ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.22
Committed: Wed Aug 14 23:37:53 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.21: +5 -4 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.014; # numerous features needed
23
24 our $VERSION = '1.0';
25 our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26
27 =head1 NAME
28
29 pbcdedit - portable boot configuration data (BCD) store editor
30
31 =head1 SYNOPSIS
32
33 pbcdedit help # output manual page
34 pbcdedit export path/to/BCD # output BCD hive as JSON
35 pbcdedit import path/to/bcd # convert standard input to BCD hive
36 pbcdedit edit path/to/BCD edit-instructions...
37
38 pbcdedit objects # list all supported object aliases and types
39 pbcdedit elements # list all supported bcd element aliases
40
41 =head1 DESCRIPTION
42
43 This program allows you to create, read and modify Boot Configuration Data
44 (BCD) stores used by Windows Vista and newer versions of Windows.
45
46 At this point, it is in relatively early stages of development and has
47 received little to no real-world testing.
48
49 Compared to other BCD editing programs it offers the following unique
50 features:
51
52 =over
53
54 =item Can create BCD hives from scratch
55
56 Practically all other BCD editing programs force you to copy existing BCD
57 stores, which might or might not be copyrighted by Microsoft.
58
59 =item Does not rely on Windows
60
61 As the "portable" in the name implies, this program does not rely on
62 C<bcdedit> or other windows programs or libraries, it works on any system
63 that supports at least perl version 5.14.
64
65 =item Decodes and encodes BCD device elements
66
67 PBCDEDIT can concisely decode and encode BCD device element contents. This
68 is pretty unique, and offers a lot of potential that can't be realised
69 with C<bcdedit> or any programs relying on it.
70
71 =item Minimal files
72
73 BCD files written by PBCDEDIT are always "minimal", that is, they don't
74 contain unused data areas and therefore don't contain old and potentially
75 sensitive data.
76
77 =back
78
79 The target audience for this program is professionals and tinkerers who
80 are ready to invest time into learning how it works. It is not an easy
81 program to use and requires patience and a good understanding of BCD data
82 stores.
83
84
85 =head1 SUBCOMMANDS
86
87 PBCDEDIT expects a subcommand as first argument that tells it what to
88 do. The following subcommands exist:
89
90 =over
91
92 =item C<help>
93
94 Displays the whole manual page (this document).
95
96 =item C<export> F<path>
97
98 Reads a BCD data store and writes a JSON representation of it to standard
99 output.
100
101 The format of the data is explained later in this document.
102
103 Example: read a BCD store, modify it with an external program, write it
104 again.
105
106 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
107
108 =item C<import> F<path>
109
110 The reverse of C<export>: Reads a JSON representation of a BCD data store
111 from standard input, and creates or replaces the given BCD data store.
112
113 =item C<edit> F<path> I<instructions...>
114
115 Load a BCD data store, apply some instructions to it, and save it again.
116
117 See the section L<EDITING BCD DATA STORES>, below, for more info.
118
119 =item C<parse> F<path> I<instructions...>
120
121 Same as C<edit>, above, except it doesn't save the data store again. Can
122 be useful to extract some data from it.
123
124 =item C<lsblk>
125
126 On a GNU/Linux system, you can get a list of partition device descriptors
127 using this command - the external C<lsblk> command is required, as well as
128 a mounted C</sys> file system.
129
130 The output will be a list of all partitions in the system and C<partition>
131 descriptors for GPT and both C<legacypartition> and C<partition>
132 descriptors for MBR partitions.
133
134 =item C<objects> [C<--json>]
135
136 Outputs two tables: a table listing all type aliases with their hex BCD
137 element ID, and all object name aliases with their GUID and default type
138 (if any).
139
140 With C<--json> it prints similar information as a JSON object, for easier parsing.
141
142 =item C<elements> [C<--json>]
143
144 Outputs a table of known element aliases with their hex ID and the format
145 type.
146
147 With C<--json> it prints similar information as a JSON object, for easier parsing.
148
149 =item C<export-regf> F<path>
150
151 This has nothing to do with BCD data stores - it takes a registry hive
152 file as argument and outputs a JSON representation of it to standard
153 output.
154
155 Hive versions 1.2 till 1.6 are supported.
156
157 =item C<import-regf> F<path>
158
159 The reverse of C<export-regf>: reads a JSON representation of a registry
160 hive from standard input and creates or replaces the registry hive file
161 given as argument.
162
163 The written hive will always be in a slightly modified version 1.3
164 format. It's not the format windows would generate, but it should be
165 understood by any conformant hive reader.
166
167 Note that the representation chosen by PBCDEDIT currently throws away
168 classname data (often used for feeble attempts at hiding stuff by
169 Microsoft) and security descriptors, so if you write anything other than
170 a BCD hive you will most likely destroy it.
171
172 =back
173
174
175 =head1 BCD DATA STORE REPRESENTATION FORMAT
176
177 A BCD data store is represented as a JSON object with one special key,
178 C<meta>, and one key per BCD object. That is, each BCD object becomes
179 one key-value pair in the object, and an additional key called C<meta>
180 contains meta information.
181
182 Here is an abridged example of a real BCD store:
183
184 {
185 "meta" : {
186 "version" : 1
187 },
188 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
189 "type" : "application::osloader",
190 "description" : "Windows 10",
191 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
192 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193 "path" : "\\Windows\\system32\\winload.exe",
194 "systemroot" : "\\Windows"
195 },
196 "{bootloadersettings}" : {
197 "inherit" : "{globalsettings} {hypervisorsettings}"
198 },
199 "{bootmgr}" : {
200 "description" : "Windows Boot Manager",
201 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
202 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
203 "inherit" : "{globalsettings}",
204 "displaybootmenu" : 0,
205 "timeout" : 30
206 },
207 "{globalsettings}" : {
208 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
209 },
210 "{hypervisorsettings}" : {
211 "hypervisorbaudrate" : 115200,
212 "hypervisordebugport" : 1,
213 "hypervisordebugtype" : 0
214 },
215 # ...
216 }
217
218 =head2 Minimal BCD to boot windows
219
220 Experimentally I found the following BCD is the minimum required to
221 successfully boot any post-XP version of Windows (suitable C<device> and
222 C<osdevice> values, of course):
223
224 {
225 "{bootmgr}" : {
226 "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
227 },
228
229 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
230 "type" : "application::osloader",
231 "description" : "Windows Boot",
232 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
233 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234 "path" : "\\Windows\\system32\\winload.exe",
235 "systemroot" : "\\Windows"
236 },
237 }
238
239 Note that minimal doesn't mean recommended - Windows itself will add stuff
240 to this during or after boot, and you might or might not run into issues
241 when installing updates as it might not be able to find the F<bootmgr>.
242
243 =head2 The C<meta> key
244
245 The C<meta> key is not stored in the BCD data store but is used only
246 by PBCDEDIT. It is always generated when exporting, and importing will
247 be refused when it exists and the version stored inside doesn't store
248 the JSON schema version of PBCDEDIT. This ensures that different and
249 incompatible versions of PBCDEDIT will not read and misinterpret each
250 others data.
251
252 =head2 The object keys
253
254 Every other key is a BCD object. There is usually a BCD object for the
255 boot manager, one for every boot option and a few others that store common
256 settings inherited by these.
257
258 Each BCD object is represented by a GUID wrapped in curly braces. These
259 are usually random GUIDs used only to distinguish BCD objects from each
260 other. When adding a new boot option, you can simply generate a new GUID.
261
262 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
263 into human-readable strings such as C<{globalsettings}>, which is the same
264 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
265
266 Each BCD, object has an associated type. For example,
267 C<application::osloader> for objects loading Windows via F<winload.exe>,
268 C<application::bootsector> for real mode applications and so on.
269
270 The type of a object is stored in the pseudo BCD element C<type> (see next
271 section).
272
273 Some well-known objects have a default type. If an object type matches
274 its default type, then the C<type> element will be omitted. Similarly, if
275 the C<type> element is missing and the BCD object has a default type, the
276 default type will be used when writing a BCD store.
277
278 Running F<pbcdedit objects> will give you a list of object types,
279 well-known object aliases and their default types.
280
281 If different string keys in a JSON BCD store map to the same BCD object
282 then a random one will "win" and the others will be discarded. To avoid
283 this, you should always use the "canonical" name of a BCD object, which is
284 the human-readable form (if it exists).
285
286 =head2 The object values - BCD elements
287
288 The value of each BCD object entry consists of key-value pairs called BCD
289 elements.
290
291 BCD elements are identified by a 32 bit number, but to make things
292 simpler PBCDEDIT will replace these with well-known strings such as
293 C<description>, C<device> or C<path>.
294
295 When PBCDEDIT does not know the BCD element, it will use
296 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
297 BCD element. For example, C<device> would be C<custom::11000001>. You can
298 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
299 elements>.
300
301 What was said about duplicate keys mapping to the same object is true for
302 elements as well, so, again, you should always use the canonical name,
303 which is the human readable alias, if known.
304
305 =head3 BCD element types
306
307 Each BCD element has a type such as I<string> or I<boolean>. This type
308 determines how the value is interpreted, and most of them are pretty easy
309 to explain:
310
311 =over
312
313 =item string
314
315 This is simply a unicode string. For example, the C<description> and
316 C<systemroot> elements both are of this type, one storing a human-readable
317 name for this boot option, the other a file path to the windows root
318 directory:
319
320 "description" : "Windows 10",
321 "systemroot" : "\\Windows",
322
323 =item boolean
324
325 Almost as simple are booleans, which represent I<true>/I<false>,
326 I<on>/I<off> and similar values. In the JSON form, true is represented
327 by the number C<1>, and false is represented by the number C<0>. Other
328 values will be accepted, but PBCDEDIT doesn't guarantee how these are
329 interpreted.
