--- libev/ev.pod 2007/11/26 10:20:43 1.46 +++ libev/ev.pod 2008/07/05 02:25:40 1.170 @@ -4,12 +4,72 @@ =head1 SYNOPSIS - #include + #include + +=head2 EXAMPLE PROGRAM + + // a single header file is required + #include + + // every watcher type has its own typedef'd struct + // with the name ev_ + ev_io stdin_watcher; + ev_timer timeout_watcher; + + // all watcher callbacks have a similar signature + // this callback is called when data is readable on stdin + static void + stdin_cb (EV_P_ struct ev_io *w, int revents) + { + puts ("stdin ready"); + // for one-shot events, one must manually stop the watcher + // with its corresponding stop function. + ev_io_stop (EV_A_ w); + + // this causes all nested ev_loop's to stop iterating + ev_unloop (EV_A_ EVUNLOOP_ALL); + } + + // another callback, this time for a time-out + static void + timeout_cb (EV_P_ struct ev_timer *w, int revents) + { + puts ("timeout"); + // this causes the innermost ev_loop to stop iterating + ev_unloop (EV_A_ EVUNLOOP_ONE); + } + + int + main (void) + { + // use the default event loop unless you have special needs + struct ev_loop *loop = ev_default_loop (0); + + // initialise an io watcher, then start it + // this one will watch for stdin to become readable + ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ); + ev_io_start (loop, &stdin_watcher); + + // initialise a timer watcher, then start it + // simple non-repeating 5.5 second timeout + ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.); + ev_timer_start (loop, &timeout_watcher); + + // now wait for events to arrive + ev_loop (loop, 0); + + // unloop was called, so exit + return 0; + } =head1 DESCRIPTION +The newest version of this document is also available as an html-formatted +web page you might find easier to navigate when reading it for the first +time: L. + Libev is an event loop: you register interest in certain events (such as a -file descriptor being readable or a timeout occuring), and it will manage +file descriptor being readable or a timeout occurring), and it will manage these event sources and provide your program with events. To do this, it must take more or less complete control over your process @@ -21,34 +81,63 @@ details of the event, and then hand it over to libev by I the watcher. -=head1 FEATURES +=head2 FEATURES + +Libev supports C which have a high +overhead for the actual polling but can deliver many events at once. + +By setting a higher I you allow libev to spend more +time collecting I/O events, so you can handle more events per iteration, +at the cost of increasing latency. Timeouts (both C and +C) will be not affected. Setting this to a non-null value will +introduce an additional C call into most loop iterations. + +Likewise, by setting a higher I you allow libev +to spend more time collecting timeouts, at the expense of increased +latency (the watcher callback will be called later). C watchers +will not be affected. Setting this to a non-null value will not introduce +any overhead in libev. + +Many (busy) programs can usually benefit by setting the I/O collect +interval to a value near C<0.1> or so, which is often enough for +interactive servers (of course not for games), likewise for timeouts. It +usually doesn't make much sense to set it to a lower value than C<0.01>, +as this approaches the timing granularity of most systems. + +=item ev_loop_verify (loop) + +This function only does something when C support has been +compiled in. It tries to go through all internal structures and checks +them for validity. If anything is found to be inconsistent, it will print +an error message to standard error and call C. + +This can be used to catch bugs inside libev itself: under normal +circumstances, this function will never abort as of course libev keeps its +data structures consistent. =back @@ -477,18 +732,18 @@ interest in some event. For instance, if you want to wait for STDIN to become readable, you would create an C watcher for that: - static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents) - { - ev_io_stop (w); - ev_unloop (loop, EVUNLOOP_ALL); - } - - struct ev_loop *loop = ev_default_loop (0); - struct ev_io stdin_watcher; - ev_init (&stdin_watcher, my_cb); - ev_io_set (&stdin_watcher, STDIN_FILENO, EV_READ); - ev_io_start (loop, &stdin_watcher); - ev_loop (loop, 0); + static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents) + { + ev_io_stop (w); + ev_unloop (loop, EVUNLOOP_ALL); + } + + struct ev_loop *loop = ev_default_loop (0); + struct ev_io stdin_watcher; + ev_init (&stdin_watcher, my_cb); + ev_io_set (&stdin_watcher, STDIN_FILENO, EV_READ); + ev_io_start (loop, &stdin_watcher); + ev_loop (loop, 0); As you can see, you are responsible for allocating the memory for your watcher structures (and it is usually a bad idea to do this on the stack, @@ -496,7 +751,7 @@ Each watcher structure must be initialised by a call to C, which expects a callback to be provided. This -callback gets invoked each time the event occurs (or, in the case of io +callback gets invoked each time the event occurs (or, in the case of I/O watchers, each time the event loop detects that the file descriptor given is readable and/or writable). @@ -547,6 +802,10 @@ The pid specified in the C watcher has received a status change. +=item C + +The path specified in the C watcher changed its attributes somehow. + =item C The C watcher has determined that you have nothing better to do. @@ -563,9 +822,22 @@ (for example, a C watcher might start an idle watcher to keep C from blocking). +=item C + +The embedded event loop specified in the C watcher needs attention. + +=item C + +The event loop has been resumed in the child process after fork (see +C). + +=item C + +The given async watcher has been asynchronously notified (see C). + =item C -An unspecified error has occured, the watcher has been stopped. This might +An unspecified error has occurred, the watcher has been stopped. This might happen because the watcher could not be properly started because libev ran out of memory, a file descriptor was found to be closed or any other problem. You best act on it by reporting the problem and somehow coping @@ -574,7 +846,7 @@ Libev will usually signal a few "dummy" events together with an error, for example it might indicate that a fd is readable or writable, and if your callbacks is well-written it can just attempt the operation and cope -with the error from read() or write(). This will not work in multithreaded +with the error from read() or write(). This will not work in multi-threaded programs, though, so beware. =back @@ -614,8 +886,8 @@ =item C (ev_TYPE *watcher, callback, [args]) -This convinience macro rolls both C and C macro -calls into a single call. This is the most convinient method to initialise +This convenience macro rolls both C and C macro +calls into a single call. This is the most convenient method to initialise a watcher. The same limitations apply, of course. =item C (loop *, ev_TYPE *watcher) @@ -643,10 +915,11 @@ Returns a true value iff the watcher is pending, (i.e. it has outstanding events but its callback has not yet been invoked). As long as a watcher is pending (but not active) you must not call an init function on it (but -C is safe) and you must make sure the watcher is available to -libev (e.g. you cnanot C it). +C is safe), you must not change its priority, and you must +make sure the watcher is available to libev (e.g. you cannot C +it). -=item callback = ev_cb (ev_TYPE *watcher) +=item callback ev_cb (ev_TYPE *watcher) Returns the callback currently set on the watcher. @@ -655,6 +928,46 @@ Change the callback. You can change the callback at virtually any time (modulo threads). +=item ev_set_priority (ev_TYPE *watcher, priority) + +=item int ev_priority (ev_TYPE *watcher) + +Set and query the priority of the watcher. The priority is a small +integer between C (default: C<2>) and C +(default: C<-2>). Pending watchers with higher priority will be invoked +before watchers with lower priority, but priority will not keep watchers +from being executed (except for C watchers). + +This means that priorities are I used for ordering callback +invocation after new events have been received. This is useful, for +example, to reduce latency after idling, or more often, to bind two +watchers on the same event and make sure one is called first. + +If you need to suppress invocation when higher priority events are pending +you need to look at C watchers, which provide this functionality. + +You I change the priority of a watcher as long as it is active or +pending. + +The default priority used by watchers when no priority has been set is +always C<0>, which is supposed to not be too high and not be too low :). + +Setting a priority outside the range of C to C is +fine, as long as you do not mind that the priority value you query might +or might not have been adjusted to be within valid range. + +=item ev_invoke (loop, ev_TYPE *watcher, int revents) + +Invoke the C with the given C and C. Neither +C nor C need to be valid as long as the watcher callback +can deal with that fact. + +=item int ev_clear_pending (loop, ev_TYPE *watcher) + +If the watcher is pending, this function returns clears its pending status +and returns its C bitset (as if its callback was invoked). If the +watcher isn't pending it does nothing and returns C<0>. + =back @@ -667,31 +980,70 @@ member, you can also "subclass" the watcher type and provide your own data: - struct my_io - { - struct ev_io io; - int otherfd; - void *somedata; - struct whatever *mostinteresting; - } + struct my_io + { + struct ev_io io; + int otherfd; + void *somedata; + struct whatever *mostinteresting; + } And since your callback will be called with a pointer to the watcher, you can cast it back to your own type: - static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents) - { - struct my_io *w = (struct my_io *)w_; - ... - } + static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents) + { + struct my_io *w = (struct my_io *)w_; + ... + } + +More interesting and less C-conformant ways of casting your callback type +instead have been omitted. + +Another common scenario is having some data structure with multiple +watchers: + + struct my_biggy + { + int some_data; + ev_timer t1; + ev_timer t2; + } -More interesting and less C-conformant ways of catsing your callback type -have been omitted.... +In this case getting the pointer to C is a bit more complicated, +you need to use C: + + #include + + static void + t1_cb (EV_P_ struct ev_timer *w, int revents) + { + struct my_biggy big = (struct my_biggy * + (((char *)w) - offsetof (struct my_biggy, t1)); + } + + static void + t2_cb (EV_P_ struct ev_timer *w, int revents) + { + struct my_biggy big = (struct my_biggy * + (((char *)w) - offsetof (struct my_biggy, t2)); + } =head1 WATCHER TYPES This section describes each