ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.21
Committed: Wed Aug 14 23:36:49 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.20: +3 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.7 #!/usr/bin/perl
2 root 1.1
3     #
4     # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5     #
6     # SPDX-License-Identifier: GPL-3.0-or-later
7     #
8     # This program is free software: you can redistribute it and/or modify
9     # it under the terms of the GNU General Public License as published by
10     # the Free Software Foundation, either version 3 of the License, or
11     # (at your option) any later version.
12     #
13     # This program is distributed in the hope that it will be useful,
14     # but WITHOUT ANY WARRANTY; without even the implied warranty of
15     # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     # GNU General Public License for more details.
17     #
18     # You should have received a copy of the GNU General Public License
19     # along with this program. If not, see <https://www.gnu.org/licenses/>.
20     #
21    
22 root 1.8 use 5.014; # numerous features needed
23 root 1.1
24     our $VERSION = '1.0';
25     our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26    
27     =head1 NAME
28    
29     pbcdedit - portable boot configuration data (BCD) store editor
30    
31     =head1 SYNOPSIS
32    
33     pbcdedit help # output manual page
34     pbcdedit export path/to/BCD # output BCD hive as JSON
35     pbcdedit import path/to/bcd # convert standard input to BCD hive
36     pbcdedit edit path/to/BCD edit-instructions...
37    
38     pbcdedit objects # list all supported object aliases and types
39     pbcdedit elements # list all supported bcd element aliases
40    
41     =head1 DESCRIPTION
42    
43     This program allows you to create, read and modify Boot Configuration Data
44     (BCD) stores used by Windows Vista and newer versions of Windows.
45    
46 root 1.9 At this point, it is in relatively early stages of development and has
47     received little to no real-world testing.
48    
49 root 1.1 Compared to other BCD editing programs it offers the following unique
50     features:
51    
52     =over
53    
54     =item Can create BCD hives from scratch
55    
56     Practically all other BCD editing programs force you to copy existing BCD
57     stores, which might or might not be copyrighted by Microsoft.
58    
59     =item Does not rely on Windows
60    
61     As the "portable" in the name implies, this program does not rely on
62     C<bcdedit> or other windows programs or libraries, it works on any system
63     that supports at least perl version 5.14.
64    
65     =item Decodes and encodes BCD device elements
66    
67     PBCDEDIT can concisely decode and encode BCD device element contents. This
68     is pretty unique, and offers a lot of potential that can't be realised
69     with C<bcdedit> or any programs relying on it.
70    
71     =item Minimal files
72    
73     BCD files written by PBCDEDIT are always "minimal", that is, they don't
74     contain unused data areas and therefore don't contain old and potentially
75     sensitive data.
76    
77     =back
78    
79     The target audience for this program is professionals and tinkerers who
80 root 1.11 are ready to invest time into learning how it works. It is not an easy
81 root 1.1 program to use and requires patience and a good understanding of BCD data
82     stores.
83    
84    
85     =head1 SUBCOMMANDS
86    
87 root 1.11 PBCDEDIT expects a subcommand as first argument that tells it what to
88 root 1.1 do. The following subcommands exist:
89    
90     =over
91    
92 root 1.20 =item C<help>
93 root 1.1
94 root 1.11 Displays the whole manual page (this document).
95 root 1.1
96 root 1.20 =item C<export> F<path>
97 root 1.1
98     Reads a BCD data store and writes a JSON representation of it to standard
99     output.
100    
101     The format of the data is explained later in this document.
102    
103 root 1.11 Example: read a BCD store, modify it with an external program, write it
104     again.
105 root 1.1
106     pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
107    
108 root 1.20 =item C<import> F<path>
109 root 1.1
110     The reverse of C<export>: Reads a JSON representation of a BCD data store
111     from standard input, and creates or replaces the given BCD data store.
112    
113 root 1.20 =item C<edit> F<path> I<instructions...>
114 root 1.1
115 root 1.6 Load a BCD data store, apply some instructions to it, and save it again.
116    
117     See the section L<EDITING BCD DATA STORES>, below, for more info.
118    
119 root 1.20 =item C<parse> F<path> I<instructions...>
120 root 1.6
121     Same as C<edit>, above, except it doesn't save the data store again. Can
122     be useful to extract some data from it.
123 root 1.1
124 root 1.20 =item C<lsblk>
125 root 1.1
126     On a GNU/Linux system, you can get a list of partition device descriptors
127     using this command - the external C<lsblk> command is required, as well as
128     a mounted C</sys> file system.
129    
130     The output will be a list of all partitions in the system and C<partition>
131     descriptors for GPT and both C<legacypartition> and C<partition>
132 root 1.11 descriptors for MBR partitions.
133 root 1.1
134 root 1.20 =item C<objects> [C<--json>]
135 root 1.1
136 root 1.11 Outputs two tables: a table listing all type aliases with their hex BCD
137 root 1.1 element ID, and all object name aliases with their GUID and default type
138     (if any).
139    
140     With C<--json> it prints similar information as a JSON object, for easier parsing.
141    
142 root 1.20 =item C<elements> [C<--json>]
143 root 1.1
144     Outputs a table of known element aliases with their hex ID and the format
145     type.
146    
147     With C<--json> it prints similar information as a JSON object, for easier parsing.
148    
149 root 1.20 =item C<export-regf> F<path>
150 root 1.1
151     This has nothing to do with BCD data stores - it takes a registry hive
152     file as argument and outputs a JSON representation of it to standard
153     output.
154    
155     Hive versions 1.2 till 1.6 are supported.
156    
157 root 1.20 =item C<import-regf> F<path>
158 root 1.1
159     The reverse of C<export-regf>: reads a JSON representation of a registry
160 root 1.20 hive from standard input and creates or replaces the registry hive file
161     given as argument.
162 root 1.1
163     The written hive will always be in a slightly modified version 1.3
164     format. It's not the format windows would generate, but it should be
165     understood by any conformant hive reader.
166    
167     Note that the representation chosen by PBCDEDIT currently throws away
168 root 1.11 classname data (often used for feeble attempts at hiding stuff by
169 root 1.1 Microsoft) and security descriptors, so if you write anything other than
170     a BCD hive you will most likely destroy it.
171    
172     =back
173    
174    
175     =head1 BCD DATA STORE REPRESENTATION FORMAT
176    
177     A BCD data store is represented as a JSON object with one special key,
178     C<meta>, and one key per BCD object. That is, each BCD object becomes
179     one key-value pair in the object, and an additional key called C<meta>
180     contains meta information.
181    
182     Here is an abridged example of a real BCD store:
183    
184     {
185     "meta" : {
186     "version" : 1
187     },
188     "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
189     "type" : "application::osloader",
190     "description" : "Windows 10",
191     "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
192     "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193     "path" : "\\Windows\\system32\\winload.exe",
194     "systemroot" : "\\Windows"
195     },
196     "{bootloadersettings}" : {
197     "inherit" : "{globalsettings} {hypervisorsettings}"
198     },
199     "{bootmgr}" : {
200     "description" : "Windows Boot Manager",
201     "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
202     "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
203     "inherit" : "{globalsettings}",
204     "displaybootmenu" : 0,
205     "timeout" : 30
206     },
207     "{globalsettings}" : {
208     "inherit" : "{dbgsettings} {emssettings} {badmemory}"
209     },
210     "{hypervisorsettings}" : {
211     "hypervisorbaudrate" : 115200,
212     "hypervisordebugport" : 1,
213     "hypervisordebugtype" : 0
214     },
215     # ...
216     }
217    
218 root 1.3 =head2 Minimal BCD to boot windows
219    
220     Experimentally I found the following BCD is the minimum required to
221     successfully boot any post-XP version of Windows (suitable C<device> and
222     C<osdevice> values, of course):
223    
224     {
225     "{bootmgr}" : {
226     "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
227     },
228    
229     "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
230     "type" : "application::osloader",
231     "description" : "Windows Boot",
232     "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
233     "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234     "path" : "\\Windows\\system32\\winload.exe",
235     "systemroot" : "\\Windows"
236     },
237     }
238    
239     Note that minimal doesn't mean recommended - Windows itself will add stuff
240     to this during or after boot, and you might or might not run into issues
241     when installing updates as it might not be able to find the F<bootmgr>.
242    
243 root 1.1 =head2 The C<meta> key
244    
245     The C<meta> key is not stored in the BCD data store but is used only
246     by PBCDEDIT. It is always generated when exporting, and importing will
247     be refused when it exists and the version stored inside doesn't store
248 root 1.11 the JSON schema version of PBCDEDIT. This ensures that different and
249     incompatible versions of PBCDEDIT will not read and misinterpret each
250 root 1.1 others data.
251    
252     =head2 The object keys
253    
254     Every other key is a BCD object. There is usually a BCD object for the
255     boot manager, one for every boot option and a few others that store common
256     settings inherited by these.
257    
258     Each BCD object is represented by a GUID wrapped in curly braces. These
259 root 1.11 are usually random GUIDs used only to distinguish BCD objects from each
260 root 1.1 other. When adding a new boot option, you can simply generate a new GUID.
261    
262     Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
263     into human-readable strings such as C<{globalsettings}>, which is the same
264     as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
265    
266     Each BCD, object has an associated type. For example,
267     C<application::osloader> for objects loading Windows via F<winload.exe>,
268     C<application::bootsector> for real mode applications and so on.
269    
270     The type of a object is stored in the pseudo BCD element C<type> (see next
271     section).
272    
273     Some well-known objects have a default type. If an object type matches
274     its default type, then the C<type> element will be omitted. Similarly, if
275     the C<type> element is missing and the BCD object has a default type, the
276     default type will be used when writing a BCD store.
277    
278     Running F<pbcdedit objects> will give you a list of object types,
279     well-known object aliases and their default types.
280    
281     If different string keys in a JSON BCD store map to the same BCD object
282     then a random one will "win" and the others will be discarded. To avoid
283     this, you should always use the "canonical" name of a BCD object, which is
284     the human-readable form (if it exists).
285    
286     =head2 The object values - BCD elements
287    
288     The value of each BCD object entry consists of key-value pairs called BCD
289     elements.
290    
291     BCD elements are identified by a 32 bit number, but to make things
292     simpler PBCDEDIT will replace these with well-known strings such as
293     C<description>, C<device> or C<path>.
294    
295     When PBCDEDIT does not know the BCD element, it will use
296     C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
297     BCD element. For example, C<device> would be C<custom::11000001>. You can
298     get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
299     elements>.
