ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/microscheme/init.scm
Revision: 1.14
Committed: Tue Dec 1 01:54:27 2015 UTC (8 years, 6 months ago) by root
Branch: MAIN
Changes since 1.13: +2 -0 lines
Log Message:
abstract pointer type

File Contents

# Content
1 ; Initialization file for TinySCHEME 1.41
2
3 ;;;; Utility to ease macro creation
4 (define (macro-expand form)
5 ((eval (get-closure-code (eval (car form)))) form))
6
7 (define (macro-expand-all form)
8 (if (macro? form)
9 (macro-expand-all (macro-expand form))
10 form))
11
12 (define *compile-hook* macro-expand-all)
13
14
15 (macro (unless form)
16 `(if (not ,(cadr form)) (begin ,@(cddr form))))
17
18 (macro (when form)
19 `(if ,(cadr form) (begin ,@(cddr form))))
20
21 ; DEFINE-MACRO Contributed by Andy Gaynor
22 (macro (define-macro dform)
23 (if (symbol? (cadr dform))
24 `(macro ,@(cdr dform))
25 (let ((form (gensym)))
26 `(macro (,(caadr dform) ,form)
27 (apply (lambda ,(cdadr dform) ,@(cddr dform)) (cdr ,form))))))
28
29 ; Utilities for math. Notice that inexact->exact is primitive,
30 ; but exact->inexact is not.
31 (define exact? integer?)
32 (define (inexact? x) (and (real? x) (not (integer? x))))
33 (define (even? n) (= (remainder n 2) 0))
34 (define (odd? n) (not (= (remainder n 2) 0)))
35 (define (zero? n) (= n 0))
36 (define (positive? n) (> n 0))
37 (define (negative? n) (< n 0))
38 (define complex? number?)
39 (define rational? real?)
40 (define (abs n) (if (>= n 0) n (- n)))
41 (define (exact->inexact n) (* n 1.0))
42 (define (<> n1 n2) (not (= n1 n2)))
43
44 ; min and max must return inexact if any arg is inexact; use (+ n 0.0)
45 (define (max . lst)
46 (foldr (lambda (a b)
47 (if (> a b)
48 (if (exact? b) a (+ a 0.0))
49 (if (exact? a) b (+ b 0.0))))
50 (car lst) (cdr lst)))
51 (define (min . lst)
52 (foldr (lambda (a b)
53 (if (< a b)
54 (if (exact? b) a (+ a 0.0))
55 (if (exact? a) b (+ b 0.0))))
56 (car lst) (cdr lst)))
57
58 (define (succ x) (+ x 1))
59 (define (pred x) (- x 1))
60 (define gcd
61 (lambda a
62 (if (null? a)
63 0
64 (let ((aa (abs (car a)))
65 (bb (abs (cadr a))))
66 (if (= bb 0)
67 aa
68 (gcd bb (remainder aa bb)))))))
69 (define lcm
70 (lambda a
71 (if (null? a)
72 1
73 (let ((aa (abs (car a)))
74 (bb (abs (cadr a))))
75 (if (or (= aa 0) (= bb 0))
76 0
77 (abs (* (quotient aa (gcd aa bb)) bb)))))))
78
79
80 (define (string . charlist)
81 (list->string charlist))
82
83 (define (list->string charlist)
84 (let* ((len (length charlist))
85 (newstr (make-string len))
86 (fill-string!
