ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.53
Committed: Thu Aug 22 07:51:23 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.52: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.7 #!/usr/bin/perl
2 root 1.1
3     #
4     # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5     #
6     # SPDX-License-Identifier: GPL-3.0-or-later
7     #
8     # This program is free software: you can redistribute it and/or modify
9     # it under the terms of the GNU General Public License as published by
10     # the Free Software Foundation, either version 3 of the License, or
11     # (at your option) any later version.
12     #
13     # This program is distributed in the hope that it will be useful,
14     # but WITHOUT ANY WARRANTY; without even the implied warranty of
15     # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     # GNU General Public License for more details.
17     #
18     # You should have received a copy of the GNU General Public License
19     # along with this program. If not, see <https://www.gnu.org/licenses/>.
20     #
21    
22 root 1.34 use 5.016; # numerous features need 5.14, __SUB__ needs 5.16
23 root 1.1
24 root 1.40 our $VERSION = '1.3';
25     our $JSON_VERSION = 3; # the version of the json objects generated by this program
26 root 1.37
27     our $CHANGELOG = <<EOF;
28 root 1.40
29 root 1.51 - editorial fixes to the documentation.
30    
31 root 1.45 1.3 Sat Aug 17 07:04:15 CEST 2019
32 root 1.40 - output of pbcdedit elements --json has changed, as it didn't
33     take the reorganisation by classes fully into account.
34     - json schema bumped to 3.
35 root 1.43 - new "bcd-device" and "bcd-legacy-device" subcommands.
36 root 1.44 - implement --json option for lsblk.
37 root 1.40
38 root 1.37 1.2 Fri Aug 16 00:20:41 CEST 2019
39 root 1.46 - bcd element names now depend on the bcd object type they are in,
40 root 1.37 also affects "elements" output.
41     - json schema bumped to 2.
42     - new version command.
43     - numerous minor bugfixes.
44    
45     EOF
46 root 1.1
47     =head1 NAME
48    
49     pbcdedit - portable boot configuration data (BCD) store editor
50    
51     =head1 SYNOPSIS
52    
53     pbcdedit help # output manual page
54 root 1.37 pbcdedit version # output version and changelog
55 root 1.28
56 root 1.1 pbcdedit export path/to/BCD # output BCD hive as JSON
57 root 1.28 pbcdedit import path/to/BCD # convert standard input to BCD hive
58 root 1.1 pbcdedit edit path/to/BCD edit-instructions...
59    
60     pbcdedit objects # list all supported object aliases and types
61     pbcdedit elements # list all supported bcd element aliases
62    
63 root 1.52 # Example: enable text-based boot menu.
64     pbcdedit edit /my/BCD set '{default}' bootmenupolicy 1
65    
66     # Example change system device to first partition containing winload.
67     pbcdedit edit /my/BCD \
68     set '{default}' device 'locate=<null>,element,path' \
69     set '{default}' osdevice 'locate=<null>,element,path'
70    
71    
72 root 1.1 =head1 DESCRIPTION
73    
74     This program allows you to create, read and modify Boot Configuration Data
75     (BCD) stores used by Windows Vista and newer versions of Windows.
76    
77 root 1.9 At this point, it is in relatively early stages of development and has
78     received little to no real-world testing.
79    
80 root 1.1 Compared to other BCD editing programs it offers the following unique
81     features:
82    
83     =over
84    
85     =item Can create BCD hives from scratch
86    
87     Practically all other BCD editing programs force you to copy existing BCD
88     stores, which might or might not be copyrighted by Microsoft.
89    
90     =item Does not rely on Windows
91    
92     As the "portable" in the name implies, this program does not rely on
93     C<bcdedit> or other windows programs or libraries, it works on any system
94 root 1.34 that supports at least perl version 5.16.
95 root 1.1
96     =item Decodes and encodes BCD device elements
97    
98     PBCDEDIT can concisely decode and encode BCD device element contents. This
99     is pretty unique, and offers a lot of potential that can't be realised
100     with C<bcdedit> or any programs relying on it.
101    
102     =item Minimal files
103    
104     BCD files written by PBCDEDIT are always "minimal", that is, they don't
105     contain unused data areas and therefore don't contain old and potentially
106     sensitive data.
107    
108     =back
109    
110     The target audience for this program is professionals and tinkerers who
111 root 1.11 are ready to invest time into learning how it works. It is not an easy
112 root 1.26 program to use and requires patience and a good understanding of BCD
113 root 1.1 stores.
114    
115    
116     =head1 SUBCOMMANDS
117    
118 root 1.11 PBCDEDIT expects a subcommand as first argument that tells it what to
119 root 1.1 do. The following subcommands exist:
120    
121     =over
122    
123 root 1.20 =item C<help>
124 root 1.1
125 root 1.11 Displays the whole manual page (this document).
126 root 1.1
127 root 1.37 =item C<version>
128    
129     This outputs the PBCDEDIT version, the JSON schema version it uses and the
130     full log of changes.
131    
132 root 1.20 =item C<export> F<path>
133 root 1.1
134     Reads a BCD data store and writes a JSON representation of it to standard
135     output.
136    
137     The format of the data is explained later in this document.
138    
139 root 1.11 Example: read a BCD store, modify it with an external program, write it
140     again.
141 root 1.1
142     pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
143    
144 root 1.20 =item C<import> F<path>
145 root 1.1
146     The reverse of C<export>: Reads a JSON representation of a BCD data store
147     from standard input, and creates or replaces the given BCD data store.
148    
149 root 1.20 =item C<edit> F<path> I<instructions...>
150 root 1.1
151 root 1.6 Load a BCD data store, apply some instructions to it, and save it again.
152    
153 root 1.26 See the section L<EDITING BCD STORES>, below, for more info.
154 root 1.6
155 root 1.20 =item C<parse> F<path> I<instructions...>
156 root 1.6
157     Same as C<edit>, above, except it doesn't save the data store again. Can
158     be useful to extract some data from it.
159 root 1.1
160 root 1.44 =item C<lsblk> [C<--json>]
161 root 1.1
162     On a GNU/Linux system, you can get a list of partition device descriptors
163     using this command - the external C<lsblk> command is required, as well as
164     a mounted C</sys> file system.
165    
166     The output will be a list of all partitions in the system and C<partition>
167     descriptors for GPT and both C<legacypartition> and C<partition>
168 root 1.11 descriptors for MBR partitions.
169 root 1.1
170 root 1.53 With C<--json> it will print similar information as C<lsblk --json>, but
171 root 1.44 with extra C<bcd_device> and C<bcd_legacy_device> attributes.
172    
173 root 1.43 =item C<bcd-device> F<path>
174    
175     Tries to find the BCD device element for the given device, which currently
176     must be a a partition of some kind. Prints the C<partition=> descriptor as
177     a result, or nothing. Exit status will be true on success, and false on
178     failure.
179    
180     Like C<lsblk>, above, this likely only works on GNU/Linux systems.
181    
182     Example: print the partition descriptor of tghe partition with label DATA.
183    
184     $ pbcdedit bcd-device /dev/disk/by-label/DATA
185     partition=<null>,harddisk,mbr,47cbc08a,213579202560
186    
187     =item C<bcd-legacy-device> F<path>
188    
189     Like above, but uses a C<legacypartition> descriptor instead.
190    
191 root 1.20 =item C<objects> [C<--json>]
192 root 1.1
193 root 1.11 Outputs two tables: a table listing all type aliases with their hex BCD
194 root 1.1 element ID, and all object name aliases with their GUID and default type
195     (if any).
196    
197     With C<--json> it prints similar information as a JSON object, for easier parsing.
198    
199 root 1.20 =item C<elements> [C<--json>]
200 root 1.1
201     Outputs a table of known element aliases with their hex ID and the format
202     type.
203    
204     With C<--json> it prints similar information as a JSON object, for easier parsing.
205    
206 root 1.20 =item C<export-regf> F<path>
207 root 1.1
208 root 1.31 This has nothing to do with BCD stores, but simply exposes PCBEDIT's
209 root 1.30 internal registry hive reader - it takes a registry hive file as argument
210     and outputs a JSON representation of it to standard output.
211 root 1.1
212     Hive versions 1.2 till 1.6 are supported.
213    
214 root 1.20 =item C<import-regf> F<path>
215 root 1.1
216     The reverse of C<export-regf>: reads a JSON representation of a registry
217 root 1.20 hive from standard input and creates or replaces the registry hive file
218     given as argument.
219 root 1.1
220     The written hive will always be in a slightly modified version 1.3
221     format. It's not the format windows would generate, but it should be
222     understood by any conformant hive reader.
223    
224     Note that the representation chosen by PBCDEDIT currently throws away
225 root 1.11 classname data (often used for feeble attempts at hiding stuff by
226 root 1.1 Microsoft) and security descriptors, so if you write anything other than
227     a BCD hive you will most likely destroy it.
228    
229     =back
230    
231    
232 root 1.27 =head1 BCD STORE REPRESENTATION FORMAT
233 root 1.1
234     A BCD data store is represented as a JSON object with one special key,
235     C<meta>, and one key per BCD object. That is, each BCD object becomes
236     one key-value pair in the object, and an additional key called C<meta>
237     contains meta information.
238    
239     Here is an abridged example of a real BCD store:
240    
241     {
242     "meta" : {
243     "version" : 1
244     },
245     "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
246     "type" : "application::osloader",
247     "description" : "Windows 10",
248     "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
249     "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
250     "path" : "\\Windows\\system32\\winload.exe",
251     "systemroot" : "\\Windows"
252     },
253     "{bootloadersettings}" : {
254     "inherit" : "{globalsettings} {hypervisorsettings}"
255     },
256     "{bootmgr}" : {
257     "description" : "Windows Boot Manager",
258     "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
259     "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
260     "inherit" : "{globalsettings}",
261     "displaybootmenu" : 0,
262     "timeout" : 30
263     },
264     "{globalsettings}" : {
265     "inherit" : "{dbgsettings} {emssettings} {badmemory}"
266     },
267     "{hypervisorsettings}" : {
268     "hypervisorbaudrate" : 115200,
269     "hypervisordebugport" : 1,
270     "hypervisordebugtype" : 0
271     },
272     # ...
273     }
274    
275 root 1.3 =head2 Minimal BCD to boot windows
276    
277     Experimentally I found the following BCD is the minimum required to
278 root 1.38 successfully boot any post-XP version of Windows (assuming suitable
279 root 1.39 C<device> and C<osdevice> values, of course, and assuming a BIOS boot -
280     for UEFI, you should use F<winload.efi> instead of F<winload.exe>):
281 root 1.3
282     {
283     "{bootmgr}" : {
284 root 1.36 "default" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
285 root 1.3 },
286    
287     "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
288     "type" : "application::osloader",
289     "description" : "Windows Boot",
290     "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
291     "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
292     "path" : "\\Windows\\system32\\winload.exe",
293     "systemroot" : "\\Windows"
294     },
295     }
296    
297     Note that minimal doesn't mean recommended - Windows itself will add stuff
298     to this during or after boot, and you might or might not run into issues
299     when installing updates as it might not be able to find the F<bootmgr>.
300    
301 root 1.1 =head2 The C<meta> key
302    
303     The C<meta> key is not stored in the BCD data store but is used only
304     by PBCDEDIT. It is always generated when exporting, and importing will
305     be refused when it exists and the version stored inside doesn't store
306 root 1.11 the JSON schema version of PBCDEDIT. This ensures that different and
307     incompatible versions of PBCDEDIT will not read and misinterpret each
308 root 1.1 others data.
309    
310     =head2 The object keys
311    
312     Every other key is a BCD object. There is usually a BCD object for the
313     boot manager, one for every boot option and a few others that store common
314     settings inherited by these.
