ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.27
Committed: Wed Aug 14 23:56:22 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.26: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.014; # numerous features needed
23
24 our $VERSION = '1.0';
25 our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26
27 =head1 NAME
28
29 pbcdedit - portable boot configuration data (BCD) store editor
30
31 =head1 SYNOPSIS
32
33 pbcdedit help # output manual page
34 pbcdedit export path/to/BCD # output BCD hive as JSON
35 pbcdedit import path/to/bcd # convert standard input to BCD hive
36 pbcdedit edit path/to/BCD edit-instructions...
37
38 pbcdedit objects # list all supported object aliases and types
39 pbcdedit elements # list all supported bcd element aliases
40
41 =head1 DESCRIPTION
42
43 This program allows you to create, read and modify Boot Configuration Data
44 (BCD) stores used by Windows Vista and newer versions of Windows.
45
46 At this point, it is in relatively early stages of development and has
47 received little to no real-world testing.
48
49 Compared to other BCD editing programs it offers the following unique
50 features:
51
52 =over
53
54 =item Can create BCD hives from scratch
55
56 Practically all other BCD editing programs force you to copy existing BCD
57 stores, which might or might not be copyrighted by Microsoft.
58
59 =item Does not rely on Windows
60
61 As the "portable" in the name implies, this program does not rely on
62 C<bcdedit> or other windows programs or libraries, it works on any system
63 that supports at least perl version 5.14.
64
65 =item Decodes and encodes BCD device elements
66
67 PBCDEDIT can concisely decode and encode BCD device element contents. This
68 is pretty unique, and offers a lot of potential that can't be realised
69 with C<bcdedit> or any programs relying on it.
70
71 =item Minimal files
72
73 BCD files written by PBCDEDIT are always "minimal", that is, they don't
74 contain unused data areas and therefore don't contain old and potentially
75 sensitive data.
76
77 =back
78
79 The target audience for this program is professionals and tinkerers who
80 are ready to invest time into learning how it works. It is not an easy
81 program to use and requires patience and a good understanding of BCD
82 stores.
83
84
85 =head1 SUBCOMMANDS
86
87 PBCDEDIT expects a subcommand as first argument that tells it what to
88 do. The following subcommands exist:
89
90 =over
91
92 =item C<help>
93
94 Displays the whole manual page (this document).
95
96 =item C<export> F<path>
97
98 Reads a BCD data store and writes a JSON representation of it to standard
99 output.
100
101 The format of the data is explained later in this document.
102
103 Example: read a BCD store, modify it with an external program, write it
104 again.
105
106 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
107
108 =item C<import> F<path>
109
110 The reverse of C<export>: Reads a JSON representation of a BCD data store
111 from standard input, and creates or replaces the given BCD data store.
112
113 =item C<edit> F<path> I<instructions...>
114
115 Load a BCD data store, apply some instructions to it, and save it again.
116
117 See the section L<EDITING BCD STORES>, below, for more info.
118
119 =item C<parse> F<path> I<instructions...>
120
121 Same as C<edit>, above, except it doesn't save the data store again. Can
122 be useful to extract some data from it.
123
124 =item C<lsblk>
125
126 On a GNU/Linux system, you can get a list of partition device descriptors
127 using this command - the external C<lsblk> command is required, as well as
128 a mounted C</sys> file system.
129
130 The output will be a list of all partitions in the system and C<partition>
131 descriptors for GPT and both C<legacypartition> and C<partition>
132 descriptors for MBR partitions.
133
134 =item C<objects> [C<--json>]
135
136 Outputs two tables: a table listing all type aliases with their hex BCD
137 element ID, and all object name aliases with their GUID and default type
138 (if any).
139
140 With C<--json> it prints similar information as a JSON object, for easier parsing.
141
142 =item C<elements> [C<--json>]
143
144 Outputs a table of known element aliases with their hex ID and the format
145 type.
