ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.pod
(Generate patch)

Comparing libev/ev.pod (file contents):
Revision 1.353 by root, Mon Jan 10 14:36:44 2011 UTC vs.
Revision 1.360 by root, Mon Jan 17 12:11:12 2011 UTC

442 442
443This behaviour is useful when you want to do your own signal handling, or 443This behaviour is useful when you want to do your own signal handling, or
444want to handle signals only in specific threads and want to avoid libev 444want to handle signals only in specific threads and want to avoid libev
445unblocking the signals. 445unblocking the signals.
446 446
447It's also required by POSIX in a threaded program, as libev calls
448C<sigprocmask>, whose behaviour is officially unspecified.
449
447This flag's behaviour will become the default in future versions of libev. 450This flag's behaviour will become the default in future versions of libev.
448 451
449=item C<EVBACKEND_SELECT> (value 1, portable select backend) 452=item C<EVBACKEND_SELECT> (value 1, portable select backend)
450 453
451This is your standard select(2) backend. Not I<completely> standard, as 454This is your standard select(2) backend. Not I<completely> standard, as
506employing an additional generation counter and comparing that against the 509employing an additional generation counter and comparing that against the
507events to filter out spurious ones, recreating the set when required. Last 510events to filter out spurious ones, recreating the set when required. Last
508not least, it also refuses to work with some file descriptors which work 511not least, it also refuses to work with some file descriptors which work
509perfectly fine with C<select> (files, many character devices...). 512perfectly fine with C<select> (files, many character devices...).
510 513
511Epoll is truly the train wreck analog among event poll mechanisms. 514Epoll is truly the train wreck analog among event poll mechanisms,
515a frankenpoll, cobbled together in a hurry, no thought to design or
516interaction with others.
512 517
513While stopping, setting and starting an I/O watcher in the same iteration 518While stopping, setting and starting an I/O watcher in the same iteration
514will result in some caching, there is still a system call per such 519will result in some caching, there is still a system call per such
515incident (because the same I<file descriptor> could point to a different 520incident (because the same I<file descriptor> could point to a different
516I<file description> now), so its best to avoid that. Also, C<dup ()>'ed 521I<file description> now), so its best to avoid that. Also, C<dup ()>'ed
1355See also C<ev_feed_fd_event> and C<ev_feed_signal_event> for related 1360See also C<ev_feed_fd_event> and C<ev_feed_signal_event> for related
1356functions that do not need a watcher. 1361functions that do not need a watcher.
1357 1362
1358=back 1363=back
1359 1364
1360=head2 ASSOCIATING CUSTOM DATA WITH A WATCHER 1365See also the L<ASSOCIATING CUSTOM DATA WITH A WATCHER> and L<BUILDING YOUR
1361 1366OWN COMPOSITE WATCHERS> idioms.
1362Each watcher has, by default, a member C<void *data> that you can change
1363and read at any time: libev will completely ignore it. This can be used
1364to associate arbitrary data with your watcher. If you need more data and
1365don't want to allocate memory and store a pointer to it in that data
1366member, you can also "subclass" the watcher type and provide your own
1367data:
1368
1369 struct my_io
1370 {
1371 ev_io io;
1372 int otherfd;
1373 void *somedata;
1374 struct whatever *mostinteresting;
1375 };
1376
1377 ...
1378 struct my_io w;
1379 ev_io_init (&w.io, my_cb, fd, EV_READ);
1380
1381And since your callback will be called with a pointer to the watcher, you
1382can cast it back to your own type:
1383
1384 static void my_cb (struct ev_loop *loop, ev_io *w_, int revents)
1385 {
1386 struct my_io *w = (struct my_io *)w_;
1387 ...
1388 }
1389
1390More interesting and less C-conformant ways of casting your callback type
1391instead have been omitted.