300    
301     What was said about duplicate keys mapping to the same object is true for
302     elements as well, so, again, you should always use the canonical name,
303 root 1.11 which is the human readable alias, if known.
304 root 1.1
305     =head3 BCD element types
306    
307     Each BCD element has a type such as I<string> or I<boolean>. This type
308     determines how the value is interpreted, and most of them are pretty easy
309     to explain:
310    
311     =over
312    
313     =item string
314    
315     This is simply a unicode string. For example, the C<description> and
316     C<systemroot> elements both are of this type, one storing a human-readable
317     name for this boot option, the other a file path to the windows root
318     directory:
319    
320     "description" : "Windows 10",
321     "systemroot" : "\\Windows",
322    
323     =item boolean
324    
325 root 1.11 Almost as simple are booleans, which represent I<true>/I<false>,
326 root 1.1 I<on>/I<off> and similar values. In the JSON form, true is represented
327     by the number C<1>, and false is represented by the number C<0>. Other
328     values will be accepted, but PBCDEDIT doesn't guarantee how these are
329     interpreted.
330    
331     For example, C<displaybootmenu> is a boolean that decides whether to
332     enable the C<F8> boot menu. In the example BCD store above, this is
333     disabled:
334    
335     "displaybootmenu" : 0,
336    
337     =item integer
338    
339     Again, very simple, this is a 64 bit integer. IT can be either specified
340     as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
341 root 1.11 binary number (prefix C<0b>).
342 root 1.1
343     For example, the boot C<timeout> is an integer, specifying the automatic
344     boot delay in seconds:
345    
346     "timeout" : 30,
347    
348     =item integer list
349    
350     This is a list of 64 bit integers separated by whitespace. It is not used
351 root 1.11 much, so here is a somewhat artificial an untested example of using
352 root 1.1 C<customactions> to specify a certain custom, eh, action to be executed
353     when pressing C<F10> at boot:
354    
355     "customactions" : "0x1000044000001 0x54000001",
356    
357     =item guid
358    
359 root 1.11 This represents a single GUID value wrapped in curly braces. It is used a
360 root 1.1 lot to refer from one BCD object to other one.
361    
362     For example, The C<{bootmgr}> object might refer to a resume boot option
363     using C<resumeobject>:
364    
365     "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
366    
367     Human readable aliases are used and allowed.
368    
369     =item guid list
370    
371 root 1.11 Similar to the GUID type, this represents a list of such GUIDs, separated
372 root 1.1 by whitespace from each other.
373    
374     For example, many BCD objects can I<inherit> elements from other BCD
375 root 1.11 objects by specifying the GUIDs of those other objects in a GUID list
376 root 1.1 called surprisingly called C<inherit>:
377    
378     "inherit" : "{dbgsettings} {emssettings} {badmemory}",
379    
380     This example also shows how human readable aliases can be used.
381    
382     =item device
383    
384     This type is why I write I<most> are easy to explain earlier: This type
385     is the pinnacle of Microsoft-typical hacks layered on top of other
386     hacks. Understanding this type took more time than writing all the rest of
387     PBCDEDIT, and because it is so complex, this type has its own subsection
388     below.
389     =back
390    
391     =head4 The BCD "device" element type
392    
393     Device elements specify, well, devices. They are used for such diverse
394 root 1.11 purposes such as finding a TFTP network boot image, serial ports or VMBUS
395 root 1.1 devices, but most commonly they are used to specify the disk (harddisk,
396 root 1.11 cdrom, ramdisk, vhd...) to boot from.
397 root 1.1
398     The device element is kind of a mini-language in its own which is much
399     more versatile then the limited windows interface to it - BCDEDIT -
400     reveals.
401    
402     While some information can be found on the BCD store and the windows
403     registry, there is pretty much no public information about the device
404     element, so almost everything known about it had to be researched first
405     in the process of writing this script, and consequently, support for BCD
406     device elements is partial only.
407    
408     On the other hand, the expressive power of PBCDEDIT in specifying devices
409 root 1.11 is much bigger than BCDEDIT and therefore more can be done with it. The
410 root 1.1 downside is that BCD device elements are much more complicated than what
411     you might think from reading the BCDEDIT documentation.
412    
413     In other words, simple things are complicated, and complicated things are
414     possible.
415    
416     Anyway, the general syntax of device elements is an optional GUID,
417 root 1.11 followed by a device type, optionally followed by hexadecimal flags in
418 root 1.1 angle brackets, optionally followed by C<=> and a comma-separated list of
419     arguments, some of which can be (and often are) in turn devices again.
420    
421     [{GUID}]type[<flags>][=arg,arg...]
422    
423     Here are some examples:
424    
425     boot
426     {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
427     locate=<null>,element,systemroot
428     partition=<null>,harddisk,mbr,47cbc08a,1048576
429     partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
430     block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
431     block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
432     binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
433    
434     I hope you are suitably impressed. I was, too, when I realized decoding
435     these binary blobs is not as easy as I had assumed.
436    
437     The optional prefixed GUID seems to refer to a device BCD object, which
438     can be used to specify more device-specific BCD elements (for example
439     C<ramdisksdidevice> and C<ramdisksdpath>).
440    
441     The flags after the type are omitted when they are C<0>. The only known
442     flag is C<1>, which seems to indicate that the parent device is invalid. I
443     don't claim to fully understand it, but it seems to indicate that the
444     boot manager has to search the device itself. Why the device is specified
445     in the first place escapes me, but a lot of this device stuff seems to be
446     badly hacked together...
447    
448     The types understood and used by PBCDEDIT are as follows (keep in mind
449     that not of all the following is necessarily supported in PBCDEDIT):
450    
451     =over
452    
453 root 1.14 =item C<binary=>I<hex...>
454 root 1.1
455     This type isn't actually a real BCD element type, but a fallback for those
456     cases where PBCDEDIT can't perfectly decode a device element (except for
457     the leading GUID, which it can always decode). In such cases, it will
458     convert the device into this type with a hexdump of the element data.
459    
460 root 1.14 =item C<null>
461 root 1.1
462     This is another special type - sometimes, a device all zero-filled, which
463     is not valid. This can mark the absence of a device or something PBCDEDIT
464     does not understand, so it decodes it into this special "all zero" type
465     called C<null>.
466    
467     It's most commonly found in devices that can use an optional parent
468     device, when no parent device is used.
469    
470 root 1.14 =item C<boot>
471 root 1.1
472     Another type without parameters, this refers to the device that was booted
473     from (nowadays typically the EFI system partition).
474    
475 root 1.14 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
476 root 1.1
477     This specifies a VMBUS device with the given interface type and interface
478     instance, both of which are "naked" (no curly braces) GUIDs.
479    
480     Made-up example (couldn't find a single example on the web):
481    
482     vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
483    
484 root 1.14 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
485 root 1.1
486 root 1.18 This designates a specific partition on a block device. I<parent> is an
487     optional parent device on which to search on, and is often C<null>. Note
488     that the angle brackets around I<parent> are part of the syntax.
489 root 1.1
490 root 1.17 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
491 root 1.1 C<file> or C<vhd>, where the first three should be self-explaining,
492 root 1.21 C<file> is usually used to locate a file to be used as a disk image,
493     and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
494     F<vhdx> files.
495 root 1.1
496 root 1.17 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
497 root 1.1 used for devices without partitions, such as cdroms, where the "partition"
498     is usually the whole device.
499    
500 root 1.17 The I<diskid> identifies the disk or device using a unique signature, and
501     the same is true for the I<partitionid>. How these are interpreted depends
502     on the I<partitiontype>:
503 root 1.1
504     =over
505    
506 root 1.13 =item C<mbr>
507 root 1.1
508     The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
509     MBR, interpreted as a 32 bit unsigned little endian integer and written as
510     hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
511    
512 root 1.11 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
513 root 1.1 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
514 root 1.18 display the I<diskid>.
515 root 1.1
516 root 1.18 The I<partitionid> is the byte offset(!) of the partition counting from
517 root 1.1 the beginning of the MBR.
518    
519 root 1.18 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
520 root 1.1 starting at sector C<2048> (= 1048576 / 512).
521    
522     partition=<null>,harddisk,mbr,47cbc08a,1048576
523    
524 root 1.13 =item C<gpt>
525 root 1.1
526 root 1.18 The I<diskid> is the disk GUID/disk identifier GUID from the partition
527     table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
528     partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
529 root 1.1
530     Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
531     disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
532    
533     partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
534    
535 root 1.14 =item C<raw>
536 root 1.1
537 root 1.18 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
538 root 1.11 disk number and signifies the whole disk. BCDEDIT cannot display the
539     resulting device, and I am doubtful whether it has a useful effect.
540 root 1.1
541     =back
542    
543 root 1.14 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
544 root 1.1
545     This is exactly the same as the C<partition> type, except for a tiny
546     detail: instead of using the partition start offset, this type uses the
547     partition number for MBR disks. Behaviour other partition types should be
548     the same.
549    
550     The partition number starts at C<1> and skips unused partition, so if
551     there are two primary partitions and another partition inside the extended
552     partition, the primary partitions are number C<1> and C<2> and the
553 root 1.11 partition inside the extended partition is number C<3>, regardless of any
554 root 1.1 gaps.
555    
556 root 1.14 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
557 root 1.1
558     This device description will make the bootloader search for a partition
559     with a given path.
560    
561 root 1.18 The I<parent> device is the device to search on (angle brackets are
562     still part of the syntax!) If it is C<null>, then C<locate> will
563 root 1.1 search all disks it can find.
564    
565 root 1.18 I<locatetype> is either C<element> or C<path>, and merely distinguishes
566 root 1.1 between two different ways to specify the path to search for: C<element>
567 root 1.18 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
568     uses a relative path as I<locatearg>.
569 root 1.1
570 root 1.18 Example: find any partition which has the F<magicfile.xxx> path in the
571 root 1.1 root.
572    
573     locate=<null>,path,\magicfile.xxx
574    
575     Example: find any partition which has the path specified in the
576 root 1.18 C<systemroot> element (typically F<\Windows>).
577 root 1.1
578     locate=<null>,element,systemroot
579    
580 root 1.14 =item C<block=>I<devicetype>,I<args...>
581 root 1.1
582     Last not least, the most complex type, C<block>, which... specifies block
583     devices (which could be inside a F<vhdx> file for example).
