--- libev/ev.pod 2007/12/08 14:12:08 1.74 +++ libev/ev.pod 2008/09/08 17:27:42 1.177 @@ -4,58 +4,72 @@ =head1 SYNOPSIS - #include + #include -=head1 EXAMPLE PROGRAM +=head2 EXAMPLE PROGRAM - #include + // a single header file is required + #include - ev_io stdin_watcher; - ev_timer timeout_watcher; + // every watcher type has its own typedef'd struct + // with the name ev_ + ev_io stdin_watcher; + ev_timer timeout_watcher; - /* called when data readable on stdin */ - static void - stdin_cb (EV_P_ struct ev_io *w, int revents) - { - /* puts ("stdin ready"); */ - ev_io_stop (EV_A_ w); /* just a syntax example */ - ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */ - } - - static void - timeout_cb (EV_P_ struct ev_timer *w, int revents) - { - /* puts ("timeout"); */ - ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */ - } - - int - main (void) - { - struct ev_loop *loop = ev_default_loop (0); - - /* initialise an io watcher, then start it */ - ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ); - ev_io_start (loop, &stdin_watcher); - - /* simple non-repeating 5.5 second timeout */ - ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.); - ev_timer_start (loop, &timeout_watcher); + // all watcher callbacks have a similar signature + // this callback is called when data is readable on stdin + static void + stdin_cb (EV_P_ struct ev_io *w, int revents) + { + puts ("stdin ready"); + // for one-shot events, one must manually stop the watcher + // with its corresponding stop function. + ev_io_stop (EV_A_ w); - /* loop till timeout or data ready */ - ev_loop (loop, 0); + // this causes all nested ev_loop's to stop iterating + ev_unloop (EV_A_ EVUNLOOP_ALL); + } - return 0; - } + // another callback, this time for a time-out + static void + timeout_cb (EV_P_ struct ev_timer *w, int revents) + { + puts ("timeout"); + // this causes the innermost ev_loop to stop iterating + ev_unloop (EV_A_ EVUNLOOP_ONE); + } + + int + main (void) + { + // use the default event loop unless you have special needs + struct ev_loop *loop = ev_default_loop (0); + + // initialise an io watcher, then start it + // this one will watch for stdin to become readable + ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ); + ev_io_start (loop, &stdin_watcher); + + // initialise a timer watcher, then start it + // simple non-repeating 5.5 second timeout + ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.); + ev_timer_start (loop, &timeout_watcher); + + // now wait for events to arrive + ev_loop (loop, 0); + + // unloop was called, so exit + return 0; + } =head1 DESCRIPTION -The newest version of this document is also available as a html-formatted +The newest version of this document is also available as an html-formatted web page you might find easier to navigate when reading it for the first -time: L. +time: L. Libev is an event loop: you register interest in certain events (such as a -file descriptor being readable or a timeout occuring), and it will manage +file descriptor being readable or a timeout occurring), and it will manage these event sources and provide your program with events. To do this, it must take more or less complete control over your process @@ -67,7 +81,7 @@ details of the event, and then hand it over to libev by I the watcher. -=head1 FEATURES +=head2 FEATURES Libev supports C which have a high +overhead for the actual polling but can deliver many events at once. + +By setting a higher I you allow libev to spend more +time collecting I/O events, so you can handle more events per iteration, +at the cost of increasing latency. Timeouts (both C and +C) will be not affected. Setting this to a non-null value will +introduce an additional C call into most loop iterations. + +Likewise, by setting a higher I you allow libev +to spend more time collecting timeouts, at the expense of increased +latency (the watcher callback will be called later). C watchers +will not be affected. Setting this to a non-null value will not introduce +any overhead in libev. + +Many (busy) programs can usually benefit by setting the I/O collect +interval to a value near C<0.1> or so, which is often enough for +interactive servers (of course not for games), likewise for timeouts. It +usually doesn't make much sense to set it to a lower value than C<0.01>, +as this approaches the timing granularity of most systems. + +Setting the I can improve the opportunity for +saving power, as the program will "bundle" timer callback invocations that +are "near" in time together, by delaying some, thus reducing the number of +times the process sleeps and wakes up again. Another useful technique to +reduce iterations/wake-ups is to use C watchers and make sure +they fire on, say, one-second boundaries only. + +=item ev_loop_verify (loop) + +This function only does something when C support has been +compiled in. It tries to go through all internal structures and checks +them for