330
331 For example, C<displaybootmenu> is a boolean that decides whether to
332 enable the C<F8> boot menu. In the example BCD store above, this is
333 disabled:
334
335 "displaybootmenu" : 0,
336
337 =item integer
338
339 Again, very simple, this is a 64 bit integer. IT can be either specified
340 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
341 binary number (prefix C<0b>).
342
343 For example, the boot C<timeout> is an integer, specifying the automatic
344 boot delay in seconds:
345
346 "timeout" : 30,
347
348 =item integer list
349
350 This is a list of 64 bit integers separated by whitespace. It is not used
351 much, so here is a somewhat artificial an untested example of using
352 C<customactions> to specify a certain custom, eh, action to be executed
353 when pressing C<F10> at boot:
354
355 "customactions" : "0x1000044000001 0x54000001",
356
357 =item guid
358
359 This represents a single GUID value wrapped in curly braces. It is used a
360 lot to refer from one BCD object to other one.
361
362 For example, The C<{bootmgr}> object might refer to a resume boot option
363 using C<resumeobject>:
364
365 "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
366
367 Human readable aliases are used and allowed.
368
369 =item guid list
370
371 Similar to the GUID type, this represents a list of such GUIDs, separated
372 by whitespace from each other.
373
374 For example, many BCD objects can I<inherit> elements from other BCD
375 objects by specifying the GUIDs of those other objects in a GUID list
376 called surprisingly called C<inherit>:
377
378 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
379
380 This example also shows how human readable aliases can be used.
381
382 =item device
383
384 This type is why I write I<most> are easy to explain earlier: This type
385 is the pinnacle of Microsoft-typical hacks layered on top of other
386 hacks. Understanding this type took more time than writing all the rest of
387 PBCDEDIT, and because it is so complex, this type has its own subsection
388 below.
389 =back
390
391 =head4 The BCD "device" element type
392
393 Device elements specify, well, devices. They are used for such diverse
394 purposes such as finding a TFTP network boot image, serial ports or VMBUS
395 devices, but most commonly they are used to specify the disk (harddisk,
396 cdrom, ramdisk, vhd...) to boot from.
397
398 The device element is kind of a mini-language in its own which is much
399 more versatile then the limited windows interface to it - BCDEDIT -
400 reveals.
401
402 While some information can be found on the BCD store and the windows
403 registry, there is pretty much no public information about the device
404 element, so almost everything known about it had to be researched first
405 in the process of writing this script, and consequently, support for BCD
406 device elements is partial only.
407
408 On the other hand, the expressive power of PBCDEDIT in specifying devices
409 is much bigger than BCDEDIT and therefore more can be done with it. The
410 downside is that BCD device elements are much more complicated than what
411 you might think from reading the BCDEDIT documentation.
412
413 In other words, simple things are complicated, and complicated things are
414 possible.
415
416 Anyway, the general syntax of device elements is an optional GUID,
417 followed by a device type, optionally followed by hexadecimal flags in
418 angle brackets, optionally followed by C<=> and a comma-separated list of
419 arguments, some of which can be (and often are) in turn devices again.
420
421 [{GUID}]type[<flags>][=arg,arg...]
422
423 Here are some examples:
424
425 boot
426 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
427 locate=<null>,element,systemroot
428 partition=<null>,harddisk,mbr,47cbc08a,1048576
429 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
430 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
431 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
432 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
433
434 I hope you are suitably impressed. I was, too, when I realized decoding
435 these binary blobs is not as easy as I had assumed.
436
437 The optional prefixed GUID seems to refer to a device BCD object, which
438 can be used to specify more device-specific BCD elements (for example
439 C<ramdisksdidevice> and C<ramdisksdpath>).
440
441 The flags after the type are omitted when they are C<0>. The only known
442 flag is C<1>, which seems to indicate that the parent device is invalid. I
443 don't claim to fully understand it, but it seems to indicate that the
444 boot manager has to search the device itself. Why the device is specified
445 in the first place escapes me, but a lot of this device stuff seems to be
446 badly hacked together...
447
448 The types understood and used by PBCDEDIT are as follows (keep in mind
449 that not of all the following is necessarily supported in PBCDEDIT):
450
451 =over
452
453 =item C<binary=>I<hex...>
454
455 This type isn't actually a real BCD element type, but a fallback for those
456 cases where PBCDEDIT can't perfectly decode a device element (except for
457 the leading GUID, which it can always decode). In such cases, it will
458 convert the device into this type with a hexdump of the element data.
459
460 =item C<null>
461
462 This is another special type - sometimes, a device all zero-filled, which
463 is not valid. This can mark the absence of a device or something PBCDEDIT
464 does not understand, so it decodes it into this special "all zero" type
465 called C<null>.
466
467 It's most commonly found in devices that can use an optional parent
468 device, when no parent device is used.
469
470 =item C<boot>
471
472 Another type without parameters, this refers to the device that was booted
473 from (nowadays typically the EFI system partition).
474
475 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
476
477 This specifies a VMBUS device with the given interface type and interface
478 instance, both of which are "naked" (no curly braces) GUIDs.
479
480 Made-up example (couldn't find a single example on the web):
481
482 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
483
484 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
485
486 This designates a specific partition on a block device. I<parent> is an
487 optional parent device on which to search on, and is often C<null>. Note
488 that the angle brackets around I<parent> are part of the syntax.
489
490 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
491 C<file> or C<vhd>, where the first three should be self-explaining,
492 C<file> is usually used to locate a file to be used as a disk image,
493 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
494 F<vhdx> files.
495
496 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
497 used for devices without partitions, such as cdroms, where the "partition"
498 is usually the whole device.
499
500 The I<diskid> identifies the disk or device using a unique signature, and
501 the same is true for the I<partitionid>. How these are interpreted depends
502 on the I<partitiontype>:
503
504 =over
505
506 =item C<mbr>
507
508 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
509 MBR, interpreted as a 32 bit unsigned little endian integer and written as
510 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
511
512 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
513 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
514 display the I<diskid>.
515
516 The I<partitionid> is the byte offset(!) of the partition counting from
517 the beginning of the MBR.
518
519 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
520 starting at sector C<2048> (= 1048576 / 512).
521
522 partition=<null>,harddisk,mbr,47cbc08a,1048576
523
524 =item C<gpt>
525
526 The I<diskid> is the disk GUID/disk identifier GUID from the partition
527 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
528 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
529
530 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
531 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
532
533 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
534
535 =item C<raw>
536
537 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
538 disk number and signifies the whole disk. BCDEDIT cannot display the
539 resulting device, and I am doubtful whether it has a useful effect.
540
541 =back
542
543 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
544
545 This is exactly the same as the C<partition> type, except for a tiny
546 detail: instead of using the partition start offset, this type uses the
547 partition number for MBR disks. Behaviour other partition types should be
548 the same.
549
550 The partition number starts at C<1> and skips unused partition, so if
551 there are two primary partitions and another partition inside the extended
552 partition, the primary partitions are number C<1> and C<2> and the
553 partition inside the extended partition is number C<3>, regardless of any
554 gaps.
555
556 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
557
558 This device description will make the bootloader search for a partition
559 with a given path.
560
561 The I<parent> device is the device to search on (angle brackets are
562 still part of the syntax!) If it is C<null>, then C<locate> will
563 search all disks it can find.
564
565 I<locatetype> is either C<element> or C<path>, and merely distinguishes
566 between two different ways to specify the path to search for: C<element>
567 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
568 uses a relative path as I<locatearg>.
569
570 Example: find any partition which has the F<magicfile.xxx> path in the
571 root.
572
573 locate=<null>,path,\magicfile.xxx
574
575 Example: find any partition which has the path specified in the
576 C<systemroot> element (typically F<\Windows>).
577
578 locate=<null>,element,systemroot
579
580 =item C<block=>I<devicetype>,I<args...>
581
582 Last not least, the most complex type, C<block>, which... specifies block
583 devices (which could be inside a F<vhdx> file for example).
584
585 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
586 C<file> or C<vhd> - the same as for C<partiion=>.
587
588 The remaining arguments change depending on the I<devicetype>:
589
590 =over
591
592 =item C<block=file>,<I<parent>>,I<path>
593
594 Interprets the I<parent> device (typically a partition) as a
595 filesystem and specifies a file path inside.
596
597 =item C<block=vhd>,<I<parent>>
598
599 Pretty much just changes the interpretation of I<parent>, which is
600 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
601
602 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
603
604 Interprets the I<parent> device as RAM disk, using the (decimal)
605 base address, byte size and byte offset inside a file specified by
606 I<path>. The numbers are usually all C<0> because they can be extracted
607 from the RAM disk image or other parameters.
608
609 This is most commonly used to boot C<wim> images.
610
611 =item C<block=floppy>,I<drivenum>
612
613 Refers to a removable drive identified by a number. BCDEDIT cannot display
614 the resulting device, and it is not clear what effect it will have.
615
616 =item C<block=cdrom>,I<drivenum>
617
618 Pretty much the same as C<floppy> but for CD-ROMs.
619
620 =item anything else
621
622 Probably not yet implemented. Tell me of your needs...
623
624 =back
625
626 =back5 Examples
627
628 This concludes the syntax overview for device elements, but probably
629 leaves many questions open. I can't help with most of them, as I also ave
630 many questions, but I can walk you through some actual examples using more
631 complex aspects.
