ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.21
Committed: Wed Aug 14 23:36:49 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.20: +3 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.014; # numerous features needed
23
24 our $VERSION = '1.0';
25 our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26
27 =head1 NAME
28
29 pbcdedit - portable boot configuration data (BCD) store editor
30
31 =head1 SYNOPSIS
32
33 pbcdedit help # output manual page
34 pbcdedit export path/to/BCD # output BCD hive as JSON
35 pbcdedit import path/to/bcd # convert standard input to BCD hive
36 pbcdedit edit path/to/BCD edit-instructions...
37
38 pbcdedit objects # list all supported object aliases and types
39 pbcdedit elements # list all supported bcd element aliases
40
41 =head1 DESCRIPTION
42
43 This program allows you to create, read and modify Boot Configuration Data
44 (BCD) stores used by Windows Vista and newer versions of Windows.
45
46 At this point, it is in relatively early stages of development and has
47 received little to no real-world testing.
48
49 Compared to other BCD editing programs it offers the following unique
50 features:
51
52 =over
53
54 =item Can create BCD hives from scratch
55
56 Practically all other BCD editing programs force you to copy existing BCD
57 stores, which might or might not be copyrighted by Microsoft.
58
59 =item Does not rely on Windows
60
61 As the "portable" in the name implies, this program does not rely on
62 C<bcdedit> or other windows programs or libraries, it works on any system
63 that supports at least perl version 5.14.
64
65 =item Decodes and encodes BCD device elements
66
67 PBCDEDIT can concisely decode and encode BCD device element contents. This
68 is pretty unique, and offers a lot of potential that can't be realised
69 with C<bcdedit> or any programs relying on it.
70
71 =item Minimal files
72
73 BCD files written by PBCDEDIT are always "minimal", that is, they don't
74 contain unused data areas and therefore don't contain old and potentially
75 sensitive data.
76
77 =back
78
79 The target audience for this program is professionals and tinkerers who
80 are ready to invest time into learning how it works. It is not an easy
81 program to use and requires patience and a good understanding of BCD data
82 stores.
83
84
85 =head1 SUBCOMMANDS
86
87 PBCDEDIT expects a subcommand as first argument that tells it what to
88 do. The following subcommands exist:
89
90 =over
91
92 =item C<help>
93
94 Displays the whole manual page (this document).
95
96 =item C<export> F<path>
97
98 Reads a BCD data store and writes a JSON representation of it to standard
99 output.
100
101 The format of the data is explained later in this document.
102
103 Example: read a BCD store, modify it with an external program, write it
104 again.
105
106 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
107
108 =item C<import> F<path>
109
110 The reverse of C<export>: Reads a JSON representation of a BCD data store
111 from standard input, and creates or replaces the given BCD data store.
112
113 =item C<edit> F<path> I<instructions...>
114
115 Load a BCD data store, apply some instructions to it, and save it again.
116
117 See the section L<EDITING BCD DATA STORES>, below, for more info.
118
119 =item C<parse> F<path> I<instructions...>
120
121 Same as C<edit>, above, except it doesn't save the data store again. Can
122 be useful to extract some data from it.
123
124 =item C<lsblk>
125
126 On a GNU/Linux system, you can get a list of partition device descriptors
127 using this command - the external C<lsblk> command is required, as well as
128 a mounted C</sys> file system.
129
130 The output will be a list of all partitions in the system and C<partition>
131 descriptors for GPT and both C<legacypartition> and C<partition>
132 descriptors for MBR partitions.
133
134 =item C<objects> [C<--json>]
135
136 Outputs two tables: a table listing all type aliases with their hex BCD
137 element ID, and all object name aliases with their GUID and default type
138 (if any).
139
140 With C<--json> it prints similar information as a JSON object, for easier parsing.
141
142 =item C<elements> [C<--json>]
143
144 Outputs a table of known element aliases with their hex ID and the format
145 type.
146
147 With C<--json> it prints similar information as a JSON object, for easier parsing.
148
149 =item C<export-regf> F<path>
150
151 This has nothing to do with BCD data stores - it takes a registry hive
152 file as argument and outputs a JSON representation of it to standard
153 output.
154
155 Hive versions 1.2 till 1.6 are supported.
156
157 =item C<import-regf> F<path>
158
159 The reverse of C<export-regf>: reads a JSON representation of a registry
160 hive from standard input and creates or replaces the registry hive file
161 given as argument.
162
163 The written hive will always be in a slightly modified version 1.3
164 format. It's not the format windows would generate, but it should be
165 understood by any conformant hive reader.
166
167 Note that the representation chosen by PBCDEDIT currently throws away
168 classname data (often used for feeble attempts at hiding stuff by
169 Microsoft) and security descriptors, so if you write anything other than
170 a BCD hive you will most likely destroy it.
171
172 =back
173
174
175 =head1 BCD DATA STORE REPRESENTATION FORMAT
176
177 A BCD data store is represented as a JSON object with one special key,
178 C<meta>, and one key per BCD object. That is, each BCD object becomes
179 one key-value pair in the object, and an additional key called C<meta>
180 contains meta information.
181
182 Here is an abridged example of a real BCD store:
183
184 {
185 "meta" : {
186 "version" : 1
187 },
188 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
189 "type" : "application::osloader",
190 "description" : "Windows 10",
191 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
192 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193 "path" : "\\Windows\\system32\\winload.exe",
194 "systemroot" : "\\Windows"
195 },
196 "{bootloadersettings}" : {
197 "inherit" : "{globalsettings} {hypervisorsettings}"
198 },
199 "{bootmgr}" : {
200 "description" : "Windows Boot Manager",
201 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
202 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
203 "inherit" : "{globalsettings}",
204 "displaybootmenu" : 0,
205 "timeout" : 30
206 },
207 "{globalsettings}" : {
208 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
209 },
210 "{hypervisorsettings}" : {
211 "hypervisorbaudrate" : 115200,
212 "hypervisordebugport" : 1,
213 "hypervisordebugtype" : 0
214 },
215 # ...
216 }
217
218 =head2 Minimal BCD to boot windows
219
220 Experimentally I found the following BCD is the minimum required to
221 successfully boot any post-XP version of Windows (suitable C<device> and
222 C<osdevice> values, of course):
223
224 {
225 "{bootmgr}" : {
226 "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
227 },
228
229 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
230 "type" : "application::osloader",
231 "description" : "Windows Boot",
232 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
233 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234 "path" : "\\Windows\\system32\\winload.exe",
235 "systemroot" : "\\Windows"
236 },
237 }
238
239 Note that minimal doesn't mean recommended - Windows itself will add stuff
240 to this during or after boot, and you might or might not run into issues
241 when installing updates as it might not be able to find the F<bootmgr>.
242
243 =head2 The C<meta> key
244
245 The C<meta> key is not stored in the BCD data store but is used only
246 by PBCDEDIT. It is always generated when exporting, and importing will
247 be refused when it exists and the version stored inside doesn't store
248 the JSON schema version of PBCDEDIT. This ensures that different and
249 incompatible versions of PBCDEDIT will not read and misinterpret each
250 others data.
251
252 =head2 The object keys
253
254 Every other key is a BCD object. There is usually a BCD object for the
255 boot manager, one for every boot option and a few others that store common
256 settings inherited by these.
257
258 Each BCD object is represented by a GUID wrapped in curly braces. These
259 are usually random GUIDs used only to distinguish BCD objects from each
260 other. When adding a new boot option, you can simply generate a new GUID.
261
262 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
263 into human-readable strings such as C<{globalsettings}>, which is the same
264 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
265
266 Each BCD, object has an associated type. For example,
267 C<application::osloader> for objects loading Windows via F<winload.exe>,
268 C<application::bootsector> for real mode applications and so on.
269
270 The type of a object is stored in the pseudo BCD element C<type> (see next
271 section).
272
273 Some well-known objects have a default type. If an object type matches
274 its default type, then the C<type> element will be omitted. Similarly, if
275 the C<type> element is missing and the BCD object has a default type, the
276 default type will be used when writing a BCD store.
277
278 Running F<pbcdedit objects> will give you a list of object types,
279 well-known object aliases and their default types.
280
281 If different string keys in a JSON BCD store map to the same BCD object
282 then a random one will "win" and the others will be discarded. To avoid
283 this, you should always use the "canonical" name of a BCD object, which is
284 the human-readable form (if it exists).
285
286 =head2 The object values - BCD elements
287
288 The value of each BCD object entry consists of key-value pairs called BCD
289 elements.
290
291 BCD elements are identified by a 32 bit number, but to make things
292 simpler PBCDEDIT will replace these with well-known strings such as
293 C<description>, C<device> or C<path>.
294
295 When PBCDEDIT does not know the BCD element, it will use
296 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
297 BCD element. For example, C<device> would be C<custom::11000001>. You can
298 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
299 elements>.
300
301 What was said about duplicate keys mapping to the same object is true for
302 elements as well, so, again, you should always use the canonical name,
303 which is the human readable alias, if known.
304
305 =head3 BCD element types
306
307 Each BCD element has a type such as I<string> or I<boolean>. This type
308 determines how the value is interpreted, and most of them are pretty easy
309 to explain:
310
311 =over
312
313 =item string
314
315 This is simply a unicode string. For example, the C<description> and
316 C<systemroot> elements both are of this type, one storing a human-readable
317 name for this boot option, the other a file path to the windows root
318 directory:
319
320 "description" : "Windows 10",
321 "systemroot" : "\\Windows",
322
323 =item boolean
324
325 Almost as simple are booleans, which represent I<true>/I<false>,
326 I<on>/I<off> and similar values. In the JSON form, true is represented
327 by the number C<1>, and false is represented by the number C<0>. Other
328 values will be accepted, but PBCDEDIT doesn't guarantee how these are
329 interpreted.