87 (lambda (str i len charlist)
88 (if (= i len)
89 str
90 (begin (string-set! str i (car charlist))
91 (fill-string! str (+ i 1) len (cdr charlist)))))))
92 (fill-string! newstr 0 len charlist)))
93
94 (define (string-fill! s e)
95 (let ((n (string-length s)))
96 (let loop ((i 0))
97 (if (= i n)
98 s
99 (begin (string-set! s i e) (loop (succ i)))))))
100
101 (define (string->list s)
102 (let loop ((n (pred (string-length s))) (l '()))
103 (if (= n -1)
104 l
105 (loop (pred n) (cons (string-ref s n) l)))))
106
107 (define (string-copy str)
108 (string-append str))
109
110 (define (string->anyatom str pred)
111 (let* ((a (string->atom str)))
112 (if (pred a) a
113 (error "string->xxx: not a xxx" a))))
114
115 (define (string->number str . base)
116 (let ((n (string->atom str (if (null? base) 10 (car base)))))
117 (if (number? n) n #f)))
118
119 (define (anyatom->string n pred)
120 (if (pred n)
121 (atom->string n)
122 (error "xxx->string: not a xxx" n)))
123
124 (define (number->string n . base)
125 (atom->string n (if (null? base) 10 (car base))))
126
127
128 (define (char-cmp? cmp a b)
129 (cmp (char->integer a) (char->integer b)))
130 (define (char-ci-cmp? cmp a b)
131 (cmp (char->integer (char-downcase a)) (char->integer (char-downcase b))))
132
133 (define (char=? a b) (char-cmp? = a b))
134 (define (char<? a b) (char-cmp? < a b))
135 (define (char>? a b) (char-cmp? > a b))
136 (define (char<=? a b) (char-cmp? <= a b))
137 (define (char>=? a b) (char-cmp? >= a b))
138
139 (define (char-ci=? a b) (char-ci-cmp? = a b))
140 (define (char-ci<? a b) (char-ci-cmp? < a b))
141 (define (char-ci>? a b) (char-ci-cmp? > a b))
142 (define (char-ci<=? a b) (char-ci-cmp? <= a b))
143 (define (char-ci>=? a b) (char-ci-cmp? >= a b))
144
145 ; Note the trick of returning (cmp x y)
146 (define (string-cmp? chcmp cmp a b)
147 (let ((na (string-length a)) (nb (string-length b)))
148 (let loop ((i 0))
149 (cond
150 ((= i na)
151 (if (= i nb) (cmp 0 0) (cmp 0 1)))
152 ((= i nb)
153 (cmp 1 0))
154 ((chcmp = (string-ref a i) (string-ref b i))
155 (loop (succ i)))
156 (else
157 (chcmp cmp (string-ref a i) (string-ref b i)))))))
158
159
160 (define (string=? a b) (string-cmp? char-cmp? = a b))
161 (define (string<? a b) (string-cmp? char-cmp? < a b))
162 (define (string>? a b) (string-cmp? char-cmp? > a b))
163 (define (string<=? a b) (string-cmp? char-cmp? <= a b))
164 (define (string>=? a b) (string-cmp? char-cmp? >= a b))
165
166 (define (string-ci=? a b) (string-cmp? char-ci-cmp? = a b))
167 (define (string-ci<? a b) (string-cmp? char-ci-cmp? < a b))
168 (define (string-ci>? a b) (string-cmp? char-ci-cmp? > a b))
169 (define (string-ci<=? a b) (string-cmp? char-ci-cmp? <= a b))
170 (define (string-ci>=? a b) (string-cmp? char-ci-cmp? >= a b))
171
172 (define (list . x) x)
173
174 (define (foldr f x lst)
175 (if (null? lst)
176 x
177 (foldr f (f x (car lst)) (cdr lst))))
178
179 (define (unzip1-with-cdr . lists)
180 (unzip1-with-cdr-iterative lists '() '()))
181
182 (define (unzip1-with-cdr-iterative lists cars cdrs)
183 (if (null? lists)
184 (cons cars cdrs)
185 (let ((car1 (caar lists))
186 (cdr1 (cdar lists)))
187 (unzip1-with-cdr-iterative
188 (cdr lists)
189 (append cars (list car1))
190 (append cdrs (list cdr1))))))
191
192 (define (map proc . lists)
193 (if (null? lists)
194 (apply proc)
195 (if (null? (car lists))
196 '()
197 (let* ((unz (apply unzip1-with-cdr lists))
198 (cars (car unz))
199 (cdrs (cdr unz)))
200 (cons (apply proc cars) (apply map (cons proc cdrs)))))))
201
202 (define (for-each proc . lists)
203 (if (null? lists)
204 (apply proc)
205 (if (null? (car lists))
206 #t