632
633 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
634
635 Just like with C declarations, you best treat device descriptors as
636 instructions to find your device and work your way from the inside out:
637
638 locate=<null>,path,\disk.vhdx
639
640 First, the innermost device descriptor searches all partitions on the
641 system for a file called F<\disk.vhdx>:
642
643 block=file,<see above>,\disk.vhdx
644
645 Next, this takes the device locate has found and finds a file called
646 F<\disk.vhdx> on it. This is the same file locate was using, but that is
647 only because we find the device using the same path as finding the disk
648 image, so this is purely incidental, although quite common.
649
650 Next, this file will be opened as a virtual disk:
651
652 block=vhd,<see above>
653
654 And finally, inside this disk, another C<locate> will look for a partition
655 with a path as specified in the C<path> element, which most likely will be
656 F<\Windows\system32\winload.exe>:
657
658 locate=<see above>,element,path
659
660 As a result, this will boot the first Windows it finds on the first
661 F<disk.vhdx> disk image it can find anywhere.
662
663 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
664
665 Pretty much the same as the previous case, but with a bit of
666 variance. First, look for a specific partition on an MBR-partitioned disk:
667
668 partition=<null>,harddisk,mbr,47cbc08a,242643632128
669
670 Then open the file F<\win10.vhdx> on that partition:
671
672 block=file,<see above>,\win10.vhdx
673
674 Then, again, the file is opened as a virtual disk image:
675
676 block=vhd,<see above>
677
678 And again the windows loader (or whatever is in C<path>) will be searched:
679
680 locate=<see above>,element,path
681
682 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
683
684 This is quite different. First, it starts with a GUID. This GUID belongs
685 to a BCD object of type C<device>, which has additional parameters:
686
687 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
688 "type" : "device",
689 "description" : "sdi file for ramdisk",
690 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
691 "ramdisksdipath" : "\boot.sdi"
692 },
693
694 I will not go into many details, but this specifies a (presumably empty)
695 template ramdisk image (F<\boot.sdi>) that is used to initialize the
696 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
697 see, this F<.sdi> file resides on a different C<partition>.
698
699 Continuing, as always, from the inside out, first this device descriptor
700 finds a specific partition:
701
702 partition=<null>,harddisk,mbr,47cbc08a,242643632128
703
704 And then specifies a C<ramdisk> image on this partition:
705
706 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
707
708 I don't know what the purpose of the C<< <1> >> flag value is, but it
709 seems to be always there on this kind of entry.
710
711 If you have some good examples to add here, feel free to mail me.
712
713
714 =head1 EDITING BCD DATA STORES
715
716 The C<edit> and C<parse> subcommands allow you to read a BCD data store
717 and modify it or extract data from it. This is done by executing a series
718 of "editing instructions" which are explained here.
719
720 =over
721
722 =item C<get> I<object> I<element>
723
724 Reads the BCD element I<element> from the BCD object I<object> and writes
725 it to standard output, followed by a newline. The I<object> can be a GUID
726 or a human-readable alias, or the special string C<{default}>, which will
727 refer to the default BCD object.
728
729 Example: find description of the default BCD object.
730
731 pbcdedit parse BCD get "{default}" description
732
733 =item C<set> I<object> I<element> I<value>
734
735 Similar to C<get>, but sets the element to the given I<value> instead.
736
737 Example: change the bootmgr default too
738 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
739
740 pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
741
742 =item C<eval> I<perlcode>
743
744 This takes the next argument, interprets it as Perl code and
745 evaluates it. This allows you to do more complicated modifications or
746 extractions.
747
748 The following variables are predefined for your use:
749
750 =over
751
752 =item C<$PATH>
753
754 The path to the BCD data store, as given to C<edit> or C<parse>.
755
756 =item C<$BCD>
757
758 The decoded BCD data store.
759
760 =item C<$DEFAULT>
761
762 The default BCD object name.
763
764 =back
765
766 The example given for C<get>, above, could be expressed like this with
767 C<eval>:
768
769 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
770
771 The example given for C<set> could be expressed like this:
772
773 pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
774
775 =item C<do> I<path>
776
777 Similar to C<eval>, above, but instead of using the argument as perl code,
778 it loads the perl code from the given file and executes it. This makes it
779 easier to write more complicated or larger programs.
780
781 =back
782
783
784 =head1 SEE ALSO
785
786 For ideas on what you can do, and some introductory material, try
787 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
788
789 For good reference on BCD objects and elements, see Geoff Chappels pages
790 at L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
791
792 =head1 AUTHOR
793
794 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
795
796 =head1 REPORTING BUGS
797
798 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
799
800 =head1 BUGS AND SHORTCOMINGS
801
802 This should be a module. Of a series of modules, even.
803
804 Registry code should preserve classname and security descriptor data, and
805 whatever else is necessary to read and write any registry hive file.
806
807 I am also not happy with device descriptors being strings rather than a
808 data structure, but strings are probably better for command line usage. In
809 any case, device descriptors could be converted by simply "splitting" at
810 "=" and "," into an array reference, recursively.
811
812 =head1 HOMEPAGE
813
814 Original versions of this program can be found at
815 L<http://software.schmorp.de/pkg/pbcdedit>.
816
817 =head1 COPYRIGHT
818
819 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
820 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
821 free to change and redistribute it. There is NO WARRANTY, to the extent
822 permitted by law.
823
824 =cut
825
826 BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
827
828 use Data::Dump;
829 use Encode ();
830 use List::Util ();
831 use IO::Handle ();
832 use Time::HiRes ();
833
834 eval { unpack "Q", pack "Q", 1 }
835 or die "perl with 64 bit integer supported required.\n";
836
837 our $JSON = eval { require JSON::XS; JSON::XS:: }
838 // eval { require JSON::PP; JSON::PP:: }
839 // die "either JSON::XS or JSON::PP must be installed\n";
840
841 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
842
843 # hack used for debugging
844 sub xxd($$) {
845 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
846 syswrite $xxd, $_[1];
847 }
848
849 sub file_load($) {
850 my ($path) = @_;
851
852 open my $fh, "<:raw", $path
853 or die "$path: $!\n";
854 my $size = -s $fh;
855 $size = read $fh, my $buf, $size
856 or die "$path: short read\n";
857
858 $buf
859 }
860
861 # sources and resources used for this:
862 # registry:
863 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
864 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
865 # bcd:
866 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
867 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
868 # bcd devices:
869 # reactos' boot/environ/include/bl.h
870 # windows .mof files
871
872 #############################################################################
873 # registry stuff
874
875 # we use a hardcoded securitya descriptor - full access for everyone
876 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
877 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
878 my $sacl = "";
879 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
880 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
881 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
882 1, 0x8004,
883 20 + (length $sacl) + (length $dacl),
884 20 + (length $sacl) + (length $dacl) + (length $sid),
885 0, 20,
886 $sacl, $dacl, $sid, $sid;
887 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
888
889 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
890
891 sub KEY_HIVE_ENTRY() { 0x0004 }
892 sub KEY_NO_DELETE () { 0x0008 }
893 sub KEY_COMP_NAME () { 0x0020 }
894
895 sub VALUE_COMP_NAME() { 0x0001 }
896
897 my @regf_typename = qw(
898 none sz expand_sz binary dword dword_be link multi_sz
899 resource_list full_resource_descriptor resource_requirements_list
900 qword qword_be
901 );
902
903 my %regf_dec_type = (
904 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
905 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
906 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
907 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
908 dword => sub { unpack "L<", shift },
909 dword_be => sub { unpack "L>", shift },
910 qword => sub { unpack "Q<", shift },
911 qword_be => sub { unpack "Q>", shift },
912 );
913
914 my %regf_enc_type = (
915 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
916 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
917 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
918 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
919 dword => sub { pack "L<", shift },
920 dword_be => sub { pack "L>", shift },
921 qword => sub { pack "Q<", shift },
922 qword_be => sub { pack "Q>", shift },
923 );
924
925 # decode a registry hive
926 sub regf_decode($) {
927 my ($hive) = @_;
928
929 "regf" eq substr $hive, 0, 4
930 or die "not a registry hive\n";
931
932 my ($major, $minor) = unpack "\@20 L< L<", $hive;
933
934 $major == 1
935 or die "registry major version is not 1, but $major\n";
936
937 $minor >= 2 && $minor <= 6
938 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
939
940 my $bins = substr $hive, 4096;
941
942 my $decode_key = sub {
943 my ($ofs) = @_;
944
945 my @res;
946
947 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
948
949 $sze < 0
950 or die "key node points to unallocated cell\n";
951
952 $sig eq "nk"
953 or die "expected key node at $ofs, got '$sig'\n";
954
955 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
956
957 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
958
959 # classnames, security descriptors
960 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
961 #if ($cofs != NO_OFS && $clen) {
962 # #warn "cofs $cofs+$clen\n";
963 # xxd substr $bins, $cofs, 16;
964 #}
965
966 $kname = Encode::decode "UTF-16LE", $kname
967 unless $flags & KEY_COMP_NAME;
968
969 if ($vnum && $vofs != NO_OFS) {
970 for ($vofs += 4; $vnum--; $vofs += 4) {
971 my $kofs = unpack "\@$vofs L<", $bins;
972
973 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
974
975 $sig eq "vk"
976 or die "key values list contains invalid node (expected vk got '$sig')\n";
977
978 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
979
980 my $name = substr $bins, $kofs + 24, $nsze;
981
982 $name = Encode::decode "UTF-16LE", $name
983 unless $flags & VALUE_COMP_NAME;
984
985 my $data;
986 if ($dsze & 0x80000000) {
987 $data = substr $bins, $kofs + 12, $dsze & 0x7;
988 } elsif ($dsze > 16344 && $minor > 3) { # big data
989 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
990
991 for ($bofs += 4; $bnum--; $bofs += 4) {
992 my $dofs = unpack "\@$bofs L<", $bins;
993 my $dsze = unpack "\@$dofs l<", $bins;
994 $data .= substr $bins, $dofs + 4, -$dsze - 4;
995 }
996 $data = substr $data, 0, $dsze; # cells might be longer than data
997 } else {
998 $data = substr $bins, $dofs + 4, $dsze;
999 }
1000
1001 $type = $regf_typename[$type] if $type < @regf_typename;
1002
1003 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1004 ->($data);
1005
1006 $res[0]{$name} = [$type, $data];
1007 }
1008 }
1009
1010 if ($sofs != NO_OFS) {
1011 my $decode_key = __SUB__;
1012
1013 my $decode_subkeylist = sub {
1014 my ($sofs) = @_;
1015
1016 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1017
1018 if ($sig eq "ri") { # index root
1019 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1020 __SUB__->(unpack "\@$lofs L<", $bins);
1021 }
1022 } else {
1023 my $inc;
1024
1025 if ($sig eq "li") { # subkey list
1026 $inc = 4;
1027 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1028 $inc = 8;
1029 } else {
1030 die "expected subkey list at $sofs, found '$sig'\n";
1031 }
1032
1033 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1034 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1035 $res[1]{$name} = $data;
1036 }
1037 }
1038 };
1039
1040 $decode_subkeylist->($sofs);
1041 }
1042
1043 ($kname, \@res);
1044 };
1045
1046 my ($rootcell) = unpack "\@36 L<", $hive;
1047
1048 my ($rname, $root) = $decode_key->($rootcell);
1049
1050 [$rname, $root]
1051 }
1052
1053 # return a binary windows fILETIME struct
1054 sub filetime_now {
1055 my ($s, $ms) = Time::HiRes::gettimeofday;
1056
1057 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1058 }
1059
1060 # encode a registry hive
1061 sub regf_encode($) {
1062 my ($hive) = @_;
1063
1064 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1065
1066 # the filetime is apparently used to verify log file validity,
1067 # so by generating a new timestamp the log files *should* automatically
1068 # become invalidated and windows would "self-heal" them.
