ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.24
Committed: Wed Aug 14 23:38:40 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.23: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.7 #!/usr/bin/perl
2 root 1.1
3     #
4     # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5     #
6     # SPDX-License-Identifier: GPL-3.0-or-later
7     #
8     # This program is free software: you can redistribute it and/or modify
9     # it under the terms of the GNU General Public License as published by
10     # the Free Software Foundation, either version 3 of the License, or
11     # (at your option) any later version.
12     #
13     # This program is distributed in the hope that it will be useful,
14     # but WITHOUT ANY WARRANTY; without even the implied warranty of
15     # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     # GNU General Public License for more details.
17     #
18     # You should have received a copy of the GNU General Public License
19     # along with this program. If not, see <https://www.gnu.org/licenses/>.
20     #
21    
22 root 1.8 use 5.014; # numerous features needed
23 root 1.1
24     our $VERSION = '1.0';
25     our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26    
27     =head1 NAME
28    
29     pbcdedit - portable boot configuration data (BCD) store editor
30    
31     =head1 SYNOPSIS
32    
33     pbcdedit help # output manual page
34     pbcdedit export path/to/BCD # output BCD hive as JSON
35     pbcdedit import path/to/bcd # convert standard input to BCD hive
36     pbcdedit edit path/to/BCD edit-instructions...
37    
38     pbcdedit objects # list all supported object aliases and types
39     pbcdedit elements # list all supported bcd element aliases
40    
41     =head1 DESCRIPTION
42    
43     This program allows you to create, read and modify Boot Configuration Data
44     (BCD) stores used by Windows Vista and newer versions of Windows.
45    
46 root 1.9 At this point, it is in relatively early stages of development and has
47     received little to no real-world testing.
48    
49 root 1.1 Compared to other BCD editing programs it offers the following unique
50     features:
51    
52     =over
53    
54     =item Can create BCD hives from scratch
55    
56     Practically all other BCD editing programs force you to copy existing BCD
57     stores, which might or might not be copyrighted by Microsoft.
58    
59     =item Does not rely on Windows
60    
61     As the "portable" in the name implies, this program does not rely on
62     C<bcdedit> or other windows programs or libraries, it works on any system
63     that supports at least perl version 5.14.
64    
65     =item Decodes and encodes BCD device elements
66    
67     PBCDEDIT can concisely decode and encode BCD device element contents. This
68     is pretty unique, and offers a lot of potential that can't be realised
69     with C<bcdedit> or any programs relying on it.
70    
71     =item Minimal files
72    
73     BCD files written by PBCDEDIT are always "minimal", that is, they don't
74     contain unused data areas and therefore don't contain old and potentially
75     sensitive data.
76    
77     =back
78    
79     The target audience for this program is professionals and tinkerers who
80 root 1.11 are ready to invest time into learning how it works. It is not an easy
81 root 1.1 program to use and requires patience and a good understanding of BCD data
82     stores.
83    
84    
85     =head1 SUBCOMMANDS
86    
87 root 1.11 PBCDEDIT expects a subcommand as first argument that tells it what to
88 root 1.1 do. The following subcommands exist:
89    
90     =over
91    
92 root 1.20 =item C<help>
93 root 1.1
94 root 1.11 Displays the whole manual page (this document).
95 root 1.1
96 root 1.20 =item C<export> F<path>
97 root 1.1
98     Reads a BCD data store and writes a JSON representation of it to standard
99     output.
100    
101     The format of the data is explained later in this document.
102    
103 root 1.11 Example: read a BCD store, modify it with an external program, write it
104     again.
105 root 1.1
106     pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
107    
108 root 1.20 =item C<import> F<path>
109 root 1.1
110     The reverse of C<export>: Reads a JSON representation of a BCD data store
111     from standard input, and creates or replaces the given BCD data store.
112    
113 root 1.20 =item C<edit> F<path> I<instructions...>
114 root 1.1
115 root 1.6 Load a BCD data store, apply some instructions to it, and save it again.
116    
117     See the section L<EDITING BCD DATA STORES>, below, for more info.
118    
119 root 1.20 =item C<parse> F<path> I<instructions...>
120 root 1.6
121     Same as C<edit>, above, except it doesn't save the data store again. Can
122     be useful to extract some data from it.
123 root 1.1
124 root 1.20 =item C<lsblk>
125 root 1.1
126     On a GNU/Linux system, you can get a list of partition device descriptors
127     using this command - the external C<lsblk> command is required, as well as
128     a mounted C</sys> file system.
129    
130     The output will be a list of all partitions in the system and C<partition>
131     descriptors for GPT and both C<legacypartition> and C<partition>
132 root 1.11 descriptors for MBR partitions.
133 root 1.1
134 root 1.20 =item C<objects> [C<--json>]
135 root 1.1
136 root 1.11 Outputs two tables: a table listing all type aliases with their hex BCD
137 root 1.1 element ID, and all object name aliases with their GUID and default type
138     (if any).
139    
140     With C<--json> it prints similar information as a JSON object, for easier parsing.
141    
142 root 1.20 =item C<elements> [C<--json>]
143 root 1.1
144     Outputs a table of known element aliases with their hex ID and the format
145     type.
146    
147     With C<--json> it prints similar information as a JSON object, for easier parsing.
148    
149 root 1.20 =item C<export-regf> F<path>
150 root 1.1
151     This has nothing to do with BCD data stores - it takes a registry hive
152     file as argument and outputs a JSON representation of it to standard
153     output.
154    
155     Hive versions 1.2 till 1.6 are supported.
156    
157 root 1.20 =item C<import-regf> F<path>
158 root 1.1
159     The reverse of C<export-regf>: reads a JSON representation of a registry
160 root 1.20 hive from standard input and creates or replaces the registry hive file
161     given as argument.
162 root 1.1
163     The written hive will always be in a slightly modified version 1.3
164     format. It's not the format windows would generate, but it should be
165     understood by any conformant hive reader.
166    
167     Note that the representation chosen by PBCDEDIT currently throws away
168 root 1.11 classname data (often used for feeble attempts at hiding stuff by
169 root 1.1 Microsoft) and security descriptors, so if you write anything other than
170     a BCD hive you will most likely destroy it.
171    
172     =back
173    
174    
175     =head1 BCD DATA STORE REPRESENTATION FORMAT
176    
177     A BCD data store is represented as a JSON object with one special key,
178     C<meta>, and one key per BCD object. That is, each BCD object becomes
179     one key-value pair in the object, and an additional key called C<meta>
180     contains meta information.
181    
182     Here is an abridged example of a real BCD store:
183    
184     {
185     "meta" : {
186     "version" : 1
187     },
188     "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
189     "type" : "application::osloader",
190     "description" : "Windows 10",
191     "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
192     "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193     "path" : "\\Windows\\system32\\winload.exe",
194     "systemroot" : "\\Windows"
195     },
196     "{bootloadersettings}" : {
197     "inherit" : "{globalsettings} {hypervisorsettings}"
198     },
199     "{bootmgr}" : {
200     "description" : "Windows Boot Manager",
201     "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
202     "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
203     "inherit" : "{globalsettings}",
204     "displaybootmenu" : 0,
205     "timeout" : 30
206     },
207     "{globalsettings}" : {
208     "inherit" : "{dbgsettings} {emssettings} {badmemory}"
209     },
210     "{hypervisorsettings}" : {
211     "hypervisorbaudrate" : 115200,
212     "hypervisordebugport" : 1,
213     "hypervisordebugtype" : 0
214     },
215     # ...
216     }
217    
218 root 1.3 =head2 Minimal BCD to boot windows
219    
220     Experimentally I found the following BCD is the minimum required to
221     successfully boot any post-XP version of Windows (suitable C<device> and
222     C<osdevice> values, of course):
223    
224     {
225     "{bootmgr}" : {
226     "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
227     },
228    
229     "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
230     "type" : "application::osloader",
231     "description" : "Windows Boot",
232     "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
233     "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234     "path" : "\\Windows\\system32\\winload.exe",
235     "systemroot" : "\\Windows"
236     },
237     }
238    
239     Note that minimal doesn't mean recommended - Windows itself will add stuff
240     to this during or after boot, and you might or might not run into issues
241     when installing updates as it might not be able to find the F<bootmgr>.
242    
243 root 1.1 =head2 The C<meta> key
244    
245     The C<meta> key is not stored in the BCD data store but is used only
246     by PBCDEDIT. It is always generated when exporting, and importing will
247     be refused when it exists and the version stored inside doesn't store
248 root 1.11 the JSON schema version of PBCDEDIT. This ensures that different and
249     incompatible versions of PBCDEDIT will not read and misinterpret each
250 root 1.1 others data.
251    
252     =head2 The object keys
253    
254     Every other key is a BCD object. There is usually a BCD object for the
255     boot manager, one for every boot option and a few others that store common
256     settings inherited by these.
257    
258     Each BCD object is represented by a GUID wrapped in curly braces. These
259 root 1.11 are usually random GUIDs used only to distinguish BCD objects from each
260 root 1.1 other. When adding a new boot option, you can simply generate a new GUID.
261    
262     Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
263     into human-readable strings such as C<{globalsettings}>, which is the same
264     as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
265    
266     Each BCD, object has an associated type. For example,
267     C<application::osloader> for objects loading Windows via F<winload.exe>,
268     C<application::bootsector> for real mode applications and so on.
269    
270     The type of a object is stored in the pseudo BCD element C<type> (see next
271     section).
272    
273     Some well-known objects have a default type. If an object type matches
274     its default type, then the C<type> element will be omitted. Similarly, if
275     the C<type> element is missing and the BCD object has a default type, the
276     default type will be used when writing a BCD store.
277    
278     Running F<pbcdedit objects> will give you a list of object types,
279     well-known object aliases and their default types.
280    
281     If different string keys in a JSON BCD store map to the same BCD object
282     then a random one will "win" and the others will be discarded. To avoid
283     this, you should always use the "canonical" name of a BCD object, which is
284     the human-readable form (if it exists).
285    
286     =head2 The object values - BCD elements
287    
288     The value of each BCD object entry consists of key-value pairs called BCD
289     elements.
290    
291     BCD elements are identified by a 32 bit number, but to make things
292     simpler PBCDEDIT will replace these with well-known strings such as
293     C<description>, C<device> or C<path>.
294    
295     When PBCDEDIT does not know the BCD element, it will use
296     C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
297     BCD element. For example, C<device> would be C<custom::11000001>. You can
298     get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
299     elements>.