330
331 For example, C<displaybootmenu> is a boolean that decides whether to
332 enable the C<F8> boot menu. In the example BCD store above, this is
333 disabled:
334
335 "displaybootmenu" : 0,
336
337 =item integer
338
339 Again, very simple, this is a 64 bit integer. IT can be either specified
340 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
341 binary number (prefix C<0b>).
342
343 For example, the boot C<timeout> is an integer, specifying the automatic
344 boot delay in seconds:
345
346 "timeout" : 30,
347
348 =item integer list
349
350 This is a list of 64 bit integers separated by whitespace. It is not used
351 much, so here is a somewhat artificial an untested example of using
352 C<customactions> to specify a certain custom, eh, action to be executed
353 when pressing C<F10> at boot:
354
355 "customactions" : "0x1000044000001 0x54000001",
356
357 =item guid
358
359 This represents a single GUID value wrapped in curly braces. It is used a
360 lot to refer from one BCD object to other one.
361
362 For example, The C<{bootmgr}> object might refer to a resume boot option
363 using C<resumeobject>:
364
365 "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
366
367 Human readable aliases are used and allowed.
368
369 =item guid list
370
371 Similar to the GUID type, this represents a list of such GUIDs, separated
372 by whitespace from each other.
373
374 For example, many BCD objects can I<inherit> elements from other BCD
375 objects by specifying the GUIDs of those other objects in a GUID list
376 called surprisingly called C<inherit>:
377
378 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
379
380 This example also shows how human readable aliases can be used.
381
382 =item device
383
384 This type is why I write I<most> are easy to explain earlier: This type
385 is the pinnacle of Microsoft-typical hacks layered on top of other
386 hacks. Understanding this type took more time than writing all the rest of
387 PBCDEDIT, and because it is so complex, this type has its own subsection
388 below.
389 =back
390
391 =head4 The BCD "device" element type
392
393 Device elements specify, well, devices. They are used for such diverse
394 purposes such as finding a TFTP network boot image, serial ports or VMBUS
395 devices, but most commonly they are used to specify the disk (harddisk,
396 cdrom, ramdisk, vhd...) to boot from.
397
398 The device element is kind of a mini-language in its own which is much
399 more versatile then the limited windows interface to it - BCDEDIT -
400 reveals.
401
402 While some information can be found on the BCD store and the windows
403 registry, there is pretty much no public information about the device
404 element, so almost everything known about it had to be researched first
405 in the process of writing this script, and consequently, support for BCD
406 device elements is partial only.
407
408 On the other hand, the expressive power of PBCDEDIT in specifying devices
409 is much bigger than BCDEDIT and therefore more can be done with it. The
410 downside is that BCD device elements are much more complicated than what
411 you might think from reading the BCDEDIT documentation.
412
413 In other words, simple things are complicated, and complicated things are
414 possible.
415
416 Anyway, the general syntax of device elements is an optional GUID,
417 followed by a device type, optionally followed by hexadecimal flags in
418 angle brackets, optionally followed by C<=> and a comma-separated list of
419 arguments, some of which can be (and often are) in turn devices again.
420
421 [{GUID}]type[<flags>][=arg,arg...]
422
423 Here are some examples:
424
425 boot
426 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
427 locate=<null>,element,systemroot
428 partition=<null>,harddisk,mbr,47cbc08a,1048576
429 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
430 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
431 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
432 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
433
434 I hope you are suitably impressed. I was, too, when I realized decoding
435 these binary blobs is not as easy as I had assumed.
436
437 The optional prefixed GUID seems to refer to a device BCD object, which
438 can be used to specify more device-specific BCD elements (for example
439 C<ramdisksdidevice> and C<ramdisksdpath>).
440
441 The flags after the type are omitted when they are C<0>. The only known
442 flag is C<1>, which seems to indicate that the parent device is invalid. I
443 don't claim to fully understand it, but it seems to indicate that the
444 boot manager has to search the device itself. Why the device is specified
445 in the first place escapes me, but a lot of this device stuff seems to be
446 badly hacked together...
447
448 The types understood and used by PBCDEDIT are as follows (keep in mind
449 that not of all the following is necessarily supported in PBCDEDIT):
450
451 =over
452
453 =item C<binary=>I<hex...>
454
455 This type isn't actually a real BCD element type, but a fallback for those
456 cases where PBCDEDIT can't perfectly decode a device element (except for
457 the leading GUID, which it can always decode). In such cases, it will
458 convert the device into this type with a hexdump of the element data.
459
460 =item C<null>
461
462 This is another special type - sometimes, a device all zero-filled, which
463 is not valid. This can mark the absence of a device or something PBCDEDIT
464 does not understand, so it decodes it into this special "all zero" type
465 called C<null>.
466
467 It's most commonly found in devices that can use an optional parent
468 device, when no parent device is used.
469
470 =item C<boot>
471
472 Another type without parameters, this refers to the device that was booted
473 from (nowadays typically the EFI system partition).
474
475 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
476
477 This specifies a VMBUS device with the given interface type and interface
478 instance, both of which are "naked" (no curly braces) GUIDs.
479
480 Made-up example (couldn't find a single example on the web):
481
482 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
483
484 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
485
486 This designates a specific partition on a block device. I<parent> is an
487 optional parent device on which to search on, and is often C<null>. Note
488 that the angle brackets around I<parent> are part of the syntax.
489
490 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
491 C<file> or C<vhd>, where the first three should be self-explaining,
492 C<file> is usually used to locate a file to be used as a disk image,
493 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
494 F<vhdx> files.
495
496 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
497 used for devices without partitions, such as cdroms, where the "partition"
498 is usually the whole device.
499
500 The I<diskid> identifies the disk or device using a unique signature, and
501 the same is true for the I<partitionid>. How these are interpreted depends
502 on the I<partitiontype>:
503
504 =over
505
506 =item C<mbr>
507
508 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
509 MBR, interpreted as a 32 bit unsigned little endian integer and written as
510 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
511
512 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
513 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
514 display the I<diskid>.
515
516 The I<partitionid> is the byte offset(!) of the partition counting from
517 the beginning of the MBR.
518
519 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
520 starting at sector C<2048> (= 1048576 / 512).
521
522 partition=<null>,harddisk,mbr,47cbc08a,1048576
523
524 =item C<gpt>
525
526 The I<diskid> is the disk GUID/disk identifier GUID from the partition
527 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
528 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
529
530 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
531 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
532
533 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
534
535 =item C<raw>
536
537 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
538 disk number and signifies the whole disk. BCDEDIT cannot display the
539 resulting device, and I am doubtful whether it has a useful effect.
540
541 =back
542
543 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
544
545 This is exactly the same as the C<partition> type, except for a tiny
546 detail: instead of using the partition start offset, this type uses the
547 partition number for MBR disks. Behaviour other partition types should be
548 the same.
549
550 The partition number starts at C<1> and skips unused partition, so if
551 there are two primary partitions and another partition inside the extended
552 partition, the primary partitions are number C<1> and C<2> and the
553 partition inside the extended partition is number C<3>, regardless of any
554 gaps.
555
556 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
557
558 This device description will make the bootloader search for a partition
559 with a given path.
560
561 The I<parent> device is the device to search on (angle brackets are
562 still part of the syntax!) If it is C<null>, then C<locate> will
563 search all disks it can find.
564
565 I<locatetype> is either C<element> or C<path>, and merely distinguishes
566 between two different ways to specify the path to search for: C<element>
567 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
568 uses a relative path as I<locatearg>.
569
570 Example: find any partition which has the F<magicfile.xxx> path in the
571 root.
572
573 locate=<null>,path,\magicfile.xxx
574
575 Example: find any partition which has the path specified in the
576 C<systemroot> element (typically F<\Windows>).
577
578 locate=<null>,element,systemroot
579
580 =item C<block=>I<devicetype>,I<args...>
581
582 Last not least, the most complex type, C<block>, which... specifies block
583 devices (which could be inside a F<vhdx> file for example).
584
585 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
586 C<file> or C<vhd> - the same as for C<partiion=>.
587
588 The remaining arguments change depending on the I<devicetype>:
589
590 =over
591
592 =item C<block=file>,<I<parent>>,I<path>
593
594 Interprets the I<parent> device (typically a partition) as a
595 filesystem and specifies a file path inside.
596
597 =item C<block=vhd>,<I<parent>>
598
599 Pretty much just changes the interpretation of I<parent>, which is
600 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
601
602 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
603
604 Interprets the I<parent> device as RAM disk, using the (decimal)
605 base address, byte size and byte offset inside a file specified by
606 I<path>. The numbers are usually all C<0> because they can be extracted
607 from the RAM disk image or other parameters.
608
609 This is most commonly used to boot C<wim> images.
610
611 =item C<block=floppy>,I<drivenum>
612
613 Refers to a removable drive identified by a number. BCDEDIT cannot display
614 the resulting device, and it is not clear what effect it will have.
615
616 =item C<block=cdrom>,I<drivenum>
617
618 Pretty much the same as C<floppy> but for CD-ROMs.
619
620 =item anything else
621
622 Probably not yet implemented. Tell me of your needs...
623
624 =back
625
626 =back5 Examples
627
628 This concludes the syntax overview for device elements, but probably
629 leaves many questions open. I can't help with most of them, as I also ave
630 many questions, but I can walk you through some actual examples using more
631 complex aspects.