1069 # (update: has been verified by reverse engineering)
1070 # possibly the fact that the two sequence numbes match might also
1071 # make windows think that the hive is not dirty and ignore logs.
1072 # (update: has been verified by reverse engineering)
1073
1074 my $now = filetime_now;
1075
1076 # we only create a single hbin
1077 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1078
1079 # append cell to $bind, return offset
1080 my $cell = sub {
1081 my ($cell) = @_;
1082
1083 my $res = length $bins;
1084
1085 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1086
1087 $bins .= pack "l<", -(4 + length $cell);
1088 $bins .= $cell;
1089
1090 $res
1091 };
1092
1093 my $sdofs = $cell->($sk); # add a dummy security descriptor
1094 my $sdref = 0; # refcount
1095 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1096 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1097
1098 my $encode_key = sub {
1099 my ($kname, $kdata, $flags) = @_;
1100 my ($values, $subkeys) = @$kdata;
1101
1102 if ($kname =~ /[^\x00-\xff]/) {
1103 $kname = Encode::encode "UTF-16LE", $kname;
1104 } else {
1105 $flags |= KEY_COMP_NAME;
1106 }
1107
1108 # encode subkeys
1109
1110 my @snames =
1111 map $_->[1],
1112 sort { $a->[0] cmp $b->[0] }
1113 map [(uc $_), $_],
1114 keys %$subkeys;
1115
1116 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1117 my $maxsname = 4 * List::Util::max map length, @snames;
1118
1119 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1120
1121 # encode values
1122 my $maxvname = 4 * List::Util::max map length, keys %$values;
1123 my @vofs;
1124 my $maxdsze = 0;
1125
1126 while (my ($vname, $v) = each %$values) {
1127 my $flags = 0;
1128
1129 if ($vname =~ /[^\x00-\xff]/) {
1130 $vname = Encode::encode "UTF-16LE", $kname;
1131 } else {
1132 $flags |= VALUE_COMP_NAME;
1133 }
1134
1135 my ($type, $data) = @$v;
1136
1137 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1138
1139 my $dsze;
1140 my $dofs;
1141
1142 if (length $data <= 4) {
1143 $dsze = 0x80000000 | length $data;
1144 $dofs = unpack "L<", pack "a4", $data;
1145 } else {
1146 $dsze = length $data;
1147 $dofs = $cell->($data);
1148 }
1149
1150 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1151
1152 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1153 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1154
1155 $maxdsze = $dsze if $maxdsze < $dsze;
1156 }
1157
1158 # encode key
1159
1160 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1161 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1162
1163 my $kdata = pack "
1164 a2 S< a8 x4 x4
1165 L< L< L< L< L< L<
1166 L< L< L< L< L< L<
1167 x4 S< S< a*
1168 ",
1169 nk => $flags, $now,
1170 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1171 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1172 length $kname, 0, $kname;
1173 ++$sdref;
1174
1175 my $res = $cell->($kdata);
1176
1177 substr $bins, $_ + 16, 4, pack "L<", $res
1178 for @sofs;
1179
1180 $res
1181 };
1182
1183 my ($rname, $root) = @$hive;
1184
1185 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1186
1187 if (my $pad = -(length $bins) & 4095) {
1188 $pad -= 4;
1189 $bins .= pack "l< x$pad", $pad + 4;
1190 }
1191
1192 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1193 substr $bins, 8, 4, pack "L<", length $bins;
1194
1195 my $base = pack "
1196 a4 L< L< a8 L< L< L< L<
1197 L< L< L<
1198 a64
1199 x396
1200 ",
1201 regf => 1974, 1974, $now, 1, 3, 0, 1,
1202 $rofs, length $bins, 1,
1203 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1204
1205 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1206 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1207 $chksum = 1 if $chksum == 0;
1208
1209 $base .= pack "L<", $chksum;
1210
1211 $base = pack "a* \@4095 x1", $base;
1212
1213 $base . $bins
1214 }
1215
1216 # load and parse registry from file
1217 sub regf_load($) {
1218 my ($path) = @_;
1219
1220 regf_decode file_load $path
1221 }
1222
1223 # encode and save registry to file
1224 sub regf_save {
1225 my ($path, $hive) = @_;
1226
1227 $hive = regf_encode $hive;
1228
1229 open my $regf, ">:raw", "$path~"
1230 or die "$path~: $!\n";
1231 print $regf $hive
1232 or die "$path~: short write\n";
1233 $regf->sync;
1234 close $regf;
1235
1236 rename "$path~", $path;
1237 }
1238
1239 #############################################################################
1240 # bcd stuff
1241
1242 # human-readable alises for GUID object identifiers
1243 our %bcd_objects = (
1244 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1245 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1246 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1247 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1248 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1249 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1250 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1251 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1252 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1253 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1254 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1255 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1256 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1257 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1258 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1259 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1260 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1261 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1262 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1263 );
1264
1265 # default types
1266 our %bcd_object_types = (
1267 '{fwbootmgr}' => 0x10100001,
1268 '{bootmgr}' => 0x10100002,
1269 '{memdiag}' => 0x10200005,
1270 '{ntldr}' => 0x10300006,
1271 '{badmemory}' => 0x20100000,
1272 '{dbgsettings}' => 0x20100000,
1273 '{emssettings}' => 0x20100000,
1274 '{globalsettings}' => 0x20100000,
1275 '{bootloadersettings}' => 0x20200003,
1276 '{hypervisorsettings}' => 0x20200003,
1277 '{kerneldbgsettings}' => 0x20200003,
1278 '{resumeloadersettings}' => 0x20200004,
1279 '{ramdiskoptions}' => 0x30000000,
1280 );
1281
1282 # object types
1283 our %bcd_types = (
1284 0x10100001 => 'application::fwbootmgr',
1285 0x10100002 => 'application::bootmgr',
1286 0x10200003 => 'application::osloader',
1287 0x10200004 => 'application::resume',
1288 0x10100005 => 'application::memdiag',
1289 0x10100006 => 'application::ntldr',
1290 0x10100007 => 'application::setupldr',
1291 0x10400008 => 'application::bootsector',
1292 0x10400009 => 'application::startup',
1293 0x1020000a => 'application::bootapp',
1294 0x20100000 => 'settings',
1295 0x20200001 => 'inherit::fwbootmgr',
1296 0x20200002 => 'inherit::bootmgr',
1297 0x20200003 => 'inherit::osloader',
1298 0x20200004 => 'inherit::resume',
1299 0x20200005 => 'inherit::memdiag',
1300 0x20200006 => 'inherit::ntldr',
1301 0x20200007 => 'inherit::setupldr',
1302 0x20200008 => 'inherit::bootsector',
1303 0x20200009 => 'inherit::startup',
1304 0x20300000 => 'inherit::device',
1305 0x30000000 => 'device',
1306 );
1307
1308 our %rbcd_objects = reverse %bcd_objects;
1309
1310 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1311
1312 sub dec_guid($) {
1313 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1314 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1315 }
1316
1317 sub enc_guid($) {
1318 $_[0] =~ /^$RE_GUID\z/o
1319 or return;
1320
1321 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1322 }
1323
1324 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1325 sub dec_wguid($) {
1326 my $guid = "{" . (dec_guid shift) . "}";
1327
1328 $bcd_objects{$guid} // $guid
1329 }
1330
1331 sub enc_wguid($) {
1332 my ($guid) = @_;
1333
1334 if (my $alias = $rbcd_objects{$guid}) {
1335 $guid = $alias;
1336 }
1337
1338 $guid =~ /^\{($RE_GUID)\}\z/o
1339 or return;
1340
1341 enc_guid $1
1342 }
1343
1344 sub BCDE_CLASS () { 0xf0000000 }
1345 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1346 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1347 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1348 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1349
1350 sub BCDE_FORMAT () { 0x0f000000 }
1351 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1352 sub BCDE_FORMAT_STRING () { 0x02000000 }
1353 sub BCDE_FORMAT_GUID () { 0x03000000 }
1354 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1355 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1356 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1357 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1358
1359 sub dec_device;
1360 sub enc_device;
1361
1362 sub enc_integer($) {
1363 no warnings 'portable'; # ugh
1364 my $value = shift;
1365 $value = oct $value if $value =~ /^0[bBxX]/;
1366 unpack "H*", pack "Q<", $value
1367 }
1368
1369 our %bcde_dec = (
1370 BCDE_FORMAT_DEVICE , \&dec_device,
1371 # # for round-trip verification
1372 # BCDE_FORMAT_DEVICE , sub {
1373 # my $dev = dec_device $_[0];
1374 # $_[0] eq enc_device $dev
1375 # or die "bcd device decoding does not round trip for $_[0]\n";
1376 # $dev
1377 # },
1378 BCDE_FORMAT_STRING , sub { shift },
1379 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1380 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1381 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1382 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1383 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1384 );
1385
1386 our %bcde_enc = (
1387 BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1388 BCDE_FORMAT_STRING , sub { sz => shift },
1389 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1390 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1391 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1392 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1393 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1394 );
1395
1396 # BCD Elements
1397 our %bcde = (
1398 0x11000001 => 'device',
1399 0x12000002 => 'path',
1400 0x12000004 => 'description',
1401 0x12000005 => 'locale',
1402 0x14000006 => 'inherit',
1403 0x15000007 => 'truncatememory',
1404 0x14000008 => 'recoverysequence',
1405 0x16000009 => 'recoveryenabled',
1406 0x1700000a => 'badmemorylist',
1407 0x1600000b => 'badmemoryaccess',