300    
301     What was said about duplicate keys mapping to the same object is true for
302     elements as well, so, again, you should always use the canonical name,
303 root 1.11 which is the human readable alias, if known.
304 root 1.1
305     =head3 BCD element types
306    
307     Each BCD element has a type such as I<string> or I<boolean>. This type
308     determines how the value is interpreted, and most of them are pretty easy
309     to explain:
310    
311     =over
312    
313     =item string
314    
315     This is simply a unicode string. For example, the C<description> and
316     C<systemroot> elements both are of this type, one storing a human-readable
317     name for this boot option, the other a file path to the windows root
318     directory:
319    
320     "description" : "Windows 10",
321     "systemroot" : "\\Windows",
322    
323     =item boolean
324    
325 root 1.11 Almost as simple are booleans, which represent I<true>/I<false>,
326 root 1.1 I<on>/I<off> and similar values. In the JSON form, true is represented
327     by the number C<1>, and false is represented by the number C<0>. Other
328     values will be accepted, but PBCDEDIT doesn't guarantee how these are
329     interpreted.
330    
331     For example, C<displaybootmenu> is a boolean that decides whether to
332     enable the C<F8> boot menu. In the example BCD store above, this is
333     disabled:
334    
335     "displaybootmenu" : 0,
336    
337     =item integer
338    
339     Again, very simple, this is a 64 bit integer. IT can be either specified
340     as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
341 root 1.11 binary number (prefix C<0b>).
342 root 1.1
343     For example, the boot C<timeout> is an integer, specifying the automatic
344     boot delay in seconds:
345    
346     "timeout" : 30,
347    
348     =item integer list
349    
350     This is a list of 64 bit integers separated by whitespace. It is not used
351 root 1.11 much, so here is a somewhat artificial an untested example of using
352 root 1.1 C<customactions> to specify a certain custom, eh, action to be executed
353     when pressing C<F10> at boot:
354    
355     "customactions" : "0x1000044000001 0x54000001",
356    
357     =item guid
358    
359 root 1.11 This represents a single GUID value wrapped in curly braces. It is used a
360 root 1.1 lot to refer from one BCD object to other one.
361    
362     For example, The C<{bootmgr}> object might refer to a resume boot option
363     using C<resumeobject>:
364    
365     "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
366    
367     Human readable aliases are used and allowed.
368    
369     =item guid list
370    
371 root 1.11 Similar to the GUID type, this represents a list of such GUIDs, separated
372 root 1.1 by whitespace from each other.
373    
374     For example, many BCD objects can I<inherit> elements from other BCD
375 root 1.11 objects by specifying the GUIDs of those other objects in a GUID list
376 root 1.1 called surprisingly called C<inherit>:
377    
378     "inherit" : "{dbgsettings} {emssettings} {badmemory}",
379    
380     This example also shows how human readable aliases can be used.
381    
382     =item device
383    
384     This type is why I write I<most> are easy to explain earlier: This type
385     is the pinnacle of Microsoft-typical hacks layered on top of other
386     hacks. Understanding this type took more time than writing all the rest of
387     PBCDEDIT, and because it is so complex, this type has its own subsection
388     below.
389     =back
390    
391     =head4 The BCD "device" element type
392    
393     Device elements specify, well, devices. They are used for such diverse
394 root 1.11 purposes such as finding a TFTP network boot image, serial ports or VMBUS
395 root 1.1 devices, but most commonly they are used to specify the disk (harddisk,
396 root 1.11 cdrom, ramdisk, vhd...) to boot from.
397 root 1.1
398     The device element is kind of a mini-language in its own which is much
399     more versatile then the limited windows interface to it - BCDEDIT -
400     reveals.
401    
402     While some information can be found on the BCD store and the windows
403     registry, there is pretty much no public information about the device
404     element, so almost everything known about it had to be researched first
405     in the process of writing this script, and consequently, support for BCD
406     device elements is partial only.
407    
408     On the other hand, the expressive power of PBCDEDIT in specifying devices
409 root 1.11 is much bigger than BCDEDIT and therefore more can be done with it. The
410 root 1.1 downside is that BCD device elements are much more complicated than what
411     you might think from reading the BCDEDIT documentation.
412    
413     In other words, simple things are complicated, and complicated things are
414     possible.
415    
416     Anyway, the general syntax of device elements is an optional GUID,
417 root 1.11 followed by a device type, optionally followed by hexadecimal flags in
418 root 1.1 angle brackets, optionally followed by C<=> and a comma-separated list of
419     arguments, some of which can be (and often are) in turn devices again.
420    
421     [{GUID}]type[<flags>][=arg,arg...]
422    
423     Here are some examples:
424    
425     boot
426     {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
427     locate=<null>,element,systemroot
428     partition=<null>,harddisk,mbr,47cbc08a,1048576
429     partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
430     block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
431     block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
432     binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
433    
434     I hope you are suitably impressed. I was, too, when I realized decoding
435     these binary blobs is not as easy as I had assumed.
436    
437     The optional prefixed GUID seems to refer to a device BCD object, which
438     can be used to specify more device-specific BCD elements (for example
439     C<ramdisksdidevice> and C<ramdisksdpath>).
440    
441     The flags after the type are omitted when they are C<0>. The only known
442     flag is C<1>, which seems to indicate that the parent device is invalid. I
443     don't claim to fully understand it, but it seems to indicate that the
444     boot manager has to search the device itself. Why the device is specified
445     in the first place escapes me, but a lot of this device stuff seems to be
446     badly hacked together...
447    
448     The types understood and used by PBCDEDIT are as follows (keep in mind
449     that not of all the following is necessarily supported in PBCDEDIT):
450    
451     =over
452    
453 root 1.14 =item C<binary=>I<hex...>
454 root 1.1
455     This type isn't actually a real BCD element type, but a fallback for those
456     cases where PBCDEDIT can't perfectly decode a device element (except for
457     the leading GUID, which it can always decode). In such cases, it will
458     convert the device into this type with a hexdump of the element data.
459    
460 root 1.14 =item C<null>
461 root 1.1
462     This is another special type - sometimes, a device all zero-filled, which
463     is not valid. This can mark the absence of a device or something PBCDEDIT
464     does not understand, so it decodes it into this special "all zero" type
465     called C<null>.
466    
467     It's most commonly found in devices that can use an optional parent
468     device, when no parent device is used.
469    
470 root 1.14 =item C<boot>
471 root 1.1
472     Another type without parameters, this refers to the device that was booted
473     from (nowadays typically the EFI system partition).
474    
475 root 1.14 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
476 root 1.1
477     This specifies a VMBUS device with the given interface type and interface
478     instance, both of which are "naked" (no curly braces) GUIDs.
479    
480     Made-up example (couldn't find a single example on the web):
481    
482     vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
483    
484 root 1.14 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
485 root 1.1
486 root 1.18 This designates a specific partition on a block device. I<parent> is an
487     optional parent device on which to search on, and is often C<null>. Note
488     that the angle brackets around I<parent> are part of the syntax.
489 root 1.1
490 root 1.17 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
491 root 1.1 C<file> or C<vhd>, where the first three should be self-explaining,
492 root 1.21 C<file> is usually used to locate a file to be used as a disk image,
493     and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
494     F<vhdx> files.
495 root 1.1
496 root 1.17 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
497 root 1.1 used for devices without partitions, such as cdroms, where the "partition"
498     is usually the whole device.
499    
500 root 1.17 The I<diskid> identifies the disk or device using a unique signature, and
501     the same is true for the I<partitionid>. How these are interpreted depends
502     on the I<partitiontype>:
503 root 1.1
504     =over
505    
506 root 1.13 =item C<mbr>
507 root 1.1
508     The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
509     MBR, interpreted as a 32 bit unsigned little endian integer and written as
510     hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
511    
512 root 1.11 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
513 root 1.1 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
514 root 1.18 display the I<diskid>.
515 root 1.1
516 root 1.18 The I<partitionid> is the byte offset(!) of the partition counting from
517 root 1.1 the beginning of the MBR.
518    
519 root 1.18 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
520 root 1.1 starting at sector C<2048> (= 1048576 / 512).
521    
522     partition=<null>,harddisk,mbr,47cbc08a,1048576
523    
524 root 1.13 =item C<gpt>
525 root 1.1
526 root 1.18 The I<diskid> is the disk GUID/disk identifier GUID from the partition
527     table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
528     partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
529 root 1.1
530     Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
531     disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
532    
533     partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
534    
535 root 1.14 =item C<raw>
536 root 1.1
537 root 1.18 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
538 root 1.11 disk number and signifies the whole disk. BCDEDIT cannot display the
539     resulting device, and I am doubtful whether it has a useful effect.
540 root 1.1
541     =back
542    
543 root 1.14 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
544 root 1.1
545     This is exactly the same as the C<partition> type, except for a tiny
546     detail: instead of using the partition start offset, this type uses the
547     partition number for MBR disks. Behaviour other partition types should be
548     the same.
549    
550     The partition number starts at C<1> and skips unused partition, so if
551     there are two primary partitions and another partition inside the extended
552     partition, the primary partitions are number C<1> and C<2> and the
553 root 1.11 partition inside the extended partition is number C<3>, regardless of any
554 root 1.1 gaps.
555    
556 root 1.14 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
557 root 1.1
558     This device description will make the bootloader search for a partition
559     with a given path.
560    
561 root 1.18 The I<parent> device is the device to search on (angle brackets are
562     still part of the syntax!) If it is C<null>, then C<locate> will
563 root 1.1 search all disks it can find.
564    
565 root 1.18 I<locatetype> is either C<element> or C<path>, and merely distinguishes
566 root 1.1 between two different ways to specify the path to search for: C<element>
567 root 1.18 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
568     uses a relative path as I<locatearg>.
569 root 1.1
570 root 1.18 Example: find any partition which has the F<magicfile.xxx> path in the
571 root 1.1 root.
572    
573     locate=<null>,path,\magicfile.xxx
574    
575     Example: find any partition which has the path specified in the
576 root 1.18 C<systemroot> element (typically F<\Windows>).
577 root 1.1
578     locate=<null>,element,systemroot
579    
580 root 1.14 =item C<block=>I<devicetype>,I<args...>
581 root 1.1
582     Last not least, the most complex type, C<block>, which... specifies block
583     devices (which could be inside a F<vhdx> file for example).