validity. If anything is found to be inconsistent, it will print +an error message to standard error and call C. + +This can be used to catch bugs inside libev itself: under normal +circumstances, this function will never abort as of course libev keeps its +data structures consistent. =back @@ -559,18 +754,18 @@ interest in some event. For instance, if you want to wait for STDIN to become readable, you would create an C watcher for that: - static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents) - { - ev_io_stop (w); - ev_unloop (loop, EVUNLOOP_ALL); - } - - struct ev_loop *loop = ev_default_loop (0); - struct ev_io stdin_watcher; - ev_init (&stdin_watcher, my_cb); - ev_io_set (&stdin_watcher, STDIN_FILENO, EV_READ); - ev_io_start (loop, &stdin_watcher); - ev_loop (loop, 0); + static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents) + { + ev_io_stop (w); + ev_unloop (loop, EVUNLOOP_ALL); + } + + struct ev_loop *loop = ev_default_loop (0); + struct ev_io stdin_watcher; + ev_init (&stdin_watcher, my_cb); + ev_io_set (&stdin_watcher, STDIN_FILENO, EV_READ); + ev_io_start (loop, &stdin_watcher); + ev_loop (loop, 0); As you can see, you are responsible for allocating the memory for your watcher structures (and it is usually a bad idea to do this on the stack, @@ -578,7 +773,7 @@ Each watcher structure must be initialised by a call to C, which expects a callback to be provided. This -callback gets invoked each time the event occurs (or, in the case of io +callback gets invoked each time the event occurs (or, in the case of I/O watchers, each time the event loop detects that the file descriptor given is readable and/or writable). @@ -658,9 +853,13 @@ The event loop has been resumed in the child process after fork (see C). +=item C + +The given async watcher has been asynchronously notified (see C). + =item C -An unspecified error has occured, the watcher has been stopped. This might +An unspecified error has occurred, the watcher has been stopped. This might happen because the watcher could not be properly started because libev ran out of memory, a file descriptor was found to be closed or any other problem. You best act on it by reporting the problem and somehow coping @@ -669,7 +868,7 @@ Libev will usually signal a few "dummy" events together with an error, for example it might indicate that a fd is readable or writable, and if your callbacks is well-written it can just attempt the operation and cope -with the error from read() or write(). This will not work in multithreaded +with the error from read() or write(). This will not work in multi-threaded programs, though, so beware. =back @@ -709,8 +908,8 @@ =item C (ev_TYPE *watcher, callback, [args]) -This convinience macro rolls both C and C macro -calls into a single call. This is the most convinient method to initialise +This convenience macro rolls both C and C macro +calls into a single call. This is the most convenient method to initialise a watcher. The same limitations apply, of course. =item C (loop *, ev_TYPE *watcher) @@ -803,22 +1002,22 @@ member, you can also "subclass" the watcher type and provide your own data: - struct my_io - { - struct ev_io io; - int otherfd; - void *somedata; - struct whatever *mostinteresting; - } + struct my_io + { + struct ev_io io; + int otherfd; + void *somedata; + struct whatever *mostinteresting; + } And since your callback will be called with a pointer to the watcher, you can cast it back to your own type: - static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents) - { - struct my_io *w = (struct my_io *)w_; - ... - } + static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents) + { + struct my_io *w = (struct my_io *)w_; + ... + } More interesting and less C-conformant ways of casting your callback type instead have been omitted. @@ -826,31 +1025,31 @@ Another common scenario is having some data structure with multiple watchers: - struct my_biggy - { - int some_data; - ev_timer t1; - ev_timer t2; - } + struct my_biggy + { + int some_data; + ev_timer t1; + ev_timer t2; + } In this case getting the pointer to C is a bit more complicated, you need to use C: - #include + #include + + static void + t1_cb (EV_P_ struct ev_timer *w, int revents) + { + struct my_biggy big = (struct my_biggy * + (((char *)w) - offsetof (struct my_biggy, t1)); + } - static void - t1_cb (EV_P_ struct ev_timer *w, int revents) - { - struct my_biggy big = (struct my_biggy * - (((char *)w) - offsetof (struct my_biggy, t1)); - } - - static void - t2_cb (EV_P_ struct ev_timer *w, int revents) - { - struct my_biggy big = (struct my_biggy * - (((char *)w) - offsetof (struct my_biggy, t2)); - } + static void + t2_cb (EV_P_ struct ev_timer *w, int revents) + { + struct my_biggy big = (struct my_biggy * + (((char *)w) - offsetof (struct my_biggy, t2)); + } =head1 WATCHER TYPES @@ -884,31 +1083,82 @@ descriptors to non-blocking mode is also usually a good idea (but not