1408 0x1500000c => 'firstmegabytepolicy',
1409 0x1500000d => 'relocatephysical',
1410 0x1500000e => 'avoidlowmemory',
1411 0x1600000f => 'traditionalkseg',
1412 0x16000010 => 'bootdebug',
1413 0x15000011 => 'debugtype',
1414 0x15000012 => 'debugaddress',
1415 0x15000013 => 'debugport',
1416 0x15000014 => 'baudrate',
1417 0x15000015 => 'channel',
1418 0x12000016 => 'targetname',
1419 0x16000017 => 'noumex',
1420 0x15000018 => 'debugstart',
1421 0x12000019 => 'busparams',
1422 0x1500001a => 'hostip',
1423 0x1500001b => 'port',
1424 0x1600001c => 'dhcp',
1425 0x1200001d => 'key',
1426 0x1600001e => 'vm',
1427 0x16000020 => 'bootems',
1428 0x15000022 => 'emsport',
1429 0x15000023 => 'emsbaudrate',
1430 0x12000030 => 'loadoptions',
1431 0x16000040 => 'advancedoptions',
1432 0x16000041 => 'optionsedit',
1433 0x15000042 => 'keyringaddress',
1434 0x11000043 => 'bootstatdevice',
1435 0x12000044 => 'bootstatfilepath',
1436 0x16000045 => 'preservebootstat',
1437 0x16000046 => 'graphicsmodedisabled',
1438 0x15000047 => 'configaccesspolicy',
1439 0x16000048 => 'nointegritychecks',
1440 0x16000049 => 'testsigning',
1441 0x1200004a => 'fontpath',
1442 0x1500004b => 'integrityservices',
1443 0x1500004c => 'volumebandid',
1444 0x16000050 => 'extendedinput',
1445 0x15000051 => 'initialconsoleinput',
1446 0x15000052 => 'graphicsresolution',
1447 0x16000053 => 'restartonfailure',
1448 0x16000054 => 'highestmode',
1449 0x16000060 => 'isolatedcontext',
1450 0x15000065 => 'displaymessage',
1451 0x15000066 => 'displaymessageoverride',
1452 0x16000068 => 'nobootuxtext',
1453 0x16000069 => 'nobootuxprogress',
1454 0x1600006a => 'nobootuxfade',
1455 0x1600006b => 'bootuxreservepooldebug',
1456 0x1600006c => 'bootuxdisabled',
1457 0x1500006d => 'bootuxfadeframes',
1458 0x1600006e => 'bootuxdumpstats',
1459 0x1600006f => 'bootuxshowstats',
1460 0x16000071 => 'multibootsystem',
1461 0x16000072 => 'nokeyboard',
1462 0x15000073 => 'aliaswindowskey',
1463 0x16000074 => 'bootshutdowndisabled',
1464 0x15000075 => 'performancefrequency',
1465 0x15000076 => 'securebootrawpolicy',
1466 0x17000077 => 'allowedinmemorysettings',
1467 0x15000079 => 'bootuxtransitiontime',
1468 0x1600007a => 'mobilegraphics',
1469 0x1600007b => 'forcefipscrypto',
1470 0x1500007d => 'booterrorux',
1471 0x1600007e => 'flightsigning',
1472 0x1500007f => 'measuredbootlogformat',
1473 0x15000080 => 'displayrotation',
1474 0x15000081 => 'logcontrol',
1475 0x16000082 => 'nofirmwaresync',
1476 0x11000084 => 'windowssyspart',
1477 0x16000087 => 'numlock',
1478 0x22000001 => 'bpbstring',
1479 0x24000001 => 'displayorder',
1480 0x21000001 => 'filedevice',
1481 0x21000001 => 'osdevice',
1482 0x25000001 => 'passcount',
1483 0x26000001 => 'pxesoftreboot',
1484 0x22000002 => 'applicationname',
1485 0x24000002 => 'bootsequence',
1486 0x22000002 => 'filepath',
1487 0x22000002 => 'systemroot',
1488 0x25000002 => 'testmix',
1489 0x26000003 => 'cacheenable',
1490 0x26000003 => 'customsettings',
1491 0x23000003 => 'default',
1492 0x25000003 => 'failurecount',
1493 0x23000003 => 'resumeobject',
1494 0x26000004 => 'failuresenabled',
1495 0x26000004 => 'pae',
1496 0x26000004 => 'stampdisks',
1497 0x25000004 => 'testtofail',
1498 0x25000004 => 'timeout',
1499 0x21000005 => 'associatedosdevice',
1500 0x26000005 => 'cacheenable',
1501 0x26000005 => 'resume',
1502 0x25000005 => 'stridefailcount',
1503 0x26000006 => 'debugoptionenabled',
1504 0x25000006 => 'invcfailcount',
1505 0x23000006 => 'resumeobject',
1506 0x25000007 => 'bootux',
1507 0x25000007 => 'matsfailcount',
1508 0x24000007 => 'startupsequence',
1509 0x25000008 => 'bootmenupolicy',
1510 0x25000008 => 'randfailcount',
1511 0x25000009 => 'chckrfailcount',
1512 0x26000010 => 'detecthal',
1513 0x24000010 => 'toolsdisplayorder',
1514 0x22000011 => 'kernel',
1515 0x22000012 => 'hal',
1516 0x22000013 => 'dbgtransport',
1517 0x26000020 => 'displaybootmenu',
1518 0x25000020 => 'nx',
1519 0x26000021 => 'noerrordisplay',
1520 0x25000021 => 'pae',
1521 0x21000022 => 'bcddevice',
1522 0x26000022 => 'winpe',
1523 0x22000023 => 'bcdfilepath',
1524 0x26000024 => 'hormenabled',
1525 0x26000024 => 'hormenabled',
1526 0x26000024 => 'nocrashautoreboot',
1527 0x26000025 => 'hiberboot',
1528 0x26000025 => 'lastknowngood',
1529 0x26000026 => 'oslnointegritychecks',
1530 0x22000026 => 'passwordoverride',
1531 0x26000027 => 'osltestsigning',
1532 0x22000027 => 'pinpassphraseoverride',
1533 0x26000028 => 'processcustomactionsfirst',
1534 0x27000030 => 'customactions',
1535 0x26000030 => 'nolowmem',
1536 0x26000031 => 'persistbootsequence',
1537 0x25000031 => 'removememory',
1538 0x25000032 => 'increaseuserva',
1539 0x26000032 => 'skipstartupsequence',
1540 0x25000033 => 'perfmem',
1541 0x22000040 => 'fverecoveryurl',
1542 0x26000040 => 'vga',
1543 0x22000041 => 'fverecoverymessage',
1544 0x26000041 => 'quietboot',
1545 0x26000042 => 'novesa',
1546 0x26000043 => 'novga',
1547 0x25000050 => 'clustermodeaddressing',
1548 0x26000051 => 'usephysicaldestination',
1549 0x25000052 => 'restrictapiccluster',
1550 0x22000053 => 'evstore',
1551 0x26000054 => 'uselegacyapicmode',
1552 0x26000060 => 'onecpu',
1553 0x25000061 => 'numproc',
1554 0x26000062 => 'maxproc',
1555 0x25000063 => 'configflags',
1556 0x26000064 => 'maxgroup',
1557 0x26000065 => 'groupaware',
1558 0x25000066 => 'groupsize',
1559 0x26000070 => 'usefirmwarepcisettings',
1560 0x25000071 => 'msi',
1561 0x25000072 => 'pciexpress',
1562 0x25000080 => 'safeboot',
1563 0x26000081 => 'safebootalternateshell',
1564 0x26000090 => 'bootlog',
1565 0x26000091 => 'sos',
1566 0x260000a0 => 'debug',
1567 0x260000a1 => 'halbreakpoint',
1568 0x260000a2 => 'useplatformclock',
1569 0x260000a3 => 'forcelegacyplatform',
1570 0x260000a4 => 'useplatformtick',
1571 0x260000a5 => 'disabledynamictick',
1572 0x250000a6 => 'tscsyncpolicy',
1573 0x260000b0 => 'ems',
1574 0x250000c0 => 'forcefailure',
1575 0x250000c1 => 'driverloadfailurepolicy',
1576 0x250000c2 => 'bootmenupolicy',
1577 0x260000c3 => 'onetimeadvancedoptions',
1578 0x260000c4 => 'onetimeoptionsedit',
1579 0x250000e0 => 'bootstatuspolicy',
1580 0x260000e1 => 'disableelamdrivers',
1581 0x250000f0 => 'hypervisorlaunchtype',
1582 0x220000f1 => 'hypervisorpath',
1583 0x260000f2 => 'hypervisordebug',
1584 0x250000f3 => 'hypervisordebugtype',
1585 0x250000f4 => 'hypervisordebugport',
1586 0x250000f5 => 'hypervisorbaudrate',
1587 0x250000f6 => 'hypervisorchannel',
1588 0x250000f7 => 'bootux',
1589 0x260000f8 => 'hypervisordisableslat',
1590 0x220000f9 => 'hypervisorbusparams',
1591 0x250000fa => 'hypervisornumproc',
1592 0x250000fb => 'hypervisorrootprocpernode',
1593 0x260000fc => 'hypervisoruselargevtlb',
1594 0x250000fd => 'hypervisorhostip',
1595 0x250000fe => 'hypervisorhostport',
1596 0x250000ff => 'hypervisordebugpages',
1597 0x25000100 => 'tpmbootentropy',
1598 0x22000110 => 'hypervisorusekey',
1599 0x22000112 => 'hypervisorproductskutype',
1600 0x25000113 => 'hypervisorrootproc',
1601 0x26000114 => 'hypervisordhcp',
1602 0x25000115 => 'hypervisoriommupolicy',
1603 0x26000116 => 'hypervisorusevapic',
1604 0x22000117 => 'hypervisorloadoptions',
1605 0x25000118 => 'hypervisormsrfilterpolicy',
1606 0x25000119 => 'hypervisormmionxpolicy',
1607 0x2500011a => 'hypervisorschedulertype',
1608 0x25000120 => 'xsavepolicy',
1609 0x25000121 => 'xsaveaddfeature0',
1610 0x25000122 => 'xsaveaddfeature1',
1611 0x25000123 => 'xsaveaddfeature2',
1612 0x25000124 => 'xsaveaddfeature3',
1613 0x25000125 => 'xsaveaddfeature4',
1614 0x25000126 => 'xsaveaddfeature5',
1615 0x25000127 => 'xsaveaddfeature6',
1616 0x25000128 => 'xsaveaddfeature7',
1617 0x25000129 => 'xsaveremovefeature',
1618 0x2500012a => 'xsaveprocessorsmask',
1619 0x2500012b => 'xsavedisable',
1620 0x2500012c => 'kerneldebugtype',
1621 0x2200012d => 'kernelbusparams',
1622 0x2500012e => 'kerneldebugaddress',
1623 0x2500012f => 'kerneldebugport',
1624 0x25000130 => 'claimedtpmcounter',
1625 0x25000131 => 'kernelchannel',
1626 0x22000132 => 'kerneltargetname',
1627 0x25000133 => 'kernelhostip',
1628 0x25000134 => 'kernelport',
1629 0x26000135 => 'kerneldhcp',
1630 0x22000136 => 'kernelkey',
1631 0x22000137 => 'imchivename',
1632 0x21000138 => 'imcdevice',
1633 0x25000139 => 'kernelbaudrate',
1634 0x22000140 => 'mfgmode',
1635 0x26000141 => 'event',
1636 0x25000142 => 'vsmlaunchtype',
1637 0x25000144 => 'hypervisorenforcedcodeintegrity',
1638 0x26000145 => 'enablebootdebugpolicy',
1639 0x26000146 => 'enablebootorderclean',
1640 0x26000147 => 'enabledeviceid',
1641 0x26000148 => 'enableffuloader',
1642 0x26000149 => 'enableiuloader',
1643 0x2600014a => 'enablemassstorage',
1644 0x2600014b => 'enablerpmbprovisioning',
1645 0x2600014c => 'enablesecurebootpolicy',
1646 0x2600014d => 'enablestartcharge',
1647 0x2600014e => 'enableresettpm',
1648 0x21000150 => 'systemdatadevice',
1649 0x21000151 => 'osarcdevice',
1650 0x21000153 => 'osdatadevice',
1651 0x21000154 => 'bspdevice',
1652 0x21000155 => 'bspfilepath',
1653 0x26000202 => 'skipffumode',
1654 0x26000203 => 'forceffumode',
1655 0x25000510 => 'chargethreshold',
1656 0x26000512 => 'offmodecharging',
1657 0x25000aaa => 'bootflow',
1658 0x35000001 => 'ramdiskimageoffset',
1659 0x35000002 => 'ramdisktftpclientport',
1660 0x31000003 => 'ramdisksdidevice',
1661 0x32000004 => 'ramdisksdipath',
1662 0x35000005 => 'ramdiskimagelength',
1663 0x36000006 => 'exportascd',
1664 0x35000007 => 'ramdisktftpblocksize',
1665 0x35000008 => 'ramdisktftpwindowsize',
1666 0x36000009 => 'ramdiskmcenabled',
1667 0x3600000a => 'ramdiskmctftpfallback',
1668 0x3600000b => 'ramdisktftpvarwindow',
1669 0x45000001 => 'devicetype',
1670 0x42000002 => 'applicationrelativepath',
1671 0x42000003 => 'ramdiskdevicerelativepath',
1672 0x46000004 => 'omitosloaderelements',
1673 0x47000006 => 'elementstomigrate',
1674 0x46000010 => 'recoveryos',
1675 );
1676
1677 our %rbcde = reverse %bcde;
1678
1679 sub dec_bcde_id($) {
1680 $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1681 }
1682
1683 sub enc_bcde_id($) {
1684 $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1685 ? hex $1
1686 : $rbcde{$_[0]}
1687 }
1688
1689 # decode/encode bcd device element - the horror, no documentaion
1690 # whatsoever, supercomplex, superinconsistent.