207 (let* ((unz (apply unzip1-with-cdr lists))
208 (cars (car unz))
209 (cdrs (cdr unz)))
210 (apply proc cars) (apply map (cons proc cdrs))))))
211
212 (define (list-tail x k)
213 (if (zero? k)
214 x
215 (list-tail (cdr x) (- k 1))))
216
217 (define (list-ref x k)
218 (car (list-tail x k)))
219
220 (define (last-pair x)
221 (if (pair? (cdr x))
222 (last-pair (cdr x))
223 x))
224
225 (define (head stream) (car stream))
226
227 (define (tail stream) (force (cdr stream)))
228
229 (define (vector-equal? x y)
230 (and (vector? x) (vector? y) (= (vector-length x) (vector-length y))
231 (let ((n (vector-length x)))
232 (let loop ((i 0))
233 (if (= i n)
234 #t
235 (and (equal? (vector-ref x i) (vector-ref y i))
236 (loop (succ i))))))))
237
238 (define (list->vector x)
239 (apply vector x))
240
241 (define (vector-fill! v e)
242 (let ((n (vector-length v)))
243 (let loop ((i 0))
244 (if (= i n)
245 v
246 (begin (vector-set! v i e) (loop (succ i)))))))
247
248 (define (vector->list v)
249 (let loop ((n (pred (vector-length v))) (l '()))
250 (if (= n -1)
251 l
252 (loop (pred n) (cons (vector-ref v n) l)))))
253
254 ;; The following quasiquote macro is due to Eric S. Tiedemann.
255 ;; Copyright 1988 by Eric S. Tiedemann; all rights reserved.
256 ;;
257 ;; Subsequently modified to handle vectors: D. Souflis
258
259 (macro
260 quasiquote
261 (lambda (l)
262 (define (mcons f l r)
263 (if (and (pair? r)
264 (eq? (car r) 'quote)
265 (eq? (car (cdr r)) (cdr f))
266 (pair? l)
267 (eq? (car l) 'quote)
268 (eq? (car (cdr l)) (car f)))
269 (if (or (procedure? f) (number? f) (string? f))
270 f
271 (list 'quote f))
272 (if (eqv? l vector)
273 (apply l (eval r))
274 (list 'cons l r)
275 )))
276 (define (mappend f l r)
277 (if (or (null? (cdr f))
278 (and (pair? r)
279 (eq? (car r) 'quote)
280 (eq? (car (cdr r)) '())))
281 l
282 (list 'append l r)))
283 (define (foo level form)
284 (cond ((not (pair? form))
285 (if (or (procedure? form) (number? form) (string? form))
286 form
287 (list 'quote form))
288 )
289 ((eq? 'quasiquote (car form))
290 (mcons form ''quasiquote (foo (+ level 1) (cdr form))))
291 (#t (if (zero? level)
292 (cond ((eq? (car form) 'unquote) (car (cdr form)))
293 ((eq? (car form) 'unquote-splicing)
294 (error "Unquote-splicing wasn't in a list:"
295 form))
296 ((and (pair? (car form))
297 (eq? (car (car form)) 'unquote-splicing))
298 (mappend form (car (cdr (car form)))
299 (foo level (cdr form))))
300 (#t (mcons form (foo level (car form))
301 (foo level (cdr form)))))
302 (cond ((eq? (car form) 'unquote)
303 (mcons form ''unquote (foo (- level 1)
304 (cdr form))))
305 ((eq? (car form) 'unquote-splicing)
306 (mcons form ''unquote-splicing
307 (foo (- level 1) (cdr form))))
308 (#t (mcons form (foo level (car form))
309 (foo level (cdr form)))))))))
310 (foo 0 (car (cdr l)))))
311
312 ;;;;;Helper for the dynamic-wind definition. By Tom Breton (Tehom)
313 (define (shared-tail x y)
314 (let ((len-x (length x))
315 (len-y (length y)))
316 (define (shared-tail-helper x y)
317 (if
318 (eq? x y)
319 x
320 (shared-tail-helper (cdr x) (cdr y))))
321
322 (cond
323 ((> len-x len-y)
324 (shared-tail-helper
325 (list-tail x (- len-x len-y))
326 y))
327 ((< len-x len-y)
328 (shared-tail-helper
329 x
330 (list-tail y (- len-y len-x))))
331 (#t (shared-tail-helper x y)))))
332
333 ;;;;;Dynamic-wind by Tom Breton (Tehom)
334
335 ;;Guarded because we must only eval this once, because doing so
336 ;;redefines call/cc in terms of old call/cc
337 (unless (defined? 'dynamic-wind)
338 (let
339 ;;These functions are defined in the context of a private list of
340 ;;pairs of before/after procs.