1392
1393Another common scenario is to use some data structure with multiple
1394embedded watchers:
1395
1396 struct my_biggy
1397 {
1398 int some_data;
1399 ev_timer t1;
1400 ev_timer t2;
1401 }
1402
1403In this case getting the pointer to C<my_biggy> is a bit more
1404complicated: Either you store the address of your C<my_biggy> struct
1405in the C<data> member of the watcher (for woozies), or you need to use
1406some pointer arithmetic using C<offsetof> inside your watchers (for real
1407programmers):
1408
1409 #include <stddef.h>
1410
1411 static void
1412 t1_cb (EV_P_ ev_timer *w, int revents)
1413 {
1414 struct my_biggy big = (struct my_biggy *)
1415 (((char *)w) - offsetof (struct my_biggy, t1));
1416 }
1417
1418 static void
1419 t2_cb (EV_P_ ev_timer *w, int revents)
1420 {
1421 struct my_biggy big = (struct my_biggy *)
1422 (((char *)w) - offsetof (struct my_biggy, t2));
1423 }
1424 1367
1425=head2 WATCHER STATES 1368=head2 WATCHER STATES
1426 1369
1427There are various watcher states mentioned throughout this manual - 1370There are various watcher states mentioned throughout this manual -
1428active, pending and so on. In this section these states and the rules to 1371active, pending and so on. In this section these states and the rules to
1614In general you can register as many read and/or write event watchers per 1557In general you can register as many read and/or write event watchers per
1615fd as you want (as long as you don't confuse yourself). Setting all file 1558fd as you want (as long as you don't confuse yourself). Setting all file
1616descriptors to non-blocking mode is also usually a good idea (but not 1559descriptors to non-blocking mode is also usually a good idea (but not
1617required if you know what you are doing). 1560required if you know what you are doing).
1618 1561
1619If you cannot use non-blocking mode, then force the use of a
1620known-to-be-good backend (at the time of this writing, this includes only
1621C<EVBACKEND_SELECT> and C<EVBACKEND_POLL>). The same applies to file
1622descriptors for which non-blocking operation makes no sense (such as
1623files) - libev doesn't guarantee any specific behaviour in that case.
1624
1625Another thing you have to watch out for is that it is quite easy to 1562Another thing you have to watch out for is that it is quite easy to
1626receive "spurious" readiness notifications, that is your callback might 1563receive "spurious" readiness notifications, that is, your callback might
1627be called with C<EV_READ> but a subsequent C<read>(2) will actually block 1564be called with C<EV_READ> but a subsequent C<read>(2) will actually block
1628because there is no data. Not only are some backends known to create a 1565because there is no data. It is very easy to get into this situation even
1629lot of those (for example Solaris ports), it is very easy to get into 1566with a relatively standard program structure. Thus it is best to always
1630this situation even with a relatively standard program structure. Thus 1567use non-blocking I/O: An extra C<read>(2) returning C<EAGAIN> is far
1631it is best to always use non-blocking I/O: An extra C<read>(2) returning
1632C<EAGAIN> is far preferable to a program hanging until some data arrives. 1568preferable to a program hanging until some data arrives.
1633 1569
1634If you cannot run the fd in non-blocking mode (for example you should 1570If you cannot run the fd in non-blocking mode (for example you should
1635not play around with an Xlib connection), then you have to separately 1571not play around with an Xlib connection), then you have to separately
1636re-test whether a file descriptor is really ready with a known-to-be good 1572re-test whether a file descriptor is really ready with a known-to-be good
1637interface such as poll (fortunately in our Xlib example, Xlib already 1573interface such as poll (fortunately in the case of Xlib, it already does
1638does this on its own, so its quite safe to use). Some people additionally 1574this on its own, so its quite safe to use). Some people additionally
1639use C<SIGALRM> and an interval timer, just to be sure you won't block 1575use C<SIGALRM> and an interval timer, just to be sure you won't block
1640indefinitely. 1576indefinitely.
1641 1577
1642But really, best use non-blocking mode. 1578But really, best use non-blocking mode.
1643 1579
1671 1607
1672There is no workaround possible except not registering events 1608There is no workaround possible except not registering events
1673for potentially C<dup ()>'ed file descriptors, or to resort to 1609for potentially C<dup ()>'ed file descriptors, or to resort to
1674C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>. 1610C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>.
1675 1611
1612=head3 The special problem of files
1613
1614Many people try to use C<select> (or libev) on file descriptors
1615representing files, and expect it to become ready when their program
1616doesn't block on disk accesses (which can take a long time on their own).
1617
1618However, this cannot ever work in the "expected" way - you get a readiness
1619notification as soon as the kernel knows whether and how much data is
1620there, and in the case of open files, that's always the case, so you
1621always get a readiness notification instantly, and your read (or possibly
1622write) will still block on the disk I/O.