146
147 With C<--json> it prints similar information as a JSON object, for easier parsing.
148
149 =item C<export-regf> F<path>
150
151 This has nothing to do with BCD stores - it takes a registry hive
152 file as argument and outputs a JSON representation of it to standard
153 output.
154
155 Hive versions 1.2 till 1.6 are supported.
156
157 =item C<import-regf> F<path>
158
159 The reverse of C<export-regf>: reads a JSON representation of a registry
160 hive from standard input and creates or replaces the registry hive file
161 given as argument.
162
163 The written hive will always be in a slightly modified version 1.3
164 format. It's not the format windows would generate, but it should be
165 understood by any conformant hive reader.
166
167 Note that the representation chosen by PBCDEDIT currently throws away
168 classname data (often used for feeble attempts at hiding stuff by
169 Microsoft) and security descriptors, so if you write anything other than
170 a BCD hive you will most likely destroy it.
171
172 =back
173
174
175 =head1 BCD STORE REPRESENTATION FORMAT
176
177 A BCD data store is represented as a JSON object with one special key,
178 C<meta>, and one key per BCD object. That is, each BCD object becomes
179 one key-value pair in the object, and an additional key called C<meta>
180 contains meta information.
181
182 Here is an abridged example of a real BCD store:
183
184 {
185 "meta" : {
186 "version" : 1
187 },
188 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
189 "type" : "application::osloader",
190 "description" : "Windows 10",
191 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
192 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193 "path" : "\\Windows\\system32\\winload.exe",
194 "systemroot" : "\\Windows"
195 },
196 "{bootloadersettings}" : {
197 "inherit" : "{globalsettings} {hypervisorsettings}"
198 },
199 "{bootmgr}" : {
200 "description" : "Windows Boot Manager",
201 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
202 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
203 "inherit" : "{globalsettings}",
204 "displaybootmenu" : 0,
205 "timeout" : 30
206 },
207 "{globalsettings}" : {
208 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
209 },
210 "{hypervisorsettings}" : {
211 "hypervisorbaudrate" : 115200,
212 "hypervisordebugport" : 1,
213 "hypervisordebugtype" : 0
214 },
215 # ...
216 }
217
218 =head2 Minimal BCD to boot windows
219
220 Experimentally I found the following BCD is the minimum required to
221 successfully boot any post-XP version of Windows (suitable C<device> and
222 C<osdevice> values, of course):
223
224 {
225 "{bootmgr}" : {
226 "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
227 },
228
229 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
230 "type" : "application::osloader",
231 "description" : "Windows Boot",
232 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
233 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234 "path" : "\\Windows\\system32\\winload.exe",
235 "systemroot" : "\\Windows"
236 },
237 }
238
239 Note that minimal doesn't mean recommended - Windows itself will add stuff
240 to this during or after boot, and you might or might not run into issues
241 when installing updates as it might not be able to find the F<bootmgr>.
242
243 =head2 The C<meta> key
244
245 The C<meta> key is not stored in the BCD data store but is used only
246 by PBCDEDIT. It is always generated when exporting, and importing will
247 be refused when it exists and the version stored inside doesn't store
248 the JSON schema version of PBCDEDIT. This ensures that different and
249 incompatible versions of PBCDEDIT will not read and misinterpret each
250 others data.
251
252 =head2 The object keys
253
254 Every other key is a BCD object. There is usually a BCD object for the
255 boot manager, one for every boot option and a few others that store common
256 settings inherited by these.
257
258 Each BCD object is represented by a GUID wrapped in curly braces. These
259 are usually random GUIDs used only to distinguish BCD objects from each
260 other. When adding a new boot option, you can simply generate a new GUID.
261
262 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
263 into human-readable strings such as C<{globalsettings}>, which is the same
264 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
265
266 Each BCD, object has an associated type. For example,
267 C<application::osloader> for objects loading Windows via F<winload.exe>,
268 C<application::bootsector> for real mode applications and so on.
269
270 The type of a object is stored in the pseudo BCD element C<type> (see next
271 section).