584    
585 root 1.18 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
586 root 1.1 C<file> or C<vhd> - the same as for C<partiion=>.
587    
588 root 1.18 The remaining arguments change depending on the I<devicetype>:
589 root 1.1
590     =over
591    
592 root 1.14 =item C<block=file>,<I<parent>>,I<path>
593 root 1.1
594 root 1.18 Interprets the I<parent> device (typically a partition) as a
595 root 1.1 filesystem and specifies a file path inside.
596    
597 root 1.14 =item C<block=vhd>,<I<parent>>
598 root 1.1
599 root 1.18 Pretty much just changes the interpretation of I<parent>, which is
600 root 1.1 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
601    
602 root 1.14 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
603 root 1.1
604 root 1.18 Interprets the I<parent> device as RAM disk, using the (decimal)
605 root 1.1 base address, byte size and byte offset inside a file specified by
606 root 1.18 I<path>. The numbers are usually all C<0> because they can be extracted
607 root 1.1 from the RAM disk image or other parameters.
608    
609     This is most commonly used to boot C<wim> images.
610    
611 root 1.14 =item C<block=floppy>,I<drivenum>
612 root 1.1
613     Refers to a removable drive identified by a number. BCDEDIT cannot display
614 root 1.14 the resulting device, and it is not clear what effect it will have.
615 root 1.1
616 root 1.14 =item C<block=cdrom>,I<drivenum>
617 root 1.1
618     Pretty much the same as C<floppy> but for CD-ROMs.
619    
620     =item anything else
621    
622     Probably not yet implemented. Tell me of your needs...
623    
624     =back
625    
626     =back5 Examples
627    
628     This concludes the syntax overview for device elements, but probably
629     leaves many questions open. I can't help with most of them, as I also ave
630 root 1.14 many questions, but I can walk you through some actual examples using more
631 root 1.1 complex aspects.
632    
633 root 1.15 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
634 root 1.1
635 root 1.4 Just like with C declarations, you best treat device descriptors as
636     instructions to find your device and work your way from the inside out:
637    
638     locate=<null>,path,\disk.vhdx
639    
640     First, the innermost device descriptor searches all partitions on the
641     system for a file called F<\disk.vhdx>:
642    
643 root 1.16 block=file,<see above>,\disk.vhdx
644 root 1.4
645     Next, this takes the device locate has found and finds a file called
646     F<\disk.vhdx> on it. This is the same file locate was using, but that is
647     only because we find the device using the same path as finding the disk
648     image, so this is purely incidental, although quite common.
649    
650 root 1.15 Next, this file will be opened as a virtual disk:
651 root 1.4
652 root 1.16 block=vhd,<see above>
653 root 1.4
654     And finally, inside this disk, another C<locate> will look for a partition
655     with a path as specified in the C<path> element, which most likely will be
656     F<\Windows\system32\winload.exe>:
657    
658 root 1.16 locate=<see above>,element,path
659 root 1.4
660     As a result, this will boot the first Windows it finds on the first
661     F<disk.vhdx> disk image it can find anywhere.
662 root 1.1
663 root 1.15 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
664 root 1.1
665 root 1.15 Pretty much the same as the previous case, but with a bit of
666     variance. First, look for a specific partition on an MBR-partitioned disk:
667 root 1.4
668     partition=<null>,harddisk,mbr,47cbc08a,242643632128
669    
670     Then open the file F<\win10.vhdx> on that partition:
671    
672 root 1.16 block=file,<see above>,\win10.vhdx
673 root 1.4
674     Then, again, the file is opened as a virtual disk image:
675    
676 root 1.16 block=vhd,<see above>
677 root 1.4
678     And again the windows loader (or whatever is in C<path>) will be searched:
679    
680 root 1.16 locate=<see above>,element,path
681 root 1.1
682 root 1.15 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
683 root 1.1
684 root 1.4 This is quite different. First, it starts with a GUID. This GUID belongs
685     to a BCD object of type C<device>, which has additional parameters:
686    
687     "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
688     "type" : "device",
689     "description" : "sdi file for ramdisk",
690     "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
691     "ramdisksdipath" : "\boot.sdi"
692     },
693    
694     I will not go into many details, but this specifies a (presumably empty)
695 root 1.15 template ramdisk image (F<\boot.sdi>) that is used to initialize the
696     ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
697 root 1.4 see, this F<.sdi> file resides on a different C<partition>.
698    
699 root 1.15 Continuing, as always, from the inside out, first this device descriptor
700 root 1.4 finds a specific partition:
701    
702     partition=<null>,harddisk,mbr,47cbc08a,242643632128
703    
704     And then specifies a C<ramdisk> image on this partition:
705    
706 root 1.16 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
707 root 1.4
708 root 1.5 I don't know what the purpose of the C<< <1> >> flag value is, but it
709 root 1.4 seems to be always there on this kind of entry.
710 root 1.1
711 root 1.5 If you have some good examples to add here, feel free to mail me.
712    
713 root 1.1
714 root 1.6 =head1 EDITING BCD DATA STORES
715    
716     The C<edit> and C<parse> subcommands allow you to read a BCD data store
717 root 1.15 and modify it or extract data from it. This is done by executing a series
718 root 1.6 of "editing instructions" which are explained here.
719    
720     =over
721    
722 root 1.22 =item C<get> I<object> I<element>
723 root 1.6
724     Reads the BCD element I<element> from the BCD object I<object> and writes
725     it to standard output, followed by a newline. The I<object> can be a GUID
726     or a human-readable alias, or the special string C<{default}>, which will
727     refer to the default BCD object.
728    
729     Example: find description of the default BCD object.
730    
731     pbcdedit parse BCD get "{default}" description
732    
733 root 1.22 =item C<set> I<object> I<element> I<value>
734 root 1.6
735     Similar to C<get>, but sets the element to the given I<value> instead.
736    
737 root 1.15 Example: change the bootmgr default too
738 root 1.6 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
739    
740     pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
741    
742 root 1.22 =item C<eval> I<perlcode>
743 root 1.6
744     This takes the next argument, interprets it as Perl code and
745     evaluates it. This allows you to do more complicated modifications or
746     extractions.
747    
748     The following variables are predefined for your use:
749    
750     =over
751    
752     =item C<$PATH>
753    
754     The path to the BCD data store, as given to C<edit> or C<parse>.
755    
756     =item C<$BCD>
757    
758     The decoded BCD data store.
759    
760     =item C<$DEFAULT>
761    
762     The default BCD object name.
763    
764     =back
765    
766     The example given for C<get>, above, could be expressed like this with
767     C<eval>:
768    
769     pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
770    
771 root 1.15 The example given for C<set> could be expressed like this:
772 root 1.6
773     pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
774    
775 root 1.22 =item C<do> I<path>
776 root 1.6
777     Similar to C<eval>, above, but instead of using the argument as perl code,
778     it loads the perl code from the given file and executes it. This makes it
779     easier to write more complicated or larger programs.
780    
781     =back
782    
783 root 1.22
784 root 1.1 =head1 SEE ALSO
785    
786     For ideas on what you can do, and some introductory material, try
787     L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
788    
789 root 1.23 For good reference on which BCD objects and
790 root 1.24 elements exist, see Geoff Chappell's pages at
791 root 1.23 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
792 root 1.1
793     =head1 AUTHOR
794    
795 root 1.10 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
796 root 1.1
797     =head1 REPORTING BUGS
798    
799 root 1.11 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
800 root 1.1
801     =head1 BUGS AND SHORTCOMINGS
802    
803     This should be a module. Of a series of modules, even.
804    
805     Registry code should preserve classname and security descriptor data, and
806     whatever else is necessary to read and write any registry hive file.
807    
808     I am also not happy with device descriptors being strings rather than a
809     data structure, but strings are probably better for command line usage. In
810 root 1.15 any case, device descriptors could be converted by simply "splitting" at
811 root 1.1 "=" and "," into an array reference, recursively.
812    
813     =head1 HOMEPAGE
814    
815     Original versions of this program can be found at
816     L<http://software.schmorp.de/pkg/pbcdedit>.
817    
818     =head1 COPYRIGHT
819    
820     Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
821     see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
822     free to change and redistribute it. There is NO WARRANTY, to the extent
823     permitted by law.
