ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/microscheme/init.scm
Revision: 1.30
Committed: Mon Dec 7 18:10:57 2015 UTC (8 years, 5 months ago) by root
Branch: MAIN
CVS Tags: HEAD
Changes since 1.29: +5 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 ; Initialization file for TinySCHEME 1.41
2
3 (gc-verbose #t)
4
5 ;;;; Utility to ease macro creation
6 (define (macro-expand form)
7 ((eval (get-closure-code (eval (car form)))) form))
8
9 (define (macro-expand-all form)
10 (if (macro? form)
11 (macro-expand-all (macro-expand form))
12 form))
13
14 (define *compile-hook* macro-expand-all)
15
16
17 (macro (unless form)
18 `(if (not ,(cadr form)) (begin ,@(cddr form))))
19
20 (macro (when form)
21 `(if ,(cadr form) (begin ,@(cddr form))))
22
23 ; DEFINE-MACRO Contributed by Andy Gaynor
24 (macro (define-macro dform)
25 (if (symbol? (cadr dform))
26 `(macro ,@(cdr dform))
27 (let ((form (gensym)))
28 `(macro (,(caadr dform) ,form)
29 (apply (lambda ,(cdadr dform) ,@(cddr dform)) (cdr ,form))))))
30
31 ; Utilities for math. Notice that inexact->exact is primitive,
32 ; but exact->inexact is not.
33 (define exact? integer?)
34 (define exact-integer? integer?)
35 (define (inexact? x) (and (real? x) (not (integer? x))))
36 (define (exact->inexact n) (* n 1.0))
37 (define (even? n) (= (remainder n 2) 0))
38 (define (odd? n) (not (= (remainder n 2) 0)))
39 (define (zero? n) (= n 0))
40 (define (positive? n) (> n 0))
41 (define (negative? n) (< n 0))
42 (define complex? number?)
43 (define rational? real?)
44 (define (abs n) (if (>= n 0) n (- n)))
45 (define (<> n1 n2) (not (= n1 n2)))
46 (define (square n) (* n n))
47 ;; missing: numerator denominator rationalize exact-integer-sqrt
48
49 ; min and max must return inexact if any arg is inexact
50 (define (max . lst)
51 (foldr (lambda (a b)
52 (if (> a b)
53 (if (exact? b) a (exact->inexact a))
54 (if (exact? a) b (exact->inexact b))))
55 (car lst) (cdr lst)))
56 (define (min . lst)
57 (foldr (lambda (a b)
58 (if (< a b)
59 (if (exact? b) a (exact->inexact a))
60 (if (exact? a) b (exact->inexact b))))
61 (car lst) (cdr lst)))
62
63 (define (succ x) (+ x 1))
64 (define (pred x) (- x 1))
65 (define gcd
66 (lambda a
67 (if (null? a)
68 0
69 (let ((aa (abs (car a)))
70 (bb (abs (cadr a))))
71 (if (= bb 0)
72 aa
73 (gcd bb (remainder aa bb)))))))
74 (define lcm
75 (lambda a
76 (if (null? a)
77 1
78 (let ((aa (abs (car a)))
79 (bb (abs (cadr a))))
80 (if (or (= aa 0) (= bb 0))
81 0
82 (abs (* (quotient aa (gcd aa bb)) bb)))))))
83
84
85 (define (string . charlist)
86 (list->string charlist))
87
88 (define (list->string charlist)
89 (let* ((len (length charlist))
90 (newstr (make-string len))
91 (fill-string!
92 (lambda (str i len charlist)
93 (if (= i len)
94 str
95 (begin (string-set! str i (car charlist))
96 (fill-string! str (+ i 1) len (cdr charlist)))))))
97 (fill-string! newstr 0 len charlist)))
98
99 (define (string-fill! s e)
100 (let ((n (string-length s)))
101 (let loop ((i 0))
102 (if (= i n)
103 s
104 (begin (string-set! s i e) (loop (succ i)))))))
105
106 (define (string->list s)
107 (let loop ((n (pred (string-length s))) (l '()))
108 (if (= n -1)
109 l
110 (loop (pred n) (cons (string-ref s n) l)))))
111
112 ;TODO string-upcase
113 ;TODO string-downcase
114 ;TODO string-foldcase
115 ;TODO string-copy!