1691
1692 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1693 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1694 our @part_type = qw(gpt mbr raw);
1695
1696 our $NULL_DEVICE = "\x00" x 16;
1697
1698 # biggest bitch to decode, ever
1699 # this decoded a device portion after the GUID
1700 sub dec_device_($);
1701 sub dec_device_($) {
1702 my ($device) = @_;
1703
1704 my $res;
1705
1706 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1707
1708 $pad == 0
1709 or die "non-zero reserved field in device descriptor\n";
1710
1711 if ($length == 0 && $type == 0 && $flags == 0) {
1712 return ("null", $device);
1713 }
1714
1715 $length >= 16
1716 or die "device element size too small ($length)\n";
1717
1718 $type = $dev_type[$type] // die "$type: unknown device type\n";
1719 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1720
1721 $res .= $type;
1722 $res .= sprintf "<%x>", $flags if $flags;
1723
1724 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1725
1726 $length == 4 * 4 + length $device
1727 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1728
1729 my $dec_path = sub {
1730 my ($path, $error) = @_;
1731
1732 $path =~ /^((?:..)*)\x00\x00\z/s
1733 or die "$error\n";
1734
1735 $path = Encode::decode "UTF-16LE", $1;
1736
1737 $path
1738 };
1739
1740 if ($type eq "partition" or $type eq "legacypartition") {
1741 my $partdata = substr $device, 0, 16, "";
1742 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1743
1744 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1745 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1746
1747 my $diskid = substr $device, 0, 16, "";
1748
1749 $diskid = $parttype eq "gpt"
1750 ? dec_guid substr $diskid, 0, 16
1751 : sprintf "%08x", unpack "V", $diskid;
1752
1753 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1754 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1755 : unpack "L<", $partdata; # partition number, one-based
1756
1757 (my $parent, $device) = dec_device_ $device;
1758
1759 $res .= "=";
1760 $res .= "<$parent>";
1761 $res .= ",$blocktype,$parttype,$diskid,$partid";
1762
1763 # PartitionType (gpt, mbr, raw)
1764 # guid | partsig | disknumber
1765
1766 } elsif ($type eq "boot") {
1767 $device =~ s/^\x00{56}\z//
1768 or die "boot device type with extra data not supported\n";
1769
1770 } elsif ($type eq "block") {
1771 my $blocktype = unpack "V", substr $device, 0, 4, "";
1772
1773 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1774
1775 # decode a "file path" structure
1776 my $dec_file = sub {
1777 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1778
1779 my $path = substr $device, 0, $flen - 12, "";
1780
1781 $fver == 1
1782 or die "unsupported file descriptor version '$fver'\n";
1783
1784 $ftype == 5
1785 or die "unsupported file descriptor path type '$type'\n";
1786
1787 (my $parent, $path) = dec_device_ $path;
1788
1789 $path = $dec_path->($path, "file device without path");
1790
1791 ($parent, $path)
1792 };
1793
1794 if ($blocktype eq "file") {
1795 my ($parent, $path) = $dec_file->();
1796
1797 $res .= "=file,<$parent>,$path";
1798
1799 } elsif ($blocktype eq "vhd") {
1800 $device =~ s/^\x00{20}//s
1801 or die "virtualdisk has non-zero fields I don't understand\n";
1802
1803 (my $parent, $device) = dec_device_ $device;
1804
1805 $res .= "=vhd,<$parent>";
1806
1807 } elsif ($blocktype eq "ramdisk") {
1808 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1809 my ($subdev, $path) = $dec_file->();
1810
1811 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1812
1813 } else {
1814 die "unsupported block type '$blocktype'\n";
1815 }
1816
1817 } elsif ($type eq "locate") {
1818 # mode, bcde_id, unknown, string
1819 # we assume locate has _either_ an element id _or_ a path, but not both
1820
1821 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1822
1823 if ($parent) {
1824 # not sure why this is an offset - it must come after the path
1825 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1826 ($parent, my $tail) = dec_device_ $parent;
1827 0 == length $tail
1828 or die "trailing data after locate device parent\n";
1829 } else {
1830 $parent = "null";
1831 }
1832
1833 my $path = $device; $device = "";
1834 $path = $dec_path->($path, "device locate mode without path");
1835
1836 $res .= "=<$parent>,";
1837
1838 if ($mode == 0) { # "Element"
1839 !length $path
1840 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1841
1842 $elem = dec_bcde_id $elem;
1843 $res .= "element,$elem";
1844
1845 } elsif ($mode == 1) { # "String"
1846 !$elem
1847 or die "device locate mode 1 having non-zero element\n";
1848
1849 $res .= "path,$path";
1850 } else {
1851 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1852 die "device locate mode '$mode' not supported\n";
1853 }
1854
1855 } elsif ($type eq "vmbus") {
1856 my $type = dec_guid substr $device, 0, 16, "";
1857 my $instance = dec_guid substr $device, 0, 16, "";
1858
1859 $device =~ s/^\x00{24}\z//
1860 or die "vmbus has non-zero fields I don't understand\n";
1861
1862 $res .= "=$type,$instance";
1863
1864 } else {
1865 die "unsupported device type '$type'\n";
1866 }
1867
1868 warn "unexpected trailing device data($res), " . unpack "H*",$device
1869 if length $device;
1870 #length $device
1871 # and die "unexpected trailing device data\n";
1872
1873 ($res, $tail)
1874 }
1875
1876 # decode a full binary BCD device descriptor
1877 sub dec_device($) {
1878 my ($device) = @_;
1879
1880 $device = pack "H*", $device;
1881
1882 my $guid = dec_guid substr $device, 0, 16, "";
1883 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1884 ? "" : "{$guid}";
1885
1886 eval {
1887 my ($dev, $tail) = dec_device_ $device;
1888
1889 $tail eq ""
1890 or die "unsupported trailing data after device descriptor\n";
1891
1892 "$guid$dev"
1893 # } // scalar ((warn $@), "$guid$fallback")
1894 } // ($guid . "binary=" . unpack "H*", $device)
1895 }
1896
1897 sub indexof($@) {
1898 my $value = shift;
1899
1900 for (0 .. $#_) {
1901 $value eq $_[$_]
1902 and return $_;
1903 }
1904
1905 undef
1906 }
1907
1908 # encode the device portion after the GUID
1909 sub enc_device_;
1910 sub enc_device_ {
1911 my ($device) = @_;
1912
1913 my $enc_path = sub {
1914 my $path = shift;
1915 $path =~ s/\//\\/g;
1916 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1917 };
1918
1919 my $enc_file = sub {
1920 my ($parent, $path) = @_; # parent and path must already be encoded
1921
1922 $path = $parent . $path;
1923
1924 # fver 1, ftype 5
1925 pack "VVVa*", 1, 12 + length $path, 5, $path
1926 };
1927
1928 my $parse_path = sub {
1929 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1930 or die "$_: invalid path\n";
1931
1932 $enc_path->($1)
1933 };
1934
1935 my $parse_parent = sub {
1936 my $parent;