824    
825     =cut
826    
827     BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
828    
829     use Data::Dump;
830     use Encode ();
831     use List::Util ();
832     use IO::Handle ();
833     use Time::HiRes ();
834    
835     eval { unpack "Q", pack "Q", 1 }
836     or die "perl with 64 bit integer supported required.\n";
837    
838     our $JSON = eval { require JSON::XS; JSON::XS:: }
839     // eval { require JSON::PP; JSON::PP:: }
840     // die "either JSON::XS or JSON::PP must be installed\n";
841    
842     our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
843    
844     # hack used for debugging
845     sub xxd($$) {
846     open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
847     syswrite $xxd, $_[1];
848     }
849    
850 root 1.6 sub file_load($) {
851     my ($path) = @_;
852    
853     open my $fh, "<:raw", $path
854     or die "$path: $!\n";
855     my $size = -s $fh;
856     $size = read $fh, my $buf, $size
857     or die "$path: short read\n";
858    
859     $buf
860     }
861    
862 root 1.1 # sources and resources used for this:
863     # registry:
864     # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
865     # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
866     # bcd:
867     # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
868     # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
869     # bcd devices:
870     # reactos' boot/environ/include/bl.h
871     # windows .mof files
872    
873     #############################################################################
874     # registry stuff
875    
876     # we use a hardcoded securitya descriptor - full access for everyone
877     my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
878     my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
879     my $sacl = "";
880     my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
881     my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
882     # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
883     1, 0x8004,
884     20 + (length $sacl) + (length $dacl),
885     20 + (length $sacl) + (length $dacl) + (length $sid),
886     0, 20,
887     $sacl, $dacl, $sid, $sid;
888     my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
889    
890     sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
891    
892     sub KEY_HIVE_ENTRY() { 0x0004 }
893     sub KEY_NO_DELETE () { 0x0008 }
894     sub KEY_COMP_NAME () { 0x0020 }
895    
896     sub VALUE_COMP_NAME() { 0x0001 }
897    
898     my @regf_typename = qw(
899     none sz expand_sz binary dword dword_be link multi_sz
900     resource_list full_resource_descriptor resource_requirements_list
901     qword qword_be
902     );
903    
904     my %regf_dec_type = (
905     sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
906     expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
907     link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
908     multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
909     dword => sub { unpack "L<", shift },
910     dword_be => sub { unpack "L>", shift },
911     qword => sub { unpack "Q<", shift },
912     qword_be => sub { unpack "Q>", shift },
913     );
914    
915     my %regf_enc_type = (
916     sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
917     expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
918     link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
919     multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
920     dword => sub { pack "L<", shift },
921     dword_be => sub { pack "L>", shift },
922     qword => sub { pack "Q<", shift },
923     qword_be => sub { pack "Q>", shift },
924     );
925    
926     # decode a registry hive
927     sub regf_decode($) {
928     my ($hive) = @_;
929    
930     "regf" eq substr $hive, 0, 4
931     or die "not a registry hive\n";
932    
933     my ($major, $minor) = unpack "\@20 L< L<", $hive;
934    
935     $major == 1
936     or die "registry major version is not 1, but $major\n";
937    
938     $minor >= 2 && $minor <= 6
939     or die "registry minor version is $minor, only 2 .. 6 are supported\n";
940    
941     my $bins = substr $hive, 4096;
942    
943     my $decode_key = sub {
944     my ($ofs) = @_;
945    
946     my @res;
947    
948     my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
949    
950     $sze < 0
951     or die "key node points to unallocated cell\n";
952    
953     $sig eq "nk"
954     or die "expected key node at $ofs, got '$sig'\n";
955    
956     my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
957    
958     my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
959    
960     # classnames, security descriptors
961     #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
962     #if ($cofs != NO_OFS && $clen) {
963     # #warn "cofs $cofs+$clen\n";
964     # xxd substr $bins, $cofs, 16;
965     #}
966    
967     $kname = Encode::decode "UTF-16LE", $kname
968     unless $flags & KEY_COMP_NAME;
969    
970     if ($vnum && $vofs != NO_OFS) {
971     for ($vofs += 4; $vnum--; $vofs += 4) {
972     my $kofs = unpack "\@$vofs L<", $bins;
973    
974     my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
975    
976     $sig eq "vk"
977     or die "key values list contains invalid node (expected vk got '$sig')\n";
978    
979     my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
980    
981     my $name = substr $bins, $kofs + 24, $nsze;
982    
983     $name = Encode::decode "UTF-16LE", $name
984     unless $flags & VALUE_COMP_NAME;
985    
986     my $data;
987     if ($dsze & 0x80000000) {
988     $data = substr $bins, $kofs + 12, $dsze & 0x7;
989     } elsif ($dsze > 16344 && $minor > 3) { # big data
990     my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
991    
992     for ($bofs += 4; $bnum--; $bofs += 4) {
993     my $dofs = unpack "\@$bofs L<", $bins;
994     my $dsze = unpack "\@$dofs l<", $bins;
995     $data .= substr $bins, $dofs + 4, -$dsze - 4;
996     }
997     $data = substr $data, 0, $dsze; # cells might be longer than data
998     } else {
999     $data = substr $bins, $dofs + 4, $dsze;
1000     }
1001    
1002     $type = $regf_typename[$type] if $type < @regf_typename;
1003    
1004     $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1005     ->($data);
1006    
1007     $res[0]{$name} = [$type, $data];
1008     }
1009     }
1010    
1011     if ($sofs != NO_OFS) {
1012     my $decode_key = __SUB__;
1013    
1014     my $decode_subkeylist = sub {
1015     my ($sofs) = @_;
1016    
1017     my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1018    
1019     if ($sig eq "ri") { # index root
1020     for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1021     __SUB__->(unpack "\@$lofs L<", $bins);
1022     }
1023     } else {
1024     my $inc;
1025    
1026     if ($sig eq "li") { # subkey list
1027     $inc = 4;
1028     } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1029     $inc = 8;
1030     } else {
1031     die "expected subkey list at $sofs, found '$sig'\n";
1032     }
1033    
1034     for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1035     my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1036     $res[1]{$name} = $data;
1037     }
1038     }
1039     };
1040    
1041     $decode_subkeylist->($sofs);
1042     }
1043    
1044     ($kname, \@res);
1045     };
1046    
1047     my ($rootcell) = unpack "\@36 L<", $hive;
1048    
1049     my ($rname, $root) = $decode_key->($rootcell);
1050    
1051     [$rname, $root]
1052     }
1053    
1054     # return a binary windows fILETIME struct
1055     sub filetime_now {
1056     my ($s, $ms) = Time::HiRes::gettimeofday;
1057    
1058     pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1059     }
1060    
1061     # encode a registry hive
1062     sub regf_encode($) {
1063     my ($hive) = @_;
1064    
1065     my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1066    
1067     # the filetime is apparently used to verify log file validity,
1068     # so by generating a new timestamp the log files *should* automatically
1069     # become invalidated and windows would "self-heal" them.
1070     # (update: has been verified by reverse engineering)
1071     # possibly the fact that the two sequence numbes match might also
1072     # make windows think that the hive is not dirty and ignore logs.
1073     # (update: has been verified by reverse engineering)
1074    
1075     my $now = filetime_now;
1076    
1077     # we only create a single hbin
1078     my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1079    
1080     # append cell to $bind, return offset
1081     my $cell = sub {
1082     my ($cell) = @_;
1083    
1084     my $res = length $bins;
1085    
1086     $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1087    
1088     $bins .= pack "l<", -(4 + length $cell);
1089     $bins .= $cell;
1090    
1091     $res
1092     };
1093    
1094     my $sdofs = $cell->($sk); # add a dummy security descriptor
1095     my $sdref = 0; # refcount
1096     substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1097     substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1098    
1099     my $encode_key = sub {
1100     my ($kname, $kdata, $flags) = @_;
1101     my ($values, $subkeys) = @$kdata;
1102    
1103     if ($kname =~ /[^\x00-\xff]/) {
1104     $kname = Encode::encode "UTF-16LE", $kname;
1105     } else {
1106     $flags |= KEY_COMP_NAME;
1107     }
1108    
1109     # encode subkeys
1110    
1111     my @snames =
1112     map $_->[1],
1113     sort { $a->[0] cmp $b->[0] }
1114     map [(uc $_), $_],
1115     keys %$subkeys;
1116    
1117     # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1118     my $maxsname = 4 * List::Util::max map length, @snames;
1119    
1120     my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1121    
1122     # encode values
1123     my $maxvname = 4 * List::Util::max map length, keys %$values;
1124     my @vofs;
1125     my $maxdsze = 0;
1126    
1127     while (my ($vname, $v) = each %$values) {
1128     my $flags = 0;
1129    
1130     if ($vname =~ /[^\x00-\xff]/) {
1131     $vname = Encode::encode "UTF-16LE", $kname;
1132     } else {
1133     $flags |= VALUE_COMP_NAME;
1134     }
1135    
1136     my ($type, $data) = @$v;
1137    
1138     $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1139    