1623
1624Another way to view it is that in the case of sockets, pipes, character
1625devices and so on, there is another party (the sender) that delivers data
1626on its own, but in the case of files, there is no such thing: the disk
1627will not send data on its own, simply because it doesn't know what you
1628wish to read - you would first have to request some data.
1629
1630Since files are typically not-so-well supported by advanced notification
1631mechanism, libev tries hard to emulate POSIX behaviour with respect
1632to files, even though you should not use it. The reason for this is
1633convenience: sometimes you want to watch STDIN or STDOUT, which is
1634usually a tty, often a pipe, but also sometimes files or special devices
1635(for example, C<epoll> on Linux works with F</dev/random> but not with
1636F</dev/urandom>), and even though the file might better be served with
1637asynchronous I/O instead of with non-blocking I/O, it is still useful when
1638it "just works" instead of freezing.
1639
1640So avoid file descriptors pointing to files when you know it (e.g. use
1641libeio), but use them when it is convenient, e.g. for STDIN/STDOUT, or
1642when you rarely read from a file instead of from a socket, and want to
1643reuse the same code path.
1644
1676=head3 The special problem of fork 1645=head3 The special problem of fork
1677 1646
1678Some backends (epoll, kqueue) do not support C<fork ()> at all or exhibit 1647Some backends (epoll, kqueue) do not support C<fork ()> at all or exhibit
1679useless behaviour. Libev fully supports fork, but needs to be told about 1648useless behaviour. Libev fully supports fork, but needs to be told about
1680it in the child. 1649it in the child if you want to continue to use it in the child.
1681 1650
1682To support fork in your programs, you either have to call 1651To support fork in your child processes, you have to call C<ev_loop_fork
1683C<ev_default_fork ()> or C<ev_loop_fork ()> after a fork in the child, 1652()> after a fork in the child, enable C<EVFLAG_FORKCHECK>, or resort to
1684enable C<EVFLAG_FORKCHECK>, or resort to C<EVBACKEND_SELECT> or 1653C<EVBACKEND_SELECT> or C<EVBACKEND_POLL>.
1685C<EVBACKEND_POLL>.
1686 1654
1687=head3 The special problem of SIGPIPE 1655=head3 The special problem of SIGPIPE
1688 1656
1689While not really specific to libev, it is easy to forget about C<SIGPIPE>: 1657While not really specific to libev, it is easy to forget about C<SIGPIPE>:
1690when writing to a pipe whose other end has been closed, your program gets 1658when writing to a pipe whose other end has been closed, your program gets
2335=head3 The special problem of inheritance over fork/execve/pthread_create 2303=head3 The special problem of inheritance over fork/execve/pthread_create
2336 2304
2337Both the signal mask (C<sigprocmask>) and the signal disposition 2305Both the signal mask (C<sigprocmask>) and the signal disposition
2338(C<sigaction>) are unspecified after starting a signal watcher (and after 2306(C<sigaction>) are unspecified after starting a signal watcher (and after
2339stopping it again), that is, libev might or might not block the signal, 2307stopping it again), that is, libev might or might not block the signal,
2340and might or might not set or restore the installed signal handler. 2308and might or might not set or restore the installed signal handler (but
2309see C<EVFLAG_NOSIGMASK>).
2341 2310
2342While this does not matter for the signal disposition (libev never 2311While this does not matter for the signal disposition (libev never
2343sets signals to C<SIG_IGN>, so handlers will be reset to C<SIG_DFL> on 2312sets signals to C<SIG_IGN>, so handlers will be reset to C<SIG_DFL> on
2344C<execve>), this matters for the signal mask: many programs do not expect 2313C<execve>), this matters for the signal mask: many programs do not expect
2345certain signals to be blocked. 2314certain signals to be blocked.
3429 3398
3430This section explains some common idioms that are not immediately 3399This section explains some common idioms that are not immediately
3431obvious. Note that examples are sprinkled over the whole manual, and this 3400obvious. Note that examples are sprinkled over the whole manual, and this
3432section only contains stuff that wouldn't fit anywhere else. 3401section only contains stuff that wouldn't fit anywhere else.