584    
585 root 1.18 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
586 root 1.1 C<file> or C<vhd> - the same as for C<partiion=>.
587    
588 root 1.18 The remaining arguments change depending on the I<devicetype>:
589 root 1.1
590     =over
591    
592 root 1.14 =item C<block=file>,<I<parent>>,I<path>
593 root 1.1
594 root 1.18 Interprets the I<parent> device (typically a partition) as a
595 root 1.1 filesystem and specifies a file path inside.
596    
597 root 1.14 =item C<block=vhd>,<I<parent>>
598 root 1.1
599 root 1.18 Pretty much just changes the interpretation of I<parent>, which is
600 root 1.1 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
601    
602 root 1.14 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
603 root 1.1
604 root 1.18 Interprets the I<parent> device as RAM disk, using the (decimal)
605 root 1.1 base address, byte size and byte offset inside a file specified by
606 root 1.18 I<path>. The numbers are usually all C<0> because they can be extracted
607 root 1.1 from the RAM disk image or other parameters.
608    
609     This is most commonly used to boot C<wim> images.
610    
611 root 1.14 =item C<block=floppy>,I<drivenum>
612 root 1.1
613     Refers to a removable drive identified by a number. BCDEDIT cannot display
614 root 1.14 the resulting device, and it is not clear what effect it will have.
615 root 1.1
616 root 1.14 =item C<block=cdrom>,I<drivenum>
617 root 1.1
618     Pretty much the same as C<floppy> but for CD-ROMs.
619    
620     =item anything else
621    
622     Probably not yet implemented. Tell me of your needs...
623    
624     =back
625    
626     =back5 Examples
627    
628     This concludes the syntax overview for device elements, but probably
629     leaves many questions open. I can't help with most of them, as I also ave
630 root 1.14 many questions, but I can walk you through some actual examples using more
631 root 1.1 complex aspects.
632    
633 root 1.15 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
634 root 1.1
635 root 1.4 Just like with C declarations, you best treat device descriptors as
636     instructions to find your device and work your way from the inside out:
637    
638     locate=<null>,path,\disk.vhdx
639    
640     First, the innermost device descriptor searches all partitions on the
641     system for a file called F<\disk.vhdx>:
642    
643 root 1.16 block=file,<see above>,\disk.vhdx
644 root 1.4
645     Next, this takes the device locate has found and finds a file called
646     F<\disk.vhdx> on it. This is the same file locate was using, but that is
647     only because we find the device using the same path as finding the disk
648     image, so this is purely incidental, although quite common.
649    
650 root 1.15 Next, this file will be opened as a virtual disk:
651 root 1.4
652 root 1.16 block=vhd,<see above>
653 root 1.4
654     And finally, inside this disk, another C<locate> will look for a partition
655     with a path as specified in the C<path> element, which most likely will be
656     F<\Windows\system32\winload.exe>:
657    
658 root 1.16 locate=<see above>,element,path
659 root 1.4
660     As a result, this will boot the first Windows it finds on the first
661     F<disk.vhdx> disk image it can find anywhere.
662 root 1.1
663 root 1.15 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
664 root 1.1
665 root 1.15 Pretty much the same as the previous case, but with a bit of
666     variance. First, look for a specific partition on an MBR-partitioned disk:
667 root 1.4
668     partition=<null>,harddisk,mbr,47cbc08a,242643632128
669    
670     Then open the file F<\win10.vhdx> on that partition:
671    
672 root 1.16 block=file,<see above>,\win10.vhdx
673 root 1.4
674     Then, again, the file is opened as a virtual disk image:
675    
676 root 1.16 block=vhd,<see above>
677 root 1.4
678     And again the windows loader (or whatever is in C<path>) will be searched:
679    
680 root 1.16 locate=<see above>,element,path
681 root 1.1
682 root 1.15 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
683 root 1.1
684 root 1.4 This is quite different. First, it starts with a GUID. This GUID belongs
685     to a BCD object of type C<device>, which has additional parameters:
686    
687     "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
688     "type" : "device",
689     "description" : "sdi file for ramdisk",
690     "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
691     "ramdisksdipath" : "\boot.sdi"
692     },
693    
694     I will not go into many details, but this specifies a (presumably empty)
695 root 1.15 template ramdisk image (F<\boot.sdi>) that is used to initialize the
696     ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
697 root 1.4 see, this F<.sdi> file resides on a different C<partition>.
698    
699 root 1.15 Continuing, as always, from the inside out, first this device descriptor
700 root 1.4 finds a specific partition:
701    
702     partition=<null>,harddisk,mbr,47cbc08a,242643632128
703    
704     And then specifies a C<ramdisk> image on this partition:
705    
706 root 1.16 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
707 root 1.4
708 root 1.5 I don't know what the purpose of the C<< <1> >> flag value is, but it
709 root 1.4 seems to be always there on this kind of entry.
710 root 1.1
711 root 1.5 If you have some good examples to add here, feel free to mail me.
712    
713 root 1.1
714 root 1.6 =head1 EDITING BCD DATA STORES
715    
716     The C<edit> and C<parse> subcommands allow you to read a BCD data store
717 root 1.15 and modify it or extract data from it. This is done by executing a series
718 root 1.6 of "editing instructions" which are explained here.
719    
720     =over
721    
722     =item get I<object> I<element>
723    
724     Reads the BCD element I<element> from the BCD object I<object> and writes
725     it to standard output, followed by a newline. The I<object> can be a GUID
726     or a human-readable alias, or the special string C<{default}>, which will
727     refer to the default BCD object.
728    
729     Example: find description of the default BCD object.
730    
731     pbcdedit parse BCD get "{default}" description
732    
733     =item set I<object> I<element> I<value>
734    
735     Similar to C<get>, but sets the element to the given I<value> instead.
736    
737 root 1.15 Example: change the bootmgr default too
738 root 1.6 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
739    
740     pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
741    
742     =item eval I<perlcode>
743    
744     This takes the next argument, interprets it as Perl code and
745     evaluates it. This allows you to do more complicated modifications or
746     extractions.
747    
748     The following variables are predefined for your use:
749    
750     =over
751    
752     =item C<$PATH>
753    
754     The path to the BCD data store, as given to C<edit> or C<parse>.
755    
756     =item C<$BCD>
757    
758     The decoded BCD data store.
759    
760     =item C<$DEFAULT>
761    
762     The default BCD object name.
763    
764     =back
765    
766     The example given for C<get>, above, could be expressed like this with
767     C<eval>:
768    
769     pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
770    
771 root 1.15 The example given for C<set> could be expressed like this:
772 root 1.6
773     pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
774    
775     =item do I<path>
776    
777     Similar to C<eval>, above, but instead of using the argument as perl code,
778     it loads the perl code from the given file and executes it. This makes it
779     easier to write more complicated or larger programs.
780    
781     =back
782    
783 root 1.1 =head1 SEE ALSO
784    
785     For ideas on what you can do, and some introductory material, try
786     L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
787    
788     For good reference on BCD objects and elements, see Geoff Chappels pages
789     at L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
790    
791     =head1 AUTHOR
792    
793 root 1.10 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
794 root 1.1
795     =head1 REPORTING BUGS
796    
797 root 1.11 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
798 root 1.1
799     =head1 BUGS AND SHORTCOMINGS
800    
801     This should be a module. Of a series of modules, even.
802    
803     Registry code should preserve classname and security descriptor data, and
804     whatever else is necessary to read and write any registry hive file.
805    
806     I am also not happy with device descriptors being strings rather than a
807     data structure, but strings are probably better for command line usage. In
808 root 1.15 any case, device descriptors could be converted by simply "splitting" at
809 root 1.1 "=" and "," into an array reference, recursively.
810    
811     =head1 HOMEPAGE
812    
813     Original versions of this program can be found at
814     L<http://software.schmorp.de/pkg/pbcdedit>.
815    
816     =head1 COPYRIGHT
817    
818     Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
819     see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
820     free to change and redistribute it. There is NO WARRANTY, to the extent
821     permitted by law.