341 ( (*active-windings* '())
342 ;;We'll define some functions into the larger environment, so
343 ;;we need to know it.
344 (outer-env (current-environment)))
345
346 ;;Poor-man's structure operations
347 (define before-func car)
348 (define after-func cdr)
349 (define make-winding cons)
350
351 ;;Manage active windings
352 (define (activate-winding! new)
353 ((before-func new))
354 (set! *active-windings* (cons new *active-windings*)))
355 (define (deactivate-top-winding!)
356 (let ((old-top (car *active-windings*)))
357 ;;Remove it from the list first so it's not active during its
358 ;;own exit.
359 (set! *active-windings* (cdr *active-windings*))
360 ((after-func old-top))))
361
362 (define (set-active-windings! new-ws)
363 (unless (eq? new-ws *active-windings*)
364 (let ((shared (shared-tail new-ws *active-windings*)))
365
366 ;;Define the looping functions.
367 ;;Exit the old list. Do deeper ones last. Don't do
368 ;;any shared ones.
369 (define (pop-many)
370 (unless (eq? *active-windings* shared)
371 (deactivate-top-winding!)
372 (pop-many)))
373 ;;Enter the new list. Do deeper ones first so that the
374 ;;deeper windings will already be active. Don't do any
375 ;;shared ones.
376 (define (push-many new-ws)
377 (unless (eq? new-ws shared)
378 (push-many (cdr new-ws))
379 (activate-winding! (car new-ws))))
380
381 ;;Do it.
382 (pop-many)
383 (push-many new-ws))))
384
385 ;;The definitions themselves.
386 (eval
387 `(define call-with-current-continuation
388 ;;It internally uses the built-in call/cc, so capture it.
389 ,(let ((old-c/cc call-with-current-continuation))
390 (lambda (func)
391 ;;Use old call/cc to get the continuation.
392 (old-c/cc
393 (lambda (continuation)
394 ;;Call func with not the continuation itself
395 ;;but a procedure that adjusts the active
396 ;;windings to what they were when we made
397 ;;this, and only then calls the
398 ;;continuation.
399 (func
400 (let ((current-ws *active-windings*))
401 (lambda (x)
402 (set-active-windings! current-ws)
403 (continuation x)))))))))
404 outer-env)
405 ;;We can't just say "define (dynamic-wind before thunk after)"
406 ;;because the lambda it's defined to lives in this environment,
407 ;;not in the global environment.
408 (eval
409 `(define dynamic-wind
410 ,(lambda (before thunk after)
411 ;;Make a new winding
412 (activate-winding! (make-winding before after))
413 (let ((result (thunk)))
414 ;;Get rid of the new winding.
415 (deactivate-top-winding!)
416 ;;The return value is that of thunk.
417 result)))
418 outer-env)))
419
420 (define call/cc call-with-current-continuation)
421
422
423 ;;;;; atom? and equal? written by a.k
424
425 ;;;; atom?
426 (define (atom? x)
427 (not (pair? x)))
428
429 ;;;; equal?
430 (define (equal? x y)
431 (cond
432 ((pair? x)
433 (and (pair? y)
434 (equal? (car x) (car y))
435 (equal? (cdr x) (cdr y))))
436 ((vector? x)
437 (and (vector? y) (vector-equal? x y)))
438 ((string? x)
439 (and (string? y) (string=? x y)))
440 (else (eqv? x y))))
441
442 ;;;; (do ((var init inc) ...) (endtest result ...) body ...)