315    
316     Each BCD object is represented by a GUID wrapped in curly braces. These
317 root 1.11 are usually random GUIDs used only to distinguish BCD objects from each
318 root 1.1 other. When adding a new boot option, you can simply generate a new GUID.
319    
320     Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
321     into human-readable strings such as C<{globalsettings}>, which is the same
322     as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
323    
324     Each BCD, object has an associated type. For example,
325     C<application::osloader> for objects loading Windows via F<winload.exe>,
326     C<application::bootsector> for real mode applications and so on.
327    
328     The type of a object is stored in the pseudo BCD element C<type> (see next
329     section).
330    
331     Some well-known objects have a default type. If an object type matches
332     its default type, then the C<type> element will be omitted. Similarly, if
333     the C<type> element is missing and the BCD object has a default type, the
334     default type will be used when writing a BCD store.
335    
336     Running F<pbcdedit objects> will give you a list of object types,
337     well-known object aliases and their default types.
338    
339     If different string keys in a JSON BCD store map to the same BCD object
340     then a random one will "win" and the others will be discarded. To avoid
341     this, you should always use the "canonical" name of a BCD object, which is
342     the human-readable form (if it exists).
343    
344     =head2 The object values - BCD elements
345    
346     The value of each BCD object entry consists of key-value pairs called BCD
347     elements.
348    
349     BCD elements are identified by a 32 bit number, but to make things
350     simpler PBCDEDIT will replace these with well-known strings such as
351     C<description>, C<device> or C<path>.
352    
353     When PBCDEDIT does not know the BCD element, it will use
354     C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
355     BCD element. For example, C<device> would be C<custom::11000001>. You can
356     get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
357     elements>.
358    
359     What was said about duplicate keys mapping to the same object is true for
360     elements as well, so, again, you should always use the canonical name,
361 root 1.11 which is the human readable alias, if known.
362 root 1.1
363     =head3 BCD element types
364    
365     Each BCD element has a type such as I<string> or I<boolean>. This type
366     determines how the value is interpreted, and most of them are pretty easy
367     to explain:
368    
369     =over
370    
371     =item string
372    
373     This is simply a unicode string. For example, the C<description> and
374     C<systemroot> elements both are of this type, one storing a human-readable
375     name for this boot option, the other a file path to the windows root
376     directory:
377    
378     "description" : "Windows 10",
379     "systemroot" : "\\Windows",
380    
381     =item boolean
382    
383 root 1.11 Almost as simple are booleans, which represent I<true>/I<false>,
384 root 1.1 I<on>/I<off> and similar values. In the JSON form, true is represented
385     by the number C<1>, and false is represented by the number C<0>. Other
386     values will be accepted, but PBCDEDIT doesn't guarantee how these are
387     interpreted.
388    
389     For example, C<displaybootmenu> is a boolean that decides whether to
390     enable the C<F8> boot menu. In the example BCD store above, this is
391     disabled:
392    
393     "displaybootmenu" : 0,
394    
395     =item integer
396    
397 root 1.41 Again, very simple, this is a 64 bit integer. It can be either specified
398 root 1.1 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
399 root 1.11 binary number (prefix C<0b>).
400 root 1.1
401     For example, the boot C<timeout> is an integer, specifying the automatic
402     boot delay in seconds:
403    
404     "timeout" : 30,
405    
406     =item integer list
407    
408     This is a list of 64 bit integers separated by whitespace. It is not used
409 root 1.11 much, so here is a somewhat artificial an untested example of using
410 root 1.1 C<customactions> to specify a certain custom, eh, action to be executed
411     when pressing C<F10> at boot:
412    
413     "customactions" : "0x1000044000001 0x54000001",
414    
415     =item guid
416    
417 root 1.11 This represents a single GUID value wrapped in curly braces. It is used a
418 root 1.1 lot to refer from one BCD object to other one.
419    
420     For example, The C<{bootmgr}> object might refer to a resume boot option
421 root 1.36 using C<default>:
422 root 1.1
423 root 1.36 "default" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
424 root 1.1
425     Human readable aliases are used and allowed.
426    
427     =item guid list
428    
429 root 1.11 Similar to the GUID type, this represents a list of such GUIDs, separated
430 root 1.1 by whitespace from each other.
431    
432     For example, many BCD objects can I<inherit> elements from other BCD
433 root 1.11 objects by specifying the GUIDs of those other objects in a GUID list
434 root 1.1 called surprisingly called C<inherit>:
435    
436     "inherit" : "{dbgsettings} {emssettings} {badmemory}",
437    
438     This example also shows how human readable aliases can be used.
439    
440     =item device
441    
442     This type is why I write I<most> are easy to explain earlier: This type
443     is the pinnacle of Microsoft-typical hacks layered on top of other
444     hacks. Understanding this type took more time than writing all the rest of
445     PBCDEDIT, and because it is so complex, this type has its own subsection
446     below.
447     =back
448    
449 root 1.50 =head3 The BCD "device" element type
450 root 1.1
451     Device elements specify, well, devices. They are used for such diverse
452 root 1.11 purposes such as finding a TFTP network boot image, serial ports or VMBUS
453 root 1.1 devices, but most commonly they are used to specify the disk (harddisk,
454 root 1.11 cdrom, ramdisk, vhd...) to boot from.
455 root 1.1
456     The device element is kind of a mini-language in its own which is much
457     more versatile then the limited windows interface to it - BCDEDIT -
458     reveals.
459    
460     While some information can be found on the BCD store and the windows
461     registry, there is pretty much no public information about the device
462     element, so almost everything known about it had to be researched first
463     in the process of writing this script, and consequently, support for BCD
464     device elements is partial only.
465    
466     On the other hand, the expressive power of PBCDEDIT in specifying devices
467 root 1.11 is much bigger than BCDEDIT and therefore more can be done with it. The
468 root 1.1 downside is that BCD device elements are much more complicated than what
469     you might think from reading the BCDEDIT documentation.
470    
471     In other words, simple things are complicated, and complicated things are
472     possible.
473    
474     Anyway, the general syntax of device elements is an optional GUID,
475 root 1.11 followed by a device type, optionally followed by hexadecimal flags in
476 root 1.1 angle brackets, optionally followed by C<=> and a comma-separated list of
477     arguments, some of which can be (and often are) in turn devices again.
478    
479     [{GUID}]type[<flags>][=arg,arg...]
480    
481     Here are some examples:
482    
483     boot
484     {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
485     locate=<null>,element,systemroot
486     partition=<null>,harddisk,mbr,47cbc08a,1048576
487     partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
488     block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
489     block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
490     binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
491    
492     I hope you are suitably impressed. I was, too, when I realized decoding
493     these binary blobs is not as easy as I had assumed.
494    
495     The optional prefixed GUID seems to refer to a device BCD object, which
496     can be used to specify more device-specific BCD elements (for example
497     C<ramdisksdidevice> and C<ramdisksdpath>).
498    
499     The flags after the type are omitted when they are C<0>. The only known
500     flag is C<1>, which seems to indicate that the parent device is invalid. I
501     don't claim to fully understand it, but it seems to indicate that the
502     boot manager has to search the device itself. Why the device is specified
503     in the first place escapes me, but a lot of this device stuff seems to be
504     badly hacked together...
505    
506     The types understood and used by PBCDEDIT are as follows (keep in mind
507     that not of all the following is necessarily supported in PBCDEDIT):
508    
509     =over
510    
511 root 1.14 =item C<binary=>I<hex...>
512 root 1.1
513     This type isn't actually a real BCD element type, but a fallback for those
514     cases where PBCDEDIT can't perfectly decode a device element (except for
515     the leading GUID, which it can always decode). In such cases, it will
516     convert the device into this type with a hexdump of the element data.
517    
518 root 1.14 =item C<null>
519 root 1.1
520 root 1.42 This is another special type - sometimes, a device is all zero-filled,
521     which is not valid. This can mark the absence of a device or something
522     PBCDEDIT does not understand, so it decodes it into this special "all
523     zero" type called C<null>.
524 root 1.1
525     It's most commonly found in devices that can use an optional parent
526     device, when no parent device is used.
527    
528 root 1.14 =item C<boot>
529 root 1.1
530     Another type without parameters, this refers to the device that was booted
531     from (nowadays typically the EFI system partition).
532    
533 root 1.14 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
534 root 1.1
535     This specifies a VMBUS device with the given interface type and interface
536     instance, both of which are "naked" (no curly braces) GUIDs.
537    
538     Made-up example (couldn't find a single example on the web):
539    
540     vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
541    
542 root 1.14 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
543 root 1.1
544 root 1.18 This designates a specific partition on a block device. I<parent> is an
545     optional parent device on which to search on, and is often C<null>. Note
546     that the angle brackets around I<parent> are part of the syntax.
547 root 1.1
548 root 1.17 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
549 root 1.1 C<file> or C<vhd>, where the first three should be self-explaining,
550 root 1.21 C<file> is usually used to locate a file to be used as a disk image,
551     and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
552     F<vhdx> files.
553 root 1.1
554 root 1.17 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
555 root 1.1 used for devices without partitions, such as cdroms, where the "partition"
556     is usually the whole device.
557    
558 root 1.17 The I<diskid> identifies the disk or device using a unique signature, and
559     the same is true for the I<partitionid>. How these are interpreted depends
560     on the I<partitiontype>:
561 root 1.1
562     =over
563    
564 root 1.13 =item C<mbr>
565 root 1.1
566     The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
567     MBR, interpreted as a 32 bit unsigned little endian integer and written as
568     hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
569    
570 root 1.11 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
571 root 1.1 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
572 root 1.18 display the I<diskid>.
573 root 1.1
574 root 1.18 The I<partitionid> is the byte offset(!) of the partition counting from
575 root 1.1 the beginning of the MBR.
576    
577 root 1.18 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
578 root 1.1 starting at sector C<2048> (= 1048576 / 512).
579    
580     partition=<null>,harddisk,mbr,47cbc08a,1048576
581    
582 root 1.13 =item C<gpt>
583 root 1.1
584 root 1.18 The I<diskid> is the disk GUID/disk identifier GUID from the partition
585     table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
586     partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
587 root 1.1
588     Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
589     disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
590    
591     partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
592    
593 root 1.14 =item C<raw>
594 root 1.1
595 root 1.18 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
596 root 1.11 disk number and signifies the whole disk. BCDEDIT cannot display the
597     resulting device, and I am doubtful whether it has a useful effect.
598 root 1.1
599     =back
600    
601 root 1.14 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
602 root 1.1
603     This is exactly the same as the C<partition> type, except for a tiny
604     detail: instead of using the partition start offset, this type uses the
605     partition number for MBR disks. Behaviour other partition types should be
606     the same.
607    
608     The partition number starts at C<1> and skips unused partition, so if
609     there are two primary partitions and another partition inside the extended
610     partition, the primary partitions are number C<1> and C<2> and the
611 root 1.11 partition inside the extended partition is number C<3>, regardless of any
612 root 1.1 gaps.
613    
614 root 1.14 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
615 root 1.1
616     This device description will make the bootloader search for a partition
617     with a given path.
618    
619 root 1.18 The I<parent> device is the device to search on (angle brackets are
620     still part of the syntax!) If it is C<null>, then C<locate> will
621 root 1.1 search all disks it can find.
622    
623 root 1.18 I<locatetype> is either C<element> or C<path>, and merely distinguishes
624 root 1.1 between two different ways to specify the path to search for: C<element>
625 root 1.18 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
626     uses a relative path as I<locatearg>.
627 root 1.1
628 root 1.18 Example: find any partition which has the F<magicfile.xxx> path in the
629 root 1.1 root.