116 ;TODO string-fill!
117
118 (define substring string-copy)
119
120 (define (string->anyatom str pred)
121 (let* ((a (string->atom str)))
122 (if (pred a) a
123 (error "string->xxx: not a xxx" a))))
124
125 (define (string->number str . base)
126 (let ((n (string->atom str (if (null? base) 10 (car base)))))
127 (if (number? n) n #f)))
128
129 (define (anyatom->string n pred)
130 (if (pred n)
131 (atom->string n)
132 (error "xxx->string: not a xxx" n)))
133
134 (define (number->string n . base)
135 (atom->string n (if (null? base) 10 (car base))))
136
137
138 (define (char-cmp? cmp a b)
139 (cmp (char->integer a) (char->integer b)))
140 (define (char-ci-cmp? cmp a b)
141 (cmp (char->integer (char-downcase a)) (char->integer (char-downcase b))))
142
143 (define (char=? a b) (char-cmp? = a b))
144 (define (char<? a b) (char-cmp? < a b))
145 (define (char>? a b) (char-cmp? > a b))
146 (define (char<=? a b) (char-cmp? <= a b))
147 (define (char>=? a b) (char-cmp? >= a b))
148
149 (define (char-ci=? a b) (char-ci-cmp? = a b))
150 (define (char-ci<? a b) (char-ci-cmp? < a b))
151 (define (char-ci>? a b) (char-ci-cmp? > a b))
152 (define (char-ci<=? a b) (char-ci-cmp? <= a b))
153 (define (char-ci>=? a b) (char-ci-cmp? >= a b))
154
155 (define (digit-value ch)
156 (if (and (char<=? #\0 ch) (char<=? ch #\9))
157 (- (char->integer ch) (char->integer #\0))
158 #f))
159
160 (define char-foldcase char-downcase)
161
162 ; Note the trick of returning (cmp x y)
163 (define (string-cmp? chcmp cmp a b)
164 (let ((na (string-length a)) (nb (string-length b)))
165 (let loop ((i 0))
166 (cond
167 ((= i na)
168 (if (= i nb) (cmp 0 0) (cmp 0 1)))
169 ((= i nb)
170 (cmp 1 0))
171 ((chcmp = (string-ref a i) (string-ref b i))
172 (loop (succ i)))
173 (else
174 (chcmp cmp (string-ref a i) (string-ref b i)))))))
175
176
177 (define (string=? a b) (string-cmp? char-cmp? = a b))
178 (define (string<? a b) (string-cmp? char-cmp? < a b))
179 (define (string>? a b) (string-cmp? char-cmp? > a b))
180 (define (string<=? a b) (string-cmp? char-cmp? <= a b))
181 (define (string>=? a b) (string-cmp? char-cmp? >= a b))
182
183 (define (string-ci=? a b) (string-cmp? char-ci-cmp? = a b))
184 (define (string-ci<? a b) (string-cmp? char-ci-cmp? < a b))
185 (define (string-ci>? a b) (string-cmp? char-ci-cmp? > a b))
186 (define (string-ci<=? a b) (string-cmp? char-ci-cmp? <= a b))
187 (define (string-ci>=? a b) (string-cmp? char-ci-cmp? >= a b))
188
189 (define (list . x) x)
190
191 (define (foldr f x lst)
192 (if (null? lst)
193 x