632
633 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
634
635 Just like with C declarations, you best treat device descriptors as
636 instructions to find your device and work your way from the inside out:
637
638 locate=<null>,path,\disk.vhdx
639
640 First, the innermost device descriptor searches all partitions on the
641 system for a file called F<\disk.vhdx>:
642
643 block=file,<see above>,\disk.vhdx
644
645 Next, this takes the device locate has found and finds a file called
646 F<\disk.vhdx> on it. This is the same file locate was using, but that is
647 only because we find the device using the same path as finding the disk
648 image, so this is purely incidental, although quite common.
649
650 Next, this file will be opened as a virtual disk:
651
652 block=vhd,<see above>
653
654 And finally, inside this disk, another C<locate> will look for a partition
655 with a path as specified in the C<path> element, which most likely will be
656 F<\Windows\system32\winload.exe>:
657
658 locate=<see above>,element,path
659
660 As a result, this will boot the first Windows it finds on the first
661 F<disk.vhdx> disk image it can find anywhere.
662
663 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
664
665 Pretty much the same as the previous case, but with a bit of
666 variance. First, look for a specific partition on an MBR-partitioned disk:
667
668 partition=<null>,harddisk,mbr,47cbc08a,242643632128
669
670 Then open the file F<\win10.vhdx> on that partition:
671
672 block=file,<see above>,\win10.vhdx
673
674 Then, again, the file is opened as a virtual disk image:
675
676 block=vhd,<see above>
677
678 And again the windows loader (or whatever is in C<path>) will be searched:
679
680 locate=<see above>,element,path
681
682 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
683
684 This is quite different. First, it starts with a GUID. This GUID belongs
685 to a BCD object of type C<device>, which has additional parameters:
686
687 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
688 "type" : "device",
689 "description" : "sdi file for ramdisk",
690 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
691 "ramdisksdipath" : "\boot.sdi"
692 },
693
694 I will not go into many details, but this specifies a (presumably empty)
695 template ramdisk image (F<\boot.sdi>) that is used to initialize the
696 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
697 see, this F<.sdi> file resides on a different C<partition>.
698
699 Continuing, as always, from the inside out, first this device descriptor
700 finds a specific partition:
701
702 partition=<null>,harddisk,mbr,47cbc08a,242643632128
703
704 And then specifies a C<ramdisk> image on this partition:
705
706 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
707
708 I don't know what the purpose of the C<< <1> >> flag value is, but it
709 seems to be always there on this kind of entry.
710
711 If you have some good examples to add here, feel free to mail me.
712
713
714 =head1 EDITING BCD DATA STORES
715
716 The C<edit> and C<parse> subcommands allow you to read a BCD data store
717 and modify it or extract data from it. This is done by executing a series
718 of "editing instructions" which are explained here.
719
720 =over
721
722 =item get I<object> I<element>
723
724 Reads the BCD element I<element> from the BCD object I<object> and writes
725 it to standard output, followed by a newline. The I<object> can be a GUID
726 or a human-readable alias, or the special string C<{default}>, which will
727 refer to the default BCD object.
728
729 Example: find description of the default BCD object.
730
731 pbcdedit parse BCD get "{default}" description
732
733 =item set I<object> I<element> I<value>
734
735 Similar to C<get>, but sets the element to the given I<value> instead.
736
737 Example: change the bootmgr default too
738 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
739
740 pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
741
742 =item eval I<perlcode>
743
744 This takes the next argument, interprets it as Perl code and
745 evaluates it. This allows you to do more complicated modifications or
746 extractions.
747
748 The following variables are predefined for your use:
749
750 =over
751
752 =item C<$PATH>
753
754 The path to the BCD data store, as given to C<edit> or C<parse>.
755
756 =item C<$BCD>
757
758 The decoded BCD data store.
759
760 =item C<$DEFAULT>
761
762 The default BCD object name.
763
764 =back
765
766 The example given for C<get>, above, could be expressed like this with
767 C<eval>:
768
769 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
770
771 The example given for C<set> could be expressed like this:
772
773 pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
774
775 =item do I<path>
776
777 Similar to C<eval>, above, but instead of using the argument as perl code,
778 it loads the perl code from the given file and executes it. This makes it
779 easier to write more complicated or larger programs.
780
781 =back
782
783 =head1 SEE ALSO
784
785 For ideas on what you can do, and some introductory material, try
786 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
787
788 For good reference on BCD objects and elements, see Geoff Chappels pages
789 at L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
790
791 =head1 AUTHOR
792
793 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
794
795 =head1 REPORTING BUGS
796
797 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
798
799 =head1 BUGS AND SHORTCOMINGS
800
801 This should be a module. Of a series of modules, even.
802
803 Registry code should preserve classname and security descriptor data, and
804 whatever else is necessary to read and write any registry hive file.
805
806 I am also not happy with device descriptors being strings rather than a
807 data structure, but strings are probably better for command line usage. In
808 any case, device descriptors could be converted by simply "splitting" at
809 "=" and "," into an array reference, recursively.
810
811 =head1 HOMEPAGE
812
813 Original versions of this program can be found at
814 L<http://software.schmorp.de/pkg/pbcdedit>.
815
816 =head1 COPYRIGHT
817
818 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
819 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
820 free to change and redistribute it. There is NO WARRANTY, to the extent
821 permitted by law.
822
823 =cut
824
825 BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
826
827 use Data::Dump;
828 use Encode ();
829 use List::Util ();
830 use IO::Handle ();
831 use Time::HiRes ();
832
833 eval { unpack "Q", pack "Q", 1 }
834 or die "perl with 64 bit integer supported required.\n";
835
836 our $JSON = eval { require JSON::XS; JSON::XS:: }
837 // eval { require JSON::PP; JSON::PP:: }
838 // die "either JSON::XS or JSON::PP must be installed\n";
839
840 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
841
842 # hack used for debugging
843 sub xxd($$) {
844 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
845 syswrite $xxd, $_[1];
846 }
847
848 sub file_load($) {
849 my ($path) = @_;
850
851 open my $fh, "<:raw", $path
852 or die "$path: $!\n";
853 my $size = -s $fh;
854 $size = read $fh, my $buf, $size
855 or die "$path: short read\n";
856
857 $buf
858 }
859
860 # sources and resources used for this:
861 # registry:
862 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
863 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
864 # bcd:
865 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
866 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
867 # bcd devices:
868 # reactos' boot/environ/include/bl.h
869 # windows .mof files
870
871 #############################################################################
872 # registry stuff
873
874 # we use a hardcoded securitya descriptor - full access for everyone
875 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
876 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
877 my $sacl = "";
878 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
879 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
880 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
881 1, 0x8004,
882 20 + (length $sacl) + (length $dacl),
883 20 + (length $sacl) + (length $dacl) + (length $sid),
884 0, 20,
885 $sacl, $dacl, $sid, $sid;
886 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
887
888 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
889
890 sub KEY_HIVE_ENTRY() { 0x0004 }
891 sub KEY_NO_DELETE () { 0x0008 }
892 sub KEY_COMP_NAME () { 0x0020 }
893
894 sub VALUE_COMP_NAME() { 0x0001 }
895
896 my @regf_typename = qw(
897 none sz expand_sz binary dword dword_be link multi_sz
898 resource_list full_resource_descriptor resource_requirements_list
899 qword qword_be
900 );
901
902 my %regf_dec_type = (
903 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
904 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
905 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
906 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
907 dword => sub { unpack "L<", shift },
908 dword_be => sub { unpack "L>", shift },
909 qword => sub { unpack "Q<", shift },
910 qword_be => sub { unpack "Q>", shift },
911 );
912
913 my %regf_enc_type = (
914 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
915 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
916 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
917 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
918 dword => sub { pack "L<", shift },
919 dword_be => sub { pack "L>", shift },
920 qword => sub { pack "Q<", shift },
921 qword_be => sub { pack "Q>", shift },
922 );
923
924 # decode a registry hive
925 sub regf_decode($) {
926 my ($hive) = @_;
927
928 "regf" eq substr $hive, 0, 4
929 or die "not a registry hive\n";
930
931 my ($major, $minor) = unpack "\@20 L< L<", $hive;
932
933 $major == 1
934 or die "registry major version is not 1, but $major\n";
935
936 $minor >= 2 && $minor <= 6
937 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
938
939 my $bins = substr $hive, 4096;
940
941 my $decode_key = sub {
942 my ($ofs) = @_;
943
944 my @res;
945
946 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
947
948 $sze < 0
949 or die "key node points to unallocated cell\n";
950
951 $sig eq "nk"
952 or die "expected key node at $ofs, got '$sig'\n";
953
954 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
955
956 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
957
958 # classnames, security descriptors
959 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
960 #if ($cofs != NO_OFS && $clen) {
961 # #warn "cofs $cofs+$clen\n";
962 # xxd substr $bins, $cofs, 16;
963 #}
964
965 $kname = Encode::decode "UTF-16LE", $kname
966 unless $flags & KEY_COMP_NAME;
967
968 if ($vnum && $vofs != NO_OFS) {
969 for ($vofs += 4; $vnum--; $vofs += 4) {
970 my $kofs = unpack "\@$vofs L<", $bins;
971
972 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
973
974 $sig eq "vk"
975 or die "key values list contains invalid node (expected vk got '$sig')\n";
976
977 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
978
979 my $name = substr $bins, $kofs + 24, $nsze;
980
981 $name = Encode::decode "UTF-16LE", $name
982 unless $flags & VALUE_COMP_NAME;
983
984 my $data;
985 if ($dsze & 0x80000000) {
986 $data = substr $bins, $kofs + 12, $dsze & 0x7;
987 } elsif ($dsze > 16344 && $minor > 3) { # big data
988 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
989
990 for ($bofs += 4; $bnum--; $bofs += 4) {
991 my $dofs = unpack "\@$bofs L<", $bins;
992 my $dsze = unpack "\@$dofs l<", $bins;
993 $data .= substr $bins, $dofs + 4, -$dsze - 4;
994 }
995 $data = substr $data, 0, $dsze; # cells might be longer than data
996 } else {
997 $data = substr $bins, $dofs + 4, $dsze;
998 }
999
1000 $type = $regf_typename[$type] if $type < @regf_typename;
1001
1002 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1003 ->($data);
1004
1005 $res[0]{$name} = [$type, $data];
1006 }
1007 }
1008
1009 if ($sofs != NO_OFS) {
1010 my $decode_key = __SUB__;
1011
1012 my $decode_subkeylist = sub {
1013 my ($sofs) = @_;
1014
1015 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1016
1017 if ($sig eq "ri") { # index root
1018 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1019 __SUB__->(unpack "\@$lofs L<", $bins);
1020 }
1021 } else {
1022 my $inc;
1023
1024 if ($sig eq "li") { # subkey list
1025 $inc = 4;
1026 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1027 $inc = 8;
1028 } else {
1029 die "expected subkey list at $sofs, found '$sig'\n";
1030 }
1031
1032 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1033 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1034 $res[1]{$name} = $data;
1035 }
1036 }
1037 };
1038
1039 $decode_subkeylist->($sofs);
1040 }
1041
1042 ($kname, \@res);
1043 };
1044
1045 my ($rootcell) = unpack "\@36 L<", $hive;
1046
1047 my ($rname, $root) = $decode_key->($rootcell);
1048
1049 [$rname, $root]
1050 }
1051
1052 # return a binary windows fILETIME struct
1053 sub filetime_now {
1054 my ($s, $ms) = Time::HiRes::gettimeofday;
1055
1056 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1057 }
1058
1059 # encode a registry hive
1060 sub regf_encode($) {
1061 my ($hive) = @_;
1062
1063 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1064
1065 # the filetime is apparently used to verify log file validity,
1066 # so by generating a new timestamp the log files *should* automatically
1067 # become invalidated and windows would "self-heal" them.