272
273 Some well-known objects have a default type. If an object type matches
274 its default type, then the C<type> element will be omitted. Similarly, if
275 the C<type> element is missing and the BCD object has a default type, the
276 default type will be used when writing a BCD store.
277
278 Running F<pbcdedit objects> will give you a list of object types,
279 well-known object aliases and their default types.
280
281 If different string keys in a JSON BCD store map to the same BCD object
282 then a random one will "win" and the others will be discarded. To avoid
283 this, you should always use the "canonical" name of a BCD object, which is
284 the human-readable form (if it exists).
285
286 =head2 The object values - BCD elements
287
288 The value of each BCD object entry consists of key-value pairs called BCD
289 elements.
290
291 BCD elements are identified by a 32 bit number, but to make things
292 simpler PBCDEDIT will replace these with well-known strings such as
293 C<description>, C<device> or C<path>.
294
295 When PBCDEDIT does not know the BCD element, it will use
296 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
297 BCD element. For example, C<device> would be C<custom::11000001>. You can
298 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
299 elements>.
300
301 What was said about duplicate keys mapping to the same object is true for
302 elements as well, so, again, you should always use the canonical name,
303 which is the human readable alias, if known.
304
305 =head3 BCD element types
306
307 Each BCD element has a type such as I<string> or I<boolean>. This type
308 determines how the value is interpreted, and most of them are pretty easy
309 to explain:
310
311 =over
312
313 =item string
314
315 This is simply a unicode string. For example, the C<description> and
316 C<systemroot> elements both are of this type, one storing a human-readable
317 name for this boot option, the other a file path to the windows root
318 directory:
319
320 "description" : "Windows 10",
321 "systemroot" : "\\Windows",
322
323 =item boolean
324
325 Almost as simple are booleans, which represent I<true>/I<false>,
326 I<on>/I<off> and similar values. In the JSON form, true is represented
327 by the number C<1>, and false is represented by the number C<0>. Other
328 values will be accepted, but PBCDEDIT doesn't guarantee how these are
329 interpreted.
330
331 For example, C<displaybootmenu> is a boolean that decides whether to
332 enable the C<F8> boot menu. In the example BCD store above, this is
333 disabled:
334
335 "displaybootmenu" : 0,
336
337 =item integer
338
339 Again, very simple, this is a 64 bit integer. IT can be either specified
340 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
341 binary number (prefix C<0b>).
342
343 For example, the boot C<timeout> is an integer, specifying the automatic
344 boot delay in seconds:
345
346 "timeout" : 30,
347
348 =item integer list
349
350 This is a list of 64 bit integers separated by whitespace. It is not used
351 much, so here is a somewhat artificial an untested example of using
352 C<customactions> to specify a certain custom, eh, action to be executed
353 when pressing C<F10> at boot:
354
355 "customactions" : "0x1000044000001 0x54000001",
356
357 =item guid
358
359 This represents a single GUID value wrapped in curly braces. It is used a
360 lot to refer from one BCD object to other one.
361
362 For example, The C<{bootmgr}> object might refer to a resume boot option
363 using C<resumeobject>:
364
365 "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
366
367 Human readable aliases are used and allowed.
368
369 =item guid list
370
371 Similar to the GUID type, this represents a list of such GUIDs, separated
372 by whitespace from each other.
373
374 For example, many BCD objects can I<inherit> elements from other BCD
375 objects by specifying the GUIDs of those other objects in a GUID list
376 called surprisingly called C<inherit>:
377
378 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
379
380 This example also shows how human readable aliases can be used.
381
382 =item device
383
384 This type is why I write I<most> are easy to explain earlier: This type
385 is the pinnacle of Microsoft-typical hacks layered on top of other
386 hacks. Understanding this type took more time than writing all the rest of
387 PBCDEDIT, and because it is so complex, this type has its own subsection
388 below.