1140     my $dsze;
1141     my $dofs;
1142    
1143     if (length $data <= 4) {
1144     $dsze = 0x80000000 | length $data;
1145     $dofs = unpack "L<", pack "a4", $data;
1146     } else {
1147     $dsze = length $data;
1148     $dofs = $cell->($data);
1149     }
1150    
1151     $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1152    
1153     push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1154     vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1155    
1156     $maxdsze = $dsze if $maxdsze < $dsze;
1157     }
1158    
1159     # encode key
1160    
1161     my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1162     my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1163    
1164     my $kdata = pack "
1165     a2 S< a8 x4 x4
1166     L< L< L< L< L< L<
1167     L< L< L< L< L< L<
1168     x4 S< S< a*
1169     ",
1170     nk => $flags, $now,
1171     (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1172     $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1173     length $kname, 0, $kname;
1174     ++$sdref;
1175    
1176     my $res = $cell->($kdata);
1177    
1178     substr $bins, $_ + 16, 4, pack "L<", $res
1179     for @sofs;
1180    
1181     $res
1182     };
1183    
1184     my ($rname, $root) = @$hive;
1185    
1186     my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1187    
1188     if (my $pad = -(length $bins) & 4095) {
1189     $pad -= 4;
1190     $bins .= pack "l< x$pad", $pad + 4;
1191     }
1192    
1193     substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1194     substr $bins, 8, 4, pack "L<", length $bins;
1195    
1196     my $base = pack "
1197     a4 L< L< a8 L< L< L< L<
1198     L< L< L<
1199     a64
1200     x396
1201     ",
1202     regf => 1974, 1974, $now, 1, 3, 0, 1,
1203     $rofs, length $bins, 1,
1204     (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1205    
1206     my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1207     $chksum = 0xfffffffe if $chksum == 0xffffffff;
1208     $chksum = 1 if $chksum == 0;
1209    
1210     $base .= pack "L<", $chksum;
1211    
1212     $base = pack "a* \@4095 x1", $base;
1213    
1214     $base . $bins
1215     }
1216    
1217     # load and parse registry from file
1218     sub regf_load($) {
1219     my ($path) = @_;
1220    
1221 root 1.6 regf_decode file_load $path
1222 root 1.1 }
1223    
1224     # encode and save registry to file
1225     sub regf_save {
1226     my ($path, $hive) = @_;
1227    
1228     $hive = regf_encode $hive;
1229    
1230     open my $regf, ">:raw", "$path~"
1231     or die "$path~: $!\n";
1232     print $regf $hive
1233     or die "$path~: short write\n";
1234     $regf->sync;
1235     close $regf;
1236    
1237     rename "$path~", $path;
1238     }
1239    
1240     #############################################################################
1241     # bcd stuff
1242    
1243     # human-readable alises for GUID object identifiers
1244     our %bcd_objects = (
1245     '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1246     '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1247     '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1248     '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1249     '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1250     '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1251     '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1252     '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1253     '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1254     '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1255     '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1256     '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1257     '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1258     '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1259     '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1260     '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1261     '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1262     '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1263     '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1264     );
1265    
1266     # default types
1267     our %bcd_object_types = (
1268     '{fwbootmgr}' => 0x10100001,
1269     '{bootmgr}' => 0x10100002,
1270     '{memdiag}' => 0x10200005,
1271     '{ntldr}' => 0x10300006,
1272     '{badmemory}' => 0x20100000,
1273     '{dbgsettings}' => 0x20100000,
1274     '{emssettings}' => 0x20100000,
1275     '{globalsettings}' => 0x20100000,
1276     '{bootloadersettings}' => 0x20200003,
1277     '{hypervisorsettings}' => 0x20200003,
1278     '{kerneldbgsettings}' => 0x20200003,
1279     '{resumeloadersettings}' => 0x20200004,
1280     '{ramdiskoptions}' => 0x30000000,
1281     );
1282    
1283     # object types
1284     our %bcd_types = (
1285     0x10100001 => 'application::fwbootmgr',
1286     0x10100002 => 'application::bootmgr',
1287     0x10200003 => 'application::osloader',
1288     0x10200004 => 'application::resume',
1289     0x10100005 => 'application::memdiag',
1290     0x10100006 => 'application::ntldr',
1291     0x10100007 => 'application::setupldr',
1292     0x10400008 => 'application::bootsector',
1293     0x10400009 => 'application::startup',
1294     0x1020000a => 'application::bootapp',
1295     0x20100000 => 'settings',
1296     0x20200001 => 'inherit::fwbootmgr',
1297     0x20200002 => 'inherit::bootmgr',
1298     0x20200003 => 'inherit::osloader',
1299     0x20200004 => 'inherit::resume',
1300     0x20200005 => 'inherit::memdiag',
1301     0x20200006 => 'inherit::ntldr',
1302     0x20200007 => 'inherit::setupldr',
1303     0x20200008 => 'inherit::bootsector',
1304     0x20200009 => 'inherit::startup',
1305     0x20300000 => 'inherit::device',
1306     0x30000000 => 'device',
1307     );
1308    
1309     our %rbcd_objects = reverse %bcd_objects;
1310    
1311     our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1312    
1313     sub dec_guid($) {
1314     my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1315     sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1316     }
1317    
1318     sub enc_guid($) {
1319     $_[0] =~ /^$RE_GUID\z/o
1320     or return;
1321    
1322     pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1323     }
1324    
1325     # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1326     sub dec_wguid($) {
1327     my $guid = "{" . (dec_guid shift) . "}";
1328    
1329     $bcd_objects{$guid} // $guid
1330     }
1331    
1332     sub enc_wguid($) {
1333     my ($guid) = @_;
1334    
1335     if (my $alias = $rbcd_objects{$guid}) {
1336     $guid = $alias;
1337     }
1338    
1339     $guid =~ /^\{($RE_GUID)\}\z/o
1340     or return;
1341    
1342     enc_guid $1
1343     }
1344    
1345     sub BCDE_CLASS () { 0xf0000000 }
1346     sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1347     sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1348     sub BCDE_CLASS_DEVICE () { 0x30000000 }
1349     sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1350    
1351     sub BCDE_FORMAT () { 0x0f000000 }
1352     sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1353     sub BCDE_FORMAT_STRING () { 0x02000000 }
1354     sub BCDE_FORMAT_GUID () { 0x03000000 }
1355     sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1356     sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1357     sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1358     sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1359    
1360     sub dec_device;
1361     sub enc_device;
1362    
1363     sub enc_integer($) {
1364     no warnings 'portable'; # ugh
1365     my $value = shift;
1366     $value = oct $value if $value =~ /^0[bBxX]/;
1367     unpack "H*", pack "Q<", $value
1368     }
1369    
1370     our %bcde_dec = (
1371     BCDE_FORMAT_DEVICE , \&dec_device,
1372     # # for round-trip verification
1373     # BCDE_FORMAT_DEVICE , sub {
1374     # my $dev = dec_device $_[0];
1375     # $_[0] eq enc_device $dev
1376     # or die "bcd device decoding does not round trip for $_[0]\n";
1377     # $dev
1378     # },
1379     BCDE_FORMAT_STRING , sub { shift },
1380     BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1381     BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1382     BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1383     BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1384     BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1385     );
1386    
1387     our %bcde_enc = (
1388     BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1389     BCDE_FORMAT_STRING , sub { sz => shift },
1390     BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1391     BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1392     BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1393     BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1394     BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1395     );
1396    
1397     # BCD Elements
1398     our %bcde = (
1399     0x11000001 => 'device',
1400     0x12000002 => 'path',
1401     0x12000004 => 'description',
1402     0x12000005 => 'locale',
1403     0x14000006 => 'inherit',
1404     0x15000007 => 'truncatememory',
1405     0x14000008 => 'recoverysequence',
1406     0x16000009 => 'recoveryenabled',
1407     0x1700000a => 'badmemorylist',
1408     0x1600000b => 'badmemoryaccess',
1409     0x1500000c => 'firstmegabytepolicy',
1410     0x1500000d => 'relocatephysical',
1411     0x1500000e => 'avoidlowmemory',
1412     0x1600000f => 'traditionalkseg',
1413     0x16000010 => 'bootdebug',
1414     0x15000011 => 'debugtype',
1415     0x15000012 => 'debugaddress',
1416     0x15000013 => 'debugport',
1417     0x15000014 => 'baudrate',
1418     0x15000015 => 'channel',
1419     0x12000016 => 'targetname',
1420     0x16000017 => 'noumex',
1421     0x15000018 => 'debugstart',
1422     0x12000019 => 'busparams',
1423     0x1500001a => 'hostip',
1424     0x1500001b => 'port',
1425     0x1600001c => 'dhcp',
1426     0x1200001d => 'key',
1427     0x1600001e => 'vm',
1428     0x16000020 => 'bootems',
1429     0x15000022 => 'emsport',
1430     0x15000023 => 'emsbaudrate',
1431     0x12000030 => 'loadoptions',
1432     0x16000040 => 'advancedoptions',
1433     0x16000041 => 'optionsedit',
1434     0x15000042 => 'keyringaddress',