watcher in detail, but will not repeat -information given in the last section. +information given in the last section. Any initialisation/set macros, +functions and members specific to the watcher type are explained. + +Members are additionally marked with either I<[read-only]>, meaning that, +while the watcher is active, you can look at the member and expect some +sensible content, but you must not modify it (you can modify it while the +watcher is stopped to your hearts content), or I<[read-write]>, which +means you can expect it to have some sensible content while the watcher +is active, but you can also modify it. Modifying it may not do something +sensible or take immediate effect (or do anything at all), but libev will +not crash or malfunction in any way. =head2 C - is this file descriptor readable or writable? @@ -709,31 +1061,83 @@ descriptors to non-blocking mode is also usually a good idea (but not required if you know what you are doing). -You have to be careful with dup'ed file descriptors, though. Some backends -(the linux epoll backend is a notable example) cannot handle dup'ed file -descriptors correctly if you register interest in two or more fds pointing -to the same underlying file/socket/etc. description (that is, they share -the same underlying "file open"). - If you must do this, then force the use of a known-to-be-good backend (at the time of this writing, this includes only C and C). Another thing you have to watch out for is that it is quite easy to -receive "spurious" readyness notifications, that is your callback might +receive "spurious" readiness notifications, that is your callback might be called with C but a subsequent C(2) will actually block because there is no data. Not only are some backends known to create a -lot of those (for example solaris ports), it is very easy to get into +lot of those (for example Solaris ports), it is very easy to get into this situation even with a relatively standard program structure. Thus it is best to always use non-blocking I/O: An extra C(2) returning C is far preferable to a program hanging until some data arrives. If you cannot run the fd in non-blocking mode (for example you should not -play around with an Xlib connection), then you have to seperately re-test -wether a file descriptor is really ready with a known-to-be good interface +play around with an Xlib connection), then you have to separately re-test +whether a file descriptor is really ready with a known-to-be good interface such as poll (fortunately in our Xlib example, Xlib already does this on its own, so its quite safe to use). +=head3 The special problem of disappearing file descriptors + +Some backends (e.g. kqueue, epoll) need to be told about closing a file +descriptor (either by calling C explicitly or by any other means, +such as C). The reason is that you register interest in some file +descriptor, but when it goes away, the operating system will silently drop +this interest. If another file descriptor with the same number then is +registered with libev, there is no efficient way to see that this is, in +fact, a different file descriptor. + +To avoid having to explicitly tell libev about such cases, libev follows +the following policy: Each time C is being called, libev +will assume that this is potentially a new file descriptor, otherwise +it is assumed that the file descriptor stays the same. That means that +you I to call C (or C) when you change the +descriptor even if the file descriptor number itself did not change. + +This is how one would do it normally anyway, the important point is that +the libev application should not optimise around libev but should leave +optimisations to libev. + +=head3 The special problem of dup'ed file descriptors + +Some backends (e.g. epoll), cannot register events for file descriptors, +but only events for the underlying file descriptions. That means when you +have C'ed file descriptors or weirder constellations, and register +events for them, only one file descriptor might actually receive events. + +There is no workaround possible except not registering events +for potentially C'ed file descriptors, or to resort to +C or C. + +=head3 The special problem of fork + +Some backends (epoll, kqueue) do not support C at all or exhibit +useless behaviour. Libev fully supports fork, but needs to be told about +it in the child. + +To support fork in your programs, you either have to call +C or C after a fork in the child, +enable C, or resort to C or +C. + +=head3 The special problem of SIGPIPE + +While not really specific to libev, it is easy to forget about SIGPIPE: +when reading from a pipe whose other end has been closed, your program +gets send a SIGPIPE, which, by default, aborts your program. For most +programs this is sensible behaviour, for daemons, this is usually +undesirable. + +So when you encounter spurious, unexplained daemon exits, make sure you +ignore SIGPIPE (and maybe make sure you log the exit status of your daemon +somewhere, as that would have given you a big clue). + + +=head3 Watcher-Specific Functions + =over 4 =item ev_io_init (ev_io *, callback, int fd, int events) @@ -741,28 +1145,38 @@ =item ev_io_set (ev_io *, int fd, int events) Configures an C watcher. The C is the file descriptor to -rceeive events for and events is either C, C or +receive events for and events is either C, C or C to receive the given events. +=item int fd [read-only] + +The