194 (foldr f (f x (car lst)) (cdr lst))))
195
196 (define (unzip1-with-cdr . lists)
197 (unzip1-with-cdr-iterative lists '() '()))
198
199 (define (unzip1-with-cdr-iterative lists cars cdrs)
200 (if (null? lists)
201 (cons cars cdrs)
202 (let ((car1 (caar lists))
203 (cdr1 (cdar lists)))
204 (unzip1-with-cdr-iterative
205 (cdr lists)
206 (append cars (list car1))
207 (append cdrs (list cdr1))))))
208
209 (define (map proc . lists)
210 (if (null? lists)
211 (apply proc)
212 (if (null? (car lists))
213 '()
214 (let* ((unz (apply unzip1-with-cdr lists))
215 (cars (car unz))
216 (cdrs (cdr unz)))
217 (cons (apply proc cars) (apply map (cons proc cdrs)))))))
218
219 (define (for-each proc . lists)
220 (if (null? lists)
221 (apply proc)
222 (if (null? (car lists))
223 #t
224 (let* ((unz (apply unzip1-with-cdr lists))
225 (cars (car unz))
226 (cdrs (cdr unz)))
227 (apply proc cars) (apply map (cons proc cdrs))))))
228
229 (define (make-list k . fill) (vector->list (vector k (car fill))))
230
231 (define (list-copy l) (vector->list (list->vector l)))
232
233 (define (list-tail x k)
234 (if (zero? k)
235 x
236 (list-tail (cdr x) (- k 1))))
237
238 (define (list-ref x k)
239 (car (list-tail x k)))
240
241 (define (last-pair x)
242 (if (pair? (cdr x))
243 (last-pair (cdr x))
244 x))
245
246 (define (head stream) (car stream))
247
248 (define (tail stream) (force (cdr stream)))
249
250 (define (vector-equal? x y)
251 (and (vector? x) (vector? y) (= (vector-length x) (vector-length y))
252 (let ((n (vector-length x)))
253 (let loop ((i 0))
254 (if (= i n)
255 #t
256 (and (equal? (vector-ref x i) (vector-ref y i))
257 (loop (succ i))))))))
258
259 (define (list->vector x)
260 (apply vector x))
261
262 ;TODO vector-fill! v e start end
263 (define (vector-fill! v e)
264 (let ((n (vector-length v)))
265 (let loop ((i 0))
266 (if (= i n)
267 v
268 (begin (vector-set! v i e) (loop (succ i)))))))
269
270 (define (vector->list v)
271 (let loop ((n (pred (vector-length v))) (l '()))
272 (if (= n -1)
273 l
274 (loop (pred n) (cons (vector-ref v n) l)))))
275
276 ;TODO vector->string vector start end
277
278 (define (string->vector . args)
279 (list->vector (string->list (apply string-copy args))))
280
281 ;TODO vector-copy v s e
282 ;TODO vector-copy! to at v s e
283
284 (define (vector-append hd . tl)
285 (if (null? tl)
286 hd
287 (list->vector (append (hd (vector->list (vector-append tl)))))))
288
289 ;; The following quasiquote macro is due to Eric S. Tiedemann.
290 ;; Copyright 1988 by Eric S. Tiedemann; all rights reserved.