630    
631     locate=<null>,path,\magicfile.xxx
632    
633     Example: find any partition which has the path specified in the
634 root 1.18 C<systemroot> element (typically F<\Windows>).
635 root 1.1
636     locate=<null>,element,systemroot
637    
638 root 1.14 =item C<block=>I<devicetype>,I<args...>
639 root 1.1
640     Last not least, the most complex type, C<block>, which... specifies block
641     devices (which could be inside a F<vhdx> file for example).
642    
643 root 1.18 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
644 root 1.47 C<file> or C<vhd> - the same as for C<partition=>.
645 root 1.1
646 root 1.18 The remaining arguments change depending on the I<devicetype>:
647 root 1.1
648     =over
649    
650 root 1.14 =item C<block=file>,<I<parent>>,I<path>
651 root 1.1
652 root 1.18 Interprets the I<parent> device (typically a partition) as a
653 root 1.1 filesystem and specifies a file path inside.
654    
655 root 1.14 =item C<block=vhd>,<I<parent>>
656 root 1.1
657 root 1.18 Pretty much just changes the interpretation of I<parent>, which is
658 root 1.1 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
659    
660 root 1.14 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
661 root 1.1
662 root 1.18 Interprets the I<parent> device as RAM disk, using the (decimal)
663 root 1.1 base address, byte size and byte offset inside a file specified by
664 root 1.18 I<path>. The numbers are usually all C<0> because they can be extracted
665 root 1.1 from the RAM disk image or other parameters.
666    
667     This is most commonly used to boot C<wim> images.
668    
669 root 1.14 =item C<block=floppy>,I<drivenum>
670 root 1.1
671     Refers to a removable drive identified by a number. BCDEDIT cannot display
672 root 1.14 the resulting device, and it is not clear what effect it will have.
673 root 1.1
674 root 1.14 =item C<block=cdrom>,I<drivenum>
675 root 1.1
676     Pretty much the same as C<floppy> but for CD-ROMs.
677    
678     =item anything else
679    
680     Probably not yet implemented. Tell me of your needs...
681    
682     =back
683    
684 root 1.49 =head4 Examples
685 root 1.1
686     This concludes the syntax overview for device elements, but probably
687 root 1.50 leaves many questions open. I can't help with most of them, as I also have
688 root 1.14 many questions, but I can walk you through some actual examples using more
689 root 1.1 complex aspects.
690    
691 root 1.15 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
692 root 1.1
693 root 1.4 Just like with C declarations, you best treat device descriptors as
694     instructions to find your device and work your way from the inside out:
695    
696     locate=<null>,path,\disk.vhdx
697    
698     First, the innermost device descriptor searches all partitions on the
699     system for a file called F<\disk.vhdx>:
700    
701 root 1.16 block=file,<see above>,\disk.vhdx
702 root 1.4
703     Next, this takes the device locate has found and finds a file called
704     F<\disk.vhdx> on it. This is the same file locate was using, but that is
705     only because we find the device using the same path as finding the disk
706     image, so this is purely incidental, although quite common.
707    
708 root 1.15 Next, this file will be opened as a virtual disk:
709 root 1.4
710 root 1.16 block=vhd,<see above>
711 root 1.4
712     And finally, inside this disk, another C<locate> will look for a partition
713     with a path as specified in the C<path> element, which most likely will be
714     F<\Windows\system32\winload.exe>:
715    
716 root 1.16 locate=<see above>,element,path
717 root 1.4
718     As a result, this will boot the first Windows it finds on the first
719     F<disk.vhdx> disk image it can find anywhere.
720 root 1.1
721 root 1.15 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
722 root 1.1
723 root 1.15 Pretty much the same as the previous case, but with a bit of
724     variance. First, look for a specific partition on an MBR-partitioned disk:
725 root 1.4
726     partition=<null>,harddisk,mbr,47cbc08a,242643632128
727    
728     Then open the file F<\win10.vhdx> on that partition:
729    
730 root 1.16 block=file,<see above>,\win10.vhdx
731 root 1.4
732     Then, again, the file is opened as a virtual disk image:
733    
734 root 1.16 block=vhd,<see above>
735 root 1.4
736     And again the windows loader (or whatever is in C<path>) will be searched:
737    
738 root 1.16 locate=<see above>,element,path
739 root 1.1
740 root 1.15 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
741 root 1.1
742 root 1.4 This is quite different. First, it starts with a GUID. This GUID belongs
743     to a BCD object of type C<device>, which has additional parameters:
744    
745     "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
746     "type" : "device",
747     "description" : "sdi file for ramdisk",
748     "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
749     "ramdisksdipath" : "\boot.sdi"
750     },
751    
752     I will not go into many details, but this specifies a (presumably empty)
753 root 1.15 template ramdisk image (F<\boot.sdi>) that is used to initialize the
754     ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
755 root 1.4 see, this F<.sdi> file resides on a different C<partition>.
756    
757 root 1.15 Continuing, as always, from the inside out, first this device descriptor
758 root 1.4 finds a specific partition:
759    
760     partition=<null>,harddisk,mbr,47cbc08a,242643632128
761    
762     And then specifies a C<ramdisk> image on this partition:
763    
764 root 1.16 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
765 root 1.4
766 root 1.5 I don't know what the purpose of the C<< <1> >> flag value is, but it
767 root 1.4 seems to be always there on this kind of entry.
768 root 1.1
769 root 1.5 If you have some good examples to add here, feel free to mail me.
770    
771 root 1.1
772 root 1.26 =head1 EDITING BCD STORES
773 root 1.6
774     The C<edit> and C<parse> subcommands allow you to read a BCD data store
775 root 1.15 and modify it or extract data from it. This is done by executing a series
776 root 1.6 of "editing instructions" which are explained here.
777    
778     =over
779    
780 root 1.22 =item C<get> I<object> I<element>
781 root 1.6
782     Reads the BCD element I<element> from the BCD object I<object> and writes
783     it to standard output, followed by a newline. The I<object> can be a GUID
784     or a human-readable alias, or the special string C<{default}>, which will
785     refer to the default BCD object.
786    
787     Example: find description of the default BCD object.
788    
789     pbcdedit parse BCD get "{default}" description
790    
791 root 1.22 =item C<set> I<object> I<element> I<value>
792 root 1.6
793     Similar to C<get>, but sets the element to the given I<value> instead.
794    
795 root 1.15 Example: change the bootmgr default too
796 root 1.6 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
797    
798 root 1.36 pbcdedit edit BCD set "{bootmgr}" default "{b097d2ad-bc00-11e9-8a9a-525400123456}"
799 root 1.6
800 root 1.22 =item C<eval> I<perlcode>
801 root 1.6
802     This takes the next argument, interprets it as Perl code and
803     evaluates it. This allows you to do more complicated modifications or
804     extractions.
805    
806     The following variables are predefined for your use:
807    
808     =over
809    
810     =item C<$PATH>
811    
812     The path to the BCD data store, as given to C<edit> or C<parse>.
813    
814     =item C<$BCD>
815    
816     The decoded BCD data store.
817    
818     =item C<$DEFAULT>
819    
820     The default BCD object name.
821    
822     =back
823    
824     The example given for C<get>, above, could be expressed like this with
825     C<eval>:
826    
827     pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
828    
829 root 1.15 The example given for C<set> could be expressed like this:
830 root 1.6
831 root 1.36 pbcdedit edit BCD eval '$BCD->{"{bootmgr}"{default} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
832 root 1.6
833 root 1.22 =item C<do> I<path>
834 root 1.6
835     Similar to C<eval>, above, but instead of using the argument as perl code,
836     it loads the perl code from the given file and executes it. This makes it
837     easier to write more complicated or larger programs.
838    
839     =back
840    
841 root 1.22
842 root 1.1 =head1 SEE ALSO
843    
844 root 1.25 For ideas on what you can do with BCD stores in
845     general, and some introductory material, try
846 root 1.1 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
847    
848 root 1.23 For good reference on which BCD objects and
849 root 1.24 elements exist, see Geoff Chappell's pages at
850 root 1.23 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
851 root 1.1
852     =head1 AUTHOR
853    
854 root 1.10 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
855 root 1.1
856     =head1 REPORTING BUGS
857    
858 root 1.11 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
859 root 1.1
860     =head1 BUGS AND SHORTCOMINGS
861    
862     This should be a module. Of a series of modules, even.
863    
864     Registry code should preserve classname and security descriptor data, and
865     whatever else is necessary to read and write any registry hive file.
866    
867     I am also not happy with device descriptors being strings rather than a
868     data structure, but strings are probably better for command line usage. In
869 root 1.15 any case, device descriptors could be converted by simply "splitting" at
870 root 1.1 "=" and "," into an array reference, recursively.
871    
872     =head1 HOMEPAGE
873    
874     Original versions of this program can be found at
875     L<http://software.schmorp.de/pkg/pbcdedit>.
876    
877     =head1 COPYRIGHT
878    
879     Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
880     see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
881     free to change and redistribute it. There is NO WARRANTY, to the extent
882     permitted by law.