file descriptor being watched. + +=item int events [read-only] + +The events being watched. + =back -Example: call C when STDIN_FILENO has become, well +=head3 Examples + +Example: Call C when STDIN_FILENO has become, well readable, but only once. Since it is likely line-buffered, you could -attempt to read a whole line in the callback: +attempt to read a whole line in the callback. + + static void + stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents) + { + ev_io_stop (loop, w); + .. read from stdin here (or from w->fd) and haqndle any I/O errors + } - static void - stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents) - { - ev_io_stop (loop, w); - .. read from stdin here (or from w->fd) and haqndle any I/O errors - } - - ... - struct ev_loop *loop = ev_default_init (0); - struct ev_io stdin_readable; - ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ); - ev_io_start (loop, &stdin_readable); - ev_loop (loop, 0); + ... + struct ev_loop *loop = ev_default_init (0); + struct ev_io stdin_readable; + ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ); + ev_io_start (loop, &stdin_readable); + ev_loop (loop, 0); =head2 C - relative and optionally repeating timeouts @@ -771,8 +1185,8 @@ given time, and optionally repeating in regular intervals after that. The timers are based on real time, that is, if you register an event that -times out after an hour and you reset your system clock to last years -time, it will still time out after (roughly) and hour. "Roughly" because +times out after an hour and you reset your system clock to January last +year, it will still time out after (roughly) and hour. "Roughly" because detecting time jumps is hard, and some inaccuracies are unavoidable (the monotonic clock option helps a lot here). @@ -784,77 +1198,106 @@ ev_timer_set (&timer, after + ev_now () - ev_time (), 0.); -The callback is guarenteed to be invoked only when its timeout has passed, +The callback is guaranteed to be invoked only after its timeout has passed, but if multiple timers become ready during the same loop iteration then order of execution is undefined. +=head3 Watcher-Specific Functions and Data Members + =over 4 =item ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat) =item ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat) -Configure the timer to trigger after C seconds. If C is -C<0.>, then it will automatically be stopped. If it is positive, then the -timer will automatically be configured to trigger again C seconds -later, again, and again, until stopped manually. - -The timer itself will do a best-effort at avoiding drift, that is, if you -configure a timer to trigger every 10 seconds, then it will trigger at -exactly 10 second intervals. If, however, your program cannot keep up with -the timer (because it takes longer than those 10 seconds to do stuff) the -timer will not fire more than once per event loop iteration. +Configure the timer to trigger after C seconds. If C +is C<0.>, then it will automatically be stopped once the timeout is +reached. If it is positive, then the timer will automatically be +configured to trigger again C seconds later, again, and again, +until stopped manually. + +The timer itself will do a best-effort at avoiding drift, that is, if +you configure a timer to trigger every 10 seconds, then it will normally +trigger at exactly 10 second intervals. If, however, your program cannot +keep up with the timer (because it takes longer than those 10 seconds to +do stuff) the timer will not fire more than once per event loop iteration. -=item ev_timer_again (loop) +=item ev_timer_again (loop, ev_timer *) This will act as if the timer timed out and restart it again if it is repeating. The exact semantics are: -If the timer is started but nonrepeating, stop it. +If the timer is pending, its pending status is cleared. -If the timer is repeating, either start it if necessary (with the repeat -value), or reset the running timer to the repeat value. +If the timer is started but non-repeating, stop it (as if it timed out). + +If the timer is repeating, either start it if necessary (with the +C value), or reset the running timer to the C value. This sounds a bit complicated, but here is a useful and typical -example: Imagine you have a tcp connection and you want a so-called idle +example: Imagine you have a TCP connection and you want a so-called idle timeout, that is, you want to be called when there have been, say, 60 seconds of inactivity on the socket. The easiest way to do this is to -configure an C with after=repeat=60 and calling ev_timer_again each -time you successfully read or write some data. If you go into an idle -state where you do not expect data to travel on the socket, you can stop -the timer, and again will automatically restart it if need be. +configure an C with a C value of C<60> and then call +C each time you successfully read or write some data. If +you go into an idle state where you do not expect data to travel on the +socket, you can C the timer, and C will +automatically restart it if need be. + +That means you can ignore the C value and C +altogether and only ever use the C value and C: + + ev_timer_init (timer, callback, 0., 5.); + ev_timer_again (loop, timer); + ... + timer->again = 17.; + ev_timer_again (loop, timer); + ... + timer->again = 10.; + ev_timer_again (loop, timer); + +This is more slightly efficient then stopping/starting the timer each time +you