291 ;;
292 ;; Subsequently modified to handle vectors: D. Souflis
293
294 (macro
295 quasiquote
296 (lambda (l)
297 (define (mcons f l r)
298 (if (and (pair? r)
299 (eq? (car r) 'quote)
300 (eq? (car (cdr r)) (cdr f))
301 (pair? l)
302 (eq? (car l) 'quote)
303 (eq? (car (cdr l)) (car f)))
304 (if (or (procedure? f) (number? f) (string? f))
305 f
306 (list 'quote f))
307 (if (eqv? l vector)
308 (apply l (eval r))
309 (list 'cons l r)
310 )))
311 (define (mappend f l r)
312 (if (or (null? (cdr f))
313 (and (pair? r)
314 (eq? (car r) 'quote)
315 (eq? (car (cdr r)) '())))
316 l
317 (list 'append l r)))
318 (define (foo level form)
319 (cond ((not (pair? form))
320 (if (or (procedure? form) (number? form) (string? form))
321 form
322 (list 'quote form))
323 )
324 ((eq? 'quasiquote (car form))
325 (mcons form ''quasiquote (foo (+ level 1) (cdr form))))
326 (#t (if (zero? level)
327 (cond ((eq? (car form) 'unquote) (car (cdr form)))
328 ((eq? (car form) 'unquote-splicing)
329 (error "Unquote-splicing wasn't in a list:"
330 form))
331 ((and (pair? (car form))
332 (eq? (car (car form)) 'unquote-splicing))
333 (mappend form (car (cdr (car form)))
334 (foo level (cdr form))))
335 (#t (mcons form (foo level (car form))
336 (foo level (cdr form)))))
337 (cond ((eq? (car form) 'unquote)
338 (mcons form ''unquote (foo (- level 1)
339 (cdr form))))
340 ((eq? (car form) 'unquote-splicing)
341 (mcons form ''unquote-splicing
342 (foo (- level 1) (cdr form))))
343 (#t (mcons form (foo level (car form))
344 (foo level (cdr form)))))))))
345 (foo 0 (car (cdr l)))))
346
347 ;;;;;Helper for the dynamic-wind definition. By Tom Breton (Tehom)
348 (define (shared-tail x y)
349 (let ((len-x (length x))
350 (len-y (length y)))
351 (define (shared-tail-helper x y)
352 (if
353 (eq? x y)
354 x
355 (shared-tail-helper (cdr x) (cdr y))))
356
357 (cond
358 ((> len-x len-y)
359 (shared-tail-helper
360 (list-tail x (- len-x len-y))
361 y))
362 ((< len-x len-y)
363 (shared-tail-helper
364 x
365 (list-tail y (- len-y len-x))))
366 (#t (shared-tail-helper x y)))))
367
368 ;;;;;Dynamic-wind by Tom Breton (Tehom)
369
370 ;;Guarded because we must only eval this once, because doing so
371 ;;redefines call/cc in terms of old call/cc
372 (unless (defined? 'dynamic-wind)
373 (let
374 ;;These functions are defined in the context of a private list of
375 ;;pairs of before/after procs.
376 ( (*active-windings* '())
377 ;;We'll define some functions into the larger environment, so
378 ;;we need to know it.
379 (outer-env (current-environment)))
380
381 ;;Poor-man's structure operations
382 (define before-func car)
383 (define after-func cdr)
384 (define make-winding cons)
385
386 ;;Manage active windings
387 (define (activate-winding! new)
388 ((before-func new))
389 (set! *active-windings* (cons new *active-windings*)))
390 (define (deactivate-top-winding!)
391 (let ((old-top (car *active-windings*)))
392 ;;Remove it from the list first so it's not active during its
393 ;;own exit.
394 (set! *active-windings* (cdr *active-windings*))
395 ((after-func old-top))))
396
397 (define (set-active-windings! new-ws)
398 (unless (eq? new-ws *active-windings*)
399 (let ((shared (shared-tail new-ws *active-windings*)))
400
401 ;;Define the looping functions.
402 ;;Exit the old list. Do deeper ones last. Don't do
403 ;;any shared ones.
404 (define (pop-many)
405 (unless (eq? *active-windings* shared)
406 (deactivate-top-winding!)
407 (pop-many)))
408 ;;Enter the new list. Do deeper ones first so that the
409 ;;deeper windings will already be active. Don't do any
410 ;;shared ones.
411 (define (push-many new-ws)
412 (unless (eq? new-ws shared)
413 (push-many (cdr new-ws))
414 (activate-winding! (car new-ws))))
415
416 ;;Do it.
417 (pop-many)
418 (push-many new-ws))))
419
420 ;;The definitions themselves.
421 (eval
422 `(define call-with-current-continuation
423 ;;It internally uses the built-in call/cc, so capture it.
424 ,(let ((old-c/cc call-with-current-continuation))
425 (lambda (func)
426 ;;Use old call/cc to get the continuation.
427 (old-c/cc
428 (lambda (continuation)
429 ;;Call func with not the continuation itself
430 ;;but a procedure that adjusts the active
431 ;;windings to what they were when we made
432 ;;this, and only then calls the
433 ;;continuation.