389 =back
390
391 =head4 The BCD "device" element type
392
393 Device elements specify, well, devices. They are used for such diverse
394 purposes such as finding a TFTP network boot image, serial ports or VMBUS
395 devices, but most commonly they are used to specify the disk (harddisk,
396 cdrom, ramdisk, vhd...) to boot from.
397
398 The device element is kind of a mini-language in its own which is much
399 more versatile then the limited windows interface to it - BCDEDIT -
400 reveals.
401
402 While some information can be found on the BCD store and the windows
403 registry, there is pretty much no public information about the device
404 element, so almost everything known about it had to be researched first
405 in the process of writing this script, and consequently, support for BCD
406 device elements is partial only.
407
408 On the other hand, the expressive power of PBCDEDIT in specifying devices
409 is much bigger than BCDEDIT and therefore more can be done with it. The
410 downside is that BCD device elements are much more complicated than what
411 you might think from reading the BCDEDIT documentation.
412
413 In other words, simple things are complicated, and complicated things are
414 possible.
415
416 Anyway, the general syntax of device elements is an optional GUID,
417 followed by a device type, optionally followed by hexadecimal flags in
418 angle brackets, optionally followed by C<=> and a comma-separated list of
419 arguments, some of which can be (and often are) in turn devices again.
420
421 [{GUID}]type[<flags>][=arg,arg...]
422
423 Here are some examples:
424
425 boot
426 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
427 locate=<null>,element,systemroot
428 partition=<null>,harddisk,mbr,47cbc08a,1048576
429 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
430 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
431 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
432 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
433
434 I hope you are suitably impressed. I was, too, when I realized decoding
435 these binary blobs is not as easy as I had assumed.
436
437 The optional prefixed GUID seems to refer to a device BCD object, which
438 can be used to specify more device-specific BCD elements (for example
439 C<ramdisksdidevice> and C<ramdisksdpath>).
440
441 The flags after the type are omitted when they are C<0>. The only known
442 flag is C<1>, which seems to indicate that the parent device is invalid. I
443 don't claim to fully understand it, but it seems to indicate that the
444 boot manager has to search the device itself. Why the device is specified
445 in the first place escapes me, but a lot of this device stuff seems to be
446 badly hacked together...
447
448 The types understood and used by PBCDEDIT are as follows (keep in mind
449 that not of all the following is necessarily supported in PBCDEDIT):
450
451 =over
452
453 =item C<binary=>I<hex...>
454
455 This type isn't actually a real BCD element type, but a fallback for those
456 cases where PBCDEDIT can't perfectly decode a device element (except for
457 the leading GUID, which it can always decode). In such cases, it will
458 convert the device into this type with a hexdump of the element data.
459
460 =item C<null>
461
462 This is another special type - sometimes, a device all zero-filled, which
463 is not valid. This can mark the absence of a device or something PBCDEDIT
464 does not understand, so it decodes it into this special "all zero" type
465 called C<null>.
466
467 It's most commonly found in devices that can use an optional parent
468 device, when no parent device is used.
469
470 =item C<boot>
471
472 Another type without parameters, this refers to the device that was booted
473 from (nowadays typically the EFI system partition).
474
475 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
476
477 This specifies a VMBUS device with the given interface type and interface
478 instance, both of which are "naked" (no curly braces) GUIDs.
479
480 Made-up example (couldn't find a single example on the web):
481
482 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
483
484 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
485
486 This designates a specific partition on a block device. I<parent> is an
487 optional parent device on which to search on, and is often C<null>. Note
488 that the angle brackets around I<parent> are part of the syntax.
489
490 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
491 C<file> or C<vhd>, where the first three should be self-explaining,
492 C<file> is usually used to locate a file to be used as a disk image,
493 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
494 F<vhdx> files.
495
496 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
497 used for devices without partitions, such as cdroms, where the "partition"
498 is usually the whole device.