822    
823     =cut
824    
825     BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
826    
827     use Data::Dump;
828     use Encode ();
829     use List::Util ();
830     use IO::Handle ();
831     use Time::HiRes ();
832    
833     eval { unpack "Q", pack "Q", 1 }
834     or die "perl with 64 bit integer supported required.\n";
835    
836     our $JSON = eval { require JSON::XS; JSON::XS:: }
837     // eval { require JSON::PP; JSON::PP:: }
838     // die "either JSON::XS or JSON::PP must be installed\n";
839    
840     our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
841    
842     # hack used for debugging
843     sub xxd($$) {
844     open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
845     syswrite $xxd, $_[1];
846     }
847    
848 root 1.6 sub file_load($) {
849     my ($path) = @_;
850    
851     open my $fh, "<:raw", $path
852     or die "$path: $!\n";
853     my $size = -s $fh;
854     $size = read $fh, my $buf, $size
855     or die "$path: short read\n";
856    
857     $buf
858     }
859    
860 root 1.1 # sources and resources used for this:
861     # registry:
862     # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
863     # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
864     # bcd:
865     # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
866     # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
867     # bcd devices:
868     # reactos' boot/environ/include/bl.h
869     # windows .mof files
870    
871     #############################################################################
872     # registry stuff
873    
874     # we use a hardcoded securitya descriptor - full access for everyone
875     my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
876     my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
877     my $sacl = "";
878     my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
879     my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
880     # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
881     1, 0x8004,
882     20 + (length $sacl) + (length $dacl),
883     20 + (length $sacl) + (length $dacl) + (length $sid),
884     0, 20,
885     $sacl, $dacl, $sid, $sid;
886     my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
887    
888     sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
889    
890     sub KEY_HIVE_ENTRY() { 0x0004 }
891     sub KEY_NO_DELETE () { 0x0008 }
892     sub KEY_COMP_NAME () { 0x0020 }
893    
894     sub VALUE_COMP_NAME() { 0x0001 }
895    
896     my @regf_typename = qw(
897     none sz expand_sz binary dword dword_be link multi_sz
898     resource_list full_resource_descriptor resource_requirements_list
899     qword qword_be
900     );
901    
902     my %regf_dec_type = (
903     sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
904     expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
905     link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
906     multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
907     dword => sub { unpack "L<", shift },
908     dword_be => sub { unpack "L>", shift },
909     qword => sub { unpack "Q<", shift },
910     qword_be => sub { unpack "Q>", shift },
911     );
912    
913     my %regf_enc_type = (
914     sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
915     expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
916     link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
917     multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
918     dword => sub { pack "L<", shift },
919     dword_be => sub { pack "L>", shift },
920     qword => sub { pack "Q<", shift },
921     qword_be => sub { pack "Q>", shift },
922     );
923    
924     # decode a registry hive
925     sub regf_decode($) {
926     my ($hive) = @_;
927    
928     "regf" eq substr $hive, 0, 4
929     or die "not a registry hive\n";
930    
931     my ($major, $minor) = unpack "\@20 L< L<", $hive;
932    
933     $major == 1
934     or die "registry major version is not 1, but $major\n";
935    
936     $minor >= 2 && $minor <= 6
937     or die "registry minor version is $minor, only 2 .. 6 are supported\n";
938    
939     my $bins = substr $hive, 4096;
940    
941     my $decode_key = sub {
942     my ($ofs) = @_;
943    
944     my @res;
945    
946     my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
947    
948     $sze < 0
949     or die "key node points to unallocated cell\n";
950    
951     $sig eq "nk"
952     or die "expected key node at $ofs, got '$sig'\n";
953    
954     my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
955    
956     my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
957    
958     # classnames, security descriptors
959     #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
960     #if ($cofs != NO_OFS && $clen) {
961     # #warn "cofs $cofs+$clen\n";
962     # xxd substr $bins, $cofs, 16;
963     #}
964    
965     $kname = Encode::decode "UTF-16LE", $kname
966     unless $flags & KEY_COMP_NAME;
967    
968     if ($vnum && $vofs != NO_OFS) {
969     for ($vofs += 4; $vnum--; $vofs += 4) {
970     my $kofs = unpack "\@$vofs L<", $bins;
971    
972     my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
973    
974     $sig eq "vk"
975     or die "key values list contains invalid node (expected vk got '$sig')\n";
976    
977     my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
978    
979     my $name = substr $bins, $kofs + 24, $nsze;
980    
981     $name = Encode::decode "UTF-16LE", $name
982     unless $flags & VALUE_COMP_NAME;
983    
984     my $data;
985     if ($dsze & 0x80000000) {
986     $data = substr $bins, $kofs + 12, $dsze & 0x7;
987     } elsif ($dsze > 16344 && $minor > 3) { # big data
988     my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
989    
990     for ($bofs += 4; $bnum--; $bofs += 4) {
991     my $dofs = unpack "\@$bofs L<", $bins;
992     my $dsze = unpack "\@$dofs l<", $bins;
993     $data .= substr $bins, $dofs + 4, -$dsze - 4;
994     }
995     $data = substr $data, 0, $dsze; # cells might be longer than data
996     } else {
997     $data = substr $bins, $dofs + 4, $dsze;
998     }
999    
1000     $type = $regf_typename[$type] if $type < @regf_typename;
1001    
1002     $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1003     ->($data);
1004    
1005     $res[0]{$name} = [$type, $data];
1006     }
1007     }
1008    
1009     if ($sofs != NO_OFS) {
1010     my $decode_key = __SUB__;
1011    
1012     my $decode_subkeylist = sub {
1013     my ($sofs) = @_;
1014    
1015     my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1016    
1017     if ($sig eq "ri") { # index root
1018     for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1019     __SUB__->(unpack "\@$lofs L<", $bins);
1020     }
1021     } else {
1022     my $inc;
1023    
1024     if ($sig eq "li") { # subkey list
1025     $inc = 4;
1026     } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1027     $inc = 8;
1028     } else {
1029     die "expected subkey list at $sofs, found '$sig'\n";
1030     }
1031    
1032     for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1033     my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1034     $res[1]{$name} = $data;
1035     }
1036     }
1037     };
1038    
1039     $decode_subkeylist->($sofs);
1040     }
1041    
1042     ($kname, \@res);
1043     };
1044    
1045     my ($rootcell) = unpack "\@36 L<", $hive;
1046    
1047     my ($rname, $root) = $decode_key->($rootcell);
1048    
1049     [$rname, $root]
1050     }
1051    
1052     # return a binary windows fILETIME struct
1053     sub filetime_now {
1054     my ($s, $ms) = Time::HiRes::gettimeofday;
1055    
1056     pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1057     }
1058    
1059     # encode a registry hive
1060     sub regf_encode($) {
1061     my ($hive) = @_;
1062    
1063     my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1064    
1065     # the filetime is apparently used to verify log file validity,
1066     # so by generating a new timestamp the log files *should* automatically
1067     # become invalidated and windows would "self-heal" them.
1068     # (update: has been verified by reverse engineering)
1069     # possibly the fact that the two sequence numbes match might also
1070     # make windows think that the hive is not dirty and ignore logs.
1071     # (update: has been verified by reverse engineering)
1072    
1073     my $now = filetime_now;
1074    
1075     # we only create a single hbin
1076     my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1077    
1078     # append cell to $bind, return offset
1079     my $cell = sub {
1080     my ($cell) = @_;
1081    
1082     my $res = length $bins;
1083    
1084     $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1085    
1086     $bins .= pack "l<", -(4 + length $cell);
1087     $bins .= $cell;
1088    
1089     $res
1090     };
1091    
1092     my $sdofs = $cell->($sk); # add a dummy security descriptor
1093     my $sdref = 0; # refcount
1094     substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1095     substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1096    
1097     my $encode_key = sub {
1098     my ($kname, $kdata, $flags) = @_;
1099     my ($values, $subkeys) = @$kdata;
1100    
1101     if ($kname =~ /[^\x00-\xff]/) {
1102     $kname = Encode::encode "UTF-16LE", $kname;
1103     } else {
1104     $flags |= KEY_COMP_NAME;
1105     }
1106    
1107     # encode subkeys
1108    
1109     my @snames =
1110     map $_->[1],
1111     sort { $a->[0] cmp $b->[0] }
1112     map [(uc $_), $_],
1113     keys %$subkeys;
1114    
1115     # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1116     my $maxsname = 4 * List::Util::max map length, @snames;
1117    
1118     my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1119    
1120     # encode values
1121     my $maxvname = 4 * List::Util::max map length, keys %$values;
1122     my @vofs;
1123     my $maxdsze = 0;
1124    
1125     while (my ($vname, $v) = each %$values) {
1126     my $flags = 0;
1127    
1128     if ($vname =~ /[^\x00-\xff]/) {
1129     $vname = Encode::encode "UTF-16LE", $kname;
1130     } else {
1131     $flags |= VALUE_COMP_NAME;
1132     }
1133    
1134     my ($type, $data) = @$v;
1135    
1136     $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1137    