434 (func
435 (let ((current-ws *active-windings*))
436 (lambda (x)
437 (set-active-windings! current-ws)
438 (continuation x)))))))))
439 outer-env)
440 ;;We can't just say "define (dynamic-wind before thunk after)"
441 ;;because the lambda it's defined to lives in this environment,
442 ;;not in the global environment.
443 (eval
444 `(define dynamic-wind
445 ,(lambda (before thunk after)
446 ;;Make a new winding
447 (activate-winding! (make-winding before after))
448 (let ((result (thunk)))
449 ;;Get rid of the new winding.
450 (deactivate-top-winding!)
451 ;;The return value is that of thunk.
452 result)))
453 outer-env)))
454
455 (define call/cc call-with-current-continuation)
456
457 (define (symbol=? hd . tl)
458 (if (null? tl)
459 #t
460 (and (symbol? hd) (eq? hd (car tl)) (symbol=? (cdr tl)))))
461
462 (define (boolean=? hd . tl)
463 (if (null? tl)
464 #t
465 (and (boolean? hd) (eq? hd (car tl)) (boolean=? (cdr tl)))))
466
467 ;;;;; atom? and equal? written by a.k
468
469 ;;;; atom?
470 (define (atom? x)
471 (not (pair? x)))
472
473 ;;;; equal?
474 (define (equal? x y)
475 (cond
476 ((pair? x)
477 (and (pair? y)
478 (equal? (car x) (car y))
479 (equal? (cdr x) (cdr y))))
480 ((vector? x)
481 (and (vector? y) (vector-equal? x y)))
482 ((string? x)
483 (and (string? y) (string=? x y)))
484 (else (eqv? x y))))
485
486 ;;;; (do ((var init inc) ...) (endtest result ...) body ...)
487 ;;
488 (macro do
489 (lambda (do-macro)
490 (apply (lambda (do vars endtest . body)
491 (let ((do-loop (gensym)))
492 `(letrec ((,do-loop
493 (lambda ,(map (lambda (x)
494 (if (pair? x) (car x) x))
495 `,vars)
496 (if ,(car endtest)
497 (begin ,@(cdr endtest))
498 (begin
499 ,@body
500 (,do-loop
501 ,@(map (lambda (x)
502 (cond
503 ((not (pair? x)) x)
504 ((< (length x) 3) (car x))
505 (else (car (cdr (cdr x))))))
506 `,vars)))))))
507 (,do-loop
508 ,@(map (lambda (x)
509 (if (and (pair? x) (cdr x))
510 (car (cdr x))
511 '()))
512 `,vars)))))
513 do-macro)))
514
515 ;;;; generic-member
516 (define (generic-member cmp obj lst)
517 (cond
518 ((null? lst) #f)
519 ((cmp obj (car lst)) lst)
520 (else (generic-member cmp obj (cdr lst)))))
521
522 (define (memq obj lst)
523 (generic-member eq? obj lst))
524 (define (memv obj lst)
525 (generic-member eqv? obj lst))
526 (define (member obj lst)
527 (generic-member equal? obj lst))
528
529 ;;;; generic-assoc
530 (define (generic-assoc cmp obj alst)
531 (cond
532 ((null? alst) #f)
533 ((cmp obj (caar alst)) (car alst))
534 (else (generic-assoc cmp obj (cdr alst)))))
535
536 (define (assq obj alst)
537 (generic-assoc eq? obj alst))
538 (define (assv obj alst)
539 (generic-assoc eqv? obj alst))
540 (define (assoc obj alst)
541 (generic-assoc equal? obj alst))
542
543 (define (acons x y z) (cons (cons x y) z))
544
545 ;;;; Handy for imperative programs
546 ;;;; Used as: (define-with-return (foo x y) .... (return z) ...)