3433 3402
3434=over 4 3403=head2 ASSOCIATING CUSTOM DATA WITH A WATCHER
3435 3404
3436=item Model/nested event loop invocations and exit conditions. 3405Each watcher has, by default, a C<void *data> member that you can read
3406or modify at any time: libev will completely ignore it. This can be used
3407to associate arbitrary data with your watcher. If you need more data and
3408don't want to allocate memory separately and store a pointer to it in that
3409data member, you can also "subclass" the watcher type and provide your own
3410data:
3411
3412 struct my_io
3413 {
3414 ev_io io;
3415 int otherfd;
3416 void *somedata;
3417 struct whatever *mostinteresting;
3418 };
3419
3420 ...
3421 struct my_io w;
3422 ev_io_init (&w.io, my_cb, fd, EV_READ);
3423
3424And since your callback will be called with a pointer to the watcher, you
3425can cast it back to your own type:
3426
3427 static void my_cb (struct ev_loop *loop, ev_io *w_, int revents)
3428 {
3429 struct my_io *w = (struct my_io *)w_;
3430 ...
3431 }
3432
3433More interesting and less C-conformant ways of casting your callback
3434function type instead have been omitted.
3435
3436=head2 BUILDING YOUR OWN COMPOSITE WATCHERS
3437
3438Another common scenario is to use some data structure with multiple
3439embedded watchers, in effect creating your own watcher that combines
3440multiple libev event sources into one "super-watcher":
3441
3442 struct my_biggy
3443 {
3444 int some_data;
3445 ev_timer t1;
3446 ev_timer t2;
3447 }
3448
3449In this case getting the pointer to C<my_biggy> is a bit more
3450complicated: Either you store the address of your C<my_biggy> struct in
3451the C<data> member of the watcher (for woozies or C++ coders), or you need
3452to use some pointer arithmetic using C<offsetof> inside your watchers (for
3453real programmers):
3454
3455 #include <stddef.h>
3456
3457 static void
3458 t1_cb (EV_P_ ev_timer *w, int revents)
3459 {
3460 struct my_biggy big = (struct my_biggy *)
3461 (((char *)w) - offsetof (struct my_biggy, t1));
3462 }
3463
3464 static void
3465 t2_cb (EV_P_ ev_timer *w, int revents)
3466 {
3467 struct my_biggy big = (struct my_biggy *)
3468 (((char *)w) - offsetof (struct my_biggy, t2));
3469 }
3470
3471=head2 MODEL/NESTED EVENT LOOP INVOCATIONS AND EXIT CONDITIONS
3437 3472
3438Often (especially in GUI toolkits) there are places where you have 3473Often (especially in GUI toolkits) there are places where you have
3439I<modal> interaction, which is most easily implemented by recursively 3474I<modal> interaction, which is most easily implemented by recursively
3440invoking C<ev_run>. 3475invoking C<ev_run>.
3441 3476
3470 exit_main_loop = 1; 3505 exit_main_loop = 1;
3471 3506
3472 // exit both 3507 // exit both
3473 exit_main_loop = exit_nested_loop = 1; 3508 exit_main_loop = exit_nested_loop = 1;
3474 3509
3475=back 3510=head2 THREAD LOCKING EXAMPLE
3511
3512Here is a fictitious example of how to run an event loop in a different
3513thread from where callbacks are being invoked and watchers are
3514created/added/removed.
3515
3516For a real-world example, see the C<EV::Loop::Async> perl module,
3517which uses exactly this technique (which is suited for many high-level
3518languages).
3519
3520The example uses a pthread mutex to protect the loop data, a condition
3521variable to wait for callback invocations, an async watcher to notify the
3522event loop thread and an unspecified mechanism to wake up the main thread.
3523
3524First, you need to associate some data with the event loop:
3525
3526 typedef struct {
3527 mutex_t lock; /* global loop lock */
3528 ev_async async_w;
3529 thread_t tid;
3530 cond_t invoke_cv;
3531 } userdata;
3532
3533 void prepare_loop (EV_P)
3534 {
3535 // for simplicity, we use a static userdata struct.