883    
884     =cut
885    
886 root 1.32 # common sense is optional, but recommended
887 root 1.34 BEGIN { eval { require "common/sense.pm"; } && common::sense->import }
888 root 1.1
889 root 1.37 no warnings 'portable'; # avoid 32 bit integer warnings
890    
891 root 1.1 use Encode ();
892     use List::Util ();
893     use IO::Handle ();
894     use Time::HiRes ();
895    
896     eval { unpack "Q", pack "Q", 1 }
897     or die "perl with 64 bit integer supported required.\n";
898    
899     our $JSON = eval { require JSON::XS; JSON::XS:: }
900     // eval { require JSON::PP; JSON::PP:: }
901     // die "either JSON::XS or JSON::PP must be installed\n";
902    
903     our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
904    
905     # hack used for debugging
906     sub xxd($$) {
907     open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
908     syswrite $xxd, $_[1];
909     }
910    
911 root 1.6 sub file_load($) {
912     my ($path) = @_;
913    
914     open my $fh, "<:raw", $path
915     or die "$path: $!\n";
916     my $size = -s $fh;
917     $size = read $fh, my $buf, $size
918     or die "$path: short read\n";
919    
920     $buf
921     }
922    
923 root 1.29 # sources and resources used for writing pbcdedit
924     #
925 root 1.1 # registry:
926     # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
927     # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
928     # bcd:
929     # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
930     # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
931     # bcd devices:
932     # reactos' boot/environ/include/bl.h
933     # windows .mof files
934    
935     #############################################################################
936     # registry stuff
937    
938     # we use a hardcoded securitya descriptor - full access for everyone
939     my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
940     my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
941     my $sacl = "";
942     my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
943     my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
944     # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
945     1, 0x8004,
946     20 + (length $sacl) + (length $dacl),
947     20 + (length $sacl) + (length $dacl) + (length $sid),
948     0, 20,
949     $sacl, $dacl, $sid, $sid;
950     my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
951    
952     sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
953    
954     sub KEY_HIVE_ENTRY() { 0x0004 }
955     sub KEY_NO_DELETE () { 0x0008 }
956     sub KEY_COMP_NAME () { 0x0020 }
957    
958     sub VALUE_COMP_NAME() { 0x0001 }
959    
960     my @regf_typename = qw(
961     none sz expand_sz binary dword dword_be link multi_sz
962     resource_list full_resource_descriptor resource_requirements_list
963     qword qword_be
964     );
965    
966     my %regf_dec_type = (
967     sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
968     expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
969     link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
970     multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
971     dword => sub { unpack "L<", shift },
972     dword_be => sub { unpack "L>", shift },
973     qword => sub { unpack "Q<", shift },
974     qword_be => sub { unpack "Q>", shift },
975     );
976    
977     my %regf_enc_type = (
978     sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
979     expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
980     link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
981     multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
982     dword => sub { pack "L<", shift },
983     dword_be => sub { pack "L>", shift },
984     qword => sub { pack "Q<", shift },
985     qword_be => sub { pack "Q>", shift },
986     );
987    
988     # decode a registry hive
989     sub regf_decode($) {
990     my ($hive) = @_;
991    
992     "regf" eq substr $hive, 0, 4
993     or die "not a registry hive\n";
994    
995     my ($major, $minor) = unpack "\@20 L< L<", $hive;
996    
997     $major == 1
998     or die "registry major version is not 1, but $major\n";
999    
1000     $minor >= 2 && $minor <= 6
1001     or die "registry minor version is $minor, only 2 .. 6 are supported\n";
1002    
1003     my $bins = substr $hive, 4096;
1004    
1005     my $decode_key = sub {
1006     my ($ofs) = @_;
1007    
1008     my @res;
1009    
1010     my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
1011    
1012     $sze < 0
1013     or die "key node points to unallocated cell\n";
1014    
1015     $sig eq "nk"
1016     or die "expected key node at $ofs, got '$sig'\n";
1017    
1018     my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
1019    
1020     my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
1021    
1022     # classnames, security descriptors
1023     #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
1024     #if ($cofs != NO_OFS && $clen) {
1025     # #warn "cofs $cofs+$clen\n";
1026     # xxd substr $bins, $cofs, 16;
1027     #}
1028    
1029     $kname = Encode::decode "UTF-16LE", $kname
1030     unless $flags & KEY_COMP_NAME;
1031    
1032     if ($vnum && $vofs != NO_OFS) {
1033     for ($vofs += 4; $vnum--; $vofs += 4) {
1034     my $kofs = unpack "\@$vofs L<", $bins;
1035    
1036     my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
1037    
1038     $sig eq "vk"
1039     or die "key values list contains invalid node (expected vk got '$sig')\n";
1040    
1041     my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
1042    
1043     my $name = substr $bins, $kofs + 24, $nsze;
1044    
1045     $name = Encode::decode "UTF-16LE", $name
1046     unless $flags & VALUE_COMP_NAME;
1047    
1048     my $data;
1049     if ($dsze & 0x80000000) {
1050     $data = substr $bins, $kofs + 12, $dsze & 0x7;
1051     } elsif ($dsze > 16344 && $minor > 3) { # big data
1052     my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
1053    
1054     for ($bofs += 4; $bnum--; $bofs += 4) {
1055     my $dofs = unpack "\@$bofs L<", $bins;
1056     my $dsze = unpack "\@$dofs l<", $bins;
1057     $data .= substr $bins, $dofs + 4, -$dsze - 4;
1058     }
1059     $data = substr $data, 0, $dsze; # cells might be longer than data
1060     } else {
1061     $data = substr $bins, $dofs + 4, $dsze;
1062     }
1063    
1064     $type = $regf_typename[$type] if $type < @regf_typename;
1065    
1066     $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1067     ->($data);
1068    
1069     $res[0]{$name} = [$type, $data];
1070     }
1071     }
1072    
1073     if ($sofs != NO_OFS) {
1074     my $decode_key = __SUB__;
1075    
1076     my $decode_subkeylist = sub {
1077     my ($sofs) = @_;
1078    
1079     my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1080    
1081     if ($sig eq "ri") { # index root
1082     for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1083     __SUB__->(unpack "\@$lofs L<", $bins);
1084     }
1085     } else {
1086     my $inc;
1087    
1088     if ($sig eq "li") { # subkey list
1089     $inc = 4;
1090     } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1091     $inc = 8;
1092     } else {
1093     die "expected subkey list at $sofs, found '$sig'\n";
1094     }
1095    
1096     for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1097     my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1098     $res[1]{$name} = $data;
1099     }
1100     }
1101     };
1102    
1103     $decode_subkeylist->($sofs);
1104     }
1105    
1106     ($kname, \@res);
1107     };
1108    
1109     my ($rootcell) = unpack "\@36 L<", $hive;
1110    
1111     my ($rname, $root) = $decode_key->($rootcell);
1112    
1113     [$rname, $root]
1114     }
1115    
1116     # return a binary windows fILETIME struct
1117     sub filetime_now {
1118     my ($s, $ms) = Time::HiRes::gettimeofday;
1119    
1120     pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1121     }
1122    
1123     # encode a registry hive
1124     sub regf_encode($) {
1125     my ($hive) = @_;
1126    
1127     my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1128    
1129     # the filetime is apparently used to verify log file validity,
1130     # so by generating a new timestamp the log files *should* automatically
1131     # become invalidated and windows would "self-heal" them.
1132     # (update: has been verified by reverse engineering)
1133     # possibly the fact that the two sequence numbes match might also
1134     # make windows think that the hive is not dirty and ignore logs.
1135     # (update: has been verified by reverse engineering)
1136    
1137     my $now = filetime_now;
1138    
1139     # we only create a single hbin
1140     my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1141    
1142     # append cell to $bind, return offset
1143     my $cell = sub {
1144     my ($cell) = @_;
1145    
1146     my $res = length $bins;
1147    
1148     $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1149    
1150     $bins .= pack "l<", -(4 + length $cell);
1151     $bins .= $cell;
1152    
1153     $res
1154     };
1155    
1156     my $sdofs = $cell->($sk); # add a dummy security descriptor
1157     my $sdref = 0; # refcount
1158     substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1159     substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1160    
1161     my $encode_key = sub {
1162     my ($kname, $kdata, $flags) = @_;
1163     my ($values, $subkeys) = @$kdata;
1164    
1165     if ($kname =~ /[^\x00-\xff]/) {
1166     $kname = Encode::encode "UTF-16LE", $kname;
1167     } else {
1168     $flags |= KEY_COMP_NAME;
1169     }
1170    
1171     # encode subkeys
1172    
1173     my @snames =
1174     map $_->[1],
1175     sort { $a->[0] cmp $b->[0] }
1176     map [(uc $_), $_],
1177     keys %$subkeys;
1178    
1179     # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1180     my $maxsname = 4 * List::Util::max map length, @snames;
1181    
1182     my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1183    
1184     # encode values
1185     my $maxvname = 4 * List::Util::max map length, keys %$values;
1186     my @vofs;
1187     my $maxdsze = 0;
1188    
1189     while (my ($vname, $v) = each %$values) {
1190     my $flags = 0;
1191    
1192     if ($vname =~ /[^\x00-\xff]/) {
1193     $vname = Encode::encode "UTF-16LE", $kname;
1194     } else {
1195     $flags |= VALUE_COMP_NAME;
1196     }
1197    
1198     my ($type, $data) = @$v;
1199    
1200     $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1201    
1202     my $dsze;
1203     my $dofs;
1204    
1205     if (length $data <= 4) {
1206     $dsze = 0x80000000 | length $data;
1207     $dofs = unpack "L<", pack "a4", $data;
1208     } else {
1209     $dsze = length $data;
1210     $dofs = $cell->($data);
1211     }
1212    
1213     $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1214    
1215     push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1216     vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1217    