1068 # (update: has been verified by reverse engineering)
1069 # possibly the fact that the two sequence numbes match might also
1070 # make windows think that the hive is not dirty and ignore logs.
1071 # (update: has been verified by reverse engineering)
1072
1073 my $now = filetime_now;
1074
1075 # we only create a single hbin
1076 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1077
1078 # append cell to $bind, return offset
1079 my $cell = sub {
1080 my ($cell) = @_;
1081
1082 my $res = length $bins;
1083
1084 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1085
1086 $bins .= pack "l<", -(4 + length $cell);
1087 $bins .= $cell;
1088
1089 $res
1090 };
1091
1092 my $sdofs = $cell->($sk); # add a dummy security descriptor
1093 my $sdref = 0; # refcount
1094 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1095 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1096
1097 my $encode_key = sub {
1098 my ($kname, $kdata, $flags) = @_;
1099 my ($values, $subkeys) = @$kdata;
1100
1101 if ($kname =~ /[^\x00-\xff]/) {
1102 $kname = Encode::encode "UTF-16LE", $kname;
1103 } else {
1104 $flags |= KEY_COMP_NAME;
1105 }
1106
1107 # encode subkeys
1108
1109 my @snames =
1110 map $_->[1],
1111 sort { $a->[0] cmp $b->[0] }
1112 map [(uc $_), $_],
1113 keys %$subkeys;
1114
1115 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1116 my $maxsname = 4 * List::Util::max map length, @snames;
1117
1118 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1119
1120 # encode values
1121 my $maxvname = 4 * List::Util::max map length, keys %$values;
1122 my @vofs;
1123 my $maxdsze = 0;
1124
1125 while (my ($vname, $v) = each %$values) {
1126 my $flags = 0;
1127
1128 if ($vname =~ /[^\x00-\xff]/) {
1129 $vname = Encode::encode "UTF-16LE", $kname;
1130 } else {
1131 $flags |= VALUE_COMP_NAME;
1132 }
1133
1134 my ($type, $data) = @$v;
1135
1136 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1137
1138 my $dsze;
1139 my $dofs;
1140
1141 if (length $data <= 4) {
1142 $dsze = 0x80000000 | length $data;
1143 $dofs = unpack "L<", pack "a4", $data;
1144 } else {
1145 $dsze = length $data;
1146 $dofs = $cell->($data);
1147 }
1148
1149 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1150
1151 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1152 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1153
1154 $maxdsze = $dsze if $maxdsze < $dsze;
1155 }
1156
1157 # encode key
1158
1159 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1160 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1161
1162 my $kdata = pack "
1163 a2 S< a8 x4 x4
1164 L< L< L< L< L< L<
1165 L< L< L< L< L< L<
1166 x4 S< S< a*
1167 ",
1168 nk => $flags, $now,
1169 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1170 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1171 length $kname, 0, $kname;
1172 ++$sdref;
1173
1174 my $res = $cell->($kdata);
1175
1176 substr $bins, $_ + 16, 4, pack "L<", $res
1177 for @sofs;
1178
1179 $res
1180 };
1181
1182 my ($rname, $root) = @$hive;
1183
1184 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1185
1186 if (my $pad = -(length $bins) & 4095) {
1187 $pad -= 4;
1188 $bins .= pack "l< x$pad", $pad + 4;
1189 }
1190
1191 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1192 substr $bins, 8, 4, pack "L<", length $bins;
1193
1194 my $base = pack "
1195 a4 L< L< a8 L< L< L< L<
1196 L< L< L<
1197 a64
1198 x396
1199 ",
1200 regf => 1974, 1974, $now, 1, 3, 0, 1,
1201 $rofs, length $bins, 1,
1202 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1203
1204 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1205 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1206 $chksum = 1 if $chksum == 0;
1207
1208 $base .= pack "L<", $chksum;
1209
1210 $base = pack "a* \@4095 x1", $base;
1211
1212 $base . $bins
1213 }
1214
1215 # load and parse registry from file
1216 sub regf_load($) {
1217 my ($path) = @_;
1218
1219 regf_decode file_load $path
1220 }
1221
1222 # encode and save registry to file
1223 sub regf_save {
1224 my ($path, $hive) = @_;
1225
1226 $hive = regf_encode $hive;
1227
1228 open my $regf, ">:raw", "$path~"
1229 or die "$path~: $!\n";
1230 print $regf $hive
1231 or die "$path~: short write\n";
1232 $regf->sync;
1233 close $regf;
1234
1235 rename "$path~", $path;
1236 }
1237
1238 #############################################################################
1239 # bcd stuff
1240
1241 # human-readable alises for GUID object identifiers
1242 our %bcd_objects = (
1243 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1244 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1245 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1246 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1247 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1248 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1249 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1250 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1251 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1252 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1253 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1254 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1255 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1256 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1257 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1258 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1259 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1260 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1261 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1262 );
1263
1264 # default types
1265 our %bcd_object_types = (
1266 '{fwbootmgr}' => 0x10100001,
1267 '{bootmgr}' => 0x10100002,
1268 '{memdiag}' => 0x10200005,
1269 '{ntldr}' => 0x10300006,
1270 '{badmemory}' => 0x20100000,
1271 '{dbgsettings}' => 0x20100000,
1272 '{emssettings}' => 0x20100000,
1273 '{globalsettings}' => 0x20100000,
1274 '{bootloadersettings}' => 0x20200003,
1275 '{hypervisorsettings}' => 0x20200003,
1276 '{kerneldbgsettings}' => 0x20200003,
1277 '{resumeloadersettings}' => 0x20200004,
1278 '{ramdiskoptions}' => 0x30000000,
1279 );
1280
1281 # object types
1282 our %bcd_types = (
1283 0x10100001 => 'application::fwbootmgr',
1284 0x10100002 => 'application::bootmgr',
1285 0x10200003 => 'application::osloader',
1286 0x10200004 => 'application::resume',
1287 0x10100005 => 'application::memdiag',
1288 0x10100006 => 'application::ntldr',
1289 0x10100007 => 'application::setupldr',
1290 0x10400008 => 'application::bootsector',
1291 0x10400009 => 'application::startup',
1292 0x1020000a => 'application::bootapp',
1293 0x20100000 => 'settings',
1294 0x20200001 => 'inherit::fwbootmgr',
1295 0x20200002 => 'inherit::bootmgr',
1296 0x20200003 => 'inherit::osloader',
1297 0x20200004 => 'inherit::resume',
1298 0x20200005 => 'inherit::memdiag',
1299 0x20200006 => 'inherit::ntldr',
1300 0x20200007 => 'inherit::setupldr',
1301 0x20200008 => 'inherit::bootsector',
1302 0x20200009 => 'inherit::startup',
1303 0x20300000 => 'inherit::device',
1304 0x30000000 => 'device',
1305 );
1306
1307 our %rbcd_objects = reverse %bcd_objects;
1308
1309 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1310
1311 sub dec_guid($) {
1312 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1313 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1314 }
1315
1316 sub enc_guid($) {
1317 $_[0] =~ /^$RE_GUID\z/o
1318 or return;
1319
1320 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1321 }
1322
1323 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1324 sub dec_wguid($) {
1325 my $guid = "{" . (dec_guid shift) . "}";
1326
1327 $bcd_objects{$guid} // $guid
1328 }
1329
1330 sub enc_wguid($) {
1331 my ($guid) = @_;
1332
1333 if (my $alias = $rbcd_objects{$guid}) {
1334 $guid = $alias;
1335 }
1336
1337 $guid =~ /^\{($RE_GUID)\}\z/o
1338 or return;
1339
1340 enc_guid $1
1341 }
1342
1343 sub BCDE_CLASS () { 0xf0000000 }
1344 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1345 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1346 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1347 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1348
1349 sub BCDE_FORMAT () { 0x0f000000 }
1350 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1351 sub BCDE_FORMAT_STRING () { 0x02000000 }
1352 sub BCDE_FORMAT_GUID () { 0x03000000 }
1353 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1354 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1355 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1356 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1357
1358 sub dec_device;
1359 sub enc_device;
1360
1361 sub enc_integer($) {
1362 no warnings 'portable'; # ugh
1363 my $value = shift;
1364 $value = oct $value if $value =~ /^0[bBxX]/;
1365 unpack "H*", pack "Q<", $value
1366 }
1367
1368 our %bcde_dec = (
1369 BCDE_FORMAT_DEVICE , \&dec_device,
1370 # # for round-trip verification
1371 # BCDE_FORMAT_DEVICE , sub {
1372 # my $dev = dec_device $_[0];
1373 # $_[0] eq enc_device $dev
1374 # or die "bcd device decoding does not round trip for $_[0]\n";
1375 # $dev
1376 # },
1377 BCDE_FORMAT_STRING , sub { shift },
1378 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1379 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1380 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1381 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1382 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1383 );
1384
1385 our %bcde_enc = (
1386 BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1387 BCDE_FORMAT_STRING , sub { sz => shift },
1388 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1389 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1390 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1391 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1392 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1393 );
1394
1395 # BCD Elements
1396 our %bcde = (
1397 0x11000001 => 'device',
1398 0x12000002 => 'path',
1399 0x12000004 => 'description',
1400 0x12000005 => 'locale',
1401 0x14000006 => 'inherit',
1402 0x15000007 => 'truncatememory',
1403 0x14000008 => 'recoverysequence',
1404 0x16000009 => 'recoveryenabled',
1405 0x1700000a => 'badmemorylist',
1406 0x1600000b => 'badmemoryaccess',