3536 static userdata u;
3537
3538 ev_async_init (&u->async_w, async_cb);
3539 ev_async_start (EV_A_ &u->async_w);
3540
3541 pthread_mutex_init (&u->lock, 0);
3542 pthread_cond_init (&u->invoke_cv, 0);
3543
3544 // now associate this with the loop
3545 ev_set_userdata (EV_A_ u);
3546 ev_set_invoke_pending_cb (EV_A_ l_invoke);
3547 ev_set_loop_release_cb (EV_A_ l_release, l_acquire);
3548
3549 // then create the thread running ev_loop
3550 pthread_create (&u->tid, 0, l_run, EV_A);
3551 }
3552
3553The callback for the C<ev_async> watcher does nothing: the watcher is used
3554solely to wake up the event loop so it takes notice of any new watchers
3555that might have been added:
3556
3557 static void
3558 async_cb (EV_P_ ev_async *w, int revents)
3559 {
3560 // just used for the side effects
3561 }
3562
3563The C<l_release> and C<l_acquire> callbacks simply unlock/lock the mutex
3564protecting the loop data, respectively.
3565
3566 static void
3567 l_release (EV_P)
3568 {
3569 userdata *u = ev_userdata (EV_A);
3570 pthread_mutex_unlock (&u->lock);
3571 }
3572
3573 static void
3574 l_acquire (EV_P)
3575 {
3576 userdata *u = ev_userdata (EV_A);
3577 pthread_mutex_lock (&u->lock);
3578 }
3579
3580The event loop thread first acquires the mutex, and then jumps straight
3581into C<ev_run>:
3582
3583 void *
3584 l_run (void *thr_arg)
3585 {
3586 struct ev_loop *loop = (struct ev_loop *)thr_arg;
3587
3588 l_acquire (EV_A);
3589 pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0);
3590 ev_run (EV_A_ 0);
3591 l_release (EV_A);
3592
3593 return 0;
3594 }
3595
3596Instead of invoking all pending watchers, the C<l_invoke> callback will
3597signal the main thread via some unspecified mechanism (signals? pipe
3598writes? C<Async::Interrupt>?) and then waits until all pending watchers
3599have been called (in a while loop because a) spurious wakeups are possible
3600and b) skipping inter-thread-communication when there are no pending
3601watchers is very beneficial):
3602
3603 static void
3604 l_invoke (EV_P)
3605 {
3606 userdata *u = ev_userdata (EV_A);
3607
3608 while (ev_pending_count (EV_A))
3609 {
3610 wake_up_other_thread_in_some_magic_or_not_so_magic_way ();
3611 pthread_cond_wait (&u->invoke_cv, &u->lock);
3612 }
3613 }
3614
3615Now, whenever the main thread gets told to invoke pending watchers, it
3616will grab the lock, call C<ev_invoke_pending> and then signal the loop
3617thread to continue:
3618
3619 static void
3620 real_invoke_pending (EV_P)
3621 {
3622 userdata *u = ev_userdata (EV_A);
3623
3624 pthread_mutex_lock (&u->lock);
3625 ev_invoke_pending (EV_A);
3626 pthread_cond_signal (&u->invoke_cv);
3627 pthread_mutex_unlock (&u->lock);
3628 }
3629
3630Whenever you want to start/stop a watcher or do other modifications to an
3631event loop, you will now have to lock:
3632
3633 ev_timer timeout_watcher;
3634 userdata *u = ev_userdata (EV_A);
3635
3636 ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
3637
3638 pthread_mutex_lock (&u->lock);
3639 ev_timer_start (EV_A_ &timeout_watcher);
3640 ev_async_send (EV_A_ &u->async_w);
3641 pthread_mutex_unlock (&u->lock);
3642
3643Note that sending the C<ev_async> watcher is required because otherwise
3644an event loop currently blocking in the kernel will have no knowledge
3645about the newly added timer. By waking up the loop it will pick up any new
3646watchers in the next event loop iteration.
3647
3648=head2 THREADS, COROUTINES, CONTINUATIONS, QUEUES... INSTEAD OF CALLBACKS
3649
3650While the overhead of a callback that e.g. schedules a thread is small, it
3651is still an overhead. If you embed libev, and your main usage is with some
3652kind of threads or coroutines, you might want to customise libev so that
3653doesn't need callbacks anymore.