547 (macro (define-with-return form)
548 `(define ,(cadr form)
549 (call/cc (lambda (return) ,@(cddr form)))))
550
551 ;;;; Simple exception handling
552 ;
553 ; Exceptions are caught as follows:
554 ;
555 ; (catch (do-something to-recover and-return meaningful-value)
556 ; (if-something goes-wrong)
557 ; (with-these calls))
558 ;
559 ; "Catch" establishes a scope spanning multiple call-frames
560 ; until another "catch" is encountered.
561 ;
562 ; Exceptions are thrown with:
563 ;
564 ; (throw "message")
565 ;
566 ; If used outside a (catch ...), reverts to (error "message)
567
568 (define *handlers* (list))
569
570 (define (push-handler proc)
571 (set! *handlers* (cons proc *handlers*)))
572
573 (define (pop-handler)
574 (let ((h (car *handlers*)))
575 (set! *handlers* (cdr *handlers*))
576 h))
577
578 (define (more-handlers?)
579 (pair? *handlers*))
580
581 (define (throw . x)
582 (if (more-handlers?)
583 (apply (pop-handler))
584 (apply error x)))
585
586 ; catch handler thunk
587 (macro (catch form)
588 (let ((label (gensym)))
589 `(call/cc (lambda (exit)
590 (push-handler (lambda () (exit ,(cadr form))))
591 (let ((,label (begin ,@(cddr form))))
592 (pop-handler)
593 ,label)))))
594
595 (define *error-hook* throw)
596
597 ; same as above, r7rs
598 (define (with-exception-handler handler thunk)
599 (catch (handler) (thunk)))
600
601 (define (raise-continuable x)
602 (if (more-handlers?)
603 ((pop-handler) x)
604 (error x)))
605
606 (define (raise x)
607 (raise-continuable x)
608 (error "raise: exception handler returned"))
609
610 ;(with-exception-handler
611 ; (lambda () (display (list "xerror")))
612 ; (lambda () (begin (display ("aaa") (raise 5)))))
613
614 ;TODO: a lot more is missing, and it doesn't work
615
616 ;;;;; Definition of MAKE-ENVIRONMENT, to be used with two-argument EVAL
617
618 (macro (make-environment form)
619 `(apply (lambda ()
620 ,@(cdr form)
621 (current-environment))))
622
623 (define-macro (eval-polymorphic x . envl)
624 (display envl)
625 (let* ((env (if (null? envl) (current-environment) (eval (car envl))))
626 (xval (eval x env)))
627 (if (closure? xval)
628 (make-closure (get-closure-code xval) env)
629 xval)))
630
631 ; Redefine this if you install another package infrastructure
632 ; Also redefine 'package'
633 (define *colon-hook* eval)
634
635 ;;;;; I/O
636
637 (define (input-output-port? p)
638 (and (input-port? p) (output-port? p)))
639
640 (define (close-port p)
641 (cond
642 ((input-output-port? p) (close-input-port (close-output-port p)))
643 ((input-port? p) (close-input-port p))
644 ((output-port? p) (close-output-port p))
645 (else (throw "Not a port" p))))
646
647 (define (call-with-input-file s p)
648 (let ((inport (open-input-file s)))
649 (if (eq? inport #f)
650 #f
651 (let ((res (p inport)))
652 (close-input-port inport)
653 res))))
654
655 (define (call-with-output-file s p)
656 (let ((outport (open-output-file s)))
657 (if (eq? outport #f)
658 #f
659 (let ((res (p outport)))
660 (close-output-port outport)
661 res))))
662
663 (define (with-input-from-file s p)
664 (let ((inport (open-input-file s)))
665 (if (eq? inport #f)
666 #f
667 (let ((prev-inport (current-input-port)))
668 (set-input-port inport)
669 (let ((res (p)))
670 (close-input-port inport)