1138     my $dsze;
1139     my $dofs;
1140    
1141     if (length $data <= 4) {
1142     $dsze = 0x80000000 | length $data;
1143     $dofs = unpack "L<", pack "a4", $data;
1144     } else {
1145     $dsze = length $data;
1146     $dofs = $cell->($data);
1147     }
1148    
1149     $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1150    
1151     push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1152     vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1153    
1154     $maxdsze = $dsze if $maxdsze < $dsze;
1155     }
1156    
1157     # encode key
1158    
1159     my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1160     my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1161    
1162     my $kdata = pack "
1163     a2 S< a8 x4 x4
1164     L< L< L< L< L< L<
1165     L< L< L< L< L< L<
1166     x4 S< S< a*
1167     ",
1168     nk => $flags, $now,
1169     (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1170     $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1171     length $kname, 0, $kname;
1172     ++$sdref;
1173    
1174     my $res = $cell->($kdata);
1175    
1176     substr $bins, $_ + 16, 4, pack "L<", $res
1177     for @sofs;
1178    
1179     $res
1180     };
1181    
1182     my ($rname, $root) = @$hive;
1183    
1184     my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1185    
1186     if (my $pad = -(length $bins) & 4095) {
1187     $pad -= 4;
1188     $bins .= pack "l< x$pad", $pad + 4;
1189     }
1190    
1191     substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1192     substr $bins, 8, 4, pack "L<", length $bins;
1193    
1194     my $base = pack "
1195     a4 L< L< a8 L< L< L< L<
1196     L< L< L<
1197     a64
1198     x396
1199     ",
1200     regf => 1974, 1974, $now, 1, 3, 0, 1,
1201     $rofs, length $bins, 1,
1202     (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1203    
1204     my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1205     $chksum = 0xfffffffe if $chksum == 0xffffffff;
1206     $chksum = 1 if $chksum == 0;
1207    
1208     $base .= pack "L<", $chksum;
1209    
1210     $base = pack "a* \@4095 x1", $base;
1211    
1212     $base . $bins
1213     }
1214    
1215     # load and parse registry from file
1216     sub regf_load($) {
1217     my ($path) = @_;
1218    
1219 root 1.6 regf_decode file_load $path
1220 root 1.1 }
1221    
1222     # encode and save registry to file
1223     sub regf_save {
1224     my ($path, $hive) = @_;
1225    
1226     $hive = regf_encode $hive;
1227    
1228     open my $regf, ">:raw", "$path~"
1229     or die "$path~: $!\n";
1230     print $regf $hive
1231     or die "$path~: short write\n";
1232     $regf->sync;
1233     close $regf;
1234    
1235     rename "$path~", $path;
1236     }
1237    
1238     #############################################################################
1239     # bcd stuff
1240    
1241     # human-readable alises for GUID object identifiers
1242     our %bcd_objects = (
1243     '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1244     '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1245     '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1246     '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1247     '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1248     '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1249     '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1250     '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1251     '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1252     '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1253     '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1254     '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1255     '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1256     '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1257     '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1258     '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1259     '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1260     '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1261     '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1262     );
1263    
1264     # default types
1265     our %bcd_object_types = (
1266     '{fwbootmgr}' => 0x10100001,
1267     '{bootmgr}' => 0x10100002,
1268     '{memdiag}' => 0x10200005,
1269     '{ntldr}' => 0x10300006,
1270     '{badmemory}' => 0x20100000,
1271     '{dbgsettings}' => 0x20100000,
1272     '{emssettings}' => 0x20100000,
1273     '{globalsettings}' => 0x20100000,
1274     '{bootloadersettings}' => 0x20200003,
1275     '{hypervisorsettings}' => 0x20200003,
1276     '{kerneldbgsettings}' => 0x20200003,
1277     '{resumeloadersettings}' => 0x20200004,
1278     '{ramdiskoptions}' => 0x30000000,
1279     );
1280    
1281     # object types
1282     our %bcd_types = (
1283     0x10100001 => 'application::fwbootmgr',
1284     0x10100002 => 'application::bootmgr',
1285     0x10200003 => 'application::osloader',
1286     0x10200004 => 'application::resume',
1287     0x10100005 => 'application::memdiag',
1288     0x10100006 => 'application::ntldr',
1289     0x10100007 => 'application::setupldr',
1290     0x10400008 => 'application::bootsector',
1291     0x10400009 => 'application::startup',
1292     0x1020000a => 'application::bootapp',
1293     0x20100000 => 'settings',
1294     0x20200001 => 'inherit::fwbootmgr',
1295     0x20200002 => 'inherit::bootmgr',
1296     0x20200003 => 'inherit::osloader',
1297     0x20200004 => 'inherit::resume',
1298     0x20200005 => 'inherit::memdiag',
1299     0x20200006 => 'inherit::ntldr',
1300     0x20200007 => 'inherit::setupldr',
1301     0x20200008 => 'inherit::bootsector',
1302     0x20200009 => 'inherit::startup',
1303     0x20300000 => 'inherit::device',
1304     0x30000000 => 'device',
1305     );
1306    
1307     our %rbcd_objects = reverse %bcd_objects;
1308    
1309     our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1310    
1311     sub dec_guid($) {
1312     my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1313     sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1314     }
1315    
1316     sub enc_guid($) {
1317     $_[0] =~ /^$RE_GUID\z/o
1318     or return;
1319    
1320     pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1321     }
1322    
1323     # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1324     sub dec_wguid($) {
1325     my $guid = "{" . (dec_guid shift) . "}";
1326    
1327     $bcd_objects{$guid} // $guid
1328     }
1329    
1330     sub enc_wguid($) {
1331     my ($guid) = @_;
1332    
1333     if (my $alias = $rbcd_objects{$guid}) {
1334     $guid = $alias;
1335     }
1336    
1337     $guid =~ /^\{($RE_GUID)\}\z/o
1338     or return;
1339    
1340     enc_guid $1
1341     }
1342    
1343     sub BCDE_CLASS () { 0xf0000000 }
1344     sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1345     sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1346     sub BCDE_CLASS_DEVICE () { 0x30000000 }
1347     sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1348    
1349     sub BCDE_FORMAT () { 0x0f000000 }
1350     sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1351     sub BCDE_FORMAT_STRING () { 0x02000000 }
1352     sub BCDE_FORMAT_GUID () { 0x03000000 }
1353     sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1354     sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1355     sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1356     sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1357    
1358     sub dec_device;
1359     sub enc_device;
1360    
1361     sub enc_integer($) {
1362     no warnings 'portable'; # ugh
1363     my $value = shift;
1364     $value = oct $value if $value =~ /^0[bBxX]/;
1365     unpack "H*", pack "Q<", $value
1366     }
1367    
1368     our %bcde_dec = (
1369     BCDE_FORMAT_DEVICE , \&dec_device,
1370     # # for round-trip verification
1371     # BCDE_FORMAT_DEVICE , sub {
1372     # my $dev = dec_device $_[0];
1373     # $_[0] eq enc_device $dev
1374     # or die "bcd device decoding does not round trip for $_[0]\n";
1375     # $dev
1376     # },
1377     BCDE_FORMAT_STRING , sub { shift },
1378     BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1379     BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1380     BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1381     BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1382     BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1383     );
1384    
1385     our %bcde_enc = (
1386     BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1387     BCDE_FORMAT_STRING , sub { sz => shift },
1388     BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1389     BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1390     BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1391     BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1392     BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1393     );
1394    
1395     # BCD Elements
1396     our %bcde = (
1397     0x11000001 => 'device',
1398     0x12000002 => 'path',
1399     0x12000004 => 'description',
1400     0x12000005 => 'locale',
1401     0x14000006 => 'inherit',
1402     0x15000007 => 'truncatememory',
1403     0x14000008 => 'recoverysequence',
1404     0x16000009 => 'recoveryenabled',
1405     0x1700000a => 'badmemorylist',
1406     0x1600000b => 'badmemoryaccess',
1407     0x1500000c => 'firstmegabytepolicy',
1408     0x1500000d => 'relocatephysical',
1409     0x1500000e => 'avoidlowmemory',
1410     0x1600000f => 'traditionalkseg',
1411     0x16000010 => 'bootdebug',
1412     0x15000011 => 'debugtype',
1413     0x15000012 => 'debugaddress',
1414     0x15000013 => 'debugport',
1415     0x15000014 => 'baudrate',
1416     0x15000015 => 'channel',
1417     0x12000016 => 'targetname',
1418     0x16000017 => 'noumex',
1419     0x15000018 => 'debugstart',
1420     0x12000019 => 'busparams',
1421     0x1500001a => 'hostip',
1422     0x1500001b => 'port',
1423     0x1600001c => 'dhcp',
1424     0x1200001d => 'key',
1425     0x1600001e => 'vm',
1426     0x16000020 => 'bootems',
1427     0x15000022 => 'emsport',
1428     0x15000023 => 'emsbaudrate',
1429     0x12000030 => 'loadoptions',
1430     0x16000040 => 'advancedoptions',
1431     0x16000041 => 'optionsedit',
1432     0x15000042 => 'keyringaddress',