1218     $maxdsze = $dsze if $maxdsze < $dsze;
1219     }
1220    
1221     # encode key
1222    
1223     my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1224     my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1225    
1226     my $kdata = pack "
1227     a2 S< a8 x4 x4
1228     L< L< L< L< L< L<
1229     L< L< L< L< L< L<
1230     x4 S< S< a*
1231     ",
1232     nk => $flags, $now,
1233     (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1234     $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1235     length $kname, 0, $kname;
1236     ++$sdref;
1237    
1238     my $res = $cell->($kdata);
1239    
1240     substr $bins, $_ + 16, 4, pack "L<", $res
1241     for @sofs;
1242    
1243     $res
1244     };
1245    
1246     my ($rname, $root) = @$hive;
1247    
1248     my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1249    
1250     if (my $pad = -(length $bins) & 4095) {
1251     $pad -= 4;
1252     $bins .= pack "l< x$pad", $pad + 4;
1253     }
1254    
1255     substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1256     substr $bins, 8, 4, pack "L<", length $bins;
1257    
1258     my $base = pack "
1259     a4 L< L< a8 L< L< L< L<
1260     L< L< L<
1261     a64
1262     x396
1263     ",
1264     regf => 1974, 1974, $now, 1, 3, 0, 1,
1265     $rofs, length $bins, 1,
1266     (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1267    
1268     my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1269     $chksum = 0xfffffffe if $chksum == 0xffffffff;
1270     $chksum = 1 if $chksum == 0;
1271    
1272     $base .= pack "L<", $chksum;
1273    
1274     $base = pack "a* \@4095 x1", $base;
1275    
1276     $base . $bins
1277     }
1278    
1279     # load and parse registry from file
1280     sub regf_load($) {
1281     my ($path) = @_;
1282    
1283 root 1.6 regf_decode file_load $path
1284 root 1.1 }
1285    
1286     # encode and save registry to file
1287     sub regf_save {
1288     my ($path, $hive) = @_;
1289    
1290     $hive = regf_encode $hive;
1291    
1292     open my $regf, ">:raw", "$path~"
1293     or die "$path~: $!\n";
1294     print $regf $hive
1295     or die "$path~: short write\n";
1296     $regf->sync;
1297     close $regf;
1298    
1299     rename "$path~", $path;
1300     }
1301    
1302     #############################################################################
1303     # bcd stuff
1304    
1305     # human-readable alises for GUID object identifiers
1306     our %bcd_objects = (
1307     '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1308     '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1309     '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1310     '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1311     '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1312     '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1313     '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1314     '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1315     '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1316     '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1317     '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1318     '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1319     '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1320     '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1321     '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1322     '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1323     '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1324     '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1325     '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1326     );
1327    
1328     # default types
1329     our %bcd_object_types = (
1330     '{fwbootmgr}' => 0x10100001,
1331     '{bootmgr}' => 0x10100002,
1332     '{memdiag}' => 0x10200005,
1333     '{ntldr}' => 0x10300006,
1334     '{badmemory}' => 0x20100000,
1335     '{dbgsettings}' => 0x20100000,
1336     '{emssettings}' => 0x20100000,
1337     '{globalsettings}' => 0x20100000,
1338     '{bootloadersettings}' => 0x20200003,
1339     '{hypervisorsettings}' => 0x20200003,
1340     '{kerneldbgsettings}' => 0x20200003,
1341     '{resumeloadersettings}' => 0x20200004,
1342     '{ramdiskoptions}' => 0x30000000,
1343     );
1344    
1345     # object types
1346     our %bcd_types = (
1347     0x10100001 => 'application::fwbootmgr',
1348     0x10100002 => 'application::bootmgr',
1349     0x10200003 => 'application::osloader',
1350     0x10200004 => 'application::resume',
1351     0x10100005 => 'application::memdiag',
1352     0x10100006 => 'application::ntldr',
1353     0x10100007 => 'application::setupldr',
1354     0x10400008 => 'application::bootsector',
1355     0x10400009 => 'application::startup',
1356     0x1020000a => 'application::bootapp',
1357     0x20100000 => 'settings',
1358     0x20200001 => 'inherit::fwbootmgr',
1359     0x20200002 => 'inherit::bootmgr',
1360     0x20200003 => 'inherit::osloader',
1361     0x20200004 => 'inherit::resume',
1362     0x20200005 => 'inherit::memdiag',
1363     0x20200006 => 'inherit::ntldr',
1364     0x20200007 => 'inherit::setupldr',
1365     0x20200008 => 'inherit::bootsector',
1366     0x20200009 => 'inherit::startup',
1367     0x20300000 => 'inherit::device',
1368     0x30000000 => 'device',
1369     );
1370    
1371     our %rbcd_objects = reverse %bcd_objects;
1372    
1373     our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1374    
1375     sub dec_guid($) {
1376     my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1377     sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1378     }
1379    
1380     sub enc_guid($) {
1381     $_[0] =~ /^$RE_GUID\z/o
1382     or return;
1383    
1384     pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1385     }
1386    
1387     # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1388     sub dec_wguid($) {
1389     my $guid = "{" . (dec_guid shift) . "}";
1390    
1391     $bcd_objects{$guid} // $guid
1392     }
1393    
1394     sub enc_wguid($) {
1395     my ($guid) = @_;
1396    
1397     if (my $alias = $rbcd_objects{$guid}) {
1398     $guid = $alias;
1399     }
1400    
1401     $guid =~ /^\{($RE_GUID)\}\z/o
1402     or return;
1403    
1404     enc_guid $1
1405     }
1406    
1407     sub BCDE_CLASS () { 0xf0000000 }
1408     sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1409     sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1410     sub BCDE_CLASS_DEVICE () { 0x30000000 }
1411     sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1412    
1413     sub BCDE_FORMAT () { 0x0f000000 }
1414     sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1415     sub BCDE_FORMAT_STRING () { 0x02000000 }
1416     sub BCDE_FORMAT_GUID () { 0x03000000 }
1417     sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1418     sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1419     sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1420     sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1421    
1422     sub enc_integer($) {
1423     my $value = shift;
1424     $value = oct $value if $value =~ /^0[bBxX]/;
1425     unpack "H*", pack "Q<", $value
1426     }
1427    
1428 root 1.37 sub enc_device($$);
1429     sub dec_device($$);
1430    
1431 root 1.1 our %bcde_dec = (
1432     BCDE_FORMAT_DEVICE , \&dec_device,
1433     # # for round-trip verification
1434     # BCDE_FORMAT_DEVICE , sub {
1435     # my $dev = dec_device $_[0];
1436     # $_[0] eq enc_device $dev
1437     # or die "bcd device decoding does not round trip for $_[0]\n";
1438     # $dev
1439     # },
1440     BCDE_FORMAT_STRING , sub { shift },
1441     BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1442     BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1443     BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1444     BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1445     BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1446     );
1447    
1448     our %bcde_enc = (
1449 root 1.37 BCDE_FORMAT_DEVICE , sub { binary => enc_device $_[0], $_[1] },
1450 root 1.1 BCDE_FORMAT_STRING , sub { sz => shift },
1451     BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1452     BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1453     BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1454     BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1455     BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1456     );
1457    
1458     # BCD Elements
1459 root 1.37 our %bcde_byclass = (
1460     any => {
1461     0x11000001 => 'device',
1462     0x12000002 => 'path',
1463     0x12000004 => 'description',
1464     0x12000005 => 'locale',
1465     0x14000006 => 'inherit',
1466     0x15000007 => 'truncatememory',
1467     0x14000008 => 'recoverysequence',
1468     0x16000009 => 'recoveryenabled',
1469     0x1700000a => 'badmemorylist',
1470     0x1600000b => 'badmemoryaccess',
1471     0x1500000c => 'firstmegabytepolicy',
1472     0x1500000d => 'relocatephysical',
1473     0x1500000e => 'avoidlowmemory',
1474     0x1600000f => 'traditionalkseg',
1475     0x16000010 => 'bootdebug',
1476     0x15000011 => 'debugtype',
1477     0x15000012 => 'debugaddress',
1478     0x15000013 => 'debugport',
1479     0x15000014 => 'baudrate',
1480     0x15000015 => 'channel',
1481     0x12000016 => 'targetname',
1482     0x16000017 => 'noumex',
1483     0x15000018 => 'debugstart',
1484     0x12000019 => 'busparams',
1485     0x1500001a => 'hostip',
1486     0x1500001b => 'port',
1487     0x1600001c => 'dhcp',
1488     0x1200001d => 'key',
1489     0x1600001e => 'vm',
1490     0x16000020 => 'bootems',
1491     0x15000022 => 'emsport',
1492     0x15000023 => 'emsbaudrate',
1493     0x12000030 => 'loadoptions',
1494     0x16000040 => 'advancedoptions',
1495     0x16000041 => 'optionsedit',
1496     0x15000042 => 'keyringaddress',
1497     0x11000043 => 'bootstatdevice',
1498     0x12000044 => 'bootstatfilepath',
1499     0x16000045 => 'preservebootstat',
1500     0x16000046 => 'graphicsmodedisabled',
1501     0x15000047 => 'configaccesspolicy',
1502     0x16000048 => 'nointegritychecks',
1503     0x16000049 => 'testsigning',
1504     0x1200004a => 'fontpath',
1505     0x1500004b => 'integrityservices',
1506     0x1500004c => 'volumebandid',
1507     0x16000050 => 'extendedinput',
1508     0x15000051 => 'initialconsoleinput',
1509     0x15000052 => 'graphicsresolution',
1510     0x16000053 => 'restartonfailure',
1511     0x16000054 => 'highestmode',
1512     0x16000060 => 'isolatedcontext',
1513     0x15000065 => 'displaymessage',
1514     0x15000066 => 'displaymessageoverride',
1515     0x16000068 => 'nobootuxtext',
1516     0x16000069 => 'nobootuxprogress',
1517     0x1600006a => 'nobootuxfade',
1518     0x1600006b => 'bootuxreservepooldebug',
1519     0x1600006c => 'bootuxdisabled',
1520     0x1500006d => 'bootuxfadeframes',
1521     0x1600006e => 'bootuxdumpstats',
1522     0x1600006f => 'bootuxshowstats',
1523     0x16000071 => 'multibootsystem',
1524     0x16000072 => 'nokeyboard',
1525     0x15000073 => 'aliaswindowskey',