1937
1938 if (s/^<//) {
1939 ($parent, $_) = enc_device_ $_;
1940 s/^>//
1941 or die "$device: syntax error: parent device not followed by '>'\n";
1942 } else {
1943 $parent = $NULL_DEVICE;
1944 }
1945
1946 $parent
1947 };
1948
1949 for ($device) {
1950 s/^([a-z]+)//
1951 or die "$_: device does not start with type string\n";
1952
1953 my $type = $1;
1954 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1955 my $payload;
1956
1957 if ($type eq "binary") {
1958 s/^=([0-9a-fA-F]+)//
1959 or die "binary type must have a hex string argument\n";
1960
1961 $payload = pack "H*", $1;
1962
1963 } elsif ($type eq "null") {
1964 return ($NULL_DEVICE, $_);
1965
1966 } elsif ($type eq "boot") {
1967 $payload = "\x00" x 56;
1968
1969 } elsif ($type eq "partition" or $type eq "legacypartition") {
1970 s/^=//
1971 or die "$_: missing '=' after $type\n";
1972
1973 my $parent = $parse_parent->();
1974
1975 s/^,//
1976 or die "$_: comma missing after partition parent device\n";
1977
1978 s/^([a-z]+),//
1979 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1980 my $blocktype = $1;
1981
1982 s/^([a-z]+),//
1983 or die "$_: partition block type not followed by partiton type\n";
1984 my $parttype = $1;
1985
1986 my ($partdata, $diskdata);
1987
1988 if ($parttype eq "mbr") {
1989 s/^([0-9a-f]{8}),//i
1990 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1991 $diskdata = pack "Vx12", hex $1;
1992
1993 s/^([0-9]+)//
1994 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1995
1996 # the following works for both 64 bit offset and 32 bit partno
1997 $partdata = pack "Q< x8", $1;
1998
1999 } elsif ($parttype eq "gpt") {
2000 s/^($RE_GUID),//
2001 or die "$_: partition disk guid missing or malformed\n";
2002 $diskdata = enc_guid $1;
2003
2004 s/^($RE_GUID)//
2005 or die "$_: partition guid missing or malformed\n";
2006 $partdata = enc_guid $1;
2007
2008 } elsif ($parttype eq "raw") {
2009 s/^([0-9]+)//
2010 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2011
2012 $partdata = pack "L< x12", $1;
2013
2014 } else {
2015 die "$parttype: partition type not supported\n";
2016 }
2017
2018 $payload = pack "a16 L< L< a16 a*",
2019 $partdata,
2020 (indexof $blocktype, @block_type),
2021 (indexof $parttype, @part_type),
2022 $diskdata,
2023 $parent;
2024
2025 } elsif ($type eq "locate") {
2026 s/^=//
2027 or die "$_: missing '=' after $type\n";
2028
2029 my ($mode, $elem, $path);
2030
2031 my $parent = $parse_parent->();
2032
2033 s/^,//
2034 or die "$_: missing comma after locate parent device\n";
2035
2036 if (s/^element,//) {
2037 s/^([0-9a-z]+)//i
2038 or die "$_ locate element must be either name or 8-digit hex id\n";
2039 $elem = enc_bcde_id $1;
2040 $mode = 0;
2041 $path = $enc_path->("");
2042
2043 } elsif (s/^path,//) {
2044 $mode = 1;
2045 $path = $parse_path->();
2046
2047 } else {
2048 die "$_ second locate argument must be subtype (either element or path)\n";
2049 }
2050
2051 if ($parent ne $NULL_DEVICE) {
2052 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2053 } else {
2054 $parent = 0;
2055 }
2056
2057 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2058
2059 } elsif ($type eq "block") {
2060 s/^=//
2061 or die "$_: missing '=' after $type\n";
2062
2063 s/^([a-z]+),//
2064 or die "$_: block device does not start with block type (e.g. disk)\n";
2065 my $blocktype = $1;
2066
2067 my $blockdata;
2068
2069 if ($blocktype eq "file") {
2070 my $parent = $parse_parent->();
2071 s/^,// or die "$_: comma missing after file block device parent\n";
2072 my $path = $parse_path->();
2073
2074 $blockdata = $enc_file->($parent, $path);
2075
2076 } elsif ($blocktype eq "vhd") {
2077 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2078 $blockdata .= $parse_parent->();
2079
2080 } elsif ($blocktype eq "ramdisk") {
2081 my $parent = $parse_parent->();
2082
2083 s/^,(\d+),(\d+),(\d+),//a
2084 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2085
2086 my ($base, $size, $offset) = ($1, $2, $3);
2087
2088 my $path = $parse_path->();
2089
2090 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2091
2092 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2093 # this is guesswork
2094 s/^(\d+)//a
2095 or die "$_: missing device number for cdrom\n";
2096 $blockdata = pack "V", $1;
2097
2098 } else {
2099 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2100 }
2101
2102 $payload = pack "Va*",
2103 (indexof $blocktype, @block_type),
2104 $blockdata;
2105
2106 } elsif ($type eq "vmbus") {
2107 s/^=($RE_GUID)//
2108 or die "$_: malformed or missing vmbus interface type guid\n";
2109 my $type = enc_guid $1;
2110 s/^,($RE_GUID)//
2111 or die "$_: malformed or missing vmbus interface instance guid\n";
2112 my $instance = enc_guid $1;
2113
2114 $payload = pack "a16a16x24", $type, $instance;
2115
2116 } else {
2117 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2118 }
2119
2120 return (
2121 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2122 $_
2123 );
2124 }
2125 }
2126
2127 # encode a full binary BCD device descriptor
2128 sub enc_device {
2129 my ($device) = @_;
2130
2131 my $guid = "\x00" x 16;
2132
2133 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2134 $guid = enc_guid $1
2135 or die "$device: does not start with valid guid\n";
2136 }
2137
2138 my ($descriptor, $tail) = enc_device_ $device;
2139
2140 length $tail
2141 and die "$device: garbage after device descriptor\n";
2142
2143 unpack "H*", $guid . $descriptor
2144 }
2145
2146 # decode a registry hive into the BCD structure used by pbcdedit
2147 sub bcd_decode {
2148 my ($hive) = @_;
2149
2150 my %bcd;
2151
2152 my $objects = $hive->[1][1]{Objects}[1];
2153
2154 while (my ($k, $v) = each %$objects) {
2155 my %kv;
2156 $v = $v->[1];
2157
2158 $k = $bcd_objects{$k} // $k;
2159
2160 my $type = $v->{Description}[0]{Type}[1];
2161
2162 if ($type != $bcd_object_types{$k}) {
2163 $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2164 $kv{type} = $type;
2165 }
2166
2167 my $elems = $v->{Elements}[1];
2168
2169 while (my ($k, $v) = each %$elems) {
2170 my $k = hex $k;
2171
2172 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2173 my $k = dec_bcde_id $k;
2174
2175 $kv{$k} = $v;
2176 }
2177
2178 $bcd{$k} = \%kv;
2179 }
2180
2181 $bcd{meta} = { version => $JSON_VERSION };
2182
2183 \%bcd
2184 }
2185
2186 # encode a pbcdedit structure into a registry hive
2187 sub bcd_encode {
2188 my ($bcd) = @_;
2189
2190 if (my $meta = $bcd->{meta}) {
2191 $meta->{version} eq $JSON_VERSION
2192 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2193 }
2194
2195 my %objects;
2196 my %rbcd_types = reverse %bcd_types;
2197
2198 while (my ($k, $v) = each %$bcd) {
2199 my %kv;
2200
2201 next if $k eq "meta";
2202
2203 $k = lc $k; # I know you windows types!