443 ;;
444 (macro do
445 (lambda (do-macro)
446 (apply (lambda (do vars endtest . body)
447 (let ((do-loop (gensym)))
448 `(letrec ((,do-loop
449 (lambda ,(map (lambda (x)
450 (if (pair? x) (car x) x))
451 `,vars)
452 (if ,(car endtest)
453 (begin ,@(cdr endtest))
454 (begin
455 ,@body
456 (,do-loop
457 ,@(map (lambda (x)
458 (cond
459 ((not (pair? x)) x)
460 ((< (length x) 3) (car x))
461 (else (car (cdr (cdr x))))))
462 `,vars)))))))
463 (,do-loop
464 ,@(map (lambda (x)
465 (if (and (pair? x) (cdr x))
466 (car (cdr x))
467 '()))
468 `,vars)))))
469 do-macro)))
470
471 ;;;; generic-member
472 (define (generic-member cmp obj lst)
473 (cond
474 ((null? lst) #f)
475 ((cmp obj (car lst)) lst)
476 (else (generic-member cmp obj (cdr lst)))))
477
478 (define (memq obj lst)
479 (generic-member eq? obj lst))
480 (define (memv obj lst)
481 (generic-member eqv? obj lst))
482 (define (member obj lst)
483 (generic-member equal? obj lst))
484
485 ;;;; generic-assoc
486 (define (generic-assoc cmp obj alst)
487 (cond
488 ((null? alst) #f)
489 ((cmp obj (caar alst)) (car alst))
490 (else (generic-assoc cmp obj (cdr alst)))))
491
492 (define (assq obj alst)
493 (generic-assoc eq? obj alst))
494 (define (assv obj alst)
495 (generic-assoc eqv? obj alst))
496 (define (assoc obj alst)
497 (generic-assoc equal? obj alst))
498
499 (define (acons x y z) (cons (cons x y) z))
500
501 ;;;; Handy for imperative programs
502 ;;;; Used as: (define-with-return (foo x y) .... (return z) ...)
503 (macro (define-with-return form)
504 `(define ,(cadr form)
505 (call/cc (lambda (return) ,@(cddr form)))))
506
507 ;;;; Simple exception handling
508 ;
509 ; Exceptions are caught as follows:
510 ;
511 ; (catch (do-something to-recover and-return meaningful-value)
512 ; (if-something goes-wrong)
513 ; (with-these calls))
514 ;
515 ; "Catch" establishes a scope spanning multiple call-frames
516 ; until another "catch" is encountered.
517 ;
518 ; Exceptions are thrown with:
519 ;
520 ; (throw "message")
521 ;
522 ; If used outside a (catch ...), reverts to (error "message)
523
524 (define *handlers* (list))
525
526 (define (push-handler proc)
527 (set! *handlers* (cons proc *handlers*)))
528
529 (define (pop-handler)
530 (let ((h (car *handlers*)))
531 (set! *handlers* (cdr *handlers*))
532 h))
533
534 (define (more-handlers?)
535 (pair? *handlers*))
536
537 (define (throw . x)
538 (if (more-handlers?)
539 (apply (pop-handler))
540 (apply error x)))
541
542 (macro (catch form)
543 (let ((label (gensym)))
544 `(call/cc (lambda (exit)
545 (push-handler (lambda () (exit ,(cadr form))))
546 (let ((,label (begin ,@(cddr form))))
547 (pop-handler)
548 ,label)))))
549
550 (define *error-hook* throw)
551
552
553 ;;;;; Definition of MAKE-ENVIRONMENT, to be used with two-argument EVAL
554
555 (macro (make-environment form)
556 `(apply (lambda ()
557 ,@(cdr form)
558 (current-environment))))
559
560 (define-macro (eval-polymorphic x . envl)
561 (display envl)
562 (let* ((env (if (null? envl) (current-environment) (eval (car envl))))
563 (xval (eval x env)))
564 (if (closure? xval)
565 (make-closure (get-closure-code xval) env)
566 xval)))
567
568 ; Redefine this if you install another package infrastructure
569 ; Also redefine 'package'
570 (define *colon-hook* eval)
571
572 ;;;;; I/O
573
574 (define (input-output-port? p)
575 (and (input-port? p) (output-port? p)))
576
577 (define (close-port p)
578 (cond
579 ((input-output-port? p) (close-input-port (close-output-port p)))
580 ((input-port? p) (close-input-port p))
581 ((output-port? p) (close-output-port p))
582 (else (throw "Not a port" p))))
583
584 (define (call-with-input-file s p)
585 (let ((inport (open-input-file s)))
586 (if (eq? inport #f)
587 #f
588 (let ((res (p inport)))
589 (close-input-port inport)
590 res))))
591
592 (define (call-with-output-file s p)
593 (let ((outport (open-output-file s)))
594 (if (eq? outport #f)
595 #f
596 (let ((res (p outport)))
597 (close-output-port outport)
598 res))))
599
600 (define (with-input-from-file s p)