3654
3655Imagine you have coroutines that you can switch to using a function
3656C<switch_to (coro)>, that libev runs in a coroutine called C<libev_coro>
3657and that due to some magic, the currently active coroutine is stored in a
3658global called C<current_coro>. Then you can build your own "wait for libev
3659event" primitive by changing C<EV_CB_DECLARE> and C<EV_CB_INVOKE> (note
3660the differing C<;> conventions):
3661
3662 #define EV_CB_DECLARE(type) struct my_coro *cb;
3663 #define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb)
3664
3665That means instead of having a C callback function, you store the
3666coroutine to switch to in each watcher, and instead of having libev call
3667your callback, you instead have it switch to that coroutine.
3668
3669A coroutine might now wait for an event with a function called
3670C<wait_for_event>. (the watcher needs to be started, as always, but it doesn't
3671matter when, or whether the watcher is active or not when this function is
3672called):
3673
3674 void
3675 wait_for_event (ev_watcher *w)
3676 {
3677 ev_cb_set (w) = current_coro;
3678 switch_to (libev_coro);
3679 }
3680
3681That basically suspends the coroutine inside C<wait_for_event> and
3682continues the libev coroutine, which, when appropriate, switches back to
3683this or any other coroutine. I am sure if you sue this your own :)
3684
3685You can do similar tricks if you have, say, threads with an event queue -
3686instead of storing a coroutine, you store the queue object and instead of
3687switching to a coroutine, you push the watcher onto the queue and notify
3688any waiters.
3689
3690To embed libev, see L<EMBEDDING>, but in short, it's easiest to create two
3691files, F<my_ev.h> and F<my_ev.c> that include the respective libev files:
3692
3693 // my_ev.h
3694 #define EV_CB_DECLARE(type) struct my_coro *cb;
3695 #define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb);
3696 #include "../libev/ev.h"
3697
3698 // my_ev.c
3699 #define EV_H "my_ev.h"
3700 #include "../libev/ev.c"
3701
3702And then use F<my_ev.h> when you would normally use F<ev.h>, and compile
3703F<my_ev.c> into your project. When properly specifying include paths, you
3704can even use F<ev.h> as header file name directly.
3476 3705
3477 3706
3478=head1 LIBEVENT EMULATION 3707=head1 LIBEVENT EMULATION
3479 3708
3480Libev offers a compatibility emulation layer for libevent. It cannot 3709Libev offers a compatibility emulation layer for libevent. It cannot
4410And a F<ev_cpp.C> implementation file that contains libev proper and is compiled: 4639And a F<ev_cpp.C> implementation file that contains libev proper and is compiled:
4411 4640
4412 #include "ev_cpp.h" 4641 #include "ev_cpp.h"
4413 #include "ev.c" 4642 #include "ev.c"
4414 4643
4415=head1 INTERACTION WITH OTHER PROGRAMS OR LIBRARIES 4644=head1 INTERACTION WITH OTHER PROGRAMS, LIBRARIES OR THE ENVIRONMENT
4416 4645
4417=head2 THREADS AND COROUTINES 4646=head2 THREADS AND COROUTINES
4418 4647
4419=head3 THREADS 4648=head3 THREADS
4420 4649
4471default loop and triggering an C<ev_async> watcher from the default loop 4700default loop and triggering an C<ev_async> watcher from the default loop
4472watcher callback into the event loop interested in the signal. 4701watcher callback into the event loop interested in the signal.
4473 4702
4474=back 4703=back
4475 4704
4476=head4 THREAD LOCKING EXAMPLE 4705See also L<THREAD LOCKING EXAMPLE>.
4477
4478Here is a fictitious example of how to run an event loop in a different
4479thread than where callbacks are being invoked and watchers are
4480created/added/removed.
4481
4482For a real-world example, see the C<EV::Loop::Async> perl module,
4483which uses exactly this technique (which is suited for many high-level
4484languages).
4485
4486The example uses a pthread mutex to protect the loop data, a condition
4487variable to wait for callback invocations, an async watcher to notify the
4488event loop thread and an unspecified mechanism to wake up the main thread.
4489
4490First, you need to associate some data with the event loop:
4491
4492 typedef struct {
4493 mutex_t lock; /* global loop lock */
4494 ev_async async_w;
4495 thread_t tid;
4496 cond_t invoke_cv;
4497 } userdata;
4498
4499 void prepare_loop (EV_P)
4500 {
4501 // for simplicity, we use a static userdata struct.