2204
2205 my $type = $v->{type};
2206
2207 if ($type) {
2208 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2209 ? hex $type
2210 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2211 }
2212
2213 my $guid = enc_wguid $k
2214 or die "$k: invalid bcd object identifier\n";
2215
2216 # default type if not given
2217 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2218
2219 my %elem;
2220
2221 while (my ($k, $v) = each %$v) {
2222 next if $k eq "type";
2223
2224 $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2225 $elem{sprintf "%08x", $k} = [{
2226 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2227 }];
2228 }
2229
2230 $guid = dec_guid $guid;
2231
2232 $objects{"{$guid}"} = [undef, {
2233 Description => [{ Type => [dword => $type] }],
2234 Elements => [undef, \%elem],
2235 }];
2236 }
2237
2238 [NewStoreRoot => [undef, {
2239 Description => [{
2240 KeyName => [sz => "BCD00000001"],
2241 System => [dword => 1],
2242 pbcdedit => [sz => $VERSION],
2243 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2244 }],
2245 Objects => [undef, \%objects],
2246 }]]
2247 }
2248
2249 #############################################################################
2250
2251 sub bcd_edit_eval {
2252 package pbcdedit;
2253
2254 our ($PATH, $BCD, $DEFAULT);
2255
2256 eval shift;
2257 die "$@" if $@;
2258 }
2259
2260 sub bcd_edit {
2261 my ($path, $bcd, @insns) = @_;
2262
2263 my $default = $bcd->{"{bootmgr}"}{resumeobject};
2264
2265 # prepare "officially visible" variables
2266 local $pbcdedit::PATH = $path;
2267 local $pbcdedit::BCD = $bcd;
2268 local $pbcdedit::DEFAULT = $default;
2269
2270 while (@insns) {
2271 my $insn = shift @insns;
2272
2273 if ($insn eq "get") {
2274 my $object = shift @insns;
2275 my $elem = shift @insns;
2276
2277 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2278
2279 print $bcd->{$object}{$elem}, "\n";
2280
2281 } elsif ($insn eq "set") {
2282 my $object = shift @insns;
2283 my $elem = shift @insns;
2284 my $value = shift @insns;
2285
2286 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2287
2288 $bcd->{$object}{$elem} = $value;
2289
2290 } elsif ($insn eq "eval") {
2291 bcd_edit_eval shift @insns;
2292
2293 } elsif ($insn eq "do") {
2294 my $path = shift @insns;
2295 my $file = file_load $path;
2296 bcd_edit_eval "#line 1 '$path'\n$file";
2297
2298 } else {
2299 die "$insn: not a recognized instruction for edit/parse\n";
2300 }
2301 }
2302
2303 }
2304
2305 #############################################################################
2306
2307 # json to stdout
2308 sub prjson($) {
2309 print $json_coder->encode ($_[0]);
2310 }
2311
2312 # json from stdin
2313 sub rdjson() {
2314 my $json;
2315 1 while read STDIN, $json, 65536, length $json;
2316 $json_coder->decode ($json)
2317 }
2318
2319 # all subcommands
2320 our %CMD = (
2321 help => sub {
2322 require Pod::Usage;
2323 Pod::Usage::pod2usage (-verbose => 2);
2324 },
2325
2326 objects => sub {
2327 my %rbcd_types = reverse %bcd_types;
2328 $_ = sprintf "%08x", $_ for values %rbcd_types;
2329
2330 if ($_[0] eq "--json") {
2331 my %default_type = %bcd_object_types;
2332 $_ = sprintf "%08x", $_ for values %default_type;
2333
2334 prjson {
2335 version => $JSON_VERSION,
2336 object_alias => \%bcd_objects,
2337 object_type => \%rbcd_types,
2338 object_default_type => \%default_type,
2339 };
2340 } else {
2341 my %rbcd_objects = reverse %bcd_objects;
2342
2343 print "\n";
2344
2345 printf "%-9s %s\n", "Type", "Alias";
2346 for my $tname (sort keys %rbcd_types) {
2347 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2348 }
2349
2350 print "\n";
2351
2352 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2353 for my $name (sort keys %rbcd_objects) {
2354 my $guid = $rbcd_objects{$name};
2355 my $type = $bcd_object_types{$name};
2356 my $tname = $bcd_types{$type};
2357
2358 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2359
2360 printf "%-39s %-23s %s\n", $guid, $name, $type;
2361 }
2362
2363 print "\n";
2364 }
2365 },
2366
2367 elements => sub {
2368 my $json = $_[0] eq "--json";
2369
2370 my %format_name = (
2371 BCDE_FORMAT_DEVICE , "device",
2372 BCDE_FORMAT_STRING , "string",
2373 BCDE_FORMAT_GUID , "guid",
2374 BCDE_FORMAT_GUID_LIST , "guid list",
2375 BCDE_FORMAT_INTEGER , "integer",
2376 BCDE_FORMAT_BOOLEAN , "boolean",
2377 BCDE_FORMAT_INTEGER_LIST, "integer list",
2378 );
2379 my %rbcde = reverse %bcde;
2380 $_ = sprintf "%08x", $_ for values %rbcde;
2381
2382 my %element;
2383
2384 unless ($json) {
2385 print "\n";
2386 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2387 }
2388 for my $name (sort keys %rbcde) {
2389 my $id = $rbcde{$name};
2390 my $format = $format_name{(hex $id) & BCDE_FORMAT};
2391
2392 if ($json) {
2393 $element{$id} = [$format, $name];
2394 } else {
2395 printf "%-9s %-12s %s\n", $id, $format, $name;
2396 }
2397 }
2398 print "\n" unless $json;
2399
2400 prjson {
2401 version => $JSON_VERSION,
2402 element => \%element,
2403 } if $json;
2404
2405 },
2406
2407 export => sub {
2408 prjson bcd_decode regf_load shift;
2409 },
2410
2411 import => sub {
2412 regf_save shift, bcd_encode rdjson;
2413 },
2414
2415 edit => sub {
2416 my $path = shift;
2417 my $bcd = bcd_decode regf_load $path;
2418 bcd_edit $path, $bcd, @_;
2419 regf_save $path, bcd_encode $bcd;
2420 },
2421
2422 parse => sub {
2423 my $path = shift;
2424 my $bcd = bcd_decode regf_load $path;
2425 bcd_edit $path, $bcd, @_;
2426 },
2427
2428 "export-regf" => sub {
2429 prjson regf_load shift;
2430
2431 },
2432
2433 "import-regf" => sub {
2434 regf_save shift, rdjson;
2435 },
2436
2437 lsblk => sub {
2438 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2439
2440 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2441
2442 for my $dev (@{ $lsblk->{blockdevices} }) {
2443 my $pr = sub {
2444 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2445 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2446 };
2447
2448 if ($dev->{type} eq "part") {
2449 if ($dev->{pttype} eq "gpt") {
2450 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2451 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2452 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2453 my ($diskid, $partno) = ($1, hex $2);
2454 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2455 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2456 my $start = 512 * readline $fh;
2457 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2458 }
2459 }
2460 }
2461 }
2462 }
2463 },
2464 );
2465
2466 my $cmd = shift;
2467
2468 unless (exists $CMD{$cmd}) {
2469 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2470 exit 126;
2471 }
2472
2473 $CMD{$cmd}->(@ARGV);
2474