1526     0x16000074 => 'bootshutdowndisabled',
1527     0x15000075 => 'performancefrequency',
1528     0x15000076 => 'securebootrawpolicy',
1529     0x17000077 => 'allowedinmemorysettings',
1530     0x15000079 => 'bootuxtransitiontime',
1531     0x1600007a => 'mobilegraphics',
1532     0x1600007b => 'forcefipscrypto',
1533     0x1500007d => 'booterrorux',
1534     0x1600007e => 'flightsigning',
1535     0x1500007f => 'measuredbootlogformat',
1536     0x15000080 => 'displayrotation',
1537     0x15000081 => 'logcontrol',
1538     0x16000082 => 'nofirmwaresync',
1539     0x11000084 => 'windowssyspart',
1540     0x16000087 => 'numlock',
1541     0x26000202 => 'skipffumode',
1542     0x26000203 => 'forceffumode',
1543     0x25000510 => 'chargethreshold',
1544     0x26000512 => 'offmodecharging',
1545     0x25000aaa => 'bootflow',
1546     0x45000001 => 'devicetype',
1547     0x42000002 => 'applicationrelativepath',
1548     0x42000003 => 'ramdiskdevicerelativepath',
1549     0x46000004 => 'omitosloaderelements',
1550     0x47000006 => 'elementstomigrate',
1551     0x46000010 => 'recoveryos',
1552     },
1553     bootapp => {
1554     0x26000145 => 'enablebootdebugpolicy',
1555     0x26000146 => 'enablebootorderclean',
1556     0x26000147 => 'enabledeviceid',
1557     0x26000148 => 'enableffuloader',
1558     0x26000149 => 'enableiuloader',
1559     0x2600014a => 'enablemassstorage',
1560     0x2600014b => 'enablerpmbprovisioning',
1561     0x2600014c => 'enablesecurebootpolicy',
1562     0x2600014d => 'enablestartcharge',
1563     0x2600014e => 'enableresettpm',
1564     },
1565     bootmgr => {
1566     0x24000001 => 'displayorder',
1567     0x24000002 => 'bootsequence',
1568     0x23000003 => 'default',
1569     0x25000004 => 'timeout',
1570     0x26000005 => 'resume',
1571     0x23000006 => 'resumeobject',
1572     0x24000007 => 'startupsequence',
1573     0x24000010 => 'toolsdisplayorder',
1574     0x26000020 => 'displaybootmenu',
1575     0x26000021 => 'noerrordisplay',
1576     0x21000022 => 'bcddevice',
1577     0x22000023 => 'bcdfilepath',
1578     0x26000024 => 'hormenabled',
1579     0x26000025 => 'hiberboot',
1580     0x22000026 => 'passwordoverride',
1581     0x22000027 => 'pinpassphraseoverride',
1582     0x26000028 => 'processcustomactionsfirst',
1583     0x27000030 => 'customactions',
1584     0x26000031 => 'persistbootsequence',
1585     0x26000032 => 'skipstartupsequence',
1586     0x22000040 => 'fverecoveryurl',
1587     0x22000041 => 'fverecoverymessage',
1588     },
1589     device => {
1590     0x35000001 => 'ramdiskimageoffset',
1591     0x35000002 => 'ramdisktftpclientport',
1592     0x31000003 => 'ramdisksdidevice',
1593     0x32000004 => 'ramdisksdipath',
1594     0x35000005 => 'ramdiskimagelength',
1595     0x36000006 => 'exportascd',
1596     0x35000007 => 'ramdisktftpblocksize',
1597     0x35000008 => 'ramdisktftpwindowsize',
1598     0x36000009 => 'ramdiskmcenabled',
1599     0x3600000a => 'ramdiskmctftpfallback',
1600     0x3600000b => 'ramdisktftpvarwindow',
1601     },
1602     memdiag => {
1603     0x25000001 => 'passcount',
1604     0x25000002 => 'testmix',
1605     0x25000003 => 'failurecount',
1606     0x26000003 => 'cacheenable',
1607     0x25000004 => 'testtofail',
1608     0x26000004 => 'failuresenabled',
1609     0x25000005 => 'stridefailcount',
1610     0x26000005 => 'cacheenable',
1611     0x25000006 => 'invcfailcount',
1612     0x25000007 => 'matsfailcount',
1613     0x25000008 => 'randfailcount',
1614     0x25000009 => 'chckrfailcount',
1615     },
1616     ntldr => {
1617     0x22000001 => 'bpbstring',
1618     },
1619     osloader => {
1620     0x21000001 => 'osdevice',
1621     0x22000002 => 'systemroot',
1622     0x23000003 => 'resumeobject',
1623     0x26000004 => 'stampdisks',
1624     0x26000010 => 'detecthal',
1625     0x22000011 => 'kernel',
1626     0x22000012 => 'hal',
1627     0x22000013 => 'dbgtransport',
1628     0x25000020 => 'nx',
1629     0x25000021 => 'pae',
1630     0x26000022 => 'winpe',
1631     0x26000024 => 'nocrashautoreboot',
1632     0x26000025 => 'lastknowngood',
1633     0x26000026 => 'oslnointegritychecks',
1634     0x26000027 => 'osltestsigning',
1635     0x26000030 => 'nolowmem',
1636     0x25000031 => 'removememory',
1637     0x25000032 => 'increaseuserva',
1638     0x25000033 => 'perfmem',
1639     0x26000040 => 'vga',
1640     0x26000041 => 'quietboot',
1641     0x26000042 => 'novesa',
1642     0x26000043 => 'novga',
1643     0x25000050 => 'clustermodeaddressing',
1644     0x26000051 => 'usephysicaldestination',
1645     0x25000052 => 'restrictapiccluster',
1646     0x22000053 => 'evstore',
1647     0x26000054 => 'uselegacyapicmode',
1648     0x26000060 => 'onecpu',
1649     0x25000061 => 'numproc',
1650     0x26000062 => 'maxproc',
1651     0x25000063 => 'configflags',
1652     0x26000064 => 'maxgroup',
1653     0x26000065 => 'groupaware',
1654     0x25000066 => 'groupsize',
1655     0x26000070 => 'usefirmwarepcisettings',
1656     0x25000071 => 'msi',
1657     0x25000072 => 'pciexpress',
1658     0x25000080 => 'safeboot',
1659     0x26000081 => 'safebootalternateshell',
1660     0x26000090 => 'bootlog',
1661     0x26000091 => 'sos',
1662     0x260000a0 => 'debug',
1663     0x260000a1 => 'halbreakpoint',
1664     0x260000a2 => 'useplatformclock',
1665     0x260000a3 => 'forcelegacyplatform',
1666     0x260000a4 => 'useplatformtick',
1667     0x260000a5 => 'disabledynamictick',
1668     0x250000a6 => 'tscsyncpolicy',
1669     0x260000b0 => 'ems',
1670     0x250000c0 => 'forcefailure',
1671     0x250000c1 => 'driverloadfailurepolicy',
1672     0x250000c2 => 'bootmenupolicy',
1673     0x260000c3 => 'onetimeadvancedoptions',
1674     0x260000c4 => 'onetimeoptionsedit',
1675     0x250000e0 => 'bootstatuspolicy',
1676     0x260000e1 => 'disableelamdrivers',
1677     0x250000f0 => 'hypervisorlaunchtype',
1678     0x220000f1 => 'hypervisorpath',
1679     0x260000f2 => 'hypervisordebug',
1680     0x250000f3 => 'hypervisordebugtype',
1681     0x250000f4 => 'hypervisordebugport',
1682     0x250000f5 => 'hypervisorbaudrate',
1683     0x250000f6 => 'hypervisorchannel',
1684     0x250000f7 => 'bootux',
1685     0x260000f8 => 'hypervisordisableslat',
1686     0x220000f9 => 'hypervisorbusparams',
1687     0x250000fa => 'hypervisornumproc',
1688     0x250000fb => 'hypervisorrootprocpernode',
1689     0x260000fc => 'hypervisoruselargevtlb',
1690     0x250000fd => 'hypervisorhostip',
1691     0x250000fe => 'hypervisorhostport',
1692     0x250000ff => 'hypervisordebugpages',
1693     0x25000100 => 'tpmbootentropy',
1694     0x22000110 => 'hypervisorusekey',
1695     0x22000112 => 'hypervisorproductskutype',
1696     0x25000113 => 'hypervisorrootproc',
1697     0x26000114 => 'hypervisordhcp',
1698     0x25000115 => 'hypervisoriommupolicy',
1699     0x26000116 => 'hypervisorusevapic',
1700     0x22000117 => 'hypervisorloadoptions',
1701     0x25000118 => 'hypervisormsrfilterpolicy',
1702     0x25000119 => 'hypervisormmionxpolicy',
1703     0x2500011a => 'hypervisorschedulertype',
1704     0x25000120 => 'xsavepolicy',
1705     0x25000121 => 'xsaveaddfeature0',
1706     0x25000122 => 'xsaveaddfeature1',
1707     0x25000123 => 'xsaveaddfeature2',
1708     0x25000124 => 'xsaveaddfeature3',
1709     0x25000125 => 'xsaveaddfeature4',
1710     0x25000126 => 'xsaveaddfeature5',
1711     0x25000127 => 'xsaveaddfeature6',
1712     0x25000128 => 'xsaveaddfeature7',
1713     0x25000129 => 'xsaveremovefeature',
1714     0x2500012a => 'xsaveprocessorsmask',
1715     0x2500012b => 'xsavedisable',
1716     0x2500012c => 'kerneldebugtype',
1717     0x2200012d => 'kernelbusparams',
1718     0x2500012e => 'kerneldebugaddress',
1719     0x2500012f => 'kerneldebugport',
1720     0x25000130 => 'claimedtpmcounter',
1721     0x25000131 => 'kernelchannel',
1722     0x22000132 => 'kerneltargetname',
1723     0x25000133 => 'kernelhostip',
1724     0x25000134 => 'kernelport',
1725     0x26000135 => 'kerneldhcp',
1726     0x22000136 => 'kernelkey',
1727     0x22000137 => 'imchivename',
1728     0x21000138 => 'imcdevice',
1729     0x25000139 => 'kernelbaudrate',
1730     0x22000140 => 'mfgmode',
1731     0x26000141 => 'event',
1732     0x25000142 => 'vsmlaunchtype',
1733     0x25000144 => 'hypervisorenforcedcodeintegrity',
1734     0x21000150 => 'systemdatadevice',
1735     0x21000151 => 'osarcdevice',
1736     0x21000153 => 'osdatadevice',
1737     0x21000154 => 'bspdevice',
1738     0x21000155 => 'bspfilepath',
1739     },
1740     resume => {
1741     0x21000001 => 'filedevice',
1742     0x22000002 => 'filepath',
1743     0x26000003 => 'customsettings',
1744     0x26000004 => 'pae',
1745     0x21000005 => 'associatedosdevice',
1746     0x26000006 => 'debugoptionenabled',
1747     0x25000007 => 'bootux',
1748     0x25000008 => 'bootmenupolicy',
1749     0x26000024 => 'hormenabled',
1750     },
1751     startup => {
1752     0x26000001 => 'pxesoftreboot',
1753     0x22000002 => 'applicationname',
1754     },
1755     );
1756    
1757     # mask, value => class
1758     our @bcde_typeclass = (
1759     [0x00000000, 0x00000000, 'any'],
1760     [0xf00fffff, 0x1000000a, 'bootapp'],
1761     [0xf0ffffff, 0x2020000a, 'bootapp'],
1762     [0xf00fffff, 0x10000001, 'bootmgr'],
1763     [0xf00fffff, 0x10000002, 'bootmgr'],
1764     [0xf0ffffff, 0x20200001, 'bootmgr'],
1765     [0xf0ffffff, 0x20200002, 'bootmgr'],
1766     [0xf0f00000, 0x20300000, 'device'],
1767     [0xf0000000, 0x30000000, 'device'],
1768     [0xf00fffff, 0x10000005, 'memdiag'],
1769     [0xf0ffffff, 0x20200005, 'memdiag'],
1770     [0xf00fffff, 0x10000006, 'ntldr'],
1771     [0xf00fffff, 0x10000007, 'ntldr'],
1772     [0xf0ffffff, 0x20200006, 'ntldr'],
1773     [0xf0ffffff, 0x20200007, 'ntldr'],
1774     [0xf00fffff, 0x10000003, 'osloader'],
1775     [0xf0ffffff, 0x20200003, 'osloader'],
1776     [0xf00fffff, 0x10000004, 'resume'],
1777     [0xf0ffffff, 0x20200004, 'resume'],
1778     [0xf00fffff, 0x10000009, 'startup'],
1779     [0xf0ffffff, 0x20200009, 'startup'],
1780 root 1.1 );
1781    
1782 root 1.37 our %rbcde_byclass;
1783    
1784     while (my ($k, $v) = each %bcde_byclass) {
1785     $rbcde_byclass{$k} = { reverse %$v };
1786     }
1787    
1788     # decodes (numerical elem, type) to name
1789     sub dec_bcde_id($$) {
1790     for my $class (@bcde_typeclass) {
1791     if (($_[1] & $class->[0]) == $class->[1]) {
1792     if (my $id = $bcde_byclass{$class->[2]}{$_[0]}) {
1793     return $id;
1794     }
1795     }
1796     }
1797 root 1.1
1798 root 1.37 sprintf "custom:%08x", $_[0]
1799 root 1.1 }
1800    
1801 root 1.37 # encodes (elem as name, type)
1802     sub enc_bcde_id($$) {
1803     $_[0] =~ /^custom:(?:0x)?([0-9a-fA-F]{8}$)/
1804     and return hex $1;
1805    
1806     for my $class (@bcde_typeclass) {
1807     if (($_[1] & $class->[0]) == $class->[1]) {
1808     if (my $value = $rbcde_byclass{$class->[2]}{$_[0]}) {
1809     return $value;
1810     }
1811     }
1812     }
1813    
1814     undef
1815 root 1.1 }
1816    
1817     # decode/encode bcd device element - the horror, no documentaion
1818     # whatsoever, supercomplex, superinconsistent.