1433     0x11000043 => 'bootstatdevice',
1434     0x12000044 => 'bootstatfilepath',
1435     0x16000045 => 'preservebootstat',
1436     0x16000046 => 'graphicsmodedisabled',
1437     0x15000047 => 'configaccesspolicy',
1438     0x16000048 => 'nointegritychecks',
1439     0x16000049 => 'testsigning',
1440     0x1200004a => 'fontpath',
1441     0x1500004b => 'integrityservices',
1442     0x1500004c => 'volumebandid',
1443     0x16000050 => 'extendedinput',
1444     0x15000051 => 'initialconsoleinput',
1445     0x15000052 => 'graphicsresolution',
1446     0x16000053 => 'restartonfailure',
1447     0x16000054 => 'highestmode',
1448     0x16000060 => 'isolatedcontext',
1449     0x15000065 => 'displaymessage',
1450     0x15000066 => 'displaymessageoverride',
1451     0x16000068 => 'nobootuxtext',
1452     0x16000069 => 'nobootuxprogress',
1453     0x1600006a => 'nobootuxfade',
1454     0x1600006b => 'bootuxreservepooldebug',
1455     0x1600006c => 'bootuxdisabled',
1456     0x1500006d => 'bootuxfadeframes',
1457     0x1600006e => 'bootuxdumpstats',
1458     0x1600006f => 'bootuxshowstats',
1459     0x16000071 => 'multibootsystem',
1460     0x16000072 => 'nokeyboard',
1461     0x15000073 => 'aliaswindowskey',
1462     0x16000074 => 'bootshutdowndisabled',
1463     0x15000075 => 'performancefrequency',
1464     0x15000076 => 'securebootrawpolicy',
1465     0x17000077 => 'allowedinmemorysettings',
1466     0x15000079 => 'bootuxtransitiontime',
1467     0x1600007a => 'mobilegraphics',
1468     0x1600007b => 'forcefipscrypto',
1469     0x1500007d => 'booterrorux',
1470     0x1600007e => 'flightsigning',
1471     0x1500007f => 'measuredbootlogformat',
1472     0x15000080 => 'displayrotation',
1473     0x15000081 => 'logcontrol',
1474     0x16000082 => 'nofirmwaresync',
1475     0x11000084 => 'windowssyspart',
1476     0x16000087 => 'numlock',
1477     0x22000001 => 'bpbstring',
1478     0x24000001 => 'displayorder',
1479     0x21000001 => 'filedevice',
1480     0x21000001 => 'osdevice',
1481     0x25000001 => 'passcount',
1482     0x26000001 => 'pxesoftreboot',
1483     0x22000002 => 'applicationname',
1484     0x24000002 => 'bootsequence',
1485     0x22000002 => 'filepath',
1486     0x22000002 => 'systemroot',
1487     0x25000002 => 'testmix',
1488     0x26000003 => 'cacheenable',
1489     0x26000003 => 'customsettings',
1490     0x23000003 => 'default',
1491     0x25000003 => 'failurecount',
1492     0x23000003 => 'resumeobject',
1493     0x26000004 => 'failuresenabled',
1494     0x26000004 => 'pae',
1495     0x26000004 => 'stampdisks',
1496     0x25000004 => 'testtofail',
1497     0x25000004 => 'timeout',
1498     0x21000005 => 'associatedosdevice',
1499     0x26000005 => 'cacheenable',
1500     0x26000005 => 'resume',
1501     0x25000005 => 'stridefailcount',
1502     0x26000006 => 'debugoptionenabled',
1503     0x25000006 => 'invcfailcount',
1504     0x23000006 => 'resumeobject',
1505     0x25000007 => 'bootux',
1506     0x25000007 => 'matsfailcount',
1507     0x24000007 => 'startupsequence',
1508     0x25000008 => 'bootmenupolicy',
1509     0x25000008 => 'randfailcount',
1510     0x25000009 => 'chckrfailcount',
1511     0x26000010 => 'detecthal',
1512     0x24000010 => 'toolsdisplayorder',
1513     0x22000011 => 'kernel',
1514     0x22000012 => 'hal',
1515     0x22000013 => 'dbgtransport',
1516     0x26000020 => 'displaybootmenu',
1517     0x25000020 => 'nx',
1518     0x26000021 => 'noerrordisplay',
1519     0x25000021 => 'pae',
1520     0x21000022 => 'bcddevice',
1521     0x26000022 => 'winpe',
1522     0x22000023 => 'bcdfilepath',
1523     0x26000024 => 'hormenabled',
1524     0x26000024 => 'hormenabled',
1525     0x26000024 => 'nocrashautoreboot',
1526     0x26000025 => 'hiberboot',
1527     0x26000025 => 'lastknowngood',
1528     0x26000026 => 'oslnointegritychecks',
1529     0x22000026 => 'passwordoverride',
1530     0x26000027 => 'osltestsigning',
1531     0x22000027 => 'pinpassphraseoverride',
1532     0x26000028 => 'processcustomactionsfirst',
1533     0x27000030 => 'customactions',
1534     0x26000030 => 'nolowmem',
1535     0x26000031 => 'persistbootsequence',
1536     0x25000031 => 'removememory',
1537     0x25000032 => 'increaseuserva',
1538     0x26000032 => 'skipstartupsequence',
1539     0x25000033 => 'perfmem',
1540     0x22000040 => 'fverecoveryurl',
1541     0x26000040 => 'vga',
1542     0x22000041 => 'fverecoverymessage',
1543     0x26000041 => 'quietboot',
1544     0x26000042 => 'novesa',
1545     0x26000043 => 'novga',
1546     0x25000050 => 'clustermodeaddressing',
1547     0x26000051 => 'usephysicaldestination',
1548     0x25000052 => 'restrictapiccluster',
1549     0x22000053 => 'evstore',
1550     0x26000054 => 'uselegacyapicmode',
1551     0x26000060 => 'onecpu',
1552     0x25000061 => 'numproc',
1553     0x26000062 => 'maxproc',
1554     0x25000063 => 'configflags',
1555     0x26000064 => 'maxgroup',
1556     0x26000065 => 'groupaware',
1557     0x25000066 => 'groupsize',
1558     0x26000070 => 'usefirmwarepcisettings',
1559     0x25000071 => 'msi',
1560     0x25000072 => 'pciexpress',
1561     0x25000080 => 'safeboot',
1562     0x26000081 => 'safebootalternateshell',
1563     0x26000090 => 'bootlog',
1564     0x26000091 => 'sos',
1565     0x260000a0 => 'debug',
1566     0x260000a1 => 'halbreakpoint',
1567     0x260000a2 => 'useplatformclock',
1568     0x260000a3 => 'forcelegacyplatform',
1569     0x260000a4 => 'useplatformtick',
1570     0x260000a5 => 'disabledynamictick',
1571     0x250000a6 => 'tscsyncpolicy',
1572     0x260000b0 => 'ems',
1573     0x250000c0 => 'forcefailure',
1574     0x250000c1 => 'driverloadfailurepolicy',
1575     0x250000c2 => 'bootmenupolicy',
1576     0x260000c3 => 'onetimeadvancedoptions',
1577     0x260000c4 => 'onetimeoptionsedit',
1578     0x250000e0 => 'bootstatuspolicy',
1579     0x260000e1 => 'disableelamdrivers',
1580     0x250000f0 => 'hypervisorlaunchtype',
1581     0x220000f1 => 'hypervisorpath',
1582     0x260000f2 => 'hypervisordebug',
1583     0x250000f3 => 'hypervisordebugtype',
1584     0x250000f4 => 'hypervisordebugport',
1585     0x250000f5 => 'hypervisorbaudrate',
1586     0x250000f6 => 'hypervisorchannel',
1587     0x250000f7 => 'bootux',
1588     0x260000f8 => 'hypervisordisableslat',
1589     0x220000f9 => 'hypervisorbusparams',
1590     0x250000fa => 'hypervisornumproc',
1591     0x250000fb => 'hypervisorrootprocpernode',
1592     0x260000fc => 'hypervisoruselargevtlb',
1593     0x250000fd => 'hypervisorhostip',
1594     0x250000fe => 'hypervisorhostport',
1595     0x250000ff => 'hypervisordebugpages',
1596     0x25000100 => 'tpmbootentropy',
1597     0x22000110 => 'hypervisorusekey',
1598     0x22000112 => 'hypervisorproductskutype',
1599     0x25000113 => 'hypervisorrootproc',
1600     0x26000114 => 'hypervisordhcp',
1601     0x25000115 => 'hypervisoriommupolicy',
1602     0x26000116 => 'hypervisorusevapic',
1603     0x22000117 => 'hypervisorloadoptions',
1604     0x25000118 => 'hypervisormsrfilterpolicy',
1605     0x25000119 => 'hypervisormmionxpolicy',
1606     0x2500011a => 'hypervisorschedulertype',
1607     0x25000120 => 'xsavepolicy',
1608     0x25000121 => 'xsaveaddfeature0',
1609     0x25000122 => 'xsaveaddfeature1',
1610     0x25000123 => 'xsaveaddfeature2',
1611     0x25000124 => 'xsaveaddfeature3',
1612     0x25000125 => 'xsaveaddfeature4',
1613     0x25000126 => 'xsaveaddfeature5',
1614     0x25000127 => 'xsaveaddfeature6',
1615     0x25000128 => 'xsaveaddfeature7',
1616     0x25000129 => 'xsaveremovefeature',
1617     0x2500012a => 'xsaveprocessorsmask',
1618     0x2500012b => 'xsavedisable',
1619     0x2500012c => 'kerneldebugtype',
1620     0x2200012d => 'kernelbusparams',
1621     0x2500012e => 'kerneldebugaddress',
1622     0x2500012f => 'kerneldebugport',
1623     0x25000130 => 'claimedtpmcounter',
1624     0x25000131 => 'kernelchannel',
1625     0x22000132 => 'kerneltargetname',
1626     0x25000133 => 'kernelhostip',
1627     0x25000134 => 'kernelport',
1628     0x26000135 => 'kerneldhcp',
1629     0x22000136 => 'kernelkey',
1630     0x22000137 => 'imchivename',
1631     0x21000138 => 'imcdevice',
1632     0x25000139 => 'kernelbaudrate',
1633     0x22000140 => 'mfgmode',
1634     0x26000141 => 'event',
1635     0x25000142 => 'vsmlaunchtype',
1636     0x25000144 => 'hypervisorenforcedcodeintegrity',
1637     0x26000145 => 'enablebootdebugpolicy',
1638     0x26000146 => 'enablebootorderclean',
1639     0x26000147 => 'enabledeviceid',
1640     0x26000148 => 'enableffuloader',
1641     0x26000149 => 'enableiuloader',
1642     0x2600014a => 'enablemassstorage',
1643     0x2600014b => 'enablerpmbprovisioning',
1644     0x2600014c => 'enablesecurebootpolicy',
1645     0x2600014d => 'enablestartcharge',
1646     0x2600014e => 'enableresettpm',
1647     0x21000150 => 'systemdatadevice',
1648     0x21000151 => 'osarcdevice',
1649     0x21000153 => 'osdatadevice',
1650     0x21000154 => 'bspdevice',
1651     0x21000155 => 'bspfilepath',
1652     0x26000202 => 'skipffumode',
1653     0x26000203 => 'forceffumode',
1654     0x25000510 => 'chargethreshold',
1655     0x26000512 => 'offmodecharging',
1656     0x25000aaa => 'bootflow',
1657     0x35000001 => 'ramdiskimageoffset',
1658     0x35000002 => 'ramdisktftpclientport',
1659     0x31000003 => 'ramdisksdidevice',
1660     0x32000004 => 'ramdisksdipath',
1661     0x35000005 => 'ramdiskimagelength',
1662     0x36000006 => 'exportascd',
1663     0x35000007 => 'ramdisktftpblocksize',
1664     0x35000008 => 'ramdisktftpwindowsize',
1665     0x36000009 => 'ramdiskmcenabled',
1666     0x3600000a => 'ramdiskmctftpfallback',
1667     0x3600000b => 'ramdisktftpvarwindow',
1668     0x45000001 => 'devicetype',
1669     0x42000002 => 'applicationrelativepath',
1670     0x42000003 => 'ramdiskdevicerelativepath',
1671     0x46000004 => 'omitosloaderelements',
1672     0x47000006 => 'elementstomigrate',
1673     0x46000010 => 'recoveryos',
1674     );
1675    
1676     our %rbcde = reverse %bcde;
1677    
1678     sub dec_bcde_id($) {
1679     $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1680     }
1681    
1682     sub enc_bcde_id($) {
1683     $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1684     ? hex $1
1685     : $rbcde{$_[0]}
1686     }
1687    
1688     # decode/encode bcd device element - the horror, no documentaion
1689     # whatsoever, supercomplex, superinconsistent.