601 (let ((inport (open-input-file s)))
602 (if (eq? inport #f)
603 #f
604 (let ((prev-inport (current-input-port)))
605 (set-input-port inport)
606 (let ((res (p)))
607 (close-input-port inport)
608 (set-input-port prev-inport)
609 res)))))
610
611 (define (with-output-to-file s p)
612 (let ((outport (open-output-file s)))
613 (if (eq? outport #f)
614 #f
615 (let ((prev-outport (current-output-port)))
616 (set-output-port outport)
617 (let ((res (p)))
618 (close-output-port outport)
619 (set-output-port prev-outport)
620 res)))))
621
622 (define (with-input-output-from-to-files si so p)
623 (let ((inport (open-input-file si))
624 (outport (open-input-file so)))
625 (if (not (and inport outport))
626 (begin
627 (close-input-port inport)
628 (close-output-port outport)
629 #f)
630 (let ((prev-inport (current-input-port))
631 (prev-outport (current-output-port)))
632 (set-input-port inport)
633 (set-output-port outport)
634 (let ((res (p)))
635 (close-input-port inport)
636 (close-output-port outport)
637 (set-input-port prev-inport)
638 (set-output-port prev-outport)
639 res)))))
640
641 ; Random number generator (maximum cycle)
642 (define *seed* 1)
643 (define (random-next)
644 (let* ((a 16807) (m 2147483647) (q (quotient m a)) (r (modulo m a)))
645 (set! *seed*
646 (- (* a (- *seed*
647 (* (quotient *seed* q) q)))
648 (* (quotient *seed* q) r)))
649 (if (< *seed* 0) (set! *seed* (+ *seed* m)))
650 *seed*))
651
652 ;; SRFI-0
653 ;; COND-EXPAND
654 ;; Implemented as a macro
655 (define *features* '(srfi-0))
656
657 (define-macro (cond-expand . cond-action-list)
658 (cond-expand-runtime cond-action-list))
659
660 (define (cond-expand-runtime cond-action-list)
661 (if (null? cond-action-list)
662 #t
663 (if (cond-eval (caar cond-action-list))
664 `(begin ,@(cdar cond-action-list))
665 (cond-expand-runtime (cdr cond-action-list)))))
666
667 (define (cond-eval-and cond-list)
668 (foldr (lambda (x y) (and (cond-eval x) (cond-eval y))) #t cond-list))
669
670 (define (cond-eval-or cond-list)
671 (foldr (lambda (x y) (or (cond-eval x) (cond-eval y))) #f cond-list))
672
673 (define (cond-eval condition)
674 (cond
675 ((symbol? condition)
676 (if (member condition *features*) #t #f))
677 ((eq? condition #t) #t)
678 ((eq? condition #f) #f)
679 (else (case (car condition)
680 ((and) (cond-eval-and (cdr condition)))
681 ((or) (cond-eval-or (cdr condition)))
682 ((not) (if (not (null? (cddr condition)))
683 (error "cond-expand : 'not' takes 1 argument")
684 (not (cond-eval (cadr condition)))))
685 (else (error "cond-expand : unknown operator" (car condition)))))))
686
687 (gc-verbose #t)
688
689 ; compatibility functions added by schmorp@schmorp.de
690 (macro (defmacro dform)
691 (let ((name (cadr dform)) (formals (caddr dform)) (body (cdddr dform)))
692 `(define-macro (,name . ,formals) ,@body)))
693
694 ;; simple syntax-rules
695
696 ;; values/call-with-values
697 (load "simple-syntax-rules/values.scm")
698 ;; (hash-)table
699 ;(load "simple-syntax-rules/table.scm")
700 ;; "the real stuff"
701 ;(load "simple-syntax-rules/usual.scm")
702 ;(load "simple-syntax-rules/rules.scm")
703 ;(load "simple-syntax-rules/memo.scm")
704 ;(load "simple-syntax-rules/syntax.scm")
705 ;(load "simple-syntax-rules/ev.scm")
706 ;(load "simple-syntax-rules/ex.scm")
707 ;(macro (define-syntax form) (expand form top-level-env))
708
709 ;(load "macros/expand.scm")
710 ;(load "macros/misc.scm")
711 ;(load "macros/prefs.scm")
712 ;(load "macros/syntaxenv.scm")
713 ;(load "macros/syntaxrules.scm")
714 ;(load "macros/usual.scm")
715
716 ;; r7rs
717 ; char library
718 ; string-upcase
719 ; string-downcase
720 ; string-foldcase
721 ; sring-map, vector-map, string-for-each, vector-for-each
722 ; bytevectors
723
724 ;; srfi-1
725
726 (define (check-arg pred val caller)
727 (let lp ((val val))
728 (if (pred val) val (lp (error "Bad argument" val pred caller)))))
729
730 ; Some macros and functions that the SRFI 1 reference implementation
731 ; requires that it does not define and are not part of R5RS.