1819    
1820     our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1821     our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1822     our @part_type = qw(gpt mbr raw);
1823    
1824     our $NULL_DEVICE = "\x00" x 16;
1825    
1826     # biggest bitch to decode, ever
1827     # this decoded a device portion after the GUID
1828 root 1.37 sub dec_device_($$);
1829     sub dec_device_($$) {
1830     my ($device, $type) = @_;
1831 root 1.1
1832     my $res;
1833    
1834     my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1835    
1836     $pad == 0
1837     or die "non-zero reserved field in device descriptor\n";
1838    
1839     if ($length == 0 && $type == 0 && $flags == 0) {
1840     return ("null", $device);
1841     }
1842    
1843     $length >= 16
1844     or die "device element size too small ($length)\n";
1845    
1846     $type = $dev_type[$type] // die "$type: unknown device type\n";
1847     #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1848    
1849     $res .= $type;
1850     $res .= sprintf "<%x>", $flags if $flags;
1851    
1852     my $tail = substr $device, $length - 4 * 4, 1e9, "";
1853    
1854     $length == 4 * 4 + length $device
1855     or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1856    
1857     my $dec_path = sub {
1858     my ($path, $error) = @_;
1859    
1860     $path =~ /^((?:..)*)\x00\x00\z/s
1861     or die "$error\n";
1862    
1863     $path = Encode::decode "UTF-16LE", $1;
1864    
1865     $path
1866     };
1867    
1868     if ($type eq "partition" or $type eq "legacypartition") {
1869     my $partdata = substr $device, 0, 16, "";
1870     my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1871    
1872     $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1873     $parttype = $part_type[$parttype] // die "unknown partition type\n";
1874    
1875     my $diskid = substr $device, 0, 16, "";
1876    
1877     $diskid = $parttype eq "gpt"
1878     ? dec_guid substr $diskid, 0, 16
1879     : sprintf "%08x", unpack "V", $diskid;
1880    
1881     my $partid = $parttype eq "gpt" ? dec_guid $partdata
1882     : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1883     : unpack "L<", $partdata; # partition number, one-based
1884    
1885 root 1.37 (my $parent, $device) = dec_device_ $device, $type;
1886 root 1.1
1887     $res .= "=";
1888     $res .= "<$parent>";
1889     $res .= ",$blocktype,$parttype,$diskid,$partid";
1890    
1891     # PartitionType (gpt, mbr, raw)
1892     # guid | partsig | disknumber
1893    
1894     } elsif ($type eq "boot") {
1895     $device =~ s/^\x00{56}\z//
1896     or die "boot device type with extra data not supported\n";
1897    
1898     } elsif ($type eq "block") {
1899     my $blocktype = unpack "V", substr $device, 0, 4, "";
1900    
1901     $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1902    
1903     # decode a "file path" structure
1904     my $dec_file = sub {
1905     my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1906    
1907     my $path = substr $device, 0, $flen - 12, "";
1908    
1909     $fver == 1
1910     or die "unsupported file descriptor version '$fver'\n";
1911    
1912     $ftype == 5
1913     or die "unsupported file descriptor path type '$type'\n";
1914    
1915 root 1.37 (my $parent, $path) = dec_device_ $path, $type;
1916 root 1.1
1917     $path = $dec_path->($path, "file device without path");
1918    
1919     ($parent, $path)
1920     };
1921    
1922     if ($blocktype eq "file") {
1923     my ($parent, $path) = $dec_file->();
1924    
1925     $res .= "=file,<$parent>,$path";
1926    
1927     } elsif ($blocktype eq "vhd") {
1928     $device =~ s/^\x00{20}//s
1929     or die "virtualdisk has non-zero fields I don't understand\n";
1930    
1931 root 1.37 (my $parent, $device) = dec_device_ $device, $type;
1932 root 1.1
1933     $res .= "=vhd,<$parent>";
1934    
1935     } elsif ($blocktype eq "ramdisk") {
1936     my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1937     my ($subdev, $path) = $dec_file->();
1938    
1939     $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1940    
1941     } else {
1942     die "unsupported block type '$blocktype'\n";
1943     }
1944    
1945     } elsif ($type eq "locate") {
1946     # mode, bcde_id, unknown, string
1947     # we assume locate has _either_ an element id _or_ a path, but not both
1948    
1949     my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1950    
1951     if ($parent) {
1952     # not sure why this is an offset - it must come after the path
1953     $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1954 root 1.37 ($parent, my $tail) = dec_device_ $parent, $type;
1955 root 1.1 0 == length $tail
1956     or die "trailing data after locate device parent\n";
1957     } else {
1958     $parent = "null";
1959     }
1960    
1961     my $path = $device; $device = "";
1962     $path = $dec_path->($path, "device locate mode without path");
1963    
1964     $res .= "=<$parent>,";
1965    
1966     if ($mode == 0) { # "Element"
1967     !length $path
1968     or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1969    
1970 root 1.37 $elem = dec_bcde_id $elem, $type;
1971 root 1.1 $res .= "element,$elem";
1972    
1973     } elsif ($mode == 1) { # "String"
1974     !$elem
1975     or die "device locate mode 1 having non-zero element\n";
1976    
1977     $res .= "path,$path";
1978     } else {
1979     # mode 2 maybe called "ElementChild" with element and parent device? example needed
1980     die "device locate mode '$mode' not supported\n";
1981     }
1982    
1983     } elsif ($type eq "vmbus") {
1984     my $type = dec_guid substr $device, 0, 16, "";
1985     my $instance = dec_guid substr $device, 0, 16, "";
1986    
1987     $device =~ s/^\x00{24}\z//
1988     or die "vmbus has non-zero fields I don't understand\n";
1989    
1990     $res .= "=$type,$instance";
1991    
1992     } else {
1993     die "unsupported device type '$type'\n";
1994     }
1995    
1996     warn "unexpected trailing device data($res), " . unpack "H*",$device
1997     if length $device;
1998     #length $device
1999     # and die "unexpected trailing device data\n";
2000    
2001     ($res, $tail)
2002     }
2003    
2004     # decode a full binary BCD device descriptor
2005 root 1.37 sub dec_device($$) {
2006     my ($device, $type) = @_;
2007 root 1.1
2008     $device = pack "H*", $device;
2009    
2010     my $guid = dec_guid substr $device, 0, 16, "";
2011     $guid = $guid eq "00000000-0000-0000-0000-000000000000"
2012     ? "" : "{$guid}";
2013    
2014     eval {
2015 root 1.37 my ($dev, $tail) = dec_device_ $device, $type;
2016 root 1.1
2017     $tail eq ""
2018     or die "unsupported trailing data after device descriptor\n";
2019    
2020     "$guid$dev"
2021     # } // scalar ((warn $@), "$guid$fallback")
2022     } // ($guid . "binary=" . unpack "H*", $device)
2023     }
2024    
2025     sub indexof($@) {
2026     my $value = shift;
2027    
2028     for (0 .. $#_) {
2029     $value eq $_[$_]
2030     and return $_;
2031     }
2032    
2033     undef
2034     }
2035    
2036     # encode the device portion after the GUID
2037 root 1.37 sub enc_device_($$);
2038     sub enc_device_($$) {
2039     my ($device, $type) = @_;
2040 root 1.1
2041     my $enc_path = sub {
2042     my $path = shift;
2043     $path =~ s/\//\\/g;
2044     (Encode::encode "UTF-16LE", $path) . "\x00\x00"
2045     };
2046    
2047     my $enc_file = sub {
2048     my ($parent, $path) = @_; # parent and path must already be encoded
2049    
2050     $path = $parent . $path;
2051    
2052     # fver 1, ftype 5
2053     pack "VVVa*", 1, 12 + length $path, 5, $path
2054     };
2055    
2056     my $parse_path = sub {
2057     s/^([\/\\][^<>"|?*\x00-\x1f]*)//
2058     or die "$_: invalid path\n";
2059    
2060     $enc_path->($1)
2061     };
2062    
2063     my $parse_parent = sub {
2064     my $parent;
2065    
2066     if (s/^<//) {
2067 root 1.37 ($parent, $_) = enc_device_ $_, $type;
2068 root 1.1 s/^>//
2069     or die "$device: syntax error: parent device not followed by '>'\n";
2070     } else {
2071     $parent = $NULL_DEVICE;
2072     }
2073    
2074     $parent
2075     };
2076    
2077     for ($device) {
2078     s/^([a-z]+)//
2079     or die "$_: device does not start with type string\n";
2080    
2081     my $type = $1;
2082     my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
2083     my $payload;
2084    
2085     if ($type eq "binary") {
2086     s/^=([0-9a-fA-F]+)//
2087     or die "binary type must have a hex string argument\n";
2088    
2089     $payload = pack "H*", $1;
2090    
2091     } elsif ($type eq "null") {
2092     return ($NULL_DEVICE, $_);
2093    
2094     } elsif ($type eq "boot") {
2095     $payload = "\x00" x 56;
2096    
2097     } elsif ($type eq "partition" or $type eq "legacypartition") {
2098     s/^=//
2099     or die "$_: missing '=' after $type\n";
2100    
2101     my $parent = $parse_parent->();
2102    
2103     s/^,//
2104     or die "$_: comma missing after partition parent device\n";
2105    
2106     s/^([a-z]+),//
2107     or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
2108     my $blocktype = $1;
2109    
2110     s/^([a-z]+),//
2111     or die "$_: partition block type not followed by partiton type\n";
2112     my $parttype = $1;
2113    
2114     my ($partdata, $diskdata);
2115    
2116     if ($parttype eq "mbr") {
2117     s/^([0-9a-f]{8}),//i
2118     or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
2119     $diskdata = pack "Vx12", hex $1;
2120    
2121     s/^([0-9]+)//
2122     or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
2123    
2124     # the following works for both 64 bit offset and 32 bit partno
2125     $partdata = pack "Q< x8", $1;
2126    
2127     } elsif ($parttype eq "gpt") {
2128     s/^($RE_GUID),//
2129     or die "$_: partition disk guid missing or malformed\n";
2130     $diskdata = enc_guid $1;
2131    
2132     s/^($RE_GUID)//
2133     or die "$_: partition guid missing or malformed\n";
2134     $partdata = enc_guid $1;
2135    
2136     } elsif ($parttype eq "raw") {
2137     s/^([0-9]+)//
2138     or die "$_: partition disk number missing or malformed (must be decimal)\n";
2139    
2140     $partdata = pack "L< x12", $1;
2141    
2142     } else {
2143     die "$parttype: partition type not supported\n";
2144     }
2145    
2146     $payload = pack "a16 L< L< a16 a*",
2147     $partdata,
2148     (indexof $blocktype, @block_type),
2149     (indexof $parttype, @part_type),
2150     $diskdata,
2151     $parent;
2152    
2153     } elsif ($type eq "locate") {
2154     s/^=//
2155     or die "$_: missing '=' after $type\n";
2156    
2157     my ($mode, $elem, $path);
2158    
2159     my $parent = $parse_parent->();
2160    
2161     s/^,//
2162     or die "$_: missing comma after locate parent device\n";
2163    
2164     if (s/^element,//) {
2165 root 1.37 s/^([0-9a-z:]+)//i
2166 root 1.1 or die "$_ locate element must be either name or 8-digit hex id\n";
2167 root 1.37 $elem = enc_bcde_id $1, $type;
2168 root 1.1 $mode = 0;
2169     $path = $enc_path->("");
2170    
2171     } elsif (s/^path,//) {
2172     $mode = 1;
2173     $path = $parse_path->();
2174    
2175     } else {
2176     die "$_ second locate argument must be subtype (either element or path)\n";
2177     }
2178    
2179     if ($parent ne $NULL_DEVICE) {
2180     ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2181     } else {
2182     $parent = 0;
2183     }
2184    
2185     $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2186    
2187     } elsif ($type eq "block") {
2188     s/^=//
2189     or die "$_: missing '=' after $type\n";
2190    
2191     s/^([a-z]+),//
2192     or die "$_: block device does not start with block type (e.g. disk)\n";
2193     my $blocktype = $1;
2194    
2195     my $blockdata;
2196    
2197     if ($blocktype eq "file") {
2198     my $parent = $parse_parent->();
2199     s/^,// or die "$_: comma missing after file block device parent\n";
2200     my $path = $parse_path->();
2201    
2202     $blockdata = $enc_file->($parent, $path);
2203    
2204     } elsif ($blocktype eq "vhd") {
2205     $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2206     $blockdata .= $parse_parent->();
2207    
2208     } elsif ($blocktype eq "ramdisk") {
2209     my $parent = $parse_parent->();
2210    
2211     s/^,(\d+),(\d+),(\d+),//a
2212     or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2213    
2214     my ($base, $size, $offset) = ($1, $2, $3);
2215    
2216     my $path = $parse_path->();
2217    
2218     $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2219    
2220     } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2221     # this is guesswork
2222     s/^(\d+)//a
2223     or die "$_: missing device number for cdrom\n";
2224     $blockdata = pack "V", $1;
2225    
2226     } else {
2227     die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2228     }
2229    
2230     $payload = pack "Va*",
2231     (indexof $blocktype, @block_type),
2232     $blockdata;
2233    
2234     } elsif ($type eq "vmbus") {
2235     s/^=($RE_GUID)//
2236     or die "$_: malformed or missing vmbus interface type guid\n";
2237     my $type = enc_guid $1;
2238     s/^,($RE_GUID)//
2239     or die "$_: malformed or missing vmbus interface instance guid\n";
2240     my $instance = enc_guid $1;
2241    
2242     $payload = pack "a16a16x24", $type, $instance;
2243    
2244     } else {
2245     die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2246     }
2247    
2248     return (
2249     (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2250     $_
2251     );
2252     }
2253     }
2254    
2255     # encode a full binary BCD device descriptor
2256 root 1.37 sub enc_device($$) {
2257     my ($device, $type) = @_;
2258 root 1.1
2259     my $guid = "\x00" x 16;
2260    
2261     if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2262     $guid = enc_guid $1
2263     or die "$device: does not start with valid guid\n";
2264     }
2265    
2266 root 1.37 my ($descriptor, $tail) = enc_device_ $device, $type;
2267 root 1.1
2268     length $tail
2269     and die "$device: garbage after device descriptor\n";
2270    
2271     unpack "H*", $guid . $descriptor
2272     }
2273    
2274     # decode a registry hive into the BCD structure used by pbcdedit
2275     sub bcd_decode {
2276     my ($hive) = @_;
2277    
2278     my %bcd;
2279    
2280     my $objects = $hive->[1][1]{Objects}[1];
2281    
2282     while (my ($k, $v) = each %$objects) {
2283     my %kv;
2284     $v = $v->[1];
2285    
2286     $k = $bcd_objects{$k} // $k;
2287    
2288     my $type = $v->{Description}[0]{Type}[1];
2289    
2290     if ($type != $bcd_object_types{$k}) {
2291 root 1.37 $kv{type} = $bcd_types{$type} // sprintf "0x%08x", $type;
2292 root 1.1 }
2293    
2294     my $elems = $v->{Elements}[1];
2295    
2296     while (my ($k, $v) = each %$elems) {
2297     my $k = hex $k;
2298    
2299 root 1.37 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1], $type);
2300     my $k = dec_bcde_id $k, $type;
2301 root 1.1
2302     $kv{$k} = $v;
2303     }
2304    
2305     $bcd{$k} = \%kv;
2306     }
2307    
2308     $bcd{meta} = { version => $JSON_VERSION };
2309    
2310     \%bcd
2311     }
2312    
2313     # encode a pbcdedit structure into a registry hive
2314     sub bcd_encode {
2315     my ($bcd) = @_;
2316    
2317     if (my $meta = $bcd->{meta}) {
2318     $meta->{version} eq $JSON_VERSION
2319     or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2320     }
2321    
2322     my %objects;
2323     my %rbcd_types = reverse %bcd_types;
2324    
2325     while (my ($k, $v) = each %$bcd) {
2326     my %kv;
2327    
2328     next if $k eq "meta";
2329    
2330     $k = lc $k; # I know you windows types!