1690    
1691     our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1692     our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1693     our @part_type = qw(gpt mbr raw);
1694    
1695     our $NULL_DEVICE = "\x00" x 16;
1696    
1697     # biggest bitch to decode, ever
1698     # this decoded a device portion after the GUID
1699     sub dec_device_($);
1700     sub dec_device_($) {
1701     my ($device) = @_;
1702    
1703     my $res;
1704    
1705     my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1706    
1707     $pad == 0
1708     or die "non-zero reserved field in device descriptor\n";
1709    
1710     if ($length == 0 && $type == 0 && $flags == 0) {
1711     return ("null", $device);
1712     }
1713    
1714     $length >= 16
1715     or die "device element size too small ($length)\n";
1716    
1717     $type = $dev_type[$type] // die "$type: unknown device type\n";
1718     #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1719    
1720     $res .= $type;
1721     $res .= sprintf "<%x>", $flags if $flags;
1722    
1723     my $tail = substr $device, $length - 4 * 4, 1e9, "";
1724    
1725     $length == 4 * 4 + length $device
1726     or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1727    
1728     my $dec_path = sub {
1729     my ($path, $error) = @_;
1730    
1731     $path =~ /^((?:..)*)\x00\x00\z/s
1732     or die "$error\n";
1733    
1734     $path = Encode::decode "UTF-16LE", $1;
1735    
1736     $path
1737     };
1738    
1739     if ($type eq "partition" or $type eq "legacypartition") {
1740     my $partdata = substr $device, 0, 16, "";
1741     my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1742    
1743     $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1744     $parttype = $part_type[$parttype] // die "unknown partition type\n";
1745    
1746     my $diskid = substr $device, 0, 16, "";
1747    
1748     $diskid = $parttype eq "gpt"
1749     ? dec_guid substr $diskid, 0, 16
1750     : sprintf "%08x", unpack "V", $diskid;
1751    
1752     my $partid = $parttype eq "gpt" ? dec_guid $partdata
1753     : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1754     : unpack "L<", $partdata; # partition number, one-based
1755    
1756     (my $parent, $device) = dec_device_ $device;
1757    
1758     $res .= "=";
1759     $res .= "<$parent>";
1760     $res .= ",$blocktype,$parttype,$diskid,$partid";
1761    
1762     # PartitionType (gpt, mbr, raw)
1763     # guid | partsig | disknumber
1764    
1765     } elsif ($type eq "boot") {
1766     $device =~ s/^\x00{56}\z//
1767     or die "boot device type with extra data not supported\n";
1768    
1769     } elsif ($type eq "block") {
1770     my $blocktype = unpack "V", substr $device, 0, 4, "";
1771    
1772     $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1773    
1774     # decode a "file path" structure
1775     my $dec_file = sub {
1776     my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1777    
1778     my $path = substr $device, 0, $flen - 12, "";
1779    
1780     $fver == 1
1781     or die "unsupported file descriptor version '$fver'\n";
1782    
1783     $ftype == 5
1784     or die "unsupported file descriptor path type '$type'\n";
1785    
1786     (my $parent, $path) = dec_device_ $path;
1787    
1788     $path = $dec_path->($path, "file device without path");
1789    
1790     ($parent, $path)
1791     };
1792    
1793     if ($blocktype eq "file") {
1794     my ($parent, $path) = $dec_file->();
1795    
1796     $res .= "=file,<$parent>,$path";
1797    
1798     } elsif ($blocktype eq "vhd") {
1799     $device =~ s/^\x00{20}//s
1800     or die "virtualdisk has non-zero fields I don't understand\n";
1801    
1802     (my $parent, $device) = dec_device_ $device;
1803    
1804     $res .= "=vhd,<$parent>";
1805    
1806     } elsif ($blocktype eq "ramdisk") {
1807     my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1808     my ($subdev, $path) = $dec_file->();
1809    
1810     $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1811    
1812     } else {
1813     die "unsupported block type '$blocktype'\n";
1814     }
1815    
1816     } elsif ($type eq "locate") {
1817     # mode, bcde_id, unknown, string
1818     # we assume locate has _either_ an element id _or_ a path, but not both
1819    
1820     my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1821    
1822     if ($parent) {
1823     # not sure why this is an offset - it must come after the path
1824     $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1825     ($parent, my $tail) = dec_device_ $parent;
1826     0 == length $tail
1827     or die "trailing data after locate device parent\n";
1828     } else {
1829     $parent = "null";
1830     }
1831    
1832     my $path = $device; $device = "";
1833     $path = $dec_path->($path, "device locate mode without path");
1834    
1835     $res .= "=<$parent>,";
1836    
1837     if ($mode == 0) { # "Element"
1838     !length $path
1839     or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1840    
1841     $elem = dec_bcde_id $elem;
1842     $res .= "element,$elem";
1843    
1844     } elsif ($mode == 1) { # "String"
1845     !$elem
1846     or die "device locate mode 1 having non-zero element\n";
1847    
1848     $res .= "path,$path";
1849     } else {
1850     # mode 2 maybe called "ElementChild" with element and parent device? example needed
1851     die "device locate mode '$mode' not supported\n";
1852     }
1853    
1854     } elsif ($type eq "vmbus") {
1855     my $type = dec_guid substr $device, 0, 16, "";
1856     my $instance = dec_guid substr $device, 0, 16, "";
1857    
1858     $device =~ s/^\x00{24}\z//
1859     or die "vmbus has non-zero fields I don't understand\n";
1860    
1861     $res .= "=$type,$instance";
1862    
1863     } else {
1864     die "unsupported device type '$type'\n";
1865     }
1866    
1867     warn "unexpected trailing device data($res), " . unpack "H*",$device
1868     if length $device;
1869     #length $device
1870     # and die "unexpected trailing device data\n";
1871    
1872     ($res, $tail)
1873     }
1874    
1875     # decode a full binary BCD device descriptor
1876     sub dec_device($) {
1877     my ($device) = @_;
1878    
1879     $device = pack "H*", $device;
1880    
1881     my $guid = dec_guid substr $device, 0, 16, "";
1882     $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1883     ? "" : "{$guid}";
1884    
1885     eval {
1886     my ($dev, $tail) = dec_device_ $device;
1887    
1888     $tail eq ""
1889     or die "unsupported trailing data after device descriptor\n";
1890    
1891     "$guid$dev"
1892     # } // scalar ((warn $@), "$guid$fallback")
1893     } // ($guid . "binary=" . unpack "H*", $device)
1894     }
1895    
1896     sub indexof($@) {
1897     my $value = shift;
1898    
1899     for (0 .. $#_) {
1900     $value eq $_[$_]
1901     and return $_;
1902     }
1903    
1904     undef
1905     }
1906    
1907     # encode the device portion after the GUID
1908     sub enc_device_;
1909     sub enc_device_ {
1910     my ($device) = @_;
1911    
1912     my $enc_path = sub {
1913     my $path = shift;
1914     $path =~ s/\//\\/g;
1915     (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1916     };
1917    
1918     my $enc_file = sub {
1919     my ($parent, $path) = @_; # parent and path must already be encoded
1920    
1921     $path = $parent . $path;
1922    
1923     # fver 1, ftype 5
1924     pack "VVVa*", 1, 12 + length $path, 5, $path
1925     };
1926    
1927     my $parse_path = sub {
1928     s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1929     or die "$_: invalid path\n";
1930    
1931     $enc_path->($1)
1932     };
1933    
1934     my $parse_parent = sub {
1935     my $parent;
1936    
1937     if (s/^<//) {
1938     ($parent, $_) = enc_device_ $_;
1939     s/^>//
1940     or die "$device: syntax error: parent device not followed by '>'\n";
1941     } else {
1942     $parent = $NULL_DEVICE;
1943     }
1944    
1945     $parent
1946     };
1947    
1948     for ($device) {
1949     s/^([a-z]+)//
1950     or die "$_: device does not start with type string\n";
1951    
1952     my $type = $1;
1953     my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1954     my $payload;
1955    
1956     if ($type eq "binary") {
1957     s/^=([0-9a-fA-F]+)//
1958     or die "binary type must have a hex string argument\n";
1959    
1960     $payload = pack "H*", $1;
1961    
1962     } elsif ($type eq "null") {
1963     return ($NULL_DEVICE, $_);
1964    
1965     } elsif ($type eq "boot") {
1966     $payload = "\x00" x 56;
1967    
1968     } elsif ($type eq "partition" or $type eq "legacypartition") {
1969     s/^=//
1970     or die "$_: missing '=' after $type\n";
1971    
1972     my $parent = $parse_parent->();
1973    
1974     s/^,//
1975     or die "$_: comma missing after partition parent device\n";
1976    
1977     s/^([a-z]+),//
1978     or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1979     my $blocktype = $1;
1980    
1981     s/^([a-z]+),//
1982     or die "$_: partition block type not followed by partiton type\n";
1983     my $parttype = $1;
1984    
1985     my ($partdata, $diskdata);
1986    
1987     if ($parttype eq "mbr") {
1988     s/^([0-9a-f]{8}),//i
1989     or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1990     $diskdata = pack "Vx12", hex $1;
1991    
1992     s/^([0-9]+)//
1993     or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1994    
1995     # the following works for both 64 bit offset and 32 bit partno
1996     $partdata = pack "Q< x8", $1;
1997    
1998     } elsif ($parttype eq "gpt") {
1999     s/^($RE_GUID),//
2000     or die "$_: partition disk guid missing or malformed\n";
2001     $diskdata = enc_guid $1;
2002    
2003     s/^($RE_GUID)//
2004     or die "$_: partition guid missing or malformed\n";
2005     $partdata = enc_guid $1;
2006    
2007     } elsif ($parttype eq "raw") {
2008     s/^([0-9]+)//
2009     or die "$_: partition disk number missing or malformed (must be decimal)\n";
2010    
2011     $partdata = pack "L< x12", $1;
2012    
2013     } else {
2014     die "$parttype: partition type not supported\n";
2015     }
2016    
2017     $payload = pack "a16 L< L< a16 a*",
2018     $partdata,
2019     (indexof $blocktype, @block_type),
2020     (indexof $parttype, @part_type),
2021     $diskdata,
2022     $parent;
2023    
2024     } elsif ($type eq "locate") {
2025     s/^=//
2026     or die "$_: missing '=' after $type\n";
2027    
2028     my ($mode, $elem, $path);
2029    
2030     my $parent = $parse_parent->();
2031    
2032     s/^,//
2033     or die "$_: missing comma after locate parent device\n";
2034    
2035     if (s/^element,//) {
2036     s/^([0-9a-z]+)//i
2037     or die "$_ locate element must be either name or 8-digit hex id\n";
2038     $elem = enc_bcde_id $1;
2039     $mode = 0;
2040     $path = $enc_path->("");
2041    
2042     } elsif (s/^path,//) {
2043     $mode = 1;
2044     $path = $parse_path->();
2045    
2046     } else {
2047     die "$_ second locate argument must be subtype (either element or path)\n";
2048     }
2049    
2050     if ($parent ne $NULL_DEVICE) {
2051     ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2052     } else {
2053     $parent = 0;
2054     }
2055    
2056     $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2057    
2058     } elsif ($type eq "block") {
2059     s/^=//
2060     or die "$_: missing '=' after $type\n";
2061    
2062     s/^([a-z]+),//
2063     or die "$_: block device does not start with block type (e.g. disk)\n";
2064     my $blocktype = $1;
2065    
2066     my $blockdata;
2067    
2068     if ($blocktype eq "file") {
2069     my $parent = $parse_parent->();
2070     s/^,// or die "$_: comma missing after file block device parent\n";
2071     my $path = $parse_path->();
2072    
2073     $blockdata = $enc_file->($parent, $path);
2074    
2075     } elsif ($blocktype eq "vhd") {
2076     $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2077     $blockdata .= $parse_parent->();
2078    
2079     } elsif ($blocktype eq "ramdisk") {
2080     my $parent = $parse_parent->();
2081    
2082     s/^,(\d+),(\d+),(\d+),//a
2083     or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2084    
2085     my ($base, $size, $offset) = ($1, $2, $3);
2086    
2087     my $path = $parse_path->();
2088    
2089     $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2090    
2091     } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2092     # this is guesswork
2093     s/^(\d+)//a
2094     or die "$_: missing device number for cdrom\n";
2095     $blockdata = pack "V", $1;
2096    
2097     } else {
2098     die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2099     }
2100    
2101     $payload = pack "Va*",
2102     (indexof $blocktype, @block_type),
2103     $blockdata;
2104    
2105     } elsif ($type eq "vmbus") {
2106     s/^=($RE_GUID)//
2107     or die "$_: malformed or missing vmbus interface type guid\n";
2108     my $type = enc_guid $1;
2109     s/^,($RE_GUID)//
2110     or die "$_: malformed or missing vmbus interface instance guid\n";
2111     my $instance = enc_guid $1;
2112    
2113     $payload = pack "a16a16x24", $type, $instance;
2114    
2115     } else {
2116     die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2117     }
2118    
2119     return (
2120     (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2121     $_
2122     );
2123     }
2124     }
2125    
2126     # encode a full binary BCD device descriptor
2127     sub enc_device {
2128     my ($device) = @_;
2129    
2130     my $guid = "\x00" x 16;
2131    
2132     if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2133     $guid = enc_guid $1
2134     or die "$device: does not start with valid guid\n";
2135     }
2136    
2137     my ($descriptor, $tail) = enc_device_ $device;
2138    
2139     length $tail
2140     and die "$device: garbage after device descriptor\n";
2141    
2142     unpack "H*", $guid . $descriptor
2143     }
2144    
2145     # decode a registry hive into the BCD structure used by pbcdedit
2146     sub bcd_decode {
2147     my ($hive) = @_;
2148    
2149     my %bcd;
2150    
2151     my $objects = $hive->[1][1]{Objects}[1];
2152    
2153     while (my ($k, $v) = each %$objects) {
2154     my %kv;
2155     $v = $v->[1];
2156    
2157     $k = $bcd_objects{$k} // $k;
2158    
2159     my $type = $v->{Description}[0]{Type}[1];
2160    
2161     if ($type != $bcd_object_types{$k}) {
2162     $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2163     $kv{type} = $type;
2164     }
2165    
2166     my $elems = $v->{Elements}[1];
2167    
2168     while (my ($k, $v) = each %$elems) {
2169     my $k = hex $k;
2170    
2171     my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2172     my $k = dec_bcde_id $k;
2173    
2174     $kv{$k} = $v;
2175     }
2176    
2177     $bcd{$k} = \%kv;
2178     }
2179    
2180     $bcd{meta} = { version => $JSON_VERSION };
2181    
2182     \%bcd
2183     }
2184    
2185     # encode a pbcdedit structure into a registry hive
2186     sub bcd_encode {
2187     my ($bcd) = @_;
2188    
2189     if (my $meta = $bcd->{meta}) {
2190     $meta->{version} eq $JSON_VERSION
2191     or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2192     }
2193    
2194     my %objects;
2195     my %rbcd_types = reverse %bcd_types;
2196    
2197     while (my ($k, $v) = each %$bcd) {
2198     my %kv;
2199    
2200     next if $k eq "meta";
2201    
2202     $k = lc $k; # I know you windows types!