671 (set-input-port prev-inport)
672 res)))))
673
674 (define (with-output-to-file s p)
675 (let ((outport (open-output-file s)))
676 (if (eq? outport #f)
677 #f
678 (let ((prev-outport (current-output-port)))
679 (set-output-port outport)
680 (let ((res (p)))
681 (close-output-port outport)
682 (set-output-port prev-outport)
683 res)))))
684
685 (define (with-input-output-from-to-files si so p)
686 (let ((inport (open-input-file si))
687 (outport (open-input-file so)))
688 (if (not (and inport outport))
689 (begin
690 (close-input-port inport)
691 (close-output-port outport)
692 #f)
693 (let ((prev-inport (current-input-port))
694 (prev-outport (current-output-port)))
695 (set-input-port inport)
696 (set-output-port outport)
697 (let ((res (p)))
698 (close-input-port inport)
699 (close-output-port outport)
700 (set-input-port prev-inport)
701 (set-output-port prev-outport)
702 res)))))
703
704 ; Random number generator (maximum cycle)
705 (define *seed* 1)
706 (define (random-next)
707 (let* ((a 16807) (m 2147483647) (q (quotient m a)) (r (modulo m a)))
708 (set! *seed*
709 (- (* a (- *seed*
710 (* (quotient *seed* q) q)))
711 (* (quotient *seed* q) r)))
712 (if (< *seed* 0) (set! *seed* (+ *seed* m)))
713 *seed*))
714
715
716 (define-macro (aif a b c)
717 `(let ((it ,a))
718 (if it ,b ,c)))
719
720 ;; SRFI-0
721 ;; COND-EXPAND
722 ;; Implemented as a macro
723 (define *features* '(srfi-0))
724
725 (define-macro (cond-expand . cond-action-list)
726 (cond-expand-runtime cond-action-list))
727
728 (define (cond-expand-runtime cond-action-list)
729 (if (null? cond-action-list)
730 #t
731 (if (cond-eval (caar cond-action-list))
732 `(begin ,@(cdar cond-action-list))
733 (cond-expand-runtime (cdr cond-action-list)))))
734
735 (define (cond-eval-and cond-list)
736 (foldr (lambda (x y) (and (cond-eval x) (cond-eval y))) #t cond-list))
737
738 (define (cond-eval-or cond-list)
739 (foldr (lambda (x y) (or (cond-eval x) (cond-eval y))) #f cond-list))
740
741 (define (cond-eval condition)
742 (cond
743 ((symbol? condition)
744 (if (member condition *features*) #t #f))
745 ((eq? condition #t) #t)
746 ((eq? condition #f) #f)
747 (else (case (car condition)
748 ((and) (cond-eval-and (cdr condition)))
749 ((or) (cond-eval-or (cdr condition)))
750 ((not) (if (not (null? (cddr condition)))
751 (error "cond-expand : 'not' takes 1 argument")
752 (not (cond-eval (cadr condition)))))
753 (else (error "cond-expand : unknown operator" (car condition)))))))
754
755 ; done late so that "when" is functional
756 (define exact ) (when (defined? 'inexact->exact) (set! exact inexact->exact))
757 (define inexact) (when (defined? 'exact->inexact) (set! inexact exact->inexact))
758
759 (macro (defmacro dform)
760 (let ((name (cadr dform)) (formals (caddr dform)) (body (cdddr dform)))
761 `(define-macro (,name . ,formals) ,@body)))
762
763 ;; r7rs
764 ; sring-map, vector-map, string-for-each, vector-for-each
765 ; bytevectors
766
767 ;; srfi-1
768
769 (define (check-arg pred val caller)
770 (let lp ((val val))
771 (if (pred val) val (lp (error "Bad argument" val pred caller)))))
772
773 ; Some macros and functions that the SRFI 1 reference implementation
774 ; requires that it does not define and are not part of R5RS.