2331    
2332     my $type = $v->{type};
2333    
2334     if ($type) {
2335     $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2336     ? hex $type
2337     : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2338     }
2339    
2340     my $guid = enc_wguid $k
2341     or die "$k: invalid bcd object identifier\n";
2342    
2343     # default type if not given
2344     $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2345    
2346     my %elem;
2347    
2348     while (my ($k, $v) = each %$v) {
2349     next if $k eq "type";
2350    
2351 root 1.37 $k = (enc_bcde_id $k, $type) // die "$k: invalid bcde element name or id\n";
2352 root 1.1 $elem{sprintf "%08x", $k} = [{
2353     Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2354     }];
2355     }
2356    
2357     $guid = dec_guid $guid;
2358    
2359     $objects{"{$guid}"} = [undef, {
2360     Description => [{ Type => [dword => $type] }],
2361     Elements => [undef, \%elem],
2362     }];
2363     }
2364    
2365     [NewStoreRoot => [undef, {
2366     Description => [{
2367     KeyName => [sz => "BCD00000001"],
2368     System => [dword => 1],
2369     pbcdedit => [sz => $VERSION],
2370     # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2371     }],
2372     Objects => [undef, \%objects],
2373     }]]
2374     }
2375    
2376     #############################################################################
2377 root 1.29 # edit instructions
2378 root 1.1
2379 root 1.6 sub bcd_edit_eval {
2380     package pbcdedit;
2381    
2382     our ($PATH, $BCD, $DEFAULT);
2383    
2384     eval shift;
2385     die "$@" if $@;
2386     }
2387    
2388     sub bcd_edit {
2389     my ($path, $bcd, @insns) = @_;
2390    
2391 root 1.36 my $default = $bcd->{"{bootmgr}"}{default};
2392 root 1.6
2393     # prepare "officially visible" variables
2394     local $pbcdedit::PATH = $path;
2395     local $pbcdedit::BCD = $bcd;
2396     local $pbcdedit::DEFAULT = $default;
2397    
2398     while (@insns) {
2399     my $insn = shift @insns;
2400    
2401     if ($insn eq "get") {
2402     my $object = shift @insns;
2403     my $elem = shift @insns;
2404    
2405 root 1.15 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2406 root 1.6
2407     print $bcd->{$object}{$elem}, "\n";
2408    
2409     } elsif ($insn eq "set") {
2410     my $object = shift @insns;
2411     my $elem = shift @insns;
2412     my $value = shift @insns;
2413    
2414 root 1.15 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2415 root 1.6
2416     $bcd->{$object}{$elem} = $value;
2417    
2418     } elsif ($insn eq "eval") {
2419 root 1.35 my $perl = shift @insns;
2420     bcd_edit_eval "#line 1 'eval'\n$perl";
2421 root 1.6
2422     } elsif ($insn eq "do") {
2423     my $path = shift @insns;
2424     my $file = file_load $path;
2425     bcd_edit_eval "#line 1 '$path'\n$file";
2426    
2427     } else {
2428     die "$insn: not a recognized instruction for edit/parse\n";
2429     }
2430     }
2431    
2432     }
2433    
2434     #############################################################################
2435 root 1.43 # other utilities
2436 root 1.6
2437 root 1.1 # json to stdout
2438     sub prjson($) {
2439     print $json_coder->encode ($_[0]);
2440     }
2441    
2442     # json from stdin
2443     sub rdjson() {
2444     my $json;
2445     1 while read STDIN, $json, 65536, length $json;
2446     $json_coder->decode ($json)
2447     }
2448    
2449 root 1.43 sub lsblk() {
2450     my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,MAJ:MIN,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2451    
2452     for my $dev (@{ $lsblk->{blockdevices} }) {
2453     if ($dev->{type} eq "part") {
2454     if ($dev->{pttype} eq "gpt") {
2455     $dev->{bcd_device} = "partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}";
2456     } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2457     if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2458     my ($diskid, $partno) = ($1, hex $2);
2459     $dev->{bcd_legacy_device} = "legacypartition=<null>,harddisk,mbr,$diskid,$partno";
2460     if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2461     my $start = 512 * readline $fh;
2462     $dev->{bcd_device} = "partition=<null>,harddisk,mbr,$diskid,$start";
2463     }
2464     }
2465     }
2466     }
2467     }
2468    
2469     $lsblk->{blockdevices}
2470     }
2471    
2472     sub prdev($$) {
2473     my ($path, $attribute) = @_;
2474    
2475     # rather than stat'ing and guessing how devices are encoded, we use lsblk for this
2476     # unfortunately, there doesn't seem to be a way to restrict lsblk to just oned evice,
2477     # so we always assume the first one is it.
2478     my $mm = $json_coder->decode (scalar qx<lsblk -o MAJ:MIN -J \Q$path\E>)->{blockdevices}[0]{"maj:min"};
2479    
2480     my $lsblk = lsblk;
2481    
2482     for my $dev (@$lsblk) {
2483     if ($dev->{"maj:min"} eq $mm && $dev->{$attribute}) {
2484     say $dev->{$attribute};
2485     exit 0;
2486     }
2487     }
2488    
2489     exit 1;
2490     }
2491    
2492     #############################################################################
2493     # command line parser
2494    
2495 root 1.1 our %CMD = (
2496     help => sub {
2497     require Pod::Usage;
2498     Pod::Usage::pod2usage (-verbose => 2);
2499     },
2500    
2501     objects => sub {
2502     my %rbcd_types = reverse %bcd_types;
2503     $_ = sprintf "%08x", $_ for values %rbcd_types;
2504    
2505     if ($_[0] eq "--json") {
2506     my %default_type = %bcd_object_types;
2507     $_ = sprintf "%08x", $_ for values %default_type;
2508    
2509     prjson {
2510     version => $JSON_VERSION,
2511     object_alias => \%bcd_objects,
2512     object_type => \%rbcd_types,
2513     object_default_type => \%default_type,
2514     };
2515     } else {
2516     my %rbcd_objects = reverse %bcd_objects;
2517    
2518     print "\n";
2519    
2520     printf "%-9s %s\n", "Type", "Alias";
2521     for my $tname (sort keys %rbcd_types) {
2522     printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2523     }
2524    
2525     print "\n";
2526    
2527     printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2528     for my $name (sort keys %rbcd_objects) {
2529 root 1.37 my $guid = $rbcd_objects{$name};
2530     my $type = $bcd_object_types{$name};
2531 root 1.1 my $tname = $bcd_types{$type};
2532    
2533     $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2534    
2535     printf "%-39s %-23s %s\n", $guid, $name, $type;
2536     }
2537    
2538     print "\n";
2539     }
2540     },
2541    
2542     elements => sub {
2543     my $json = $_[0] eq "--json";
2544    
2545     my %format_name = (
2546     BCDE_FORMAT_DEVICE , "device",
2547     BCDE_FORMAT_STRING , "string",
2548     BCDE_FORMAT_GUID , "guid",
2549     BCDE_FORMAT_GUID_LIST , "guid list",
2550     BCDE_FORMAT_INTEGER , "integer",
2551     BCDE_FORMAT_BOOLEAN , "boolean",
2552     BCDE_FORMAT_INTEGER_LIST, "integer list",
2553     );
2554    
2555 root 1.40 my @element;
2556 root 1.1
2557 root 1.37 for my $class (sort keys %rbcde_byclass) {
2558     my $rbcde = $rbcde_byclass{$class};
2559    
2560     unless ($json) {
2561     print "\n";
2562     printf "Elements applicable to class(es): $class\n";
2563     printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2564     }
2565     for my $name (sort keys %$rbcde) {
2566     my $id = $rbcde->{$name};
2567     my $format = $format_name{$id & BCDE_FORMAT};
2568 root 1.1
2569 root 1.37 if ($json) {
2570 root 1.40 push @element, [$class, $id * 1, $format, $name];
2571 root 1.37 } else {
2572 root 1.40 $id = sprintf "%08x", $id;
2573 root 1.37 printf "%-9s %-12s %s\n", $id, $format, $name;
2574     }
2575 root 1.1 }
2576     }
2577     print "\n" unless $json;
2578    
2579     prjson {
2580     version => $JSON_VERSION,
2581 root 1.40 element => \@element,
2582 root 1.37 class => \@bcde_typeclass,
2583 root 1.1 } if $json;
2584    
2585     },
2586    
2587     export => sub {
2588     prjson bcd_decode regf_load shift;
2589     },
2590    
2591     import => sub {
2592     regf_save shift, bcd_encode rdjson;
2593     },
2594    
2595 root 1.6 edit => sub {
2596     my $path = shift;
2597     my $bcd = bcd_decode regf_load $path;
2598     bcd_edit $path, $bcd, @_;
2599     regf_save $path, bcd_encode $bcd;
2600     },
2601    
2602     parse => sub {
2603     my $path = shift;
2604     my $bcd = bcd_decode regf_load $path;
2605     bcd_edit $path, $bcd, @_;
2606     },
2607    
2608 root 1.1 "export-regf" => sub {
2609     prjson regf_load shift;
2610    
2611     },
2612    
2613     "import-regf" => sub {
2614     regf_save shift, rdjson;
2615     },
2616    
2617     lsblk => sub {
2618 root 1.44 my $json = $_[0] eq "--json";
2619    
2620 root 1.43 my $lsblk = lsblk;
2621    
2622 root 1.44 if ($json) {
2623     prjson $lsblk;
2624     } else {
2625     printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2626     for my $dev (@$lsblk) {
2627     for my $bcd ($dev->{bcd_device}, $dev->{bcd_legacy_device}) {
2628     printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2629     $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $bcd
2630     if $bcd;
2631     }
2632 root 1.1 }
2633     }
2634     },
2635 root 1.37
2636 root 1.43 "bcd-device" => sub {
2637     prdev shift, "bcd_device";
2638     },
2639    
2640     "bcd-legacy-device" => sub {
2641     prdev shift, "bcd_legacy_device";
2642     },
2643    
2644 root 1.37 version => sub {
2645     print "\n",
2646     "PBCDEDIT version $VERSION, copyright 2019 Marc A. Lehmann <pbcdedit\@schmorp.de>.\n",
2647     "JSON schema version: $JSON_VERSION\n",
2648     "Licensed under the GNU General Public License Version 3.0, or any later version.\n",
2649     "\n",
2650     $CHANGELOG,
2651     "\n";
2652     },
2653 root 1.1 );
2654    
2655     my $cmd = shift;
2656    
2657     unless (exists $CMD{$cmd}) {
2658     warn "Usage: $0 subcommand args...\nTry $0 help\n";
2659     exit 126;
2660     }
2661    
2662     $CMD{$cmd}->(@ARGV);
2663