1435     0x11000043 => 'bootstatdevice',
1436     0x12000044 => 'bootstatfilepath',
1437     0x16000045 => 'preservebootstat',
1438     0x16000046 => 'graphicsmodedisabled',
1439     0x15000047 => 'configaccesspolicy',
1440     0x16000048 => 'nointegritychecks',
1441     0x16000049 => 'testsigning',
1442     0x1200004a => 'fontpath',
1443     0x1500004b => 'integrityservices',
1444     0x1500004c => 'volumebandid',
1445     0x16000050 => 'extendedinput',
1446     0x15000051 => 'initialconsoleinput',
1447     0x15000052 => 'graphicsresolution',
1448     0x16000053 => 'restartonfailure',
1449     0x16000054 => 'highestmode',
1450     0x16000060 => 'isolatedcontext',
1451     0x15000065 => 'displaymessage',
1452     0x15000066 => 'displaymessageoverride',
1453     0x16000068 => 'nobootuxtext',
1454     0x16000069 => 'nobootuxprogress',
1455     0x1600006a => 'nobootuxfade',
1456     0x1600006b => 'bootuxreservepooldebug',
1457     0x1600006c => 'bootuxdisabled',
1458     0x1500006d => 'bootuxfadeframes',
1459     0x1600006e => 'bootuxdumpstats',
1460     0x1600006f => 'bootuxshowstats',
1461     0x16000071 => 'multibootsystem',
1462     0x16000072 => 'nokeyboard',
1463     0x15000073 => 'aliaswindowskey',
1464     0x16000074 => 'bootshutdowndisabled',
1465     0x15000075 => 'performancefrequency',
1466     0x15000076 => 'securebootrawpolicy',
1467     0x17000077 => 'allowedinmemorysettings',
1468     0x15000079 => 'bootuxtransitiontime',
1469     0x1600007a => 'mobilegraphics',
1470     0x1600007b => 'forcefipscrypto',
1471     0x1500007d => 'booterrorux',
1472     0x1600007e => 'flightsigning',
1473     0x1500007f => 'measuredbootlogformat',
1474     0x15000080 => 'displayrotation',
1475     0x15000081 => 'logcontrol',
1476     0x16000082 => 'nofirmwaresync',
1477     0x11000084 => 'windowssyspart',
1478     0x16000087 => 'numlock',
1479     0x22000001 => 'bpbstring',
1480     0x24000001 => 'displayorder',
1481     0x21000001 => 'filedevice',
1482     0x21000001 => 'osdevice',
1483     0x25000001 => 'passcount',
1484     0x26000001 => 'pxesoftreboot',
1485     0x22000002 => 'applicationname',
1486     0x24000002 => 'bootsequence',
1487     0x22000002 => 'filepath',
1488     0x22000002 => 'systemroot',
1489     0x25000002 => 'testmix',
1490     0x26000003 => 'cacheenable',
1491     0x26000003 => 'customsettings',
1492     0x23000003 => 'default',
1493     0x25000003 => 'failurecount',
1494     0x23000003 => 'resumeobject',
1495     0x26000004 => 'failuresenabled',
1496     0x26000004 => 'pae',
1497     0x26000004 => 'stampdisks',
1498     0x25000004 => 'testtofail',
1499     0x25000004 => 'timeout',
1500     0x21000005 => 'associatedosdevice',
1501     0x26000005 => 'cacheenable',
1502     0x26000005 => 'resume',
1503     0x25000005 => 'stridefailcount',
1504     0x26000006 => 'debugoptionenabled',
1505     0x25000006 => 'invcfailcount',
1506     0x23000006 => 'resumeobject',
1507     0x25000007 => 'bootux',
1508     0x25000007 => 'matsfailcount',
1509     0x24000007 => 'startupsequence',
1510     0x25000008 => 'bootmenupolicy',
1511     0x25000008 => 'randfailcount',
1512     0x25000009 => 'chckrfailcount',
1513     0x26000010 => 'detecthal',
1514     0x24000010 => 'toolsdisplayorder',
1515     0x22000011 => 'kernel',
1516     0x22000012 => 'hal',
1517     0x22000013 => 'dbgtransport',
1518     0x26000020 => 'displaybootmenu',
1519     0x25000020 => 'nx',
1520     0x26000021 => 'noerrordisplay',
1521     0x25000021 => 'pae',
1522     0x21000022 => 'bcddevice',
1523     0x26000022 => 'winpe',
1524     0x22000023 => 'bcdfilepath',
1525     0x26000024 => 'hormenabled',
1526     0x26000024 => 'hormenabled',
1527     0x26000024 => 'nocrashautoreboot',
1528     0x26000025 => 'hiberboot',
1529     0x26000025 => 'lastknowngood',
1530     0x26000026 => 'oslnointegritychecks',
1531     0x22000026 => 'passwordoverride',
1532     0x26000027 => 'osltestsigning',
1533     0x22000027 => 'pinpassphraseoverride',
1534     0x26000028 => 'processcustomactionsfirst',
1535     0x27000030 => 'customactions',
1536     0x26000030 => 'nolowmem',
1537     0x26000031 => 'persistbootsequence',
1538     0x25000031 => 'removememory',
1539     0x25000032 => 'increaseuserva',
1540     0x26000032 => 'skipstartupsequence',
1541     0x25000033 => 'perfmem',
1542     0x22000040 => 'fverecoveryurl',
1543     0x26000040 => 'vga',
1544     0x22000041 => 'fverecoverymessage',
1545     0x26000041 => 'quietboot',
1546     0x26000042 => 'novesa',
1547     0x26000043 => 'novga',
1548     0x25000050 => 'clustermodeaddressing',
1549     0x26000051 => 'usephysicaldestination',
1550     0x25000052 => 'restrictapiccluster',
1551     0x22000053 => 'evstore',
1552     0x26000054 => 'uselegacyapicmode',
1553     0x26000060 => 'onecpu',
1554     0x25000061 => 'numproc',
1555     0x26000062 => 'maxproc',
1556     0x25000063 => 'configflags',
1557     0x26000064 => 'maxgroup',
1558     0x26000065 => 'groupaware',
1559     0x25000066 => 'groupsize',
1560     0x26000070 => 'usefirmwarepcisettings',
1561     0x25000071 => 'msi',
1562     0x25000072 => 'pciexpress',
1563     0x25000080 => 'safeboot',
1564     0x26000081 => 'safebootalternateshell',
1565     0x26000090 => 'bootlog',
1566     0x26000091 => 'sos',
1567     0x260000a0 => 'debug',
1568     0x260000a1 => 'halbreakpoint',
1569     0x260000a2 => 'useplatformclock',
1570     0x260000a3 => 'forcelegacyplatform',
1571     0x260000a4 => 'useplatformtick',
1572     0x260000a5 => 'disabledynamictick',
1573     0x250000a6 => 'tscsyncpolicy',
1574     0x260000b0 => 'ems',
1575     0x250000c0 => 'forcefailure',
1576     0x250000c1 => 'driverloadfailurepolicy',
1577     0x250000c2 => 'bootmenupolicy',
1578     0x260000c3 => 'onetimeadvancedoptions',
1579     0x260000c4 => 'onetimeoptionsedit',
1580     0x250000e0 => 'bootstatuspolicy',
1581     0x260000e1 => 'disableelamdrivers',
1582     0x250000f0 => 'hypervisorlaunchtype',
1583     0x220000f1 => 'hypervisorpath',
1584     0x260000f2 => 'hypervisordebug',
1585     0x250000f3 => 'hypervisordebugtype',
1586     0x250000f4 => 'hypervisordebugport',
1587     0x250000f5 => 'hypervisorbaudrate',
1588     0x250000f6 => 'hypervisorchannel',
1589     0x250000f7 => 'bootux',
1590     0x260000f8 => 'hypervisordisableslat',
1591     0x220000f9 => 'hypervisorbusparams',
1592     0x250000fa => 'hypervisornumproc',
1593     0x250000fb => 'hypervisorrootprocpernode',
1594     0x260000fc => 'hypervisoruselargevtlb',
1595     0x250000fd => 'hypervisorhostip',
1596     0x250000fe => 'hypervisorhostport',
1597     0x250000ff => 'hypervisordebugpages',
1598     0x25000100 => 'tpmbootentropy',
1599     0x22000110 => 'hypervisorusekey',
1600     0x22000112 => 'hypervisorproductskutype',
1601     0x25000113 => 'hypervisorrootproc',
1602     0x26000114 => 'hypervisordhcp',
1603     0x25000115 => 'hypervisoriommupolicy',
1604     0x26000116 => 'hypervisorusevapic',
1605     0x22000117 => 'hypervisorloadoptions',
1606     0x25000118 => 'hypervisormsrfilterpolicy',
1607     0x25000119 => 'hypervisormmionxpolicy',
1608     0x2500011a => 'hypervisorschedulertype',
1609     0x25000120 => 'xsavepolicy',
1610     0x25000121 => 'xsaveaddfeature0',
1611     0x25000122 => 'xsaveaddfeature1',
1612     0x25000123 => 'xsaveaddfeature2',
1613     0x25000124 => 'xsaveaddfeature3',
1614     0x25000125 => 'xsaveaddfeature4',
1615     0x25000126 => 'xsaveaddfeature5',
1616     0x25000127 => 'xsaveaddfeature6',
1617     0x25000128 => 'xsaveaddfeature7',
1618     0x25000129 => 'xsaveremovefeature',
1619     0x2500012a => 'xsaveprocessorsmask',
1620     0x2500012b => 'xsavedisable',
1621     0x2500012c => 'kerneldebugtype',
1622     0x2200012d => 'kernelbusparams',
1623     0x2500012e => 'kerneldebugaddress',
1624     0x2500012f => 'kerneldebugport',
1625     0x25000130 => 'claimedtpmcounter',
1626     0x25000131 => 'kernelchannel',
1627     0x22000132 => 'kerneltargetname',
1628     0x25000133 => 'kernelhostip',
1629     0x25000134 => 'kernelport',
1630     0x26000135 => 'kerneldhcp',
1631     0x22000136 => 'kernelkey',
1632     0x22000137 => 'imchivename',
1633     0x21000138 => 'imcdevice',
1634     0x25000139 => 'kernelbaudrate',
1635     0x22000140 => 'mfgmode',
1636     0x26000141 => 'event',
1637     0x25000142 => 'vsmlaunchtype',
1638     0x25000144 => 'hypervisorenforcedcodeintegrity',
1639     0x26000145 => 'enablebootdebugpolicy',
1640     0x26000146 => 'enablebootorderclean',
1641     0x26000147 => 'enabledeviceid',
1642     0x26000148 => 'enableffuloader',
1643     0x26000149 => 'enableiuloader',
1644     0x2600014a => 'enablemassstorage',
1645     0x2600014b => 'enablerpmbprovisioning',
1646     0x2600014c => 'enablesecurebootpolicy',
1647     0x2600014d => 'enablestartcharge',
1648     0x2600014e => 'enableresettpm',
1649     0x21000150 => 'systemdatadevice',
1650     0x21000151 => 'osarcdevice',
1651     0x21000153 => 'osdatadevice',
1652     0x21000154 => 'bspdevice',
1653     0x21000155 => 'bspfilepath',
1654     0x26000202 => 'skipffumode',
1655     0x26000203 => 'forceffumode',
1656     0x25000510 => 'chargethreshold',
1657     0x26000512 => 'offmodecharging',
1658     0x25000aaa => 'bootflow',
1659     0x35000001 => 'ramdiskimageoffset',
1660     0x35000002 => 'ramdisktftpclientport',
1661     0x31000003 => 'ramdisksdidevice',
1662     0x32000004 => 'ramdisksdipath',
1663     0x35000005 => 'ramdiskimagelength',
1664     0x36000006 => 'exportascd',
1665     0x35000007 => 'ramdisktftpblocksize',
1666     0x35000008 => 'ramdisktftpwindowsize',
1667     0x36000009 => 'ramdiskmcenabled',
1668     0x3600000a => 'ramdiskmctftpfallback',
1669     0x3600000b => 'ramdisktftpvarwindow',
1670     0x45000001 => 'devicetype',
1671     0x42000002 => 'applicationrelativepath',
1672     0x42000003 => 'ramdiskdevicerelativepath',
1673     0x46000004 => 'omitosloaderelements',
1674     0x47000006 => 'elementstomigrate',
1675     0x46000010 => 'recoveryos',
1676     );
1677    
1678     our %rbcde = reverse %bcde;
1679    
1680     sub dec_bcde_id($) {
1681     $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1682     }
1683    
1684     sub enc_bcde_id($) {
1685     $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1686     ? hex $1
1687     : $rbcde{$_[0]}
1688     }
1689    
1690     # decode/encode bcd device element - the horror, no documentaion
1691     # whatsoever, supercomplex, superinconsistent.