499
500 The I<diskid> identifies the disk or device using a unique signature, and
501 the same is true for the I<partitionid>. How these are interpreted depends
502 on the I<partitiontype>:
503
504 =over
505
506 =item C<mbr>
507
508 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
509 MBR, interpreted as a 32 bit unsigned little endian integer and written as
510 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
511
512 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
513 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
514 display the I<diskid>.
515
516 The I<partitionid> is the byte offset(!) of the partition counting from
517 the beginning of the MBR.
518
519 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
520 starting at sector C<2048> (= 1048576 / 512).
521
522 partition=<null>,harddisk,mbr,47cbc08a,1048576
523
524 =item C<gpt>
525
526 The I<diskid> is the disk GUID/disk identifier GUID from the partition
527 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
528 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
529
530 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
531 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
532
533 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
534
535 =item C<raw>
536
537 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
538 disk number and signifies the whole disk. BCDEDIT cannot display the
539 resulting device, and I am doubtful whether it has a useful effect.
540
541 =back
542
543 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
544
545 This is exactly the same as the C<partition> type, except for a tiny
546 detail: instead of using the partition start offset, this type uses the
547 partition number for MBR disks. Behaviour other partition types should be
548 the same.
549
550 The partition number starts at C<1> and skips unused partition, so if
551 there are two primary partitions and another partition inside the extended
552 partition, the primary partitions are number C<1> and C<2> and the
553 partition inside the extended partition is number C<3>, regardless of any
554 gaps.
555
556 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
557
558 This device description will make the bootloader search for a partition
559 with a given path.
560
561 The I<parent> device is the device to search on (angle brackets are
562 still part of the syntax!) If it is C<null>, then C<locate> will
563 search all disks it can find.
564
565 I<locatetype> is either C<element> or C<path>, and merely distinguishes
566 between two different ways to specify the path to search for: C<element>
567 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
568 uses a relative path as I<locatearg>.
569
570 Example: find any partition which has the F<magicfile.xxx> path in the
571 root.
572
573 locate=<null>,path,\magicfile.xxx
574
575 Example: find any partition which has the path specified in the
576 C<systemroot> element (typically F<\Windows>).
577
578 locate=<null>,element,systemroot
579
580 =item C<block=>I<devicetype>,I<args...>
581
582 Last not least, the most complex type, C<block>, which... specifies block
583 devices (which could be inside a F<vhdx> file for example).
584
585 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
586 C<file> or C<vhd> - the same as for C<partiion=>.
587
588 The remaining arguments change depending on the I<devicetype>:
589
590 =over
591
592 =item C<block=file>,<I<parent>>,I<path>
593
594 Interprets the I<parent> device (typically a partition) as a
595 filesystem and specifies a file path inside.
596
597 =item C<block=vhd>,<I<parent>>
598
599 Pretty much just changes the interpretation of I<parent>, which is
600 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
601
602 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
603
604 Interprets the I<parent> device as RAM disk, using the (decimal)
605 base address, byte size and byte offset inside a file specified by
606 I<path>. The numbers are usually all C<0> because they can be extracted
607 from the RAM disk image or other parameters.
608
609 This is most commonly used to boot C<wim> images.
610
611 =item C<block=floppy>,I<drivenum>
612
613 Refers to a removable drive identified by a number. BCDEDIT cannot display
614 the resulting device, and it is not clear what effect it will have.
615
616 =item C<block=cdrom>,I<drivenum>
617
618 Pretty much the same as C<floppy> but for CD-ROMs.
619
620 =item anything else
621
622 Probably not yet implemented. Tell me of your needs...
623
624 =back
625
626 =back5 Examples
627
628 This concludes the syntax overview for device elements, but probably
629 leaves many questions open. I can't help with most of them, as I also ave
630 many questions, but I can walk you through some actual examples using more
631 complex aspects.