1407 0x1500000c => 'firstmegabytepolicy',
1408 0x1500000d => 'relocatephysical',
1409 0x1500000e => 'avoidlowmemory',
1410 0x1600000f => 'traditionalkseg',
1411 0x16000010 => 'bootdebug',
1412 0x15000011 => 'debugtype',
1413 0x15000012 => 'debugaddress',
1414 0x15000013 => 'debugport',
1415 0x15000014 => 'baudrate',
1416 0x15000015 => 'channel',
1417 0x12000016 => 'targetname',
1418 0x16000017 => 'noumex',
1419 0x15000018 => 'debugstart',
1420 0x12000019 => 'busparams',
1421 0x1500001a => 'hostip',
1422 0x1500001b => 'port',
1423 0x1600001c => 'dhcp',
1424 0x1200001d => 'key',
1425 0x1600001e => 'vm',
1426 0x16000020 => 'bootems',
1427 0x15000022 => 'emsport',
1428 0x15000023 => 'emsbaudrate',
1429 0x12000030 => 'loadoptions',
1430 0x16000040 => 'advancedoptions',
1431 0x16000041 => 'optionsedit',
1432 0x15000042 => 'keyringaddress',
1433 0x11000043 => 'bootstatdevice',
1434 0x12000044 => 'bootstatfilepath',
1435 0x16000045 => 'preservebootstat',
1436 0x16000046 => 'graphicsmodedisabled',
1437 0x15000047 => 'configaccesspolicy',
1438 0x16000048 => 'nointegritychecks',
1439 0x16000049 => 'testsigning',
1440 0x1200004a => 'fontpath',
1441 0x1500004b => 'integrityservices',
1442 0x1500004c => 'volumebandid',
1443 0x16000050 => 'extendedinput',
1444 0x15000051 => 'initialconsoleinput',
1445 0x15000052 => 'graphicsresolution',
1446 0x16000053 => 'restartonfailure',
1447 0x16000054 => 'highestmode',
1448 0x16000060 => 'isolatedcontext',
1449 0x15000065 => 'displaymessage',
1450 0x15000066 => 'displaymessageoverride',
1451 0x16000068 => 'nobootuxtext',
1452 0x16000069 => 'nobootuxprogress',
1453 0x1600006a => 'nobootuxfade',
1454 0x1600006b => 'bootuxreservepooldebug',
1455 0x1600006c => 'bootuxdisabled',
1456 0x1500006d => 'bootuxfadeframes',
1457 0x1600006e => 'bootuxdumpstats',
1458 0x1600006f => 'bootuxshowstats',
1459 0x16000071 => 'multibootsystem',
1460 0x16000072 => 'nokeyboard',
1461 0x15000073 => 'aliaswindowskey',
1462 0x16000074 => 'bootshutdowndisabled',
1463 0x15000075 => 'performancefrequency',
1464 0x15000076 => 'securebootrawpolicy',
1465 0x17000077 => 'allowedinmemorysettings',
1466 0x15000079 => 'bootuxtransitiontime',
1467 0x1600007a => 'mobilegraphics',
1468 0x1600007b => 'forcefipscrypto',
1469 0x1500007d => 'booterrorux',
1470 0x1600007e => 'flightsigning',
1471 0x1500007f => 'measuredbootlogformat',
1472 0x15000080 => 'displayrotation',
1473 0x15000081 => 'logcontrol',
1474 0x16000082 => 'nofirmwaresync',
1475 0x11000084 => 'windowssyspart',
1476 0x16000087 => 'numlock',
1477 0x22000001 => 'bpbstring',
1478 0x24000001 => 'displayorder',
1479 0x21000001 => 'filedevice',
1480 0x21000001 => 'osdevice',
1481 0x25000001 => 'passcount',
1482 0x26000001 => 'pxesoftreboot',
1483 0x22000002 => 'applicationname',
1484 0x24000002 => 'bootsequence',
1485 0x22000002 => 'filepath',
1486 0x22000002 => 'systemroot',
1487 0x25000002 => 'testmix',
1488 0x26000003 => 'cacheenable',
1489 0x26000003 => 'customsettings',
1490 0x23000003 => 'default',
1491 0x25000003 => 'failurecount',
1492 0x23000003 => 'resumeobject',
1493 0x26000004 => 'failuresenabled',
1494 0x26000004 => 'pae',
1495 0x26000004 => 'stampdisks',
1496 0x25000004 => 'testtofail',
1497 0x25000004 => 'timeout',
1498 0x21000005 => 'associatedosdevice',
1499 0x26000005 => 'cacheenable',
1500 0x26000005 => 'resume',
1501 0x25000005 => 'stridefailcount',
1502 0x26000006 => 'debugoptionenabled',
1503 0x25000006 => 'invcfailcount',
1504 0x23000006 => 'resumeobject',
1505 0x25000007 => 'bootux',
1506 0x25000007 => 'matsfailcount',
1507 0x24000007 => 'startupsequence',
1508 0x25000008 => 'bootmenupolicy',
1509 0x25000008 => 'randfailcount',
1510 0x25000009 => 'chckrfailcount',
1511 0x26000010 => 'detecthal',
1512 0x24000010 => 'toolsdisplayorder',
1513 0x22000011 => 'kernel',
1514 0x22000012 => 'hal',
1515 0x22000013 => 'dbgtransport',
1516 0x26000020 => 'displaybootmenu',
1517 0x25000020 => 'nx',
1518 0x26000021 => 'noerrordisplay',
1519 0x25000021 => 'pae',
1520 0x21000022 => 'bcddevice',
1521 0x26000022 => 'winpe',
1522 0x22000023 => 'bcdfilepath',
1523 0x26000024 => 'hormenabled',
1524 0x26000024 => 'hormenabled',
1525 0x26000024 => 'nocrashautoreboot',
1526 0x26000025 => 'hiberboot',
1527 0x26000025 => 'lastknowngood',
1528 0x26000026 => 'oslnointegritychecks',
1529 0x22000026 => 'passwordoverride',
1530 0x26000027 => 'osltestsigning',
1531 0x22000027 => 'pinpassphraseoverride',
1532 0x26000028 => 'processcustomactionsfirst',
1533 0x27000030 => 'customactions',
1534 0x26000030 => 'nolowmem',
1535 0x26000031 => 'persistbootsequence',
1536 0x25000031 => 'removememory',
1537 0x25000032 => 'increaseuserva',
1538 0x26000032 => 'skipstartupsequence',
1539 0x25000033 => 'perfmem',
1540 0x22000040 => 'fverecoveryurl',
1541 0x26000040 => 'vga',
1542 0x22000041 => 'fverecoverymessage',
1543 0x26000041 => 'quietboot',
1544 0x26000042 => 'novesa',
1545 0x26000043 => 'novga',
1546 0x25000050 => 'clustermodeaddressing',
1547 0x26000051 => 'usephysicaldestination',
1548 0x25000052 => 'restrictapiccluster',
1549 0x22000053 => 'evstore',
1550 0x26000054 => 'uselegacyapicmode',
1551 0x26000060 => 'onecpu',
1552 0x25000061 => 'numproc',
1553 0x26000062 => 'maxproc',
1554 0x25000063 => 'configflags',
1555 0x26000064 => 'maxgroup',
1556 0x26000065 => 'groupaware',
1557 0x25000066 => 'groupsize',
1558 0x26000070 => 'usefirmwarepcisettings',
1559 0x25000071 => 'msi',
1560 0x25000072 => 'pciexpress',
1561 0x25000080 => 'safeboot',
1562 0x26000081 => 'safebootalternateshell',
1563 0x26000090 => 'bootlog',
1564 0x26000091 => 'sos',
1565 0x260000a0 => 'debug',
1566 0x260000a1 => 'halbreakpoint',
1567 0x260000a2 => 'useplatformclock',
1568 0x260000a3 => 'forcelegacyplatform',
1569 0x260000a4 => 'useplatformtick',
1570 0x260000a5 => 'disabledynamictick',
1571 0x250000a6 => 'tscsyncpolicy',
1572 0x260000b0 => 'ems',
1573 0x250000c0 => 'forcefailure',
1574 0x250000c1 => 'driverloadfailurepolicy',
1575 0x250000c2 => 'bootmenupolicy',
1576 0x260000c3 => 'onetimeadvancedoptions',
1577 0x260000c4 => 'onetimeoptionsedit',
1578 0x250000e0 => 'bootstatuspolicy',
1579 0x260000e1 => 'disableelamdrivers',
1580 0x250000f0 => 'hypervisorlaunchtype',
1581 0x220000f1 => 'hypervisorpath',
1582 0x260000f2 => 'hypervisordebug',
1583 0x250000f3 => 'hypervisordebugtype',
1584 0x250000f4 => 'hypervisordebugport',
1585 0x250000f5 => 'hypervisorbaudrate',
1586 0x250000f6 => 'hypervisorchannel',
1587 0x250000f7 => 'bootux',
1588 0x260000f8 => 'hypervisordisableslat',
1589 0x220000f9 => 'hypervisorbusparams',
1590 0x250000fa => 'hypervisornumproc',
1591 0x250000fb => 'hypervisorrootprocpernode',
1592 0x260000fc => 'hypervisoruselargevtlb',
1593 0x250000fd => 'hypervisorhostip',
1594 0x250000fe => 'hypervisorhostport',
1595 0x250000ff => 'hypervisordebugpages',
1596 0x25000100 => 'tpmbootentropy',
1597 0x22000110 => 'hypervisorusekey',
1598 0x22000112 => 'hypervisorproductskutype',
1599 0x25000113 => 'hypervisorrootproc',
1600 0x26000114 => 'hypervisordhcp',
1601 0x25000115 => 'hypervisoriommupolicy',
1602 0x26000116 => 'hypervisorusevapic',
1603 0x22000117 => 'hypervisorloadoptions',
1604 0x25000118 => 'hypervisormsrfilterpolicy',
1605 0x25000119 => 'hypervisormmionxpolicy',
1606 0x2500011a => 'hypervisorschedulertype',
1607 0x25000120 => 'xsavepolicy',
1608 0x25000121 => 'xsaveaddfeature0',
1609 0x25000122 => 'xsaveaddfeature1',
1610 0x25000123 => 'xsaveaddfeature2',
1611 0x25000124 => 'xsaveaddfeature3',
1612 0x25000125 => 'xsaveaddfeature4',
1613 0x25000126 => 'xsaveaddfeature5',
1614 0x25000127 => 'xsaveaddfeature6',
1615 0x25000128 => 'xsaveaddfeature7',
1616 0x25000129 => 'xsaveremovefeature',
1617 0x2500012a => 'xsaveprocessorsmask',
1618 0x2500012b => 'xsavedisable',
1619 0x2500012c => 'kerneldebugtype',
1620 0x2200012d => 'kernelbusparams',
1621 0x2500012e => 'kerneldebugaddress',
1622 0x2500012f => 'kerneldebugport',
1623 0x25000130 => 'claimedtpmcounter',
1624 0x25000131 => 'kernelchannel',
1625 0x22000132 => 'kerneltargetname',
1626 0x25000133 => 'kernelhostip',
1627 0x25000134 => 'kernelport',
1628 0x26000135 => 'kerneldhcp',
1629 0x22000136 => 'kernelkey',
1630 0x22000137 => 'imchivename',
1631 0x21000138 => 'imcdevice',
1632 0x25000139 => 'kernelbaudrate',
1633 0x22000140 => 'mfgmode',
1634 0x26000141 => 'event',
1635 0x25000142 => 'vsmlaunchtype',
1636 0x25000144 => 'hypervisorenforcedcodeintegrity',
1637 0x26000145 => 'enablebootdebugpolicy',
1638 0x26000146 => 'enablebootorderclean',
1639 0x26000147 => 'enabledeviceid',
1640 0x26000148 => 'enableffuloader',
1641 0x26000149 => 'enableiuloader',
1642 0x2600014a => 'enablemassstorage',
1643 0x2600014b => 'enablerpmbprovisioning',
1644 0x2600014c => 'enablesecurebootpolicy',
1645 0x2600014d => 'enablestartcharge',
1646 0x2600014e => 'enableresettpm',
1647 0x21000150 => 'systemdatadevice',
1648 0x21000151 => 'osarcdevice',
1649 0x21000153 => 'osdatadevice',
1650 0x21000154 => 'bspdevice',
1651 0x21000155 => 'bspfilepath',
1652 0x26000202 => 'skipffumode',
1653 0x26000203 => 'forceffumode',
1654 0x25000510 => 'chargethreshold',
1655 0x26000512 => 'offmodecharging',
1656 0x25000aaa => 'bootflow',
1657 0x35000001 => 'ramdiskimageoffset',
1658 0x35000002 => 'ramdisktftpclientport',
1659 0x31000003 => 'ramdisksdidevice',
1660 0x32000004 => 'ramdisksdipath',
1661 0x35000005 => 'ramdiskimagelength',
1662 0x36000006 => 'exportascd',
1663 0x35000007 => 'ramdisktftpblocksize',
1664 0x35000008 => 'ramdisktftpwindowsize',
1665 0x36000009 => 'ramdiskmcenabled',
1666 0x3600000a => 'ramdiskmctftpfallback',
1667 0x3600000b => 'ramdisktftpvarwindow',
1668 0x45000001 => 'devicetype',
1669 0x42000002 => 'applicationrelativepath',
1670 0x42000003 => 'ramdiskdevicerelativepath',
1671 0x46000004 => 'omitosloaderelements',
1672 0x47000006 => 'elementstomigrate',
1673 0x46000010 => 'recoveryos',
1674 );
1675
1676 our %rbcde = reverse %bcde;
1677
1678 sub dec_bcde_id($) {
1679 $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1680 }
1681
1682 sub enc_bcde_id($) {
1683 $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1684 ? hex $1
1685 : $rbcde{$_[0]}
1686 }
1687
1688 # decode/encode bcd device element - the horror, no documentaion
1689 # whatsoever, supercomplex, superinconsistent.
1690
1691 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1692 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1693 our @part_type = qw(gpt mbr raw);
1694
1695 our $NULL_DEVICE = "\x00" x 16;
1696
1697 # biggest bitch to decode, ever
1698 # this decoded a device portion after the GUID
1699 sub dec_device_($);
1700 sub dec_device_($) {
1701 my ($device) = @_;
1702
1703 my $res;
1704
1705 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1706
1707 $pad == 0
1708 or die "non-zero reserved field in device descriptor\n";
1709
1710 if ($length == 0 && $type == 0 && $flags == 0) {
1711 return ("null", $device);
1712 }
1713
1714 $length >= 16
1715 or die "device element size too small ($length)\n";
1716
1717 $type = $dev_type[$type] // die "$type: unknown device type\n";
1718 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1719
1720 $res .= $type;
1721 $res .= sprintf "<%x>", $flags if $flags;
1722
1723 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1724
1725 $length == 4 * 4 + length $device
1726 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1727
1728 my $dec_path = sub {
1729 my ($path, $error) = @_;
1730
1731 $path =~ /^((?:..)*)\x00\x00\z/s
1732 or die "$error\n";
1733
1734 $path = Encode::decode "UTF-16LE", $1;
1735
1736 $path
1737 };
1738
1739 if ($type eq "partition" or $type eq "legacypartition") {
1740 my $partdata = substr $device, 0, 16, "";
1741 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1742
1743 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1744 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1745
1746 my $diskid = substr $device, 0, 16, "";
1747
1748 $diskid = $parttype eq "gpt"
1749 ? dec_guid substr $diskid, 0, 16
1750 : sprintf "%08x", unpack "V", $diskid;
1751
1752 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1753 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1754 : unpack "L<", $partdata; # partition number, one-based
1755
1756 (my $parent, $device) = dec_device_ $device;
1757
1758 $res .= "=";
1759 $res .= "<$parent>";
1760 $res .= ",$blocktype,$parttype,$diskid,$partid";
1761
1762 # PartitionType (gpt, mbr, raw)
1763 # guid | partsig | disknumber
1764
1765 } elsif ($type eq "boot") {
1766 $device =~ s/^\x00{56}\z//
1767 or die "boot device type with extra data not supported\n";
1768
1769 } elsif ($type eq "block") {
1770 my $blocktype = unpack "V", substr $device, 0, 4, "";
1771
1772 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1773
1774 # decode a "file path" structure
1775 my $dec_file = sub {
1776 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1777
1778 my $path = substr $device, 0, $flen - 12, "";
1779
1780 $fver == 1
1781 or die "unsupported file descriptor version '$fver'\n";
1782
1783 $ftype == 5
1784 or die "unsupported file descriptor path type '$type'\n";
1785
1786 (my $parent, $path) = dec_device_ $path;
1787
1788 $path = $dec_path->($path, "file device without path");
1789
1790 ($parent, $path)
1791 };
1792
1793 if ($blocktype eq "file") {
1794 my ($parent, $path) = $dec_file->();
1795
1796 $res .= "=file,<$parent>,$path";
1797
1798 } elsif ($blocktype eq "vhd") {
1799 $device =~ s/^\x00{20}//s
1800 or die "virtualdisk has non-zero fields I don't understand\n";
1801
1802 (my $parent, $device) = dec_device_ $device;
1803
1804 $res .= "=vhd,<$parent>";
1805
1806 } elsif ($blocktype eq "ramdisk") {
1807 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1808 my ($subdev, $path) = $dec_file->();
1809
1810 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1811
1812 } else {
1813 die "unsupported block type '$blocktype'\n";
1814 }
1815
1816 } elsif ($type eq "locate") {
1817 # mode, bcde_id, unknown, string
1818 # we assume locate has _either_ an element id _or_ a path, but not both
1819
1820 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1821
1822 if ($parent) {
1823 # not sure why this is an offset - it must come after the path
1824 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1825 ($parent, my $tail) = dec_device_ $parent;
1826 0 == length $tail
1827 or die "trailing data after locate device parent\n";
1828 } else {
1829 $parent = "null";
1830 }
1831
1832 my $path = $device; $device = "";
1833 $path = $dec_path->($path, "device locate mode without path");
1834
1835 $res .= "=<$parent>,";
1836
1837 if ($mode == 0) { # "Element"
1838 !length $path
1839 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1840
1841 $elem = dec_bcde_id $elem;
1842 $res .= "element,$elem";
1843
1844 } elsif ($mode == 1) { # "String"
1845 !$elem
1846 or die "device locate mode 1 having non-zero element\n";
1847
1848 $res .= "path,$path";
1849 } else {
1850 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1851 die "device locate mode '$mode' not supported\n";
1852 }
1853
1854 } elsif ($type eq "vmbus") {
1855 my $type = dec_guid substr $device, 0, 16, "";
1856 my $instance = dec_guid substr $device, 0, 16, "";
1857
1858 $device =~ s/^\x00{24}\z//
1859 or die "vmbus has non-zero fields I don't understand\n";
1860
1861 $res .= "=$type,$instance";
1862
1863 } else {
1864 die "unsupported device type '$type'\n";
1865 }
1866
1867 warn "unexpected trailing device data($res), " . unpack "H*",$device
1868 if length $device;
1869 #length $device
1870 # and die "unexpected trailing device data\n";
1871
1872 ($res, $tail)
1873 }
1874
1875 # decode a full binary BCD device descriptor
1876 sub dec_device($) {
1877 my ($device) = @_;
1878
1879 $device = pack "H*", $device;
1880
1881 my $guid = dec_guid substr $device, 0, 16, "";
1882 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1883 ? "" : "{$guid}";
1884
1885 eval {
1886 my ($dev, $tail) = dec_device_ $device;
1887
1888 $tail eq ""
1889 or die "unsupported trailing data after device descriptor\n";
1890
1891 "$guid$dev"
1892 # } // scalar ((warn $@), "$guid$fallback")
1893 } // ($guid . "binary=" . unpack "H*", $device)
1894 }
1895
1896 sub indexof($@) {
1897 my $value = shift;
1898
1899 for (0 .. $#_) {
1900 $value eq $_[$_]
1901 and return $_;
1902 }
1903
1904 undef
1905 }
1906
1907 # encode the device portion after the GUID
1908 sub enc_device_;
1909 sub enc_device_ {
1910 my ($device) = @_;
1911
1912 my $enc_path = sub {
1913 my $path = shift;
1914 $path =~ s/\//\\/g;
1915 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1916 };
1917
1918 my $enc_file = sub {
1919 my ($parent, $path) = @_; # parent and path must already be encoded
1920
1921 $path = $parent . $path;
1922
1923 # fver 1, ftype 5
1924 pack "VVVa*", 1, 12 + length $path, 5, $path
1925 };
1926
1927 my $parse_path = sub {
1928 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1929 or die "$_: invalid path\n";
1930
1931 $enc_path->($1)
1932 };
1933
1934 my $parse_parent = sub {
1935 my $parent;
1936
1937 if (s/^<//) {
1938 ($parent, $_) = enc_device_ $_;
1939 s/^>//
1940 or die "$device: syntax error: parent device not followed by '>'\n";
1941 } else {
1942 $parent = $NULL_DEVICE;
1943 }
1944
1945 $parent
1946 };
1947
1948 for ($device) {
1949 s/^([a-z]+)//
1950 or die "$_: device does not start with type string\n";
1951
1952 my $type = $1;
1953 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1954 my $payload;
1955
1956 if ($type eq "binary") {
1957 s/^=([0-9a-fA-F]+)//
1958 or die "binary type must have a hex string argument\n";
1959
1960 $payload = pack "H*", $1;
1961
1962 } elsif ($type eq "null") {
1963 return ($NULL_DEVICE, $_);
1964
1965 } elsif ($type eq "boot") {
1966 $payload = "\x00" x 56;
1967
1968 } elsif ($type eq "partition" or $type eq "legacypartition") {
1969 s/^=//
1970 or die "$_: missing '=' after $type\n";
1971
1972 my $parent = $parse_parent->();
1973
1974 s/^,//
1975 or die "$_: comma missing after partition parent device\n";
1976
1977 s/^([a-z]+),//
1978 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1979 my $blocktype = $1;
1980
1981 s/^([a-z]+),//
1982 or die "$_: partition block type not followed by partiton type\n";
1983 my $parttype = $1;
1984
1985 my ($partdata, $diskdata);
1986
1987 if ($parttype eq "mbr") {
1988 s/^([0-9a-f]{8}),//i
1989 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1990 $diskdata = pack "Vx12", hex $1;
1991
1992 s/^([0-9]+)//
1993 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1994
1995 # the following works for both 64 bit offset and 32 bit partno
1996 $partdata = pack "Q< x8", $1;
1997
1998 } elsif ($parttype eq "gpt") {
1999 s/^($RE_GUID),//
2000 or die "$_: partition disk guid missing or malformed\n";
2001 $diskdata = enc_guid $1;
2002
2003 s/^($RE_GUID)//
2004 or die "$_: partition guid missing or malformed\n";
2005 $partdata = enc_guid $1;
2006
2007 } elsif ($parttype eq "raw") {
2008 s/^([0-9]+)//
2009 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2010
2011 $partdata = pack "L< x12", $1;
2012
2013 } else {
2014 die "$parttype: partition type not supported\n";
2015 }
2016
2017 $payload = pack "a16 L< L< a16 a*",
2018 $partdata,
2019 (indexof $blocktype, @block_type),
2020 (indexof $parttype, @part_type),
2021 $diskdata,
2022 $parent;
2023
2024 } elsif ($type eq "locate") {
2025 s/^=//
2026 or die "$_: missing '=' after $type\n";
2027
2028 my ($mode, $elem, $path);
2029
2030 my $parent = $parse_parent->();
2031
2032 s/^,//
2033 or die "$_: missing comma after locate parent device\n";
2034
2035 if (s/^element,//) {
2036 s/^([0-9a-z]+)//i
2037 or die "$_ locate element must be either name or 8-digit hex id\n";
2038 $elem = enc_bcde_id $1;
2039 $mode = 0;
2040 $path = $enc_path->("");
2041
2042 } elsif (s/^path,//) {
2043 $mode = 1;
2044 $path = $parse_path->();
2045
2046 } else {
2047 die "$_ second locate argument must be subtype (either element or path)\n";
2048 }
2049
2050 if ($parent ne $NULL_DEVICE) {
2051 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2052 } else {
2053 $parent = 0;
2054 }
2055
2056 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2057
2058 } elsif ($type eq "block") {
2059 s/^=//
2060 or die "$_: missing '=' after $type\n";
2061
2062 s/^([a-z]+),//
2063 or die "$_: block device does not start with block type (e.g. disk)\n";
2064 my $blocktype = $1;
2065
2066 my $blockdata;
2067
2068 if ($blocktype eq "file") {
2069 my $parent = $parse_parent->();
2070 s/^,// or die "$_: comma missing after file block device parent\n";
2071 my $path = $parse_path->();
2072
2073 $blockdata = $enc_file->($parent, $path);
2074
2075 } elsif ($blocktype eq "vhd") {
2076 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2077 $blockdata .= $parse_parent->();
2078
2079 } elsif ($blocktype eq "ramdisk") {
2080 my $parent = $parse_parent->();
2081
2082 s/^,(\d+),(\d+),(\d+),//a
2083 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2084
2085 my ($base, $size, $offset) = ($1, $2, $3);
2086
2087 my $path = $parse_path->();
2088
2089 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2090
2091 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2092 # this is guesswork
2093 s/^(\d+)//a
2094 or die "$_: missing device number for cdrom\n";
2095 $blockdata = pack "V", $1;
2096
2097 } else {
2098 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2099 }
2100
2101 $payload = pack "Va*",
2102 (indexof $blocktype, @block_type),
2103 $blockdata;
2104
2105 } elsif ($type eq "vmbus") {
2106 s/^=($RE_GUID)//
2107 or die "$_: malformed or missing vmbus interface type guid\n";
2108 my $type = enc_guid $1;
2109 s/^,($RE_GUID)//
2110 or die "$_: malformed or missing vmbus interface instance guid\n";
2111 my $instance = enc_guid $1;
2112
2113 $payload = pack "a16a16x24", $type, $instance;
2114
2115 } else {
2116 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2117 }
2118
2119 return (
2120 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2121 $_
2122 );
2123 }
2124 }
2125
2126 # encode a full binary BCD device descriptor
2127 sub enc_device {
2128 my ($device) = @_;
2129
2130 my $guid = "\x00" x 16;
2131
2132 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2133 $guid = enc_guid $1
2134 or die "$device: does not start with valid guid\n";
2135 }
2136
2137 my ($descriptor, $tail) = enc_device_ $device;
2138
2139 length $tail
2140 and die "$device: garbage after device descriptor\n";
2141
2142 unpack "H*", $guid . $descriptor
2143 }
2144
2145 # decode a registry hive into the BCD structure used by pbcdedit
2146 sub bcd_decode {
2147 my ($hive) = @_;
2148
2149 my %bcd;
2150
2151 my $objects = $hive->[1][1]{Objects}[1];
2152
2153 while (my ($k, $v) = each %$objects) {
2154 my %kv;
2155 $v = $v->[1];
2156
2157 $k = $bcd_objects{$k} // $k;
2158
2159 my $type = $v->{Description}[0]{Type}[1];
2160
2161 if ($type != $bcd_object_types{$k}) {
2162 $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2163 $kv{type} = $type;
2164 }
2165
2166 my $elems = $v->{Elements}[1];
2167
2168 while (my ($k, $v) = each %$elems) {
2169 my $k = hex $k;
2170
2171 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2172 my $k = dec_bcde_id $k;
2173
2174 $kv{$k} = $v;
2175 }
2176
2177 $bcd{$k} = \%kv;
2178 }
2179
2180 $bcd{meta} = { version => $JSON_VERSION };
2181
2182 \%bcd
2183 }
2184
2185 # encode a pbcdedit structure into a registry hive
2186 sub bcd_encode {
2187 my ($bcd) = @_;
2188
2189 if (my $meta = $bcd->{meta}) {
2190 $meta->{version} eq $JSON_VERSION
2191 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2192 }
2193
2194 my %objects;
2195 my %rbcd_types = reverse %bcd_types;
2196
2197 while (my ($k, $v) = each %$bcd) {
2198 my %kv;
2199
2200 next if $k eq "meta";
2201
2202 $k = lc $k; # I know you windows types!
2203
2204 my $type = $v->{type};
2205
2206 if ($type) {
2207 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2208 ? hex $type
2209 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2210 }
2211
2212 my $guid = enc_wguid $k
2213 or die "$k: invalid bcd object identifier\n";
2214
2215 # default type if not given
2216 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2217
2218 my %elem;
2219
2220 while (my ($k, $v) = each %$v) {
2221 next if $k eq "type";
2222
2223 $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2224 $elem{sprintf "%08x", $k} = [{
2225 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2226 }];
2227 }
2228
2229 $guid = dec_guid $guid;
2230
2231 $objects{"{$guid}"} = [undef, {
2232 Description => [{ Type => [dword => $type] }],
2233 Elements => [undef, \%elem],
2234 }];
2235 }
2236
2237 [NewStoreRoot => [undef, {
2238 Description => [{
2239 KeyName => [sz => "BCD00000001"],
2240 System => [dword => 1],
2241 pbcdedit => [sz => $VERSION],
2242 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2243 }],
2244 Objects => [undef, \%objects],
2245 }]]
2246 }
2247
2248 #############################################################################
2249
2250 sub bcd_edit_eval {
2251 package pbcdedit;
2252
2253 our ($PATH, $BCD, $DEFAULT);
2254
2255 eval shift;
2256 die "$@" if $@;
2257 }
2258
2259 sub bcd_edit {
2260 my ($path, $bcd, @insns) = @_;
2261
2262 my $default = $bcd->{"{bootmgr}"}{resumeobject};
2263
2264 # prepare "officially visible" variables
2265 local $pbcdedit::PATH = $path;
2266 local $pbcdedit::BCD = $bcd;
2267 local $pbcdedit::DEFAULT = $default;
2268
2269 while (@insns) {
2270 my $insn = shift @insns;
2271
2272 if ($insn eq "get") {
2273 my $object = shift @insns;
2274 my $elem = shift @insns;
2275
2276 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2277
2278 print $bcd->{$object}{$elem}, "\n";
2279
2280 } elsif ($insn eq "set") {
2281 my $object = shift @insns;
2282 my $elem = shift @insns;
2283 my $value = shift @insns;
2284
2285 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2286
2287 $bcd->{$object}{$elem} = $value;
2288
2289 } elsif ($insn eq "eval") {
2290 bcd_edit_eval shift @insns;
2291
2292 } elsif ($insn eq "do") {
2293 my $path = shift @insns;
2294 my $file = file_load $path;
2295 bcd_edit_eval "#line 1 '$path'\n$file";
2296
2297 } else {
2298 die "$insn: not a recognized instruction for edit/parse\n";
2299 }
2300 }
2301
2302 }
2303
2304 #############################################################################
2305
2306 # json to stdout
2307 sub prjson($) {
2308 print $json_coder->encode ($_[0]);
2309 }
2310
2311 # json from stdin
2312 sub rdjson() {
2313 my $json;
2314 1 while read STDIN, $json, 65536, length $json;
2315 $json_coder->decode ($json)
2316 }
2317
2318 # all subcommands
2319 our %CMD = (
2320 help => sub {
2321 require Pod::Usage;
2322 Pod::Usage::pod2usage (-verbose => 2);
2323 },
2324
2325 objects => sub {
2326 my %rbcd_types = reverse %bcd_types;
2327 $_ = sprintf "%08x", $_ for values %rbcd_types;
2328
2329 if ($_[0] eq "--json") {
2330 my %default_type = %bcd_object_types;
2331 $_ = sprintf "%08x", $_ for values %default_type;
2332
2333 prjson {
2334 version => $JSON_VERSION,
2335 object_alias => \%bcd_objects,
2336 object_type => \%rbcd_types,
2337 object_default_type => \%default_type,
2338 };
2339 } else {
2340 my %rbcd_objects = reverse %bcd_objects;
2341
2342 print "\n";
2343
2344 printf "%-9s %s\n", "Type", "Alias";
2345 for my $tname (sort keys %rbcd_types) {
2346 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2347 }
2348
2349 print "\n";
2350
2351 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2352 for my $name (sort keys %rbcd_objects) {
2353 my $guid = $rbcd_objects{$name};
2354 my $type = $bcd_object_types{$name};
2355 my $tname = $bcd_types{$type};
2356
2357 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2358
2359 printf "%-39s %-23s %s\n", $guid, $name, $type;
2360 }
2361
2362 print "\n";
2363 }
2364 },
2365
2366 elements => sub {
2367 my $json = $_[0] eq "--json";
2368
2369 my %format_name = (
2370 BCDE_FORMAT_DEVICE , "device",
2371 BCDE_FORMAT_STRING , "string",
2372 BCDE_FORMAT_GUID , "guid",
2373 BCDE_FORMAT_GUID_LIST , "guid list",
2374 BCDE_FORMAT_INTEGER , "integer",
2375 BCDE_FORMAT_BOOLEAN , "boolean",
2376 BCDE_FORMAT_INTEGER_LIST, "integer list",
2377 );
2378 my %rbcde = reverse %bcde;
2379 $_ = sprintf "%08x", $_ for values %rbcde;
2380
2381 my %element;
2382
2383 unless ($json) {
2384 print "\n";
2385 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2386 }
2387 for my $name (sort keys %rbcde) {
2388 my $id = $rbcde{$name};
2389 my $format = $format_name{(hex $id) & BCDE_FORMAT};
2390
2391 if ($json) {
2392 $element{$id} = [$format, $name];
2393 } else {
2394 printf "%-9s %-12s %s\n", $id, $format, $name;
2395 }
2396 }
2397 print "\n" unless $json;
2398
2399 prjson {
2400 version => $JSON_VERSION,
2401 element => \%element,
2402 } if $json;
2403
2404 },
2405
2406 export => sub {
2407 prjson bcd_decode regf_load shift;
2408 },
2409
2410 import => sub {
2411 regf_save shift, bcd_encode rdjson;
2412 },
2413
2414 edit => sub {
2415 my $path = shift;
2416 my $bcd = bcd_decode regf_load $path;
2417 bcd_edit $path, $bcd, @_;
2418 regf_save $path, bcd_encode $bcd;
2419 },
2420
2421 parse => sub {
2422 my $path = shift;
2423 my $bcd = bcd_decode regf_load $path;
2424 bcd_edit $path, $bcd, @_;
2425 },
2426
2427 "export-regf" => sub {
2428 prjson regf_load shift;
2429
2430 },
2431
2432 "import-regf" => sub {
2433 regf_save shift, rdjson;
2434 },
2435
2436 lsblk => sub {
2437 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2438
2439 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2440
2441 for my $dev (@{ $lsblk->{blockdevices} }) {
2442 my $pr = sub {
2443 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2444 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2445 };
2446
2447 if ($dev->{type} eq "part") {
2448 if ($dev->{pttype} eq "gpt") {
2449 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2450 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2451 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2452 my ($diskid, $partno) = ($1, hex $2);
2453 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2454 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2455 my $start = 512 * readline $fh;
2456 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2457 }
2458 }
2459 }
2460 }
2461 }
2462 },
2463 );
2464
2465 my $cmd = shift;
2466
2467 unless (exists $CMD{$cmd}) {
2468 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2469 exit 126;
2470 }
2471
2472 $CMD{$cmd}->(@ARGV);
2473