want to modify its timeout value. + +=item ev_tstamp repeat [read-write] + +The current C value. Will be used each time the watcher times out +or C is called and determines the next timeout (if any), +which is also when any modifications are taken into account. =back -Example: create a timer that fires after 60 seconds. +=head3 Examples - static void - one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) - { - .. one minute over, w is actually stopped right here - } +Example: Create a timer that fires after 60 seconds. - struct ev_timer mytimer; - ev_timer_init (&mytimer, one_minute_cb, 60., 0.); - ev_timer_start (loop, &mytimer); + static void + one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) + { + .. one minute over, w is actually stopped right here + } + + struct ev_timer mytimer; + ev_timer_init (&mytimer, one_minute_cb, 60., 0.); + ev_timer_start (loop, &mytimer); -Example: create a timeout timer that times out after 10 seconds of +Example: Create a timeout timer that times out after 10 seconds of inactivity. - static void - timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents) - { - .. ten seconds without any activity - } - - struct ev_timer mytimer; - ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used */ - ev_timer_again (&mytimer); /* start timer */ - ev_loop (loop, 0); - - // and in some piece of code that gets executed on any "activity": - // reset the timeout to start ticking again at 10 seconds - ev_timer_again (&mytimer); + static void + timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents) + { + .. ten seconds without any activity + } + + struct ev_timer mytimer; + ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used */ + ev_timer_again (&mytimer); /* start timer */ + ev_loop (loop, 0); + + // and in some piece of code that gets executed on any "activity": + // reset the timeout to start ticking again at 10 seconds + ev_timer_again (&mytimer); =head2 C - to cron or not to cron? @@ -863,21 +1306,24 @@ (and unfortunately a bit complex). Unlike C's, they are not based on real time (or relative time) -but on wallclock time (absolute time). You can tell a periodic watcher -to trigger "at" some specific point in time. For example, if you tell a -periodic watcher to trigger in 10 seconds (by specifiying e.g. C) and then reset your system clock to the last year, then it will -take a year to trigger the event (unlike an C, which would trigger -roughly 10 seconds later and of course not if you reset your system time -again). +but on wall clock time (absolute time). You can tell a periodic watcher +to trigger after some specific point in time. For example, if you tell a +periodic watcher to trigger in 10 seconds (by specifying e.g. C, that is, an absolute time not a delay) and then reset your system +clock to January of the previous year, then it will take more than year +to trigger the event (unlike an C, which would still trigger +roughly 10 seconds later as it uses a relative timeout). + +Cs can also be used to implement vastly more complex timers, +such as triggering an event on each "midnight, local time", or other +complicated, rules. -They can also be used to implement vastly more complex timers, such as -triggering an event on eahc midnight, local time. - -As with timers, the callback is guarenteed to be invoked only when the -time (C) has been passed, but if multiple periodic timers become ready +As with timers, the callback is guaranteed to be invoked only when the +time (C) has passed, but if multiple periodic timers become ready during the same loop iteration then order of execution is undefined. +=head3 Watcher-Specific Functions and Data Members + =over 4 =item ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb) @@ -889,26 +1335,27 @@ =over 4 -=item * absolute timer (interval = reschedule_cb = 0) +=item * absolute timer (at = time, interval = reschedule_cb = 0) -In this configuration the watcher triggers an event at the wallclock time -C and doesn't repeat. It will not adjust when a time jump occurs, -that is, if it is to be run at January 1st 2011 then it will run when the -system time reaches or surpasses this time. +In this configuration the watcher triggers an event after the wall clock +time C has passed and doesn't repeat. It will not adjust when a time +jump occurs, that is, if it is to be run at January 1st 2011 then it will +run when the system time reaches or surpasses this time. -=item * non-repeating interval timer (interval > 0, reschedule_cb = 0) +=item * repeating interval timer (at = offset, interval > 0, reschedule_cb = 0) In this mode the watcher will always be scheduled to time out at the next -C time (for some integer N) and then repeat, regardless -of any time jumps. +C time (for some integer N, which can also be negative) +and then repeat, regardless of any time jumps. This can be used to create timers that do not drift with respect to system -time: +time, for example, here is a C that triggers each hour, on +the hour: ev_periodic_set (&periodic, 0., 3600., 0); This doesn't mean there will always be 3600 seconds in between triggers, -but only that the the callback will be called when the system time shows a +but only that the callback will be called when the system time shows a full hour (UTC), or more correctly, when the system time is evenly divisible by 3600. @@ -916,7 +1363,16 @@ C will try to run the callback in this mode at the next possible time where C