732
733 (define-macro let-optionals
734 (lambda (input names . code)
735 (let ((input-left (gensym)))
736 `(let ((,input-left ,input))
737 ,(let next ((names names))
738 (if (null? names)
739 `(begin ,@code)
740 `(let ((,input-left (if (null? ,input-left)
741 '()
742 (cdr ,input-left)))
743 (,(caar names) (if (null? ,input-left)
744 ,(cadar names)
745 (car ,input-left))))
746 ,(next (cdr names)))))))))
747
748 (define-macro receive
749 (lambda (names values . code)
750 `(call-with-values (lambda () ,values)
751 (lambda ,names ,@code))))
752
753
754 (define (:optional data default)
755 (if (null? data)
756 default
757 (car data)))
758
759 (load "srfi-1.scm")
760
761 ;(load "srfi-55.scm")
762
763 ;(register-extension '(srfi 1) (lamba () (load "srfi-1.scm")))
764 ;(register-extension '(srfi 23) (lamba () ())) ; error builtin
765 ;(register-extension '(srfi 55) (lamba () ())) ; always available
766
767 ;; end of init
768
769 ;(load "test.scm")
770
771 (define $sc-put-cte #f)
772 (define sc-expand #f)
773 (define $make-environment #f)
774 ;(define environment? #f)
775 ;(define interaction-environment #f)
776 (define identifier? #f)
777 (define syntax->list #f)
778 (define syntax->vector #f)
779 (define syntax-object->datum #f)
780 (define datum->syntax-object #f)
781 (define generate-temporaries #f)
782 (define free-identifier=? #f)
783 (define bound-identifier=? #f)
784 (define literal-identifier=? #f)
785 (define syntax-error #f)
786 (define $syntax-dispatch #f)
787
788 (define void (lambda () (if #f #f)))
789
790 (define andmap
791 (lambda (f first . rest)
792 (or (null? first)
793 (if (null? rest)
794 (let andmap ((first first))
795 (let ((x (car first)) (first (cdr first)))
796 (if (null? first)
797 (f x)
798 (and (f x) (andmap first)))))
799 (let andmap ((first first) (rest rest))
800 (let ((x (car first))
801 (xr (map car rest))
802 (first (cdr first))
803 (rest (map cdr rest)))
804 (if (null? first)
805 (apply f (cons x xr))
806 (and (apply f (cons x xr)) (andmap first rest)))))))))
807
808 (define ormap
809 (lambda (proc list1)
810 (and (not (null? list1))
811 (or (proc (car list1)) (ormap proc (cdr list1))))))
812
813 (define *properties* '())
814
815 (define (putprop sym k v)
816 (set! *properties* (acons (list sym k) v *properties*)))
817
818 (define (remprop sym k)
819 (putprop sym k #f))
820
821 (define (getprop sym k)
822 (assoc (list sym k) *properties*))
823
824 (load "psyntax.pp")
825
826 ;(define *compile-hook* sc-expand)
827
828 (load "test.scm")
829