775
776 (define-macro let-optionals
777 (lambda (input names . code)
778 (let ((input-left (gensym)))
779 `(let ((,input-left ,input))
780 ,(let next ((names names))
781 (if (null? names)
782 `(begin ,@code)
783 `(let ((,input-left (if (null? ,input-left)
784 '()
785 (cdr ,input-left)))
786 (,(caar names) (if (null? ,input-left)
787 ,(cadar names)
788 (car ,input-left))))
789 ,(next (cdr names)))))))))
790
791 (define-macro receive
792 (lambda (names values . code)
793 `(call-with-values (lambda () ,values)
794 (lambda ,names ,@code))))
795
796
797 (define (:optional data default)
798 (if (null? data)
799 default
800 (car data)))
801
802 (load "srfi-1.scm")
803
804 ;; macros-by-example
805
806 (define append!
807 (lambda args
808 (cond ((null? args) '())
809 ((null? (cdr args)) (car args))
810 ((null? (car args)) (apply append! (cdr args)))
811 (else
812 (set-cdr! (last-pair (car args))
813 (apply append! (cdr args)))
814 (car args)))))
815
816 (define (some pred lst . rest)
817 (cond ((null? rest)
818 (let mapf ((lst lst))
819 (and (not (null? lst))
820 (or (pred (car lst)) (mapf (cdr lst))))))
821 (else (let mapf ((lst lst) (rest rest))
822 (and (not (null? lst))
823 (or (apply pred (car lst) (map car rest))
824 (mapf (cdr lst) (map cdr rest))))))))
825
826 (define (every pred lst . rest)
827 (cond ((null? rest)
828 (let mapf ((lst lst))
829 (or (null? lst)
830 (and (pred (car lst)) (mapf (cdr lst))))))
831 (else (let mapf ((lst lst) (rest rest))
832 (or (null? lst)
833 (and (apply pred (car lst) (map car rest))
834 (mapf (cdr lst) (map cdr rest))))))))
835
836 ;;;@ From: hugh@ear.mit.edu (Hugh Secker-Walker)
837 (define (nreverse rev-it)
838 ;;; Reverse order of elements of LIST by mutating cdrs.
839 (cond ((null? rev-it) rev-it)
840 ((not (list? rev-it))
841 (error "nreverse: Not a list in arg1" rev-it))
842 (else (do ((reved '() rev-it)
843 (rev-cdr (cdr rev-it) (cdr rev-cdr))
844 (rev-it rev-it rev-cdr))
845 ((begin (set-cdr! rev-it reved) (null? rev-cdr)) rev-it)))))
846
847 (load "mbe.scm")
848
849 (load "srfi-55.scm")
850
851 (register-extension '(srfi 1) (lambda () ())) ; list library, always loaded
852 (register-extension '(srfi 6) (lambda () ())) ; basic string ports (not verified)
853 (register-extension '(srfi 8) (lambda () ())) ; receive always available
854 ;(register-extension '(srfi 9) (lambda () (load "srfi-9.scmx")))
855 (register-extension '(srfi 11) (lambda () (load "srfi-11.scm"))) ; let-values
856 (register-extension '(srfi 13) (lambda () (load "srfi-13.scm"))) ; string library
857 (register-extension '(srfi 16) (lambda () (load "srfi-16.scm"))) ; casd-lambda
858 (register-extension '(srfi 23) (lambda () ())) ; error builtin
859 ;(register-extension '(srfi 34) (lambda () (load "srfi-34.scmx"))) ; exception handling, subset of r7rs?
860 (register-extension '(srfi 42) (lambda () (load "srfi-42.scm"))) ; eager list comprehensions
861 (register-extension '(srfi 55) (lambda () ())) ; extension mechanism, always available
862 (register-extension '(srfi 61) (lambda () (load "srfi-61.scm"))) ; more general cond (=>)
863 ; look at: 0, 4, 19, 14, 8, 18, 2, 95, 97, 106
864 ; r7rs start: 39 40 41 46 62! 87! (replacing 61?)
865 ; supersede: 0
866 ; rule out:; 4, 7, 35, 36, 38, 47, 66, 69, 71, 74, 86, 88, 89, 90, 94, 99
867
868 ;; end of init
869
870 ;(load "test.scm")
871
872 (load "test.scm")
873
874 (gc-verbose #t)
875