required if you know what you are doing). -You have to be careful with dup'ed file descriptors, though. Some backends -(the linux epoll backend is a notable example) cannot handle dup'ed file -descriptors correctly if you register interest in two or more fds pointing -to the same underlying file/socket/etc. description (that is, they share -the same underlying "file open"). - If you must do this, then force the use of a known-to-be-good backend (at the time of this writing, this includes only C and C). Another thing you have to watch out for is that it is quite easy to -receive "spurious" readyness notifications, that is your callback might +receive "spurious" readiness notifications, that is your callback might be called with C but a subsequent C(2) will actually block because there is no data. Not only are some backends known to create a -lot of those (for example solaris ports), it is very easy to get into +lot of those (for example Solaris ports), it is very easy to get into this situation even with a relatively standard program structure. Thus it is best to always use non-blocking I/O: An extra C(2) returning C is far preferable to a program hanging until some data arrives. If you cannot run the fd in non-blocking mode (for example you should not -play around with an Xlib connection), then you have to seperately re-test +play around with an Xlib connection), then you have to separately re-test whether a file descriptor is really ready with a known-to-be good interface such as poll (fortunately in our Xlib example, Xlib already does this on its own, so its quite safe to use). +=head3 The special problem of disappearing file descriptors + +Some backends (e.g. kqueue, epoll) need to be told about closing a file +descriptor (either by calling C explicitly or by any other means, +such as C). The reason is that you register interest in some file +descriptor, but when it goes away, the operating system will silently drop +this interest. If another file descriptor with the same number then is +registered with libev, there is no efficient way to see that this is, in +fact, a different file descriptor. + +To avoid having to explicitly tell libev about such cases, libev follows +the following policy: Each time C is being called, libev +will assume that this is potentially a new file descriptor, otherwise +it is assumed that the file descriptor stays the same. That means that +you I to call C (or C) when you change the +descriptor even if the file descriptor number itself did not change. + +This is how one would do it normally anyway, the important point is that +the libev application should not optimise around libev but should leave +optimisations to libev. + +=head3 The special problem of dup'ed file descriptors + +Some backends (e.g. epoll), cannot register events for file descriptors, +but only events for the underlying file descriptions. That means when you +have C'ed file descriptors or weirder constellations, and register +events for them, only one file descriptor might actually receive events. + +There is no workaround possible except not registering events +for potentially C'ed file descriptors, or to resort to +C or C. + +=head3 The special problem of fork + +Some backends (epoll, kqueue) do not support C at all or exhibit +useless behaviour. Libev fully supports fork, but needs to be told about +it in the child. + +To support fork in your programs, you either have to call +C or C after a fork in the child, +enable C, or resort to C or +C. + +=head3 The special problem of SIGPIPE + +While not really specific to libev, it is easy to forget about SIGPIPE: +when writing to a pipe whose other end has been closed, your program gets +send a SIGPIPE, which, by default, aborts your program. For most programs +this is sensible behaviour, for daemons, this is usually undesirable. + +So when you encounter spurious, unexplained daemon exits, make sure you +ignore SIGPIPE (and maybe make sure you log the exit status of your daemon +somewhere, as that would have given you a big clue). + + +=head3 Watcher-Specific Functions + =over 4 =item ev_io_init (ev_io *, callback, int fd, int events) @@ -916,7 +1166,7 @@ =item ev_io_set (ev_io *, int fd, int events) Configures an C watcher. The C is the file descriptor to -rceeive events for and events is either C, C or +receive events for and events is either C, C or C to receive the given events. =item int fd [read-only] @@ -929,23 +1179,25 @@ =back +=head3 Examples + Example: Call C when STDIN_FILENO has become, well readable, but only once. Since it is likely line-buffered, you could attempt to read a whole line in the callback. - static void - stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents) - { - ev_io_stop (loop, w); - .. read from stdin here (or from w->fd) and haqndle any I/O errors - } - - ... - struct ev_loop *loop = ev_default_init (0); - struct ev_io stdin_readable; - ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ); - ev_io_start (loop, &stdin_readable); - ev_loop (loop, 0); + static void + stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents) + { + ev_io_stop (loop, w); + .. read from stdin here (or from w->fd) and haqndle any I/O errors + } + + ... + struct ev_loop *loop = ev_default_init (0); + struct ev_io stdin_readable; + ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ); + ev_io_start (loop, &stdin_readable); + ev_loop (loop, 0); =head2 C - relative and optionally repeating timeouts @@ -954,22 +1206,36 @@ given time, and optionally repeating in regular intervals after that. The timers are based on real time, that is, if you register an event that -times out after an hour and you reset your system clock to last years -time, it will still time out after (roughly) and hour. "Roughly" because +times out after an hour and you reset your system clock to January last +year, it will still time out after (roughly) and hour. "Roughly" because detecting time jumps is hard, and some inaccuracies are unavoidable (the monotonic clock option helps a lot here). +The callback is guaranteed to be invoked only after its timeout has passed, +but if multiple timers become ready during the same loop iteration then +order of execution is undefined. + +=head3 The special problem of time updates + +Establishing the current time is a costly operation (it usually takes at +least two system calls): EV therefore updates its idea of the current +time only before and after C polls for new events, which causes +a growing difference between C and C when handling +lots of events. + The relative timeouts are calculated relative to the C time. This is usually the right thing as this timestamp refers to the time of the event triggering whatever timeout you are modifying/starting. If -you suspect event processing to be delayed and you I to base the timeout -on the current time, use something like this to adjust for this: +you suspect event processing to be delayed and you I to base the +timeout on the current time, use something like this to adjust for this: ev_timer_set (&timer, after + ev_now () - ev_time (), 0.); -The callback is guarenteed to be invoked only when its timeout has passed, -but if multiple timers become ready during the same loop iteration then -order of execution is undefined. +If the event loop is suspended for a long time, you can also force an +update of the time returned by C by calling C. + +=head3 Watcher-Specific Functions and Data Members =over 4 @@ -977,31 +1243,32 @@ =item ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat) -Configure the timer to trigger after C seconds. If C is -C<0.>, then it will automatically be stopped. If it is positive, then the -timer will automatically be configured to trigger again C seconds -later, again, and again, until stopped manually. - -The timer itself will do a best-effort at avoiding drift, that is, if you -configure a timer to trigger every 10 seconds, then it will trigger at -exactly 10 second intervals. If, however, your program cannot keep up with -the timer (because it takes longer than those 10 seconds to do stuff) the -timer will not fire more than once per event loop iteration. +Configure the timer to trigger after C seconds. If C +is C<0.>, then it will automatically be stopped once the timeout is +reached. If it is positive, then the timer will automatically be +configured to trigger again C seconds later, again, and again, +until stopped manually. + +The timer itself will do a best-effort at avoiding drift, that is, if +you configure a timer to trigger every 10 seconds, then it will normally +trigger at exactly 10 second intervals. If, however, your program cannot +keep up with the timer (because it takes longer than those 10 seconds to +do stuff) the timer will not fire more than once per event loop iteration. -=item ev_timer_again (loop) +=item ev_timer_again (loop, ev_timer *) This will act as if the timer timed out and restart it again if it is repeating. The exact semantics are: If the timer is pending, its pending status is cleared. -If the timer is started but nonrepeating, stop it (as if it timed out). +If the timer is started but non-repeating, stop it (as if it timed out). If the timer is repeating, either start it if necessary (with the C value), or reset the running timer to the C value. This sounds a bit complicated, but here is a useful and typical -example: Imagine you have a tcp connection and you want a so-called idle +example: Imagine you have a TCP connection and you want a so-called idle timeout, that is, you want to be called when there have been, say, 60 seconds of inactivity on the socket. The easiest way to do this is to configure an C with a C value of C<60> and then call @@ -1033,35 +1300,37 @@ =back +=head3 Examples + Example: Create a timer that fires after 60 seconds. - static void - one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) - { - .. one