1692    
1693     our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1694     our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1695     our @part_type = qw(gpt mbr raw);
1696    
1697     our $NULL_DEVICE = "\x00" x 16;
1698    
1699     # biggest bitch to decode, ever
1700     # this decoded a device portion after the GUID
1701     sub dec_device_($);
1702     sub dec_device_($) {
1703     my ($device) = @_;
1704    
1705     my $res;
1706    
1707     my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1708    
1709     $pad == 0
1710     or die "non-zero reserved field in device descriptor\n";
1711    
1712     if ($length == 0 && $type == 0 && $flags == 0) {
1713     return ("null", $device);
1714     }
1715    
1716     $length >= 16
1717     or die "device element size too small ($length)\n";
1718    
1719     $type = $dev_type[$type] // die "$type: unknown device type\n";
1720     #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1721    
1722     $res .= $type;
1723     $res .= sprintf "<%x>", $flags if $flags;
1724    
1725     my $tail = substr $device, $length - 4 * 4, 1e9, "";
1726    
1727     $length == 4 * 4 + length $device
1728     or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1729    
1730     my $dec_path = sub {
1731     my ($path, $error) = @_;
1732    
1733     $path =~ /^((?:..)*)\x00\x00\z/s
1734     or die "$error\n";
1735    
1736     $path = Encode::decode "UTF-16LE", $1;
1737    
1738     $path
1739     };
1740    
1741     if ($type eq "partition" or $type eq "legacypartition") {
1742     my $partdata = substr $device, 0, 16, "";
1743     my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1744    
1745     $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1746     $parttype = $part_type[$parttype] // die "unknown partition type\n";
1747    
1748     my $diskid = substr $device, 0, 16, "";
1749    
1750     $diskid = $parttype eq "gpt"
1751     ? dec_guid substr $diskid, 0, 16
1752     : sprintf "%08x", unpack "V", $diskid;
1753    
1754     my $partid = $parttype eq "gpt" ? dec_guid $partdata
1755     : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1756     : unpack "L<", $partdata; # partition number, one-based
1757    
1758     (my $parent, $device) = dec_device_ $device;
1759    
1760     $res .= "=";
1761     $res .= "<$parent>";
1762     $res .= ",$blocktype,$parttype,$diskid,$partid";
1763    
1764     # PartitionType (gpt, mbr, raw)
1765     # guid | partsig | disknumber
1766    
1767     } elsif ($type eq "boot") {
1768     $device =~ s/^\x00{56}\z//
1769     or die "boot device type with extra data not supported\n";
1770    
1771     } elsif ($type eq "block") {
1772     my $blocktype = unpack "V", substr $device, 0, 4, "";
1773    
1774     $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1775    
1776     # decode a "file path" structure
1777     my $dec_file = sub {
1778     my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1779    
1780     my $path = substr $device, 0, $flen - 12, "";
1781    
1782     $fver == 1
1783     or die "unsupported file descriptor version '$fver'\n";
1784    
1785     $ftype == 5
1786     or die "unsupported file descriptor path type '$type'\n";
1787    
1788     (my $parent, $path) = dec_device_ $path;
1789    
1790     $path = $dec_path->($path, "file device without path");
1791    
1792     ($parent, $path)
1793     };
1794    
1795     if ($blocktype eq "file") {
1796     my ($parent, $path) = $dec_file->();
1797    
1798     $res .= "=file,<$parent>,$path";
1799    
1800     } elsif ($blocktype eq "vhd") {
1801     $device =~ s/^\x00{20}//s
1802     or die "virtualdisk has non-zero fields I don't understand\n";
1803    
1804     (my $parent, $device) = dec_device_ $device;
1805    
1806     $res .= "=vhd,<$parent>";
1807    
1808     } elsif ($blocktype eq "ramdisk") {
1809     my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1810     my ($subdev, $path) = $dec_file->();
1811    
1812     $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1813    
1814     } else {
1815     die "unsupported block type '$blocktype'\n";
1816     }
1817    
1818     } elsif ($type eq "locate") {
1819     # mode, bcde_id, unknown, string
1820     # we assume locate has _either_ an element id _or_ a path, but not both
1821    
1822     my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1823    
1824     if ($parent) {
1825     # not sure why this is an offset - it must come after the path
1826     $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1827     ($parent, my $tail) = dec_device_ $parent;
1828     0 == length $tail
1829     or die "trailing data after locate device parent\n";
1830     } else {
1831     $parent = "null";
1832     }
1833    
1834     my $path = $device; $device = "";
1835     $path = $dec_path->($path, "device locate mode without path");
1836    
1837     $res .= "=<$parent>,";
1838    
1839     if ($mode == 0) { # "Element"
1840     !length $path
1841     or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1842    
1843     $elem = dec_bcde_id $elem;
1844     $res .= "element,$elem";
1845    
1846     } elsif ($mode == 1) { # "String"
1847     !$elem
1848     or die "device locate mode 1 having non-zero element\n";
1849    
1850     $res .= "path,$path";
1851     } else {
1852     # mode 2 maybe called "ElementChild" with element and parent device? example needed
1853     die "device locate mode '$mode' not supported\n";
1854     }
1855    
1856     } elsif ($type eq "vmbus") {
1857     my $type = dec_guid substr $device, 0, 16, "";
1858     my $instance = dec_guid substr $device, 0, 16, "";
1859    
1860     $device =~ s/^\x00{24}\z//
1861     or die "vmbus has non-zero fields I don't understand\n";
1862    
1863     $res .= "=$type,$instance";
1864    
1865     } else {
1866     die "unsupported device type '$type'\n";
1867     }
1868    
1869     warn "unexpected trailing device data($res), " . unpack "H*",$device
1870     if length $device;
1871     #length $device
1872     # and die "unexpected trailing device data\n";
1873    
1874     ($res, $tail)
1875     }
1876    
1877     # decode a full binary BCD device descriptor
1878     sub dec_device($) {
1879     my ($device) = @_;
1880    
1881     $device = pack "H*", $device;
1882    
1883     my $guid = dec_guid substr $device, 0, 16, "";
1884     $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1885     ? "" : "{$guid}";
1886    
1887     eval {
1888     my ($dev, $tail) = dec_device_ $device;
1889    
1890     $tail eq ""
1891     or die "unsupported trailing data after device descriptor\n";
1892    
1893     "$guid$dev"
1894     # } // scalar ((warn $@), "$guid$fallback")
1895     } // ($guid . "binary=" . unpack "H*", $device)
1896     }
1897    
1898     sub indexof($@) {
1899     my $value = shift;
1900    
1901     for (0 .. $#_) {
1902     $value eq $_[$_]
1903     and return $_;
1904     }
1905    
1906     undef
1907     }
1908    
1909     # encode the device portion after the GUID
1910     sub enc_device_;
1911     sub enc_device_ {
1912     my ($device) = @_;
1913    
1914     my $enc_path = sub {
1915     my $path = shift;
1916     $path =~ s/\//\\/g;
1917     (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1918     };
1919    
1920     my $enc_file = sub {
1921     my ($parent, $path) = @_; # parent and path must already be encoded
1922    
1923     $path = $parent . $path;
1924    
1925     # fver 1, ftype 5
1926     pack "VVVa*", 1, 12 + length $path, 5, $path
1927     };
1928    
1929     my $parse_path = sub {
1930     s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1931     or die "$_: invalid path\n";
1932    
1933     $enc_path->($1)
1934     };
1935    
1936     my $parse_parent = sub {
1937     my $parent;
1938    
1939     if (s/^<//) {
1940     ($parent, $_) = enc_device_ $_;
1941     s/^>//
1942     or die "$device: syntax error: parent device not followed by '>'\n";
1943     } else {
1944     $parent = $NULL_DEVICE;
1945     }
1946    
1947     $parent
1948     };
1949    
1950     for ($device) {
1951     s/^([a-z]+)//
1952     or die "$_: device does not start with type string\n";
1953    
1954     my $type = $1;
1955     my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1956     my $payload;
1957    
1958     if ($type eq "binary") {
1959     s/^=([0-9a-fA-F]+)//
1960     or die "binary type must have a hex string argument\n";
1961    
1962     $payload = pack "H*", $1;
1963    
1964     } elsif ($type eq "null") {
1965     return ($NULL_DEVICE, $_);
1966    
1967     } elsif ($type eq "boot") {
1968     $payload = "\x00" x 56;
1969    
1970     } elsif ($type eq "partition" or $type eq "legacypartition") {
1971     s/^=//
1972     or die "$_: missing '=' after $type\n";
1973    
1974     my $parent = $parse_parent->();
1975    
1976     s/^,//
1977     or die "$_: comma missing after partition parent device\n";
1978    
1979     s/^([a-z]+),//
1980     or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1981     my $blocktype = $1;
1982    
1983     s/^([a-z]+),//
1984     or die "$_: partition block type not followed by partiton type\n";
1985     my $parttype = $1;
1986    
1987     my ($partdata, $diskdata);
1988    
1989     if ($parttype eq "mbr") {
1990     s/^([0-9a-f]{8}),//i
1991     or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1992     $diskdata = pack "Vx12", hex $1;
1993    
1994     s/^([0-9]+)//
1995     or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1996    
1997     # the following works for both 64 bit offset and 32 bit partno
1998     $partdata = pack "Q< x8", $1;
1999    
2000     } elsif ($parttype eq "gpt") {
2001     s/^($RE_GUID),//
2002     or die "$_: partition disk guid missing or malformed\n";
2003     $diskdata = enc_guid $1;
2004    
2005     s/^($RE_GUID)//
2006     or die "$_: partition guid missing or malformed\n";
2007     $partdata = enc_guid $1;
2008    
2009     } elsif ($parttype eq "raw") {
2010     s/^([0-9]+)//
2011     or die "$_: partition disk number missing or malformed (must be decimal)\n";
2012    
2013     $partdata = pack "L< x12", $1;
2014    
2015     } else {
2016     die "$parttype: partition type not supported\n";
2017     }
2018    
2019     $payload = pack "a16 L< L< a16 a*",
2020     $partdata,
2021     (indexof $blocktype, @block_type),
2022     (indexof $parttype, @part_type),
2023     $diskdata,
2024     $parent;
2025    
2026     } elsif ($type eq "locate") {
2027     s/^=//
2028     or die "$_: missing '=' after $type\n";
2029    
2030     my ($mode, $elem, $path);
2031    
2032     my $parent = $parse_parent->();
2033    
2034     s/^,//
2035     or die "$_: missing comma after locate parent device\n";
2036    
2037     if (s/^element,//) {
2038     s/^([0-9a-z]+)//i
2039     or die "$_ locate element must be either name or 8-digit hex id\n";
2040     $elem = enc_bcde_id $1;
2041     $mode = 0;
2042     $path = $enc_path->("");
2043    
2044     } elsif (s/^path,//) {
2045     $mode = 1;
2046     $path = $parse_path->();
2047    
2048     } else {
2049     die "$_ second locate argument must be subtype (either element or path)\n";
2050     }
2051    
2052     if ($parent ne $NULL_DEVICE) {
2053     ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2054     } else {
2055     $parent = 0;
2056     }
2057    
2058     $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2059    
2060     } elsif ($type eq "block") {
2061     s/^=//
2062     or die "$_: missing '=' after $type\n";
2063    
2064     s/^([a-z]+),//
2065     or die "$_: block device does not start with block type (e.g. disk)\n";
2066     my $blocktype = $1;
2067    
2068     my $blockdata;
2069    
2070     if ($blocktype eq "file") {
2071     my $parent = $parse_parent->();
2072     s/^,// or die "$_: comma missing after file block device parent\n";
2073     my $path = $parse_path->();
2074    
2075     $blockdata = $enc_file->($parent, $path);
2076    
2077     } elsif ($blocktype eq "vhd") {
2078     $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2079     $blockdata .= $parse_parent->();
2080    
2081     } elsif ($blocktype eq "ramdisk") {
2082     my $parent = $parse_parent->();
2083    
2084     s/^,(\d+),(\d+),(\d+),//a
2085     or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2086    
2087     my ($base, $size, $offset) = ($1, $2, $3);
2088    
2089     my $path = $parse_path->();
2090    
2091     $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2092    
2093     } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2094     # this is guesswork
2095     s/^(\d+)//a
2096     or die "$_: missing device number for cdrom\n";
2097     $blockdata = pack "V", $1;
2098    
2099     } else {
2100     die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2101     }
2102    
2103     $payload = pack "Va*",
2104     (indexof $blocktype, @block_type),
2105     $blockdata;
2106    
2107     } elsif ($type eq "vmbus") {
2108     s/^=($RE_GUID)//
2109     or die "$_: malformed or missing vmbus interface type guid\n";
2110     my $type = enc_guid $1;
2111     s/^,($RE_GUID)//
2112     or die "$_: malformed or missing vmbus interface instance guid\n";
2113     my $instance = enc_guid $1;
2114    
2115     $payload = pack "a16a16x24", $type, $instance;
2116    
2117     } else {
2118     die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2119     }
2120    
2121     return (
2122     (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2123     $_
2124     );
2125     }
2126     }
2127    
2128     # encode a full binary BCD device descriptor
2129     sub enc_device {
2130     my ($device) = @_;
2131    
2132     my $guid = "\x00" x 16;
2133    
2134     if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2135     $guid = enc_guid $1
2136     or die "$device: does not start with valid guid\n";
2137     }
2138    
2139     my ($descriptor, $tail) = enc_device_ $device;
2140    
2141     length $tail
2142     and die "$device: garbage after device descriptor\n";
2143    
2144     unpack "H*", $guid . $descriptor
2145     }
2146    
2147     # decode a registry hive into the BCD structure used by pbcdedit
2148     sub bcd_decode {
2149     my ($hive) = @_;
2150    
2151     my %bcd;
2152    
2153     my $objects = $hive->[1][1]{Objects}[1];
2154    
2155     while (my ($k, $v) = each %$objects) {
2156     my %kv;
2157     $v = $v->[1];
2158    
2159     $k = $bcd_objects{$k} // $k;
2160    
2161     my $type = $v->{Description}[0]{Type}[1];
2162    
2163     if ($type != $bcd_object_types{$k}) {
2164     $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2165     $kv{type} = $type;
2166     }
2167    
2168     my $elems = $v->{Elements}[1];
2169    
2170     while (my ($k, $v) = each %$elems) {
2171     my $k = hex $k;
2172    
2173     my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2174     my $k = dec_bcde_id $k;
2175    
2176     $kv{$k} = $v;
2177     }
2178    
2179     $bcd{$k} = \%kv;
2180     }
2181    
2182     $bcd{meta} = { version => $JSON_VERSION };
2183    
2184     \%bcd
2185     }
2186    
2187     # encode a pbcdedit structure into a registry hive
2188     sub bcd_encode {
2189     my ($bcd) = @_;
2190    
2191     if (my $meta = $bcd->{meta}) {
2192     $meta->{version} eq $JSON_VERSION
2193     or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2194     }
2195    
2196     my %objects;
2197     my %rbcd_types = reverse %bcd_types;
2198    
2199     while (my ($k, $v) = each %$bcd) {
2200     my %kv;
2201    
2202     next if $k eq "meta";
2203    
2204     $k = lc $k; # I know you windows types!
