total_fds) where n is the total number of fds (or the highest fd), -epoll scales either O(1) or O(active_fds). +For few fds, this backend is a bit little slower than poll and select, but +it scales phenomenally better. While poll and select usually scale like +O(total_fds) where total_fds is the total number of fds (or the highest +fd), epoll scales either O(1) or O(active_fds). The epoll mechanism deserves honorable mention as the most misdesigned of the more advanced event mechanisms: mere annoyances include silently @@ -498,17 +507,22 @@ set, which can take considerable time (one syscall per file descriptor) and is of course hard to detect. -Epoll is also notoriously buggy - embedding epoll fds I work, but -of course I, and epoll just loves to report events for totally -I file descriptors (even already closed ones, so one cannot -even remove them from the set) than registered in the set (especially -on SMP systems). Libev tries to counter these spurious notifications by -employing an additional generation counter and comparing that against the -events to filter out spurious ones, recreating the set when required. Last +Epoll is also notoriously buggy - embedding epoll fds I work, +but of course I, and epoll just loves to report events for +totally I file descriptors (even already closed ones, so +one cannot even remove them from the set) than registered in the set +(especially on SMP systems). Libev tries to counter these spurious +notifications by employing an additional generation counter and comparing +that against the events to filter out spurious ones, recreating the set +when required. Epoll also erroneously rounds down timeouts, but gives you +no way to know when and by how much, so sometimes you have to busy-wait +because epoll returns immediately despite a nonzero timeout. And last not least, it also refuses to work with some file descriptors which work perfectly fine with C (or libev) on file descriptors +representing files, and expect it to become ready when their program +doesn't block on disk accesses (which can take a long time on their own). + +However, this cannot ever work in the "expected" way - you get a readiness +notification as soon as the kernel knows whether and how much data is +there, and in the case of open files, that's always the case, so you +always get a readiness notification instantly, and your read (or possibly +write) will still block on the disk I/O. + +Another way to view it is that in the case of sockets, pipes, character +devices and so on, there is another party (the sender) that delivers data +on its own, but in the case of files, there is no such thing: the disk +will not send data on its own, simply because it doesn't know what you +wish to read - you would first have to request some data. + +Since files are typically not-so-well supported by advanced notification +mechanism, libev tries hard to emulate POSIX behaviour with respect +to files, even though you should not use it. The reason for this is +convenience: sometimes you want to watch STDIN or STDOUT, which is +usually a tty, often a pipe, but also sometimes files or special devices +(for example, C on Linux works with F but not with +F), and even though the file might better be served with +asynchronous I/O instead of with non-blocking I/O, it is still useful when +it "just works" instead of freezing. + +So avoid file descriptors pointing to files when you know it (e.g. use +libeio), but use them when it is convenient, e.g. for STDIN/STDOUT, or +when you rarely read from a file instead of from a socket, and want to +reuse the same code path. + =head3 The special problem of fork Some backends (epoll, kqueue) do not support C at all or exhibit useless behaviour. Libev fully supports fork, but needs to be told about -it in the child. +it in the child if you want to continue to use it in the child. -To support fork in your programs, you either have to call -C or C after a fork in the child, -enable C, or resort to C or -C. +To support fork in your child processes, you have to call C after a fork in the child, enable C, or resort to +C or C. =head3 The special problem of SIGPIPE @@ -2042,7 +2025,7 @@ =item ev_timer_again (loop, ev_timer *) -This will act as if the timer timed out and restart it again if it is +This will act as if the timer timed out and restarts it again if it is repeating. The exact semantics are: If the timer is pending, its pending status is cleared. @@ -2182,9 +2165,12 @@ C will try to run the callback in this mode at the next possible time where C