minute over, w is actually stopped right here - } - - struct ev_timer mytimer; - ev_timer_init (&mytimer, one_minute_cb, 60., 0.); - ev_timer_start (loop, &mytimer); + static void + one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents) + { + .. one minute over, w is actually stopped right here + } + + struct ev_timer mytimer; + ev_timer_init (&mytimer, one_minute_cb, 60., 0.); + ev_timer_start (loop, &mytimer); Example: Create a timeout timer that times out after 10 seconds of inactivity. - static void - timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents) - { - .. ten seconds without any activity - } - - struct ev_timer mytimer; - ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used */ - ev_timer_again (&mytimer); /* start timer */ - ev_loop (loop, 0); - - // and in some piece of code that gets executed on any "activity": - // reset the timeout to start ticking again at 10 seconds - ev_timer_again (&mytimer); + static void + timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents) + { + .. ten seconds without any activity + } + + struct ev_timer mytimer; + ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used */ + ev_timer_again (&mytimer); /* start timer */ + ev_loop (loop, 0); + + // and in some piece of code that gets executed on any "activity": + // reset the timeout to start ticking again at 10 seconds + ev_timer_again (&mytimer); =head2 C - to cron or not to cron? @@ -1070,21 +1339,24 @@ (and unfortunately a bit complex). Unlike C's, they are not based on real time (or relative time) -but on wallclock time (absolute time). You can tell a periodic watcher -to trigger "at" some specific point in time. For example, if you tell a -periodic watcher to trigger in 10 seconds (by specifiying e.g. C) and then reset your system clock to the last year, then it will -take a year to trigger the event (unlike an C, which would trigger -roughly 10 seconds later and of course not if you reset your system time -again). +but on wall clock time (absolute time). You can tell a periodic watcher +to trigger after some specific point in time. For example, if you tell a +periodic watcher to trigger in 10 seconds (by specifying e.g. C, that is, an absolute time not a delay) and then reset your system +clock to January of the previous year, then it will take more than year +to trigger the event (unlike an C, which would still trigger +roughly 10 seconds later as it uses a relative timeout). + +Cs can also be used to implement vastly more complex timers, +such as triggering an event on each "midnight, local time", or other +complicated, rules. -They can also be used to implement vastly more complex timers, such as -triggering an event on eahc midnight, local time. - -As with timers, the callback is guarenteed to be invoked only when the -time (C) has been passed, but if multiple periodic timers become ready +As with timers, the callback is guaranteed to be invoked only when the +time (C) has passed, but if multiple periodic timers become ready during the same loop iteration then order of execution is undefined. +=head3 Watcher-Specific Functions and Data Members + =over 4 =item ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb) @@ -1096,26 +1368,27 @@ =over 4 -=item * absolute timer (interval = reschedule_cb = 0) +=item * absolute timer (at = time, interval = reschedule_cb = 0) -In this configuration the watcher triggers an event at the wallclock time -C and doesn't repeat. It will not adjust when a time jump occurs, -that is, if it is to be run at January 1st 2011 then it will run when the -system time reaches or surpasses this time. +In this configuration the watcher triggers an event after the wall clock +time C has passed and doesn't repeat. It will not adjust when a time +jump occurs, that is, if it is to be run at January 1st 2011 then it will +run when the system time reaches or surpasses this time. -=item * non-repeating interval timer (interval > 0, reschedule_cb = 0) +=item * repeating interval timer (at = offset, interval > 0, reschedule_cb = 0) In this mode the watcher will always be scheduled to time out at the next -C time (for some integer N) and then repeat, regardless -of any time jumps. +C time (for some integer N, which can also be negative) +and then repeat, regardless of any time jumps. This can be used to create timers that do not drift with respect to system -time: +time, for example, here is a C that triggers each hour, on +the hour: ev_periodic_set (&periodic, 0., 3600., 0); This doesn't mean there will always be 3600 seconds in between triggers, -but only that the the callback will be called when the system time shows a +but only that the callback will be called when the system time shows a full hour (UTC), or more correctly, when the system time is evenly divisible by 3600. @@ -1123,7 +1396,16 @@ C will try to run the callback in this mode at the next possible time where C