4502 static userdata u;
4503
4504 ev_async_init (&u->async_w, async_cb);
4505 ev_async_start (EV_A_ &u->async_w);
4506
4507 pthread_mutex_init (&u->lock, 0);
4508 pthread_cond_init (&u->invoke_cv, 0);
4509
4510 // now associate this with the loop
4511 ev_set_userdata (EV_A_ u);
4512 ev_set_invoke_pending_cb (EV_A_ l_invoke);
4513 ev_set_loop_release_cb (EV_A_ l_release, l_acquire);
4514
4515 // then create the thread running ev_loop
4516 pthread_create (&u->tid, 0, l_run, EV_A);
4517 }
4518
4519The callback for the C<ev_async> watcher does nothing: the watcher is used
4520solely to wake up the event loop so it takes notice of any new watchers
4521that might have been added:
4522
4523 static void
4524 async_cb (EV_P_ ev_async *w, int revents)
4525 {
4526 // just used for the side effects
4527 }
4528
4529The C<l_release> and C<l_acquire> callbacks simply unlock/lock the mutex
4530protecting the loop data, respectively.
4531
4532 static void
4533 l_release (EV_P)
4534 {
4535 userdata *u = ev_userdata (EV_A);
4536 pthread_mutex_unlock (&u->lock);
4537 }
4538
4539 static void
4540 l_acquire (EV_P)
4541 {
4542 userdata *u = ev_userdata (EV_A);
4543 pthread_mutex_lock (&u->lock);
4544 }
4545
4546The event loop thread first acquires the mutex, and then jumps straight
4547into C<ev_run>:
4548
4549 void *
4550 l_run (void *thr_arg)
4551 {
4552 struct ev_loop *loop = (struct ev_loop *)thr_arg;
4553
4554 l_acquire (EV_A);
4555 pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0);
4556 ev_run (EV_A_ 0);
4557 l_release (EV_A);
4558
4559 return 0;
4560 }
4561
4562Instead of invoking all pending watchers, the C<l_invoke> callback will
4563signal the main thread via some unspecified mechanism (signals? pipe
4564writes? C<Async::Interrupt>?) and then waits until all pending watchers
4565have been called (in a while loop because a) spurious wakeups are possible
4566and b) skipping inter-thread-communication when there are no pending
4567watchers is very beneficial):
4568
4569 static void
4570 l_invoke (EV_P)
4571 {
4572 userdata *u = ev_userdata (EV_A);
4573
4574 while (ev_pending_count (EV_A))
4575 {
4576 wake_up_other_thread_in_some_magic_or_not_so_magic_way ();
4577 pthread_cond_wait (&u->invoke_cv, &u->lock);
4578 }
4579 }
4580
4581Now, whenever the main thread gets told to invoke pending watchers, it
4582will grab the lock, call C<ev_invoke_pending> and then signal the loop
4583thread to continue:
4584
4585 static void
4586 real_invoke_pending (EV_P)
4587 {
4588 userdata *u = ev_userdata (EV_A);
4589
4590 pthread_mutex_lock (&u->lock);
4591 ev_invoke_pending (EV_A);
4592 pthread_cond_signal (&u->invoke_cv);
4593 pthread_mutex_unlock (&u->lock);
4594 }
4595
4596Whenever you want to start/stop a watcher or do other modifications to an
4597event loop, you will now have to lock:
4598
4599 ev_timer timeout_watcher;
4600 userdata *u = ev_userdata (EV_A);
4601
4602 ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
4603
4604 pthread_mutex_lock (&u->lock);
4605 ev_timer_start (EV_A_ &timeout_watcher);
4606 ev_async_send (EV_A_ &u->async_w);
4607 pthread_mutex_unlock (&u->lock);
4608
4609Note that sending the C<ev_async> watcher is required because otherwise
4610an event loop currently blocking in the kernel will have no knowledge
4611about the newly added timer. By waking up the loop it will pick up any new
4612watchers in the next event loop iteration.
4613 4706
4614=head3 COROUTINES 4707=head3 COROUTINES
4615 4708
4616Libev is very accommodating to coroutines ("cooperative threads"): 4709Libev is very accommodating to coroutines ("cooperative threads"):
4617libev fully supports nesting calls to its functions from different 4710libev fully supports nesting calls to its functions from different

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines