ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.19
Committed: Wed Aug 14 23:32:46 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.18: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.014; # numerous features needed
23
24 our $VERSION = '1.0';
25 our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26
27 =head1 NAME
28
29 pbcdedit - portable boot configuration data (BCD) store editor
30
31 =head1 SYNOPSIS
32
33 pbcdedit help # output manual page
34 pbcdedit export path/to/BCD # output BCD hive as JSON
35 pbcdedit import path/to/bcd # convert standard input to BCD hive
36 pbcdedit edit path/to/BCD edit-instructions...
37
38 pbcdedit objects # list all supported object aliases and types
39 pbcdedit elements # list all supported bcd element aliases
40
41 =head1 DESCRIPTION
42
43 This program allows you to create, read and modify Boot Configuration Data
44 (BCD) stores used by Windows Vista and newer versions of Windows.
45
46 At this point, it is in relatively early stages of development and has
47 received little to no real-world testing.
48
49 Compared to other BCD editing programs it offers the following unique
50 features:
51
52 =over
53
54 =item Can create BCD hives from scratch
55
56 Practically all other BCD editing programs force you to copy existing BCD
57 stores, which might or might not be copyrighted by Microsoft.
58
59 =item Does not rely on Windows
60
61 As the "portable" in the name implies, this program does not rely on
62 C<bcdedit> or other windows programs or libraries, it works on any system
63 that supports at least perl version 5.14.
64
65 =item Decodes and encodes BCD device elements
66
67 PBCDEDIT can concisely decode and encode BCD device element contents. This
68 is pretty unique, and offers a lot of potential that can't be realised
69 with C<bcdedit> or any programs relying on it.
70
71 =item Minimal files
72
73 BCD files written by PBCDEDIT are always "minimal", that is, they don't
74 contain unused data areas and therefore don't contain old and potentially
75 sensitive data.
76
77 =back
78
79 The target audience for this program is professionals and tinkerers who
80 are ready to invest time into learning how it works. It is not an easy
81 program to use and requires patience and a good understanding of BCD data
82 stores.
83
84
85 =head1 SUBCOMMANDS
86
87 PBCDEDIT expects a subcommand as first argument that tells it what to
88 do. The following subcommands exist:
89
90 =over
91
92 =item help
93
94 Displays the whole manual page (this document).
95
96 =item export F<path>
97
98 Reads a BCD data store and writes a JSON representation of it to standard
99 output.
100
101 The format of the data is explained later in this document.
102
103 Example: read a BCD store, modify it with an external program, write it
104 again.
105
106 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
107
108 =item import F<path>
109
110 The reverse of C<export>: Reads a JSON representation of a BCD data store
111 from standard input, and creates or replaces the given BCD data store.
112
113 =item edit F<path> instructions...
114
115 Load a BCD data store, apply some instructions to it, and save it again.
116
117 See the section L<EDITING BCD DATA STORES>, below, for more info.
118
119 =item parse F<path> instructions...
120
121 Same as C<edit>, above, except it doesn't save the data store again. Can
122 be useful to extract some data from it.
123
124 =item lsblk
125
126 On a GNU/Linux system, you can get a list of partition device descriptors
127 using this command - the external C<lsblk> command is required, as well as
128 a mounted C</sys> file system.
129
130 The output will be a list of all partitions in the system and C<partition>
131 descriptors for GPT and both C<legacypartition> and C<partition>
132 descriptors for MBR partitions.
133
134 =item objects [--json]
135
136 Outputs two tables: a table listing all type aliases with their hex BCD
137 element ID, and all object name aliases with their GUID and default type
138 (if any).
139
140 With C<--json> it prints similar information as a JSON object, for easier parsing.
141
142 =item elements [--json]
143
144 Outputs a table of known element aliases with their hex ID and the format
145 type.
146
147 With C<--json> it prints similar information as a JSON object, for easier parsing.
148
149 =item export-regf F<path>
150
151 This has nothing to do with BCD data stores - it takes a registry hive
152 file as argument and outputs a JSON representation of it to standard
153 output.
154
155 Hive versions 1.2 till 1.6 are supported.
156
157 =item import-regf F<path>
158
159 The reverse of C<export-regf>: reads a JSON representation of a registry
160 hive from standard input and creates or replaces the registry hive file given as
161 argument.
162
163 The written hive will always be in a slightly modified version 1.3
164 format. It's not the format windows would generate, but it should be
165 understood by any conformant hive reader.
166
167 Note that the representation chosen by PBCDEDIT currently throws away
168 classname data (often used for feeble attempts at hiding stuff by
169 Microsoft) and security descriptors, so if you write anything other than
170 a BCD hive you will most likely destroy it.
171
172 =back
173
174
175 =head1 BCD DATA STORE REPRESENTATION FORMAT
176
177 A BCD data store is represented as a JSON object with one special key,
178 C<meta>, and one key per BCD object. That is, each BCD object becomes
179 one key-value pair in the object, and an additional key called C<meta>
180 contains meta information.
181
182 Here is an abridged example of a real BCD store:
183
184 {
185 "meta" : {
186 "version" : 1
187 },
188 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
189 "type" : "application::osloader",
190 "description" : "Windows 10",
191 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
192 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193 "path" : "\\Windows\\system32\\winload.exe",
194 "systemroot" : "\\Windows"
195 },
196 "{bootloadersettings}" : {
197 "inherit" : "{globalsettings} {hypervisorsettings}"
198 },
199 "{bootmgr}" : {
200 "description" : "Windows Boot Manager",
201 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
202 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
203 "inherit" : "{globalsettings}",
204 "displaybootmenu" : 0,
205 "timeout" : 30
206 },
207 "{globalsettings}" : {
208 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
209 },
210 "{hypervisorsettings}" : {
211 "hypervisorbaudrate" : 115200,
212 "hypervisordebugport" : 1,
213 "hypervisordebugtype" : 0
214 },
215 # ...
216 }
217
218 =head2 Minimal BCD to boot windows
219
220 Experimentally I found the following BCD is the minimum required to
221 successfully boot any post-XP version of Windows (suitable C<device> and
222 C<osdevice> values, of course):
223
224 {
225 "{bootmgr}" : {
226 "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
227 },
228
229 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
230 "type" : "application::osloader",
231 "description" : "Windows Boot",
232 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
233 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234 "path" : "\\Windows\\system32\\winload.exe",
235 "systemroot" : "\\Windows"
236 },
237 }
238
239 Note that minimal doesn't mean recommended - Windows itself will add stuff
240 to this during or after boot, and you might or might not run into issues
241 when installing updates as it might not be able to find the F<bootmgr>.
242
243 =head2 The C<meta> key
244
245 The C<meta> key is not stored in the BCD data store but is used only
246 by PBCDEDIT. It is always generated when exporting, and importing will
247 be refused when it exists and the version stored inside doesn't store
248 the JSON schema version of PBCDEDIT. This ensures that different and
249 incompatible versions of PBCDEDIT will not read and misinterpret each
250 others data.
251
252 =head2 The object keys
253
254 Every other key is a BCD object. There is usually a BCD object for the
255 boot manager, one for every boot option and a few others that store common
256 settings inherited by these.
257
258 Each BCD object is represented by a GUID wrapped in curly braces. These
259 are usually random GUIDs used only to distinguish BCD objects from each
260 other. When adding a new boot option, you can simply generate a new GUID.
261
262 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
263 into human-readable strings such as C<{globalsettings}>, which is the same
264 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
265
266 Each BCD, object has an associated type. For example,
267 C<application::osloader> for objects loading Windows via F<winload.exe>,
268 C<application::bootsector> for real mode applications and so on.
269
270 The type of a object is stored in the pseudo BCD element C<type> (see next
271 section).
272
273 Some well-known objects have a default type. If an object type matches
274 its default type, then the C<type> element will be omitted. Similarly, if
275 the C<type> element is missing and the BCD object has a default type, the
276 default type will be used when writing a BCD store.
277
278 Running F<pbcdedit objects> will give you a list of object types,
279 well-known object aliases and their default types.
280
281 If different string keys in a JSON BCD store map to the same BCD object
282 then a random one will "win" and the others will be discarded. To avoid
283 this, you should always use the "canonical" name of a BCD object, which is
284 the human-readable form (if it exists).
285
286 =head2 The object values - BCD elements
287
288 The value of each BCD object entry consists of key-value pairs called BCD
289 elements.
290
291 BCD elements are identified by a 32 bit number, but to make things
292 simpler PBCDEDIT will replace these with well-known strings such as
293 C<description>, C<device> or C<path>.
294
295 When PBCDEDIT does not know the BCD element, it will use
296 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
297 BCD element. For example, C<device> would be C<custom::11000001>. You can
298 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
299 elements>.
300
301 What was said about duplicate keys mapping to the same object is true for
302 elements as well, so, again, you should always use the canonical name,
303 which is the human readable alias, if known.
304
305 =head3 BCD element types
306
307 Each BCD element has a type such as I<string> or I<boolean>. This type
308 determines how the value is interpreted, and most of them are pretty easy
309 to explain:
310
311 =over
312
313 =item string
314
315 This is simply a unicode string. For example, the C<description> and
316 C<systemroot> elements both are of this type, one storing a human-readable
317 name for this boot option, the other a file path to the windows root
318 directory:
319
320 "description" : "Windows 10",
321 "systemroot" : "\\Windows",
322
323 =item boolean
324
325 Almost as simple are booleans, which represent I<true>/I<false>,
326 I<on>/I<off> and similar values. In the JSON form, true is represented
327 by the number C<1>, and false is represented by the number C<0>. Other
328 values will be accepted, but PBCDEDIT doesn't guarantee how these are
329 interpreted.
330
331 For example, C<displaybootmenu> is a boolean that decides whether to
332 enable the C<F8> boot menu. In the example BCD store above, this is
333 disabled:
334
335 "displaybootmenu" : 0,
336
337 =item integer
338
339 Again, very simple, this is a 64 bit integer. IT can be either specified
340 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
341 binary number (prefix C<0b>).
342
343 For example, the boot C<timeout> is an integer, specifying the automatic
344 boot delay in seconds:
345
346 "timeout" : 30,
347
348 =item integer list
349
350 This is a list of 64 bit integers separated by whitespace. It is not used
351 much, so here is a somewhat artificial an untested example of using
352 C<customactions> to specify a certain custom, eh, action to be executed
353 when pressing C<F10> at boot:
354
355 "customactions" : "0x1000044000001 0x54000001",
356
357 =item guid
358
359 This represents a single GUID value wrapped in curly braces. It is used a
360 lot to refer from one BCD object to other one.
361
362 For example, The C<{bootmgr}> object might refer to a resume boot option
363 using C<resumeobject>:
364
365 "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
366
367 Human readable aliases are used and allowed.
368
369 =item guid list
370
371 Similar to the GUID type, this represents a list of such GUIDs, separated
372 by whitespace from each other.
373
374 For example, many BCD objects can I<inherit> elements from other BCD
375 objects by specifying the GUIDs of those other objects in a GUID list
376 called surprisingly called C<inherit>:
377
378 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
379
380 This example also shows how human readable aliases can be used.
381
382 =item device
383
384 This type is why I write I<most> are easy to explain earlier: This type
385 is the pinnacle of Microsoft-typical hacks layered on top of other
386 hacks. Understanding this type took more time than writing all the rest of
387 PBCDEDIT, and because it is so complex, this type has its own subsection
388 below.
389 =back
390
391 =head4 The BCD "device" element type
392
393 Device elements specify, well, devices. They are used for such diverse
394 purposes such as finding a TFTP network boot image, serial ports or VMBUS
395 devices, but most commonly they are used to specify the disk (harddisk,
396 cdrom, ramdisk, vhd...) to boot from.
397
398 The device element is kind of a mini-language in its own which is much
399 more versatile then the limited windows interface to it - BCDEDIT -
400 reveals.
401
402 While some information can be found on the BCD store and the windows
403 registry, there is pretty much no public information about the device
404 element, so almost everything known about it had to be researched first
405 in the process of writing this script, and consequently, support for BCD
406 device elements is partial only.
407
408 On the other hand, the expressive power of PBCDEDIT in specifying devices
409 is much bigger than BCDEDIT and therefore more can be done with it. The
410 downside is that BCD device elements are much more complicated than what
411 you might think from reading the BCDEDIT documentation.
412
413 In other words, simple things are complicated, and complicated things are
414 possible.
415
416 Anyway, the general syntax of device elements is an optional GUID,
417 followed by a device type, optionally followed by hexadecimal flags in
418 angle brackets, optionally followed by C<=> and a comma-separated list of
419 arguments, some of which can be (and often are) in turn devices again.
420
421 [{GUID}]type[<flags>][=arg,arg...]
422
423 Here are some examples:
424
425 boot
426 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
427 locate=<null>,element,systemroot
428 partition=<null>,harddisk,mbr,47cbc08a,1048576
429 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
430 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
431 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
432 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
433
434 I hope you are suitably impressed. I was, too, when I realized decoding
435 these binary blobs is not as easy as I had assumed.
436
437 The optional prefixed GUID seems to refer to a device BCD object, which
438 can be used to specify more device-specific BCD elements (for example
439 C<ramdisksdidevice> and C<ramdisksdpath>).
440
441 The flags after the type are omitted when they are C<0>. The only known
442 flag is C<1>, which seems to indicate that the parent device is invalid. I
443 don't claim to fully understand it, but it seems to indicate that the
444 boot manager has to search the device itself. Why the device is specified
445 in the first place escapes me, but a lot of this device stuff seems to be
446 badly hacked together...
447
448 The types understood and used by PBCDEDIT are as follows (keep in mind
449 that not of all the following is necessarily supported in PBCDEDIT):
450
451 =over
452
453 =item C<binary=>I<hex...>
454
455 This type isn't actually a real BCD element type, but a fallback for those
456 cases where PBCDEDIT can't perfectly decode a device element (except for
457 the leading GUID, which it can always decode). In such cases, it will
458 convert the device into this type with a hexdump of the element data.
459
460 =item C<null>
461
462 This is another special type - sometimes, a device all zero-filled, which
463 is not valid. This can mark the absence of a device or something PBCDEDIT
464 does not understand, so it decodes it into this special "all zero" type
465 called C<null>.
466
467 It's most commonly found in devices that can use an optional parent
468 device, when no parent device is used.
469
470 =item C<boot>
471
472 Another type without parameters, this refers to the device that was booted
473 from (nowadays typically the EFI system partition).
474
475 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
476
477 This specifies a VMBUS device with the given interface type and interface
478 instance, both of which are "naked" (no curly braces) GUIDs.
479
480 Made-up example (couldn't find a single example on the web):
481
482 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
483
484 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
485
486 This designates a specific partition on a block device. I<parent> is an
487 optional parent device on which to search on, and is often C<null>. Note
488 that the angle brackets around I<parent> are part of the syntax.
489
490 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
491 C<file> or C<vhd>, where the first three should be self-explaining,
492 C<file> is usually used to locate a device by finding a magic file, and
493 C<vhd> is used for virtual harddisks - F<vhd> and F<vhdx> files.
494
495 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
496 used for devices without partitions, such as cdroms, where the "partition"
497 is usually the whole device.
498
499 The I<diskid> identifies the disk or device using a unique signature, and
500 the same is true for the I<partitionid>. How these are interpreted depends
501 on the I<partitiontype>:
502
503 =over
504
505 =item C<mbr>
506
507 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
508 MBR, interpreted as a 32 bit unsigned little endian integer and written as
509 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
510
511 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
512 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
513 display the I<diskid>.
514
515 The I<partitionid> is the byte offset(!) of the partition counting from
516 the beginning of the MBR.
517
518 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
519 starting at sector C<2048> (= 1048576 / 512).
520
521 partition=<null>,harddisk,mbr,47cbc08a,1048576
522
523 =item C<gpt>
524
525 The I<diskid> is the disk GUID/disk identifier GUID from the partition
526 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
527 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
528
529 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
530 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
531
532 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
533
534 =item C<raw>
535
536 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
537 disk number and signifies the whole disk. BCDEDIT cannot display the
538 resulting device, and I am doubtful whether it has a useful effect.
539
540 =back
541
542 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
543
544 This is exactly the same as the C<partition> type, except for a tiny
545 detail: instead of using the partition start offset, this type uses the
546 partition number for MBR disks. Behaviour other partition types should be
547 the same.
548
549 The partition number starts at C<1> and skips unused partition, so if
550 there are two primary partitions and another partition inside the extended
551 partition, the primary partitions are number C<1> and C<2> and the
552 partition inside the extended partition is number C<3>, regardless of any
553 gaps.
554
555 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
556
557 This device description will make the bootloader search for a partition
558 with a given path.
559
560 The I<parent> device is the device to search on (angle brackets are
561 still part of the syntax!) If it is C<null>, then C<locate> will
562 search all disks it can find.
563
564 I<locatetype> is either C<element> or C<path>, and merely distinguishes
565 between two different ways to specify the path to search for: C<element>
566 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
567 uses a relative path as I<locatearg>.
568
569 Example: find any partition which has the F<magicfile.xxx> path in the
570 root.
571
572 locate=<null>,path,\magicfile.xxx
573
574 Example: find any partition which has the path specified in the
575 C<systemroot> element (typically F<\Windows>).
576
577 locate=<null>,element,systemroot
578
579 =item C<block=>I<devicetype>,I<args...>
580
581 Last not least, the most complex type, C<block>, which... specifies block
582 devices (which could be inside a F<vhdx> file for example).
583
584 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
585 C<file> or C<vhd> - the same as for C<partiion=>.
586
587 The remaining arguments change depending on the I<devicetype>:
588
589 =over
590
591 =item C<block=file>,<I<parent>>,I<path>
592
593 Interprets the I<parent> device (typically a partition) as a
594 filesystem and specifies a file path inside.
595
596 =item C<block=vhd>,<I<parent>>
597
598 Pretty much just changes the interpretation of I<parent>, which is
599 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
600
601 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
602
603 Interprets the I<parent> device as RAM disk, using the (decimal)
604 base address, byte size and byte offset inside a file specified by
605 I<path>. The numbers are usually all C<0> because they can be extracted
606 from the RAM disk image or other parameters.
607
608 This is most commonly used to boot C<wim> images.
609
610 =item C<block=floppy>,I<drivenum>
611
612 Refers to a removable drive identified by a number. BCDEDIT cannot display
613 the resulting device, and it is not clear what effect it will have.
614
615 =item C<block=cdrom>,I<drivenum>
616
617 Pretty much the same as C<floppy> but for CD-ROMs.
618
619 =item anything else
620
621 Probably not yet implemented. Tell me of your needs...
622
623 =back
624
625 =back5 Examples
626
627 This concludes the syntax overview for device elements, but probably
628 leaves many questions open. I can't help with most of them, as I also ave
629 many questions, but I can walk you through some actual examples using more
630 complex aspects.
631
632 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
633
634 Just like with C declarations, you best treat device descriptors as
635 instructions to find your device and work your way from the inside out:
636
637 locate=<null>,path,\disk.vhdx
638
639 First, the innermost device descriptor searches all partitions on the
640 system for a file called F<\disk.vhdx>:
641
642 block=file,<see above>,\disk.vhdx
643
644 Next, this takes the device locate has found and finds a file called
645 F<\disk.vhdx> on it. This is the same file locate was using, but that is
646 only because we find the device using the same path as finding the disk
647 image, so this is purely incidental, although quite common.
648
649 Next, this file will be opened as a virtual disk:
650
651 block=vhd,<see above>
652
653 And finally, inside this disk, another C<locate> will look for a partition
654 with a path as specified in the C<path> element, which most likely will be
655 F<\Windows\system32\winload.exe>:
656
657 locate=<see above>,element,path
658
659 As a result, this will boot the first Windows it finds on the first
660 F<disk.vhdx> disk image it can find anywhere.
661
662 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
663
664 Pretty much the same as the previous case, but with a bit of
665 variance. First, look for a specific partition on an MBR-partitioned disk:
666
667 partition=<null>,harddisk,mbr,47cbc08a,242643632128
668
669 Then open the file F<\win10.vhdx> on that partition:
670
671 block=file,<see above>,\win10.vhdx
672
673 Then, again, the file is opened as a virtual disk image:
674
675 block=vhd,<see above>
676
677 And again the windows loader (or whatever is in C<path>) will be searched:
678
679 locate=<see above>,element,path
680
681 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
682
683 This is quite different. First, it starts with a GUID. This GUID belongs
684 to a BCD object of type C<device>, which has additional parameters:
685
686 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
687 "type" : "device",
688 "description" : "sdi file for ramdisk",
689 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
690 "ramdisksdipath" : "\boot.sdi"
691 },
692
693 I will not go into many details, but this specifies a (presumably empty)
694 template ramdisk image (F<\boot.sdi>) that is used to initialize the
695 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
696 see, this F<.sdi> file resides on a different C<partition>.
697
698 Continuing, as always, from the inside out, first this device descriptor
699 finds a specific partition:
700
701 partition=<null>,harddisk,mbr,47cbc08a,242643632128
702
703 And then specifies a C<ramdisk> image on this partition:
704
705 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
706
707 I don't know what the purpose of the C<< <1> >> flag value is, but it
708 seems to be always there on this kind of entry.
709
710 If you have some good examples to add here, feel free to mail me.
711
712
713 =head1 EDITING BCD DATA STORES
714
715 The C<edit> and C<parse> subcommands allow you to read a BCD data store
716 and modify it or extract data from it. This is done by executing a series
717 of "editing instructions" which are explained here.
718
719 =over
720
721 =item get I<object> I<element>
722
723 Reads the BCD element I<element> from the BCD object I<object> and writes
724 it to standard output, followed by a newline. The I<object> can be a GUID
725 or a human-readable alias, or the special string C<{default}>, which will
726 refer to the default BCD object.
727
728 Example: find description of the default BCD object.
729
730 pbcdedit parse BCD get "{default}" description
731
732 =item set I<object> I<element> I<value>
733
734 Similar to C<get>, but sets the element to the given I<value> instead.
735
736 Example: change the bootmgr default too
737 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
738
739 pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
740
741 =item eval I<perlcode>
742
743 This takes the next argument, interprets it as Perl code and
744 evaluates it. This allows you to do more complicated modifications or
745 extractions.
746
747 The following variables are predefined for your use:
748
749 =over
750
751 =item C<$PATH>
752
753 The path to the BCD data store, as given to C<edit> or C<parse>.
754
755 =item C<$BCD>
756
757 The decoded BCD data store.
758
759 =item C<$DEFAULT>
760
761 The default BCD object name.
762
763 =back
764
765 The example given for C<get>, above, could be expressed like this with
766 C<eval>:
767
768 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
769
770 The example given for C<set> could be expressed like this:
771
772 pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
773
774 =item do I<path>
775
776 Similar to C<eval>, above, but instead of using the argument as perl code,
777 it loads the perl code from the given file and executes it. This makes it
778 easier to write more complicated or larger programs.
779
780 =back
781
782 =head1 SEE ALSO
783
784 For ideas on what you can do, and some introductory material, try
785 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
786
787 For good reference on BCD objects and elements, see Geoff Chappels pages
788 at L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
789
790 =head1 AUTHOR
791
792 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
793
794 =head1 REPORTING BUGS
795
796 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
797
798 =head1 BUGS AND SHORTCOMINGS
799
800 This should be a module. Of a series of modules, even.
801
802 Registry code should preserve classname and security descriptor data, and
803 whatever else is necessary to read and write any registry hive file.
804
805 I am also not happy with device descriptors being strings rather than a
806 data structure, but strings are probably better for command line usage. In
807 any case, device descriptors could be converted by simply "splitting" at
808 "=" and "," into an array reference, recursively.
809
810 =head1 HOMEPAGE
811
812 Original versions of this program can be found at
813 L<http://software.schmorp.de/pkg/pbcdedit>.
814
815 =head1 COPYRIGHT
816
817 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
818 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
819 free to change and redistribute it. There is NO WARRANTY, to the extent
820 permitted by law.
821
822 =cut
823
824 BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
825
826 use Data::Dump;
827 use Encode ();
828 use List::Util ();
829 use IO::Handle ();
830 use Time::HiRes ();
831
832 eval { unpack "Q", pack "Q", 1 }
833 or die "perl with 64 bit integer supported required.\n";
834
835 our $JSON = eval { require JSON::XS; JSON::XS:: }
836 // eval { require JSON::PP; JSON::PP:: }
837 // die "either JSON::XS or JSON::PP must be installed\n";
838
839 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
840
841 # hack used for debugging
842 sub xxd($$) {
843 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
844 syswrite $xxd, $_[1];
845 }
846
847 sub file_load($) {
848 my ($path) = @_;
849
850 open my $fh, "<:raw", $path
851 or die "$path: $!\n";
852 my $size = -s $fh;
853 $size = read $fh, my $buf, $size
854 or die "$path: short read\n";
855
856 $buf
857 }
858
859 # sources and resources used for this:
860 # registry:
861 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
862 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
863 # bcd:
864 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
865 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
866 # bcd devices:
867 # reactos' boot/environ/include/bl.h
868 # windows .mof files
869
870 #############################################################################
871 # registry stuff
872
873 # we use a hardcoded securitya descriptor - full access for everyone
874 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
875 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
876 my $sacl = "";
877 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
878 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
879 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
880 1, 0x8004,
881 20 + (length $sacl) + (length $dacl),
882 20 + (length $sacl) + (length $dacl) + (length $sid),
883 0, 20,
884 $sacl, $dacl, $sid, $sid;
885 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
886
887 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
888
889 sub KEY_HIVE_ENTRY() { 0x0004 }
890 sub KEY_NO_DELETE () { 0x0008 }
891 sub KEY_COMP_NAME () { 0x0020 }
892
893 sub VALUE_COMP_NAME() { 0x0001 }
894
895 my @regf_typename = qw(
896 none sz expand_sz binary dword dword_be link multi_sz
897 resource_list full_resource_descriptor resource_requirements_list
898 qword qword_be
899 );
900
901 my %regf_dec_type = (
902 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
903 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
904 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
905 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
906 dword => sub { unpack "L<", shift },
907 dword_be => sub { unpack "L>", shift },
908 qword => sub { unpack "Q<", shift },
909 qword_be => sub { unpack "Q>", shift },
910 );
911
912 my %regf_enc_type = (
913 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
914 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
915 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
916 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
917 dword => sub { pack "L<", shift },
918 dword_be => sub { pack "L>", shift },
919 qword => sub { pack "Q<", shift },
920 qword_be => sub { pack "Q>", shift },
921 );
922
923 # decode a registry hive
924 sub regf_decode($) {
925 my ($hive) = @_;
926
927 "regf" eq substr $hive, 0, 4
928 or die "not a registry hive\n";
929
930 my ($major, $minor) = unpack "\@20 L< L<", $hive;
931
932 $major == 1
933 or die "registry major version is not 1, but $major\n";
934
935 $minor >= 2 && $minor <= 6
936 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
937
938 my $bins = substr $hive, 4096;
939
940 my $decode_key = sub {
941 my ($ofs) = @_;
942
943 my @res;
944
945 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
946
947 $sze < 0
948 or die "key node points to unallocated cell\n";
949
950 $sig eq "nk"
951 or die "expected key node at $ofs, got '$sig'\n";
952
953 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
954
955 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
956
957 # classnames, security descriptors
958 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
959 #if ($cofs != NO_OFS && $clen) {
960 # #warn "cofs $cofs+$clen\n";
961 # xxd substr $bins, $cofs, 16;
962 #}
963
964 $kname = Encode::decode "UTF-16LE", $kname
965 unless $flags & KEY_COMP_NAME;
966
967 if ($vnum && $vofs != NO_OFS) {
968 for ($vofs += 4; $vnum--; $vofs += 4) {
969 my $kofs = unpack "\@$vofs L<", $bins;
970
971 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
972
973 $sig eq "vk"
974 or die "key values list contains invalid node (expected vk got '$sig')\n";
975
976 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
977
978 my $name = substr $bins, $kofs + 24, $nsze;
979
980 $name = Encode::decode "UTF-16LE", $name
981 unless $flags & VALUE_COMP_NAME;
982
983 my $data;
984 if ($dsze & 0x80000000) {
985 $data = substr $bins, $kofs + 12, $dsze & 0x7;
986 } elsif ($dsze > 16344 && $minor > 3) { # big data
987 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
988
989 for ($bofs += 4; $bnum--; $bofs += 4) {
990 my $dofs = unpack "\@$bofs L<", $bins;
991 my $dsze = unpack "\@$dofs l<", $bins;
992 $data .= substr $bins, $dofs + 4, -$dsze - 4;
993 }
994 $data = substr $data, 0, $dsze; # cells might be longer than data
995 } else {
996 $data = substr $bins, $dofs + 4, $dsze;
997 }
998
999 $type = $regf_typename[$type] if $type < @regf_typename;
1000
1001 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1002 ->($data);
1003
1004 $res[0]{$name} = [$type, $data];
1005 }
1006 }
1007
1008 if ($sofs != NO_OFS) {
1009 my $decode_key = __SUB__;
1010
1011 my $decode_subkeylist = sub {
1012 my ($sofs) = @_;
1013
1014 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1015
1016 if ($sig eq "ri") { # index root
1017 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1018 __SUB__->(unpack "\@$lofs L<", $bins);
1019 }
1020 } else {
1021 my $inc;
1022
1023 if ($sig eq "li") { # subkey list
1024 $inc = 4;
1025 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1026 $inc = 8;
1027 } else {
1028 die "expected subkey list at $sofs, found '$sig'\n";
1029 }
1030
1031 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1032 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1033 $res[1]{$name} = $data;
1034 }
1035 }
1036 };
1037
1038 $decode_subkeylist->($sofs);
1039 }
1040
1041 ($kname, \@res);
1042 };
1043
1044 my ($rootcell) = unpack "\@36 L<", $hive;
1045
1046 my ($rname, $root) = $decode_key->($rootcell);
1047
1048 [$rname, $root]
1049 }
1050
1051 # return a binary windows fILETIME struct
1052 sub filetime_now {
1053 my ($s, $ms) = Time::HiRes::gettimeofday;
1054
1055 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1056 }
1057
1058 # encode a registry hive
1059 sub regf_encode($) {
1060 my ($hive) = @_;
1061
1062 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1063
1064 # the filetime is apparently used to verify log file validity,
1065 # so by generating a new timestamp the log files *should* automatically
1066 # become invalidated and windows would "self-heal" them.
1067 # (update: has been verified by reverse engineering)
1068 # possibly the fact that the two sequence numbes match might also
1069 # make windows think that the hive is not dirty and ignore logs.
1070 # (update: has been verified by reverse engineering)
1071
1072 my $now = filetime_now;
1073
1074 # we only create a single hbin
1075 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1076
1077 # append cell to $bind, return offset
1078 my $cell = sub {
1079 my ($cell) = @_;
1080
1081 my $res = length $bins;
1082
1083 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1084
1085 $bins .= pack "l<", -(4 + length $cell);
1086 $bins .= $cell;
1087
1088 $res
1089 };
1090
1091 my $sdofs = $cell->($sk); # add a dummy security descriptor
1092 my $sdref = 0; # refcount
1093 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1094 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1095
1096 my $encode_key = sub {
1097 my ($kname, $kdata, $flags) = @_;
1098 my ($values, $subkeys) = @$kdata;
1099
1100 if ($kname =~ /[^\x00-\xff]/) {
1101 $kname = Encode::encode "UTF-16LE", $kname;
1102 } else {
1103 $flags |= KEY_COMP_NAME;
1104 }
1105
1106 # encode subkeys
1107
1108 my @snames =
1109 map $_->[1],
1110 sort { $a->[0] cmp $b->[0] }
1111 map [(uc $_), $_],
1112 keys %$subkeys;
1113
1114 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1115 my $maxsname = 4 * List::Util::max map length, @snames;
1116
1117 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1118
1119 # encode values
1120 my $maxvname = 4 * List::Util::max map length, keys %$values;
1121 my @vofs;
1122 my $maxdsze = 0;
1123
1124 while (my ($vname, $v) = each %$values) {
1125 my $flags = 0;
1126
1127 if ($vname =~ /[^\x00-\xff]/) {
1128 $vname = Encode::encode "UTF-16LE", $kname;
1129 } else {
1130 $flags |= VALUE_COMP_NAME;
1131 }
1132
1133 my ($type, $data) = @$v;
1134
1135 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1136
1137 my $dsze;
1138 my $dofs;
1139
1140 if (length $data <= 4) {
1141 $dsze = 0x80000000 | length $data;
1142 $dofs = unpack "L<", pack "a4", $data;
1143 } else {
1144 $dsze = length $data;
1145 $dofs = $cell->($data);
1146 }
1147
1148 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1149
1150 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1151 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1152
1153 $maxdsze = $dsze if $maxdsze < $dsze;
1154 }
1155
1156 # encode key
1157
1158 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1159 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1160
1161 my $kdata = pack "
1162 a2 S< a8 x4 x4
1163 L< L< L< L< L< L<
1164 L< L< L< L< L< L<
1165 x4 S< S< a*
1166 ",
1167 nk => $flags, $now,
1168 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1169 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1170 length $kname, 0, $kname;
1171 ++$sdref;
1172
1173 my $res = $cell->($kdata);
1174
1175 substr $bins, $_ + 16, 4, pack "L<", $res
1176 for @sofs;
1177
1178 $res
1179 };
1180
1181 my ($rname, $root) = @$hive;
1182
1183 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1184
1185 if (my $pad = -(length $bins) & 4095) {
1186 $pad -= 4;
1187 $bins .= pack "l< x$pad", $pad + 4;
1188 }
1189
1190 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1191 substr $bins, 8, 4, pack "L<", length $bins;
1192
1193 my $base = pack "
1194 a4 L< L< a8 L< L< L< L<
1195 L< L< L<
1196 a64
1197 x396
1198 ",
1199 regf => 1974, 1974, $now, 1, 3, 0, 1,
1200 $rofs, length $bins, 1,
1201 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1202
1203 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1204 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1205 $chksum = 1 if $chksum == 0;
1206
1207 $base .= pack "L<", $chksum;
1208
1209 $base = pack "a* \@4095 x1", $base;
1210
1211 $base . $bins
1212 }
1213
1214 # load and parse registry from file
1215 sub regf_load($) {
1216 my ($path) = @_;
1217
1218 regf_decode file_load $path
1219 }
1220
1221 # encode and save registry to file
1222 sub regf_save {
1223 my ($path, $hive) = @_;
1224
1225 $hive = regf_encode $hive;
1226
1227 open my $regf, ">:raw", "$path~"
1228 or die "$path~: $!\n";
1229 print $regf $hive
1230 or die "$path~: short write\n";
1231 $regf->sync;
1232 close $regf;
1233
1234 rename "$path~", $path;
1235 }
1236
1237 #############################################################################
1238 # bcd stuff
1239
1240 # human-readable alises for GUID object identifiers
1241 our %bcd_objects = (
1242 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1243 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1244 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1245 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1246 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1247 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1248 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1249 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1250 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1251 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1252 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1253 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1254 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1255 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1256 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1257 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1258 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1259 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1260 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1261 );
1262
1263 # default types
1264 our %bcd_object_types = (
1265 '{fwbootmgr}' => 0x10100001,
1266 '{bootmgr}' => 0x10100002,
1267 '{memdiag}' => 0x10200005,
1268 '{ntldr}' => 0x10300006,
1269 '{badmemory}' => 0x20100000,
1270 '{dbgsettings}' => 0x20100000,
1271 '{emssettings}' => 0x20100000,
1272 '{globalsettings}' => 0x20100000,
1273 '{bootloadersettings}' => 0x20200003,
1274 '{hypervisorsettings}' => 0x20200003,
1275 '{kerneldbgsettings}' => 0x20200003,
1276 '{resumeloadersettings}' => 0x20200004,
1277 '{ramdiskoptions}' => 0x30000000,
1278 );
1279
1280 # object types
1281 our %bcd_types = (
1282 0x10100001 => 'application::fwbootmgr',
1283 0x10100002 => 'application::bootmgr',
1284 0x10200003 => 'application::osloader',
1285 0x10200004 => 'application::resume',
1286 0x10100005 => 'application::memdiag',
1287 0x10100006 => 'application::ntldr',
1288 0x10100007 => 'application::setupldr',
1289 0x10400008 => 'application::bootsector',
1290 0x10400009 => 'application::startup',
1291 0x1020000a => 'application::bootapp',
1292 0x20100000 => 'settings',
1293 0x20200001 => 'inherit::fwbootmgr',
1294 0x20200002 => 'inherit::bootmgr',
1295 0x20200003 => 'inherit::osloader',
1296 0x20200004 => 'inherit::resume',
1297 0x20200005 => 'inherit::memdiag',
1298 0x20200006 => 'inherit::ntldr',
1299 0x20200007 => 'inherit::setupldr',
1300 0x20200008 => 'inherit::bootsector',
1301 0x20200009 => 'inherit::startup',
1302 0x20300000 => 'inherit::device',
1303 0x30000000 => 'device',
1304 );
1305
1306 our %rbcd_objects = reverse %bcd_objects;
1307
1308 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1309
1310 sub dec_guid($) {
1311 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1312 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1313 }
1314
1315 sub enc_guid($) {
1316 $_[0] =~ /^$RE_GUID\z/o
1317 or return;
1318
1319 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1320 }
1321
1322 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1323 sub dec_wguid($) {
1324 my $guid = "{" . (dec_guid shift) . "}";
1325
1326 $bcd_objects{$guid} // $guid
1327 }
1328
1329 sub enc_wguid($) {
1330 my ($guid) = @_;
1331
1332 if (my $alias = $rbcd_objects{$guid}) {
1333 $guid = $alias;
1334 }
1335
1336 $guid =~ /^\{($RE_GUID)\}\z/o
1337 or return;
1338
1339 enc_guid $1
1340 }
1341
1342 sub BCDE_CLASS () { 0xf0000000 }
1343 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1344 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1345 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1346 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1347
1348 sub BCDE_FORMAT () { 0x0f000000 }
1349 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1350 sub BCDE_FORMAT_STRING () { 0x02000000 }
1351 sub BCDE_FORMAT_GUID () { 0x03000000 }
1352 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1353 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1354 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1355 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1356
1357 sub dec_device;
1358 sub enc_device;
1359
1360 sub enc_integer($) {
1361 no warnings 'portable'; # ugh
1362 my $value = shift;
1363 $value = oct $value if $value =~ /^0[bBxX]/;
1364 unpack "H*", pack "Q<", $value
1365 }
1366
1367 our %bcde_dec = (
1368 BCDE_FORMAT_DEVICE , \&dec_device,
1369 # # for round-trip verification
1370 # BCDE_FORMAT_DEVICE , sub {
1371 # my $dev = dec_device $_[0];
1372 # $_[0] eq enc_device $dev
1373 # or die "bcd device decoding does not round trip for $_[0]\n";
1374 # $dev
1375 # },
1376 BCDE_FORMAT_STRING , sub { shift },
1377 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1378 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1379 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1380 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1381 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1382 );
1383
1384 our %bcde_enc = (
1385 BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1386 BCDE_FORMAT_STRING , sub { sz => shift },
1387 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1388 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1389 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1390 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1391 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1392 );
1393
1394 # BCD Elements
1395 our %bcde = (
1396 0x11000001 => 'device',
1397 0x12000002 => 'path',
1398 0x12000004 => 'description',
1399 0x12000005 => 'locale',
1400 0x14000006 => 'inherit',
1401 0x15000007 => 'truncatememory',
1402 0x14000008 => 'recoverysequence',
1403 0x16000009 => 'recoveryenabled',
1404 0x1700000a => 'badmemorylist',
1405 0x1600000b => 'badmemoryaccess',
1406 0x1500000c => 'firstmegabytepolicy',
1407 0x1500000d => 'relocatephysical',
1408 0x1500000e => 'avoidlowmemory',
1409 0x1600000f => 'traditionalkseg',
1410 0x16000010 => 'bootdebug',
1411 0x15000011 => 'debugtype',
1412 0x15000012 => 'debugaddress',
1413 0x15000013 => 'debugport',
1414 0x15000014 => 'baudrate',
1415 0x15000015 => 'channel',
1416 0x12000016 => 'targetname',
1417 0x16000017 => 'noumex',
1418 0x15000018 => 'debugstart',
1419 0x12000019 => 'busparams',
1420 0x1500001a => 'hostip',
1421 0x1500001b => 'port',
1422 0x1600001c => 'dhcp',
1423 0x1200001d => 'key',
1424 0x1600001e => 'vm',
1425 0x16000020 => 'bootems',
1426 0x15000022 => 'emsport',
1427 0x15000023 => 'emsbaudrate',
1428 0x12000030 => 'loadoptions',
1429 0x16000040 => 'advancedoptions',
1430 0x16000041 => 'optionsedit',
1431 0x15000042 => 'keyringaddress',
1432 0x11000043 => 'bootstatdevice',
1433 0x12000044 => 'bootstatfilepath',
1434 0x16000045 => 'preservebootstat',
1435 0x16000046 => 'graphicsmodedisabled',
1436 0x15000047 => 'configaccesspolicy',
1437 0x16000048 => 'nointegritychecks',
1438 0x16000049 => 'testsigning',
1439 0x1200004a => 'fontpath',
1440 0x1500004b => 'integrityservices',
1441 0x1500004c => 'volumebandid',
1442 0x16000050 => 'extendedinput',
1443 0x15000051 => 'initialconsoleinput',
1444 0x15000052 => 'graphicsresolution',
1445 0x16000053 => 'restartonfailure',
1446 0x16000054 => 'highestmode',
1447 0x16000060 => 'isolatedcontext',
1448 0x15000065 => 'displaymessage',
1449 0x15000066 => 'displaymessageoverride',
1450 0x16000068 => 'nobootuxtext',
1451 0x16000069 => 'nobootuxprogress',
1452 0x1600006a => 'nobootuxfade',
1453 0x1600006b => 'bootuxreservepooldebug',
1454 0x1600006c => 'bootuxdisabled',
1455 0x1500006d => 'bootuxfadeframes',
1456 0x1600006e => 'bootuxdumpstats',
1457 0x1600006f => 'bootuxshowstats',
1458 0x16000071 => 'multibootsystem',
1459 0x16000072 => 'nokeyboard',
1460 0x15000073 => 'aliaswindowskey',
1461 0x16000074 => 'bootshutdowndisabled',
1462 0x15000075 => 'performancefrequency',
1463 0x15000076 => 'securebootrawpolicy',
1464 0x17000077 => 'allowedinmemorysettings',
1465 0x15000079 => 'bootuxtransitiontime',
1466 0x1600007a => 'mobilegraphics',
1467 0x1600007b => 'forcefipscrypto',
1468 0x1500007d => 'booterrorux',
1469 0x1600007e => 'flightsigning',
1470 0x1500007f => 'measuredbootlogformat',
1471 0x15000080 => 'displayrotation',
1472 0x15000081 => 'logcontrol',
1473 0x16000082 => 'nofirmwaresync',
1474 0x11000084 => 'windowssyspart',
1475 0x16000087 => 'numlock',
1476 0x22000001 => 'bpbstring',
1477 0x24000001 => 'displayorder',
1478 0x21000001 => 'filedevice',
1479 0x21000001 => 'osdevice',
1480 0x25000001 => 'passcount',
1481 0x26000001 => 'pxesoftreboot',
1482 0x22000002 => 'applicationname',
1483 0x24000002 => 'bootsequence',
1484 0x22000002 => 'filepath',
1485 0x22000002 => 'systemroot',
1486 0x25000002 => 'testmix',
1487 0x26000003 => 'cacheenable',
1488 0x26000003 => 'customsettings',
1489 0x23000003 => 'default',
1490 0x25000003 => 'failurecount',
1491 0x23000003 => 'resumeobject',
1492 0x26000004 => 'failuresenabled',
1493 0x26000004 => 'pae',
1494 0x26000004 => 'stampdisks',
1495 0x25000004 => 'testtofail',
1496 0x25000004 => 'timeout',
1497 0x21000005 => 'associatedosdevice',
1498 0x26000005 => 'cacheenable',
1499 0x26000005 => 'resume',
1500 0x25000005 => 'stridefailcount',
1501 0x26000006 => 'debugoptionenabled',
1502 0x25000006 => 'invcfailcount',
1503 0x23000006 => 'resumeobject',
1504 0x25000007 => 'bootux',
1505 0x25000007 => 'matsfailcount',
1506 0x24000007 => 'startupsequence',
1507 0x25000008 => 'bootmenupolicy',
1508 0x25000008 => 'randfailcount',
1509 0x25000009 => 'chckrfailcount',
1510 0x26000010 => 'detecthal',
1511 0x24000010 => 'toolsdisplayorder',
1512 0x22000011 => 'kernel',
1513 0x22000012 => 'hal',
1514 0x22000013 => 'dbgtransport',
1515 0x26000020 => 'displaybootmenu',
1516 0x25000020 => 'nx',
1517 0x26000021 => 'noerrordisplay',
1518 0x25000021 => 'pae',
1519 0x21000022 => 'bcddevice',
1520 0x26000022 => 'winpe',
1521 0x22000023 => 'bcdfilepath',
1522 0x26000024 => 'hormenabled',
1523 0x26000024 => 'hormenabled',
1524 0x26000024 => 'nocrashautoreboot',
1525 0x26000025 => 'hiberboot',
1526 0x26000025 => 'lastknowngood',
1527 0x26000026 => 'oslnointegritychecks',
1528 0x22000026 => 'passwordoverride',
1529 0x26000027 => 'osltestsigning',
1530 0x22000027 => 'pinpassphraseoverride',
1531 0x26000028 => 'processcustomactionsfirst',
1532 0x27000030 => 'customactions',
1533 0x26000030 => 'nolowmem',
1534 0x26000031 => 'persistbootsequence',
1535 0x25000031 => 'removememory',
1536 0x25000032 => 'increaseuserva',
1537 0x26000032 => 'skipstartupsequence',
1538 0x25000033 => 'perfmem',
1539 0x22000040 => 'fverecoveryurl',
1540 0x26000040 => 'vga',
1541 0x22000041 => 'fverecoverymessage',
1542 0x26000041 => 'quietboot',
1543 0x26000042 => 'novesa',
1544 0x26000043 => 'novga',
1545 0x25000050 => 'clustermodeaddressing',
1546 0x26000051 => 'usephysicaldestination',
1547 0x25000052 => 'restrictapiccluster',
1548 0x22000053 => 'evstore',
1549 0x26000054 => 'uselegacyapicmode',
1550 0x26000060 => 'onecpu',
1551 0x25000061 => 'numproc',
1552 0x26000062 => 'maxproc',
1553 0x25000063 => 'configflags',
1554 0x26000064 => 'maxgroup',
1555 0x26000065 => 'groupaware',
1556 0x25000066 => 'groupsize',
1557 0x26000070 => 'usefirmwarepcisettings',
1558 0x25000071 => 'msi',
1559 0x25000072 => 'pciexpress',
1560 0x25000080 => 'safeboot',
1561 0x26000081 => 'safebootalternateshell',
1562 0x26000090 => 'bootlog',
1563 0x26000091 => 'sos',
1564 0x260000a0 => 'debug',
1565 0x260000a1 => 'halbreakpoint',
1566 0x260000a2 => 'useplatformclock',
1567 0x260000a3 => 'forcelegacyplatform',
1568 0x260000a4 => 'useplatformtick',
1569 0x260000a5 => 'disabledynamictick',
1570 0x250000a6 => 'tscsyncpolicy',
1571 0x260000b0 => 'ems',
1572 0x250000c0 => 'forcefailure',
1573 0x250000c1 => 'driverloadfailurepolicy',
1574 0x250000c2 => 'bootmenupolicy',
1575 0x260000c3 => 'onetimeadvancedoptions',
1576 0x260000c4 => 'onetimeoptionsedit',
1577 0x250000e0 => 'bootstatuspolicy',
1578 0x260000e1 => 'disableelamdrivers',
1579 0x250000f0 => 'hypervisorlaunchtype',
1580 0x220000f1 => 'hypervisorpath',
1581 0x260000f2 => 'hypervisordebug',
1582 0x250000f3 => 'hypervisordebugtype',
1583 0x250000f4 => 'hypervisordebugport',
1584 0x250000f5 => 'hypervisorbaudrate',
1585 0x250000f6 => 'hypervisorchannel',
1586 0x250000f7 => 'bootux',
1587 0x260000f8 => 'hypervisordisableslat',
1588 0x220000f9 => 'hypervisorbusparams',
1589 0x250000fa => 'hypervisornumproc',
1590 0x250000fb => 'hypervisorrootprocpernode',
1591 0x260000fc => 'hypervisoruselargevtlb',
1592 0x250000fd => 'hypervisorhostip',
1593 0x250000fe => 'hypervisorhostport',
1594 0x250000ff => 'hypervisordebugpages',
1595 0x25000100 => 'tpmbootentropy',
1596 0x22000110 => 'hypervisorusekey',
1597 0x22000112 => 'hypervisorproductskutype',
1598 0x25000113 => 'hypervisorrootproc',
1599 0x26000114 => 'hypervisordhcp',
1600 0x25000115 => 'hypervisoriommupolicy',
1601 0x26000116 => 'hypervisorusevapic',
1602 0x22000117 => 'hypervisorloadoptions',
1603 0x25000118 => 'hypervisormsrfilterpolicy',
1604 0x25000119 => 'hypervisormmionxpolicy',
1605 0x2500011a => 'hypervisorschedulertype',
1606 0x25000120 => 'xsavepolicy',
1607 0x25000121 => 'xsaveaddfeature0',
1608 0x25000122 => 'xsaveaddfeature1',
1609 0x25000123 => 'xsaveaddfeature2',
1610 0x25000124 => 'xsaveaddfeature3',
1611 0x25000125 => 'xsaveaddfeature4',
1612 0x25000126 => 'xsaveaddfeature5',
1613 0x25000127 => 'xsaveaddfeature6',
1614 0x25000128 => 'xsaveaddfeature7',
1615 0x25000129 => 'xsaveremovefeature',
1616 0x2500012a => 'xsaveprocessorsmask',
1617 0x2500012b => 'xsavedisable',
1618 0x2500012c => 'kerneldebugtype',
1619 0x2200012d => 'kernelbusparams',
1620 0x2500012e => 'kerneldebugaddress',
1621 0x2500012f => 'kerneldebugport',
1622 0x25000130 => 'claimedtpmcounter',
1623 0x25000131 => 'kernelchannel',
1624 0x22000132 => 'kerneltargetname',
1625 0x25000133 => 'kernelhostip',
1626 0x25000134 => 'kernelport',
1627 0x26000135 => 'kerneldhcp',
1628 0x22000136 => 'kernelkey',
1629 0x22000137 => 'imchivename',
1630 0x21000138 => 'imcdevice',
1631 0x25000139 => 'kernelbaudrate',
1632 0x22000140 => 'mfgmode',
1633 0x26000141 => 'event',
1634 0x25000142 => 'vsmlaunchtype',
1635 0x25000144 => 'hypervisorenforcedcodeintegrity',
1636 0x26000145 => 'enablebootdebugpolicy',
1637 0x26000146 => 'enablebootorderclean',
1638 0x26000147 => 'enabledeviceid',
1639 0x26000148 => 'enableffuloader',
1640 0x26000149 => 'enableiuloader',
1641 0x2600014a => 'enablemassstorage',
1642 0x2600014b => 'enablerpmbprovisioning',
1643 0x2600014c => 'enablesecurebootpolicy',
1644 0x2600014d => 'enablestartcharge',
1645 0x2600014e => 'enableresettpm',
1646 0x21000150 => 'systemdatadevice',
1647 0x21000151 => 'osarcdevice',
1648 0x21000153 => 'osdatadevice',
1649 0x21000154 => 'bspdevice',
1650 0x21000155 => 'bspfilepath',
1651 0x26000202 => 'skipffumode',
1652 0x26000203 => 'forceffumode',
1653 0x25000510 => 'chargethreshold',
1654 0x26000512 => 'offmodecharging',
1655 0x25000aaa => 'bootflow',
1656 0x35000001 => 'ramdiskimageoffset',
1657 0x35000002 => 'ramdisktftpclientport',
1658 0x31000003 => 'ramdisksdidevice',
1659 0x32000004 => 'ramdisksdipath',
1660 0x35000005 => 'ramdiskimagelength',
1661 0x36000006 => 'exportascd',
1662 0x35000007 => 'ramdisktftpblocksize',
1663 0x35000008 => 'ramdisktftpwindowsize',
1664 0x36000009 => 'ramdiskmcenabled',
1665 0x3600000a => 'ramdiskmctftpfallback',
1666 0x3600000b => 'ramdisktftpvarwindow',
1667 0x45000001 => 'devicetype',
1668 0x42000002 => 'applicationrelativepath',
1669 0x42000003 => 'ramdiskdevicerelativepath',
1670 0x46000004 => 'omitosloaderelements',
1671 0x47000006 => 'elementstomigrate',
1672 0x46000010 => 'recoveryos',
1673 );
1674
1675 our %rbcde = reverse %bcde;
1676
1677 sub dec_bcde_id($) {
1678 $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1679 }
1680
1681 sub enc_bcde_id($) {
1682 $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1683 ? hex $1
1684 : $rbcde{$_[0]}
1685 }
1686
1687 # decode/encode bcd device element - the horror, no documentaion
1688 # whatsoever, supercomplex, superinconsistent.
1689
1690 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1691 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1692 our @part_type = qw(gpt mbr raw);
1693
1694 our $NULL_DEVICE = "\x00" x 16;
1695
1696 # biggest bitch to decode, ever
1697 # this decoded a device portion after the GUID
1698 sub dec_device_($);
1699 sub dec_device_($) {
1700 my ($device) = @_;
1701
1702 my $res;
1703
1704 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1705
1706 $pad == 0
1707 or die "non-zero reserved field in device descriptor\n";
1708
1709 if ($length == 0 && $type == 0 && $flags == 0) {
1710 return ("null", $device);
1711 }
1712
1713 $length >= 16
1714 or die "device element size too small ($length)\n";
1715
1716 $type = $dev_type[$type] // die "$type: unknown device type\n";
1717 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1718
1719 $res .= $type;
1720 $res .= sprintf "<%x>", $flags if $flags;
1721
1722 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1723
1724 $length == 4 * 4 + length $device
1725 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1726
1727 my $dec_path = sub {
1728 my ($path, $error) = @_;
1729
1730 $path =~ /^((?:..)*)\x00\x00\z/s
1731 or die "$error\n";
1732
1733 $path = Encode::decode "UTF-16LE", $1;
1734
1735 $path
1736 };
1737
1738 if ($type eq "partition" or $type eq "legacypartition") {
1739 my $partdata = substr $device, 0, 16, "";
1740 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1741
1742 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1743 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1744
1745 my $diskid = substr $device, 0, 16, "";
1746
1747 $diskid = $parttype eq "gpt"
1748 ? dec_guid substr $diskid, 0, 16
1749 : sprintf "%08x", unpack "V", $diskid;
1750
1751 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1752 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1753 : unpack "L<", $partdata; # partition number, one-based
1754
1755 (my $parent, $device) = dec_device_ $device;
1756
1757 $res .= "=";
1758 $res .= "<$parent>";
1759 $res .= ",$blocktype,$parttype,$diskid,$partid";
1760
1761 # PartitionType (gpt, mbr, raw)
1762 # guid | partsig | disknumber
1763
1764 } elsif ($type eq "boot") {
1765 $device =~ s/^\x00{56}\z//
1766 or die "boot device type with extra data not supported\n";
1767
1768 } elsif ($type eq "block") {
1769 my $blocktype = unpack "V", substr $device, 0, 4, "";
1770
1771 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1772
1773 # decode a "file path" structure
1774 my $dec_file = sub {
1775 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1776
1777 my $path = substr $device, 0, $flen - 12, "";
1778
1779 $fver == 1
1780 or die "unsupported file descriptor version '$fver'\n";
1781
1782 $ftype == 5
1783 or die "unsupported file descriptor path type '$type'\n";
1784
1785 (my $parent, $path) = dec_device_ $path;
1786
1787 $path = $dec_path->($path, "file device without path");
1788
1789 ($parent, $path)
1790 };
1791
1792 if ($blocktype eq "file") {
1793 my ($parent, $path) = $dec_file->();
1794
1795 $res .= "=file,<$parent>,$path";
1796
1797 } elsif ($blocktype eq "vhd") {
1798 $device =~ s/^\x00{20}//s
1799 or die "virtualdisk has non-zero fields I don't understand\n";
1800
1801 (my $parent, $device) = dec_device_ $device;
1802
1803 $res .= "=vhd,<$parent>";
1804
1805 } elsif ($blocktype eq "ramdisk") {
1806 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1807 my ($subdev, $path) = $dec_file->();
1808
1809 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1810
1811 } else {
1812 die "unsupported block type '$blocktype'\n";
1813 }
1814
1815 } elsif ($type eq "locate") {
1816 # mode, bcde_id, unknown, string
1817 # we assume locate has _either_ an element id _or_ a path, but not both
1818
1819 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1820
1821 if ($parent) {
1822 # not sure why this is an offset - it must come after the path
1823 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1824 ($parent, my $tail) = dec_device_ $parent;
1825 0 == length $tail
1826 or die "trailing data after locate device parent\n";
1827 } else {
1828 $parent = "null";
1829 }
1830
1831 my $path = $device; $device = "";
1832 $path = $dec_path->($path, "device locate mode without path");
1833
1834 $res .= "=<$parent>,";
1835
1836 if ($mode == 0) { # "Element"
1837 !length $path
1838 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1839
1840 $elem = dec_bcde_id $elem;
1841 $res .= "element,$elem";
1842
1843 } elsif ($mode == 1) { # "String"
1844 !$elem
1845 or die "device locate mode 1 having non-zero element\n";
1846
1847 $res .= "path,$path";
1848 } else {
1849 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1850 die "device locate mode '$mode' not supported\n";
1851 }
1852
1853 } elsif ($type eq "vmbus") {
1854 my $type = dec_guid substr $device, 0, 16, "";
1855 my $instance = dec_guid substr $device, 0, 16, "";
1856
1857 $device =~ s/^\x00{24}\z//
1858 or die "vmbus has non-zero fields I don't understand\n";
1859
1860 $res .= "=$type,$instance";
1861
1862 } else {
1863 die "unsupported device type '$type'\n";
1864 }
1865
1866 warn "unexpected trailing device data($res), " . unpack "H*",$device
1867 if length $device;
1868 #length $device
1869 # and die "unexpected trailing device data\n";
1870
1871 ($res, $tail)
1872 }
1873
1874 # decode a full binary BCD device descriptor
1875 sub dec_device($) {
1876 my ($device) = @_;
1877
1878 $device = pack "H*", $device;
1879
1880 my $guid = dec_guid substr $device, 0, 16, "";
1881 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1882 ? "" : "{$guid}";
1883
1884 eval {
1885 my ($dev, $tail) = dec_device_ $device;
1886
1887 $tail eq ""
1888 or die "unsupported trailing data after device descriptor\n";
1889
1890 "$guid$dev"
1891 # } // scalar ((warn $@), "$guid$fallback")
1892 } // ($guid . "binary=" . unpack "H*", $device)
1893 }
1894
1895 sub indexof($@) {
1896 my $value = shift;
1897
1898 for (0 .. $#_) {
1899 $value eq $_[$_]
1900 and return $_;
1901 }
1902
1903 undef
1904 }
1905
1906 # encode the device portion after the GUID
1907 sub enc_device_;
1908 sub enc_device_ {
1909 my ($device) = @_;
1910
1911 my $enc_path = sub {
1912 my $path = shift;
1913 $path =~ s/\//\\/g;
1914 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1915 };
1916
1917 my $enc_file = sub {
1918 my ($parent, $path) = @_; # parent and path must already be encoded
1919
1920 $path = $parent . $path;
1921
1922 # fver 1, ftype 5
1923 pack "VVVa*", 1, 12 + length $path, 5, $path
1924 };
1925
1926 my $parse_path = sub {
1927 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1928 or die "$_: invalid path\n";
1929
1930 $enc_path->($1)
1931 };
1932
1933 my $parse_parent = sub {
1934 my $parent;
1935
1936 if (s/^<//) {
1937 ($parent, $_) = enc_device_ $_;
1938 s/^>//
1939 or die "$device: syntax error: parent device not followed by '>'\n";
1940 } else {
1941 $parent = $NULL_DEVICE;
1942 }
1943
1944 $parent
1945 };
1946
1947 for ($device) {
1948 s/^([a-z]+)//
1949 or die "$_: device does not start with type string\n";
1950
1951 my $type = $1;
1952 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1953 my $payload;
1954
1955 if ($type eq "binary") {
1956 s/^=([0-9a-fA-F]+)//
1957 or die "binary type must have a hex string argument\n";
1958
1959 $payload = pack "H*", $1;
1960
1961 } elsif ($type eq "null") {
1962 return ($NULL_DEVICE, $_);
1963
1964 } elsif ($type eq "boot") {
1965 $payload = "\x00" x 56;
1966
1967 } elsif ($type eq "partition" or $type eq "legacypartition") {
1968 s/^=//
1969 or die "$_: missing '=' after $type\n";
1970
1971 my $parent = $parse_parent->();
1972
1973 s/^,//
1974 or die "$_: comma missing after partition parent device\n";
1975
1976 s/^([a-z]+),//
1977 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1978 my $blocktype = $1;
1979
1980 s/^([a-z]+),//
1981 or die "$_: partition block type not followed by partiton type\n";
1982 my $parttype = $1;
1983
1984 my ($partdata, $diskdata);
1985
1986 if ($parttype eq "mbr") {
1987 s/^([0-9a-f]{8}),//i
1988 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1989 $diskdata = pack "Vx12", hex $1;
1990
1991 s/^([0-9]+)//
1992 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1993
1994 # the following works for both 64 bit offset and 32 bit partno
1995 $partdata = pack "Q< x8", $1;
1996
1997 } elsif ($parttype eq "gpt") {
1998 s/^($RE_GUID),//
1999 or die "$_: partition disk guid missing or malformed\n";
2000 $diskdata = enc_guid $1;
2001
2002 s/^($RE_GUID)//
2003 or die "$_: partition guid missing or malformed\n";
2004 $partdata = enc_guid $1;
2005
2006 } elsif ($parttype eq "raw") {
2007 s/^([0-9]+)//
2008 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2009
2010 $partdata = pack "L< x12", $1;
2011
2012 } else {
2013 die "$parttype: partition type not supported\n";
2014 }
2015
2016 $payload = pack "a16 L< L< a16 a*",
2017 $partdata,
2018 (indexof $blocktype, @block_type),
2019 (indexof $parttype, @part_type),
2020 $diskdata,
2021 $parent;
2022
2023 } elsif ($type eq "locate") {
2024 s/^=//
2025 or die "$_: missing '=' after $type\n";
2026
2027 my ($mode, $elem, $path);
2028
2029 my $parent = $parse_parent->();
2030
2031 s/^,//
2032 or die "$_: missing comma after locate parent device\n";
2033
2034 if (s/^element,//) {
2035 s/^([0-9a-z]+)//i
2036 or die "$_ locate element must be either name or 8-digit hex id\n";
2037 $elem = enc_bcde_id $1;
2038 $mode = 0;
2039 $path = $enc_path->("");
2040
2041 } elsif (s/^path,//) {
2042 $mode = 1;
2043 $path = $parse_path->();
2044
2045 } else {
2046 die "$_ second locate argument must be subtype (either element or path)\n";
2047 }
2048
2049 if ($parent ne $NULL_DEVICE) {
2050 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2051 } else {
2052 $parent = 0;
2053 }
2054
2055 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2056
2057 } elsif ($type eq "block") {
2058 s/^=//
2059 or die "$_: missing '=' after $type\n";
2060
2061 s/^([a-z]+),//
2062 or die "$_: block device does not start with block type (e.g. disk)\n";
2063 my $blocktype = $1;
2064
2065 my $blockdata;
2066
2067 if ($blocktype eq "file") {
2068 my $parent = $parse_parent->();
2069 s/^,// or die "$_: comma missing after file block device parent\n";
2070 my $path = $parse_path->();
2071
2072 $blockdata = $enc_file->($parent, $path);
2073
2074 } elsif ($blocktype eq "vhd") {
2075 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2076 $blockdata .= $parse_parent->();
2077
2078 } elsif ($blocktype eq "ramdisk") {
2079 my $parent = $parse_parent->();
2080
2081 s/^,(\d+),(\d+),(\d+),//a
2082 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2083
2084 my ($base, $size, $offset) = ($1, $2, $3);
2085
2086 my $path = $parse_path->();
2087
2088 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2089
2090 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2091 # this is guesswork
2092 s/^(\d+)//a
2093 or die "$_: missing device number for cdrom\n";
2094 $blockdata = pack "V", $1;
2095
2096 } else {
2097 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2098 }
2099
2100 $payload = pack "Va*",
2101 (indexof $blocktype, @block_type),
2102 $blockdata;
2103
2104 } elsif ($type eq "vmbus") {
2105 s/^=($RE_GUID)//
2106 or die "$_: malformed or missing vmbus interface type guid\n";
2107 my $type = enc_guid $1;
2108 s/^,($RE_GUID)//
2109 or die "$_: malformed or missing vmbus interface instance guid\n";
2110 my $instance = enc_guid $1;
2111
2112 $payload = pack "a16a16x24", $type, $instance;
2113
2114 } else {
2115 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2116 }
2117
2118 return (
2119 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2120 $_
2121 );
2122 }
2123 }
2124
2125 # encode a full binary BCD device descriptor
2126 sub enc_device {
2127 my ($device) = @_;
2128
2129 my $guid = "\x00" x 16;
2130
2131 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2132 $guid = enc_guid $1
2133 or die "$device: does not start with valid guid\n";
2134 }
2135
2136 my ($descriptor, $tail) = enc_device_ $device;
2137
2138 length $tail
2139 and die "$device: garbage after device descriptor\n";
2140
2141 unpack "H*", $guid . $descriptor
2142 }
2143
2144 # decode a registry hive into the BCD structure used by pbcdedit
2145 sub bcd_decode {
2146 my ($hive) = @_;
2147
2148 my %bcd;
2149
2150 my $objects = $hive->[1][1]{Objects}[1];
2151
2152 while (my ($k, $v) = each %$objects) {
2153 my %kv;
2154 $v = $v->[1];
2155
2156 $k = $bcd_objects{$k} // $k;
2157
2158 my $type = $v->{Description}[0]{Type}[1];
2159
2160 if ($type != $bcd_object_types{$k}) {
2161 $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2162 $kv{type} = $type;
2163 }
2164
2165 my $elems = $v->{Elements}[1];
2166
2167 while (my ($k, $v) = each %$elems) {
2168 my $k = hex $k;
2169
2170 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2171 my $k = dec_bcde_id $k;
2172
2173 $kv{$k} = $v;
2174 }
2175
2176 $bcd{$k} = \%kv;
2177 }
2178
2179 $bcd{meta} = { version => $JSON_VERSION };
2180
2181 \%bcd
2182 }
2183
2184 # encode a pbcdedit structure into a registry hive
2185 sub bcd_encode {
2186 my ($bcd) = @_;
2187
2188 if (my $meta = $bcd->{meta}) {
2189 $meta->{version} eq $JSON_VERSION
2190 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2191 }
2192
2193 my %objects;
2194 my %rbcd_types = reverse %bcd_types;
2195
2196 while (my ($k, $v) = each %$bcd) {
2197 my %kv;
2198
2199 next if $k eq "meta";
2200
2201 $k = lc $k; # I know you windows types!
2202
2203 my $type = $v->{type};
2204
2205 if ($type) {
2206 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2207 ? hex $type
2208 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2209 }
2210
2211 my $guid = enc_wguid $k
2212 or die "$k: invalid bcd object identifier\n";
2213
2214 # default type if not given
2215 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2216
2217 my %elem;
2218
2219 while (my ($k, $v) = each %$v) {
2220 next if $k eq "type";
2221
2222 $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2223 $elem{sprintf "%08x", $k} = [{
2224 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2225 }];
2226 }
2227
2228 $guid = dec_guid $guid;
2229
2230 $objects{"{$guid}"} = [undef, {
2231 Description => [{ Type => [dword => $type] }],
2232 Elements => [undef, \%elem],
2233 }];
2234 }
2235
2236 [NewStoreRoot => [undef, {
2237 Description => [{
2238 KeyName => [sz => "BCD00000001"],
2239 System => [dword => 1],
2240 pbcdedit => [sz => $VERSION],
2241 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2242 }],
2243 Objects => [undef, \%objects],
2244 }]]
2245 }
2246
2247 #############################################################################
2248
2249 sub bcd_edit_eval {
2250 package pbcdedit;
2251
2252 our ($PATH, $BCD, $DEFAULT);
2253
2254 eval shift;
2255 die "$@" if $@;
2256 }
2257
2258 sub bcd_edit {
2259 my ($path, $bcd, @insns) = @_;
2260
2261 my $default = $bcd->{"{bootmgr}"}{resumeobject};
2262
2263 # prepare "officially visible" variables
2264 local $pbcdedit::PATH = $path;
2265 local $pbcdedit::BCD = $bcd;
2266 local $pbcdedit::DEFAULT = $default;
2267
2268 while (@insns) {
2269 my $insn = shift @insns;
2270
2271 if ($insn eq "get") {
2272 my $object = shift @insns;
2273 my $elem = shift @insns;
2274
2275 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2276
2277 print $bcd->{$object}{$elem}, "\n";
2278
2279 } elsif ($insn eq "set") {
2280 my $object = shift @insns;
2281 my $elem = shift @insns;
2282 my $value = shift @insns;
2283
2284 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2285
2286 $bcd->{$object}{$elem} = $value;
2287
2288 } elsif ($insn eq "eval") {
2289 bcd_edit_eval shift @insns;
2290
2291 } elsif ($insn eq "do") {
2292 my $path = shift @insns;
2293 my $file = file_load $path;
2294 bcd_edit_eval "#line 1 '$path'\n$file";
2295
2296 } else {
2297 die "$insn: not a recognized instruction for edit/parse\n";
2298 }
2299 }
2300
2301 }
2302
2303 #############################################################################
2304
2305 # json to stdout
2306 sub prjson($) {
2307 print $json_coder->encode ($_[0]);
2308 }
2309
2310 # json from stdin
2311 sub rdjson() {
2312 my $json;
2313 1 while read STDIN, $json, 65536, length $json;
2314 $json_coder->decode ($json)
2315 }
2316
2317 # all subcommands
2318 our %CMD = (
2319 help => sub {
2320 require Pod::Usage;
2321 Pod::Usage::pod2usage (-verbose => 2);
2322 },
2323
2324 objects => sub {
2325 my %rbcd_types = reverse %bcd_types;
2326 $_ = sprintf "%08x", $_ for values %rbcd_types;
2327
2328 if ($_[0] eq "--json") {
2329 my %default_type = %bcd_object_types;
2330 $_ = sprintf "%08x", $_ for values %default_type;
2331
2332 prjson {
2333 version => $JSON_VERSION,
2334 object_alias => \%bcd_objects,
2335 object_type => \%rbcd_types,
2336 object_default_type => \%default_type,
2337 };
2338 } else {
2339 my %rbcd_objects = reverse %bcd_objects;
2340
2341 print "\n";
2342
2343 printf "%-9s %s\n", "Type", "Alias";
2344 for my $tname (sort keys %rbcd_types) {
2345 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2346 }
2347
2348 print "\n";
2349
2350 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2351 for my $name (sort keys %rbcd_objects) {
2352 my $guid = $rbcd_objects{$name};
2353 my $type = $bcd_object_types{$name};
2354 my $tname = $bcd_types{$type};
2355
2356 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2357
2358 printf "%-39s %-23s %s\n", $guid, $name, $type;
2359 }
2360
2361 print "\n";
2362 }
2363 },
2364
2365 elements => sub {
2366 my $json = $_[0] eq "--json";
2367
2368 my %format_name = (
2369 BCDE_FORMAT_DEVICE , "device",
2370 BCDE_FORMAT_STRING , "string",
2371 BCDE_FORMAT_GUID , "guid",
2372 BCDE_FORMAT_GUID_LIST , "guid list",
2373 BCDE_FORMAT_INTEGER , "integer",
2374 BCDE_FORMAT_BOOLEAN , "boolean",
2375 BCDE_FORMAT_INTEGER_LIST, "integer list",
2376 );
2377 my %rbcde = reverse %bcde;
2378 $_ = sprintf "%08x", $_ for values %rbcde;
2379
2380 my %element;
2381
2382 unless ($json) {
2383 print "\n";
2384 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2385 }
2386 for my $name (sort keys %rbcde) {
2387 my $id = $rbcde{$name};
2388 my $format = $format_name{(hex $id) & BCDE_FORMAT};
2389
2390 if ($json) {
2391 $element{$id} = [$format, $name];
2392 } else {
2393 printf "%-9s %-12s %s\n", $id, $format, $name;
2394 }
2395 }
2396 print "\n" unless $json;
2397
2398 prjson {
2399 version => $JSON_VERSION,
2400 element => \%element,
2401 } if $json;
2402
2403 },
2404
2405 export => sub {
2406 prjson bcd_decode regf_load shift;
2407 },
2408
2409 import => sub {
2410 regf_save shift, bcd_encode rdjson;
2411 },
2412
2413 edit => sub {
2414 my $path = shift;
2415 my $bcd = bcd_decode regf_load $path;
2416 bcd_edit $path, $bcd, @_;
2417 regf_save $path, bcd_encode $bcd;
2418 },
2419
2420 parse => sub {
2421 my $path = shift;
2422 my $bcd = bcd_decode regf_load $path;
2423 bcd_edit $path, $bcd, @_;
2424 },
2425
2426 "export-regf" => sub {
2427 prjson regf_load shift;
2428
2429 },
2430
2431 "import-regf" => sub {
2432 regf_save shift, rdjson;
2433 },
2434
2435 lsblk => sub {
2436 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2437
2438 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2439
2440 for my $dev (@{ $lsblk->{blockdevices} }) {
2441 my $pr = sub {
2442 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2443 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2444 };
2445
2446 if ($dev->{type} eq "part") {
2447 if ($dev->{pttype} eq "gpt") {
2448 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2449 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2450 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2451 my ($diskid, $partno) = ($1, hex $2);
2452 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2453 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2454 my $start = 512 * readline $fh;
2455 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2456 }
2457 }
2458 }
2459 }
2460 }
2461 },
2462 );
2463
2464 my $cmd = shift;
2465
2466 unless (exists $CMD{$cmd}) {
2467 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2468 exit 126;
2469 }
2470
2471 $CMD{$cmd}->(@ARGV);
2472