2205    
2206     my $type = $v->{type};
2207    
2208     if ($type) {
2209     $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2210     ? hex $type
2211     : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2212     }
2213    
2214     my $guid = enc_wguid $k
2215     or die "$k: invalid bcd object identifier\n";
2216    
2217     # default type if not given
2218     $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2219    
2220     my %elem;
2221    
2222     while (my ($k, $v) = each %$v) {
2223     next if $k eq "type";
2224    
2225     $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2226     $elem{sprintf "%08x", $k} = [{
2227     Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2228     }];
2229     }
2230    
2231     $guid = dec_guid $guid;
2232    
2233     $objects{"{$guid}"} = [undef, {
2234     Description => [{ Type => [dword => $type] }],
2235     Elements => [undef, \%elem],
2236     }];
2237     }
2238    
2239     [NewStoreRoot => [undef, {
2240     Description => [{
2241     KeyName => [sz => "BCD00000001"],
2242     System => [dword => 1],
2243     pbcdedit => [sz => $VERSION],
2244     # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2245     }],
2246     Objects => [undef, \%objects],
2247     }]]
2248     }
2249    
2250     #############################################################################
2251    
2252 root 1.6 sub bcd_edit_eval {
2253     package pbcdedit;
2254    
2255     our ($PATH, $BCD, $DEFAULT);
2256    
2257     eval shift;
2258     die "$@" if $@;
2259     }
2260    
2261     sub bcd_edit {
2262     my ($path, $bcd, @insns) = @_;
2263    
2264     my $default = $bcd->{"{bootmgr}"}{resumeobject};
2265    
2266     # prepare "officially visible" variables
2267     local $pbcdedit::PATH = $path;
2268     local $pbcdedit::BCD = $bcd;
2269     local $pbcdedit::DEFAULT = $default;
2270    
2271     while (@insns) {
2272     my $insn = shift @insns;
2273    
2274     if ($insn eq "get") {
2275     my $object = shift @insns;
2276     my $elem = shift @insns;
2277    
2278 root 1.15 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2279 root 1.6
2280     print $bcd->{$object}{$elem}, "\n";
2281    
2282     } elsif ($insn eq "set") {
2283     my $object = shift @insns;
2284     my $elem = shift @insns;
2285     my $value = shift @insns;
2286    
2287 root 1.15 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2288 root 1.6
2289     $bcd->{$object}{$elem} = $value;
2290    
2291     } elsif ($insn eq "eval") {
2292     bcd_edit_eval shift @insns;
2293    
2294     } elsif ($insn eq "do") {
2295     my $path = shift @insns;
2296     my $file = file_load $path;
2297     bcd_edit_eval "#line 1 '$path'\n$file";
2298    
2299     } else {
2300     die "$insn: not a recognized instruction for edit/parse\n";
2301     }
2302     }
2303    
2304     }
2305    
2306     #############################################################################
2307    
2308 root 1.1 # json to stdout
2309     sub prjson($) {
2310     print $json_coder->encode ($_[0]);
2311     }
2312    
2313     # json from stdin
2314     sub rdjson() {
2315     my $json;
2316     1 while read STDIN, $json, 65536, length $json;
2317     $json_coder->decode ($json)
2318     }
2319    
2320     # all subcommands
2321     our %CMD = (
2322     help => sub {
2323     require Pod::Usage;
2324     Pod::Usage::pod2usage (-verbose => 2);
2325     },
2326    
2327     objects => sub {
2328     my %rbcd_types = reverse %bcd_types;
2329     $_ = sprintf "%08x", $_ for values %rbcd_types;
2330    
2331     if ($_[0] eq "--json") {
2332     my %default_type = %bcd_object_types;
2333     $_ = sprintf "%08x", $_ for values %default_type;
2334    
2335     prjson {
2336     version => $JSON_VERSION,
2337     object_alias => \%bcd_objects,
2338     object_type => \%rbcd_types,
2339     object_default_type => \%default_type,
2340     };
2341     } else {
2342     my %rbcd_objects = reverse %bcd_objects;
2343    
2344     print "\n";
2345    
2346     printf "%-9s %s\n", "Type", "Alias";
2347     for my $tname (sort keys %rbcd_types) {
2348     printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2349     }
2350    
2351     print "\n";
2352    
2353     printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2354     for my $name (sort keys %rbcd_objects) {
2355     my $guid = $rbcd_objects{$name};
2356     my $type = $bcd_object_types{$name};
2357     my $tname = $bcd_types{$type};
2358    
2359     $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2360    
2361     printf "%-39s %-23s %s\n", $guid, $name, $type;
2362     }
2363    
2364     print "\n";
2365     }
2366     },
2367    
2368     elements => sub {
2369     my $json = $_[0] eq "--json";
2370    
2371     my %format_name = (
2372     BCDE_FORMAT_DEVICE , "device",
2373     BCDE_FORMAT_STRING , "string",
2374     BCDE_FORMAT_GUID , "guid",
2375     BCDE_FORMAT_GUID_LIST , "guid list",
2376     BCDE_FORMAT_INTEGER , "integer",
2377     BCDE_FORMAT_BOOLEAN , "boolean",
2378     BCDE_FORMAT_INTEGER_LIST, "integer list",
2379     );
2380     my %rbcde = reverse %bcde;
2381     $_ = sprintf "%08x", $_ for values %rbcde;
2382    
2383     my %element;
2384    
2385     unless ($json) {
2386     print "\n";
2387     printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2388     }
2389     for my $name (sort keys %rbcde) {
2390     my $id = $rbcde{$name};
2391     my $format = $format_name{(hex $id) & BCDE_FORMAT};
2392    
2393     if ($json) {
2394     $element{$id} = [$format, $name];
2395     } else {
2396     printf "%-9s %-12s %s\n", $id, $format, $name;
2397     }
2398     }
2399     print "\n" unless $json;
2400    
2401     prjson {
2402     version => $JSON_VERSION,
2403     element => \%element,
2404     } if $json;
2405    
2406     },
2407    
2408     export => sub {
2409     prjson bcd_decode regf_load shift;
2410     },
2411    
2412     import => sub {
2413     regf_save shift, bcd_encode rdjson;
2414     },
2415    
2416 root 1.6 edit => sub {
2417     my $path = shift;
2418     my $bcd = bcd_decode regf_load $path;
2419     bcd_edit $path, $bcd, @_;
2420     regf_save $path, bcd_encode $bcd;
2421     },
2422    
2423     parse => sub {
2424     my $path = shift;
2425     my $bcd = bcd_decode regf_load $path;
2426     bcd_edit $path, $bcd, @_;
2427     },
2428    
2429 root 1.1 "export-regf" => sub {
2430     prjson regf_load shift;
2431    
2432     },
2433    
2434     "import-regf" => sub {
2435     regf_save shift, rdjson;
2436     },
2437    
2438     lsblk => sub {
2439     printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2440    
2441     my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2442    
2443     for my $dev (@{ $lsblk->{blockdevices} }) {
2444     my $pr = sub {
2445     printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2446     $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2447     };
2448    
2449     if ($dev->{type} eq "part") {
2450     if ($dev->{pttype} eq "gpt") {
2451     $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2452     } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2453     if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2454     my ($diskid, $partno) = ($1, hex $2);
2455     $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2456     if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2457     my $start = 512 * readline $fh;
2458     $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2459     }
2460     }
2461     }
2462     }
2463     }
2464     },
2465     );
2466    
2467     my $cmd = shift;
2468    
2469     unless (exists $CMD{$cmd}) {
2470     warn "Usage: $0 subcommand args...\nTry $0 help\n";
2471     exit 126;
2472     }
2473    
2474     $CMD{$cmd}->(@ARGV);
2475