2203    
2204     my $type = $v->{type};
2205    
2206     if ($type) {
2207     $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2208     ? hex $type
2209     : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2210     }
2211    
2212     my $guid = enc_wguid $k
2213     or die "$k: invalid bcd object identifier\n";
2214    
2215     # default type if not given
2216     $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2217    
2218     my %elem;
2219    
2220     while (my ($k, $v) = each %$v) {
2221     next if $k eq "type";
2222    
2223     $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2224     $elem{sprintf "%08x", $k} = [{
2225     Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2226     }];
2227     }
2228    
2229     $guid = dec_guid $guid;
2230    
2231     $objects{"{$guid}"} = [undef, {
2232     Description => [{ Type => [dword => $type] }],
2233     Elements => [undef, \%elem],
2234     }];
2235     }
2236    
2237     [NewStoreRoot => [undef, {
2238     Description => [{
2239     KeyName => [sz => "BCD00000001"],
2240     System => [dword => 1],
2241     pbcdedit => [sz => $VERSION],
2242     # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2243     }],
2244     Objects => [undef, \%objects],
2245     }]]
2246     }
2247    
2248     #############################################################################
2249    
2250 root 1.6 sub bcd_edit_eval {
2251     package pbcdedit;
2252    
2253     our ($PATH, $BCD, $DEFAULT);
2254    
2255     eval shift;
2256     die "$@" if $@;
2257     }
2258    
2259     sub bcd_edit {
2260     my ($path, $bcd, @insns) = @_;
2261    
2262     my $default = $bcd->{"{bootmgr}"}{resumeobject};
2263    
2264     # prepare "officially visible" variables
2265     local $pbcdedit::PATH = $path;
2266     local $pbcdedit::BCD = $bcd;
2267     local $pbcdedit::DEFAULT = $default;
2268    
2269     while (@insns) {
2270     my $insn = shift @insns;
2271    
2272     if ($insn eq "get") {
2273     my $object = shift @insns;
2274     my $elem = shift @insns;
2275    
2276 root 1.15 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2277 root 1.6
2278     print $bcd->{$object}{$elem}, "\n";
2279    
2280     } elsif ($insn eq "set") {
2281     my $object = shift @insns;
2282     my $elem = shift @insns;
2283     my $value = shift @insns;
2284    
2285 root 1.15 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2286 root 1.6
2287     $bcd->{$object}{$elem} = $value;
2288    
2289     } elsif ($insn eq "eval") {
2290     bcd_edit_eval shift @insns;
2291    
2292     } elsif ($insn eq "do") {
2293     my $path = shift @insns;
2294     my $file = file_load $path;
2295     bcd_edit_eval "#line 1 '$path'\n$file";
2296    
2297     } else {
2298     die "$insn: not a recognized instruction for edit/parse\n";
2299     }
2300     }
2301    
2302     }
2303    
2304     #############################################################################
2305    
2306 root 1.1 # json to stdout
2307     sub prjson($) {
2308     print $json_coder->encode ($_[0]);
2309     }
2310    
2311     # json from stdin
2312     sub rdjson() {
2313     my $json;
2314     1 while read STDIN, $json, 65536, length $json;
2315     $json_coder->decode ($json)
2316     }
2317    
2318     # all subcommands
2319     our %CMD = (
2320     help => sub {
2321     require Pod::Usage;
2322     Pod::Usage::pod2usage (-verbose => 2);
2323     },
2324    
2325     objects => sub {
2326     my %rbcd_types = reverse %bcd_types;
2327     $_ = sprintf "%08x", $_ for values %rbcd_types;
2328    
2329     if ($_[0] eq "--json") {
2330     my %default_type = %bcd_object_types;
2331     $_ = sprintf "%08x", $_ for values %default_type;
2332    
2333     prjson {
2334     version => $JSON_VERSION,
2335     object_alias => \%bcd_objects,
2336     object_type => \%rbcd_types,
2337     object_default_type => \%default_type,
2338     };
2339     } else {
2340     my %rbcd_objects = reverse %bcd_objects;
2341    
2342     print "\n";
2343    
2344     printf "%-9s %s\n", "Type", "Alias";
2345     for my $tname (sort keys %rbcd_types) {
2346     printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2347     }
2348    
2349     print "\n";
2350    
2351     printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2352     for my $name (sort keys %rbcd_objects) {
2353     my $guid = $rbcd_objects{$name};
2354     my $type = $bcd_object_types{$name};
2355     my $tname = $bcd_types{$type};
2356    
2357     $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2358    
2359     printf "%-39s %-23s %s\n", $guid, $name, $type;
2360     }
2361    
2362     print "\n";
2363     }
2364     },
2365    
2366     elements => sub {
2367     my $json = $_[0] eq "--json";
2368    
2369     my %format_name = (
2370     BCDE_FORMAT_DEVICE , "device",
2371     BCDE_FORMAT_STRING , "string",
2372     BCDE_FORMAT_GUID , "guid",
2373     BCDE_FORMAT_GUID_LIST , "guid list",
2374     BCDE_FORMAT_INTEGER , "integer",
2375     BCDE_FORMAT_BOOLEAN , "boolean",
2376     BCDE_FORMAT_INTEGER_LIST, "integer list",
2377     );
2378     my %rbcde = reverse %bcde;
2379     $_ = sprintf "%08x", $_ for values %rbcde;
2380    
2381     my %element;
2382    
2383     unless ($json) {
2384     print "\n";
2385     printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2386     }
2387     for my $name (sort keys %rbcde) {
2388     my $id = $rbcde{$name};
2389     my $format = $format_name{(hex $id) & BCDE_FORMAT};
2390    
2391     if ($json) {
2392     $element{$id} = [$format, $name];
2393     } else {
2394     printf "%-9s %-12s %s\n", $id, $format, $name;
2395     }
2396     }
2397     print "\n" unless $json;
2398    
2399     prjson {
2400     version => $JSON_VERSION,
2401     element => \%element,
2402     } if $json;
2403    
2404     },
2405    
2406     export => sub {
2407     prjson bcd_decode regf_load shift;
2408     },
2409    
2410     import => sub {
2411     regf_save shift, bcd_encode rdjson;
2412     },
2413    
2414 root 1.6 edit => sub {
2415     my $path = shift;
2416     my $bcd = bcd_decode regf_load $path;
2417     bcd_edit $path, $bcd, @_;
2418     regf_save $path, bcd_encode $bcd;
2419     },
2420    
2421     parse => sub {
2422     my $path = shift;
2423     my $bcd = bcd_decode regf_load $path;
2424     bcd_edit $path, $bcd, @_;
2425     },
2426    
2427 root 1.1 "export-regf" => sub {
2428     prjson regf_load shift;
2429    
2430     },
2431    
2432     "import-regf" => sub {
2433     regf_save shift, rdjson;
2434     },
2435    
2436     lsblk => sub {
2437     printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2438    
2439     my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2440    
2441     for my $dev (@{ $lsblk->{blockdevices} }) {
2442     my $pr = sub {
2443     printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2444     $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2445     };
2446    
2447     if ($dev->{type} eq "part") {
2448     if ($dev->{pttype} eq "gpt") {
2449     $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2450     } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2451     if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2452     my ($diskid, $partno) = ($1, hex $2);
2453     $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2454     if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2455     my $start = 512 * readline $fh;
2456     $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2457     }
2458     }
2459     }
2460     }
2461     }
2462     },
2463     );
2464    
2465     my $cmd = shift;
2466    
2467     unless (exists $CMD{$cmd}) {
2468     warn "Usage: $0 subcommand args...\nTry $0 help\n";
2469     exit 126;
2470     }
2471    
2472     $CMD{$cmd}->(@ARGV);
2473