632
633 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
634
635 Just like with C declarations, you best treat device descriptors as
636 instructions to find your device and work your way from the inside out:
637
638 locate=<null>,path,\disk.vhdx
639
640 First, the innermost device descriptor searches all partitions on the
641 system for a file called F<\disk.vhdx>:
642
643 block=file,<see above>,\disk.vhdx
644
645 Next, this takes the device locate has found and finds a file called
646 F<\disk.vhdx> on it. This is the same file locate was using, but that is
647 only because we find the device using the same path as finding the disk
648 image, so this is purely incidental, although quite common.
649
650 Next, this file will be opened as a virtual disk:
651
652 block=vhd,<see above>
653
654 And finally, inside this disk, another C<locate> will look for a partition
655 with a path as specified in the C<path> element, which most likely will be
656 F<\Windows\system32\winload.exe>:
657
658 locate=<see above>,element,path
659
660 As a result, this will boot the first Windows it finds on the first
661 F<disk.vhdx> disk image it can find anywhere.
662
663 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
664
665 Pretty much the same as the previous case, but with a bit of
666 variance. First, look for a specific partition on an MBR-partitioned disk:
667
668 partition=<null>,harddisk,mbr,47cbc08a,242643632128
669
670 Then open the file F<\win10.vhdx> on that partition:
671
672 block=file,<see above>,\win10.vhdx
673
674 Then, again, the file is opened as a virtual disk image:
675
676 block=vhd,<see above>
677
678 And again the windows loader (or whatever is in C<path>) will be searched:
679
680 locate=<see above>,element,path
681
682 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
683
684 This is quite different. First, it starts with a GUID. This GUID belongs
685 to a BCD object of type C<device>, which has additional parameters:
686
687 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
688 "type" : "device",
689 "description" : "sdi file for ramdisk",
690 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
691 "ramdisksdipath" : "\boot.sdi"
692 },
693
694 I will not go into many details, but this specifies a (presumably empty)
695 template ramdisk image (F<\boot.sdi>) that is used to initialize the
696 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
697 see, this F<.sdi> file resides on a different C<partition>.
698
699 Continuing, as always, from the inside out, first this device descriptor
700 finds a specific partition:
701
702 partition=<null>,harddisk,mbr,47cbc08a,242643632128
703
704 And then specifies a C<ramdisk> image on this partition:
705
706 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
707
708 I don't know what the purpose of the C<< <1> >> flag value is, but it
709 seems to be always there on this kind of entry.
710
711 If you have some good examples to add here, feel free to mail me.
712
713
714 =head1 EDITING BCD STORES
715
716 The C<edit> and C<parse> subcommands allow you to read a BCD data store
717 and modify it or extract data from it. This is done by executing a series
718 of "editing instructions" which are explained here.
719
720 =over
721
722 =item C<get> I<object> I<element>
723
724 Reads the BCD element I<element> from the BCD object I<object> and writes
725 it to standard output, followed by a newline. The I<object> can be a GUID
726 or a human-readable alias, or the special string C<{default}>, which will
727 refer to the default BCD object.
728
729 Example: find description of the default BCD object.
730
731 pbcdedit parse BCD get "{default}" description
732
733 =item C<set> I<object> I<element> I<value>
734
735 Similar to C<get>, but sets the element to the given I<value> instead.
736
737 Example: change the bootmgr default too
738 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
739
740 pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
741
742 =item C<eval> I<perlcode>
743
744 This takes the next argument, interprets it as Perl code and
745 evaluates it. This allows you to do more complicated modifications or
746 extractions.
747
748 The following variables are predefined for your use:
749
750 =over
751
752 =item C<$PATH>
753
754 The path to the BCD data store, as given to C<edit> or C<parse>.
755
756 =item C<$BCD>
757
758 The decoded BCD data store.
759
760 =item C<$DEFAULT>
761
762 The default BCD object name.
763
764 =back
765
766 The example given for C<get>, above, could be expressed like this with
767 C<eval>:
768
769 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
770
771 The example given for C<set> could be expressed like this:
772
773 pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
774
775 =item C<do> I<path>
776
777 Similar to C<eval>, above, but instead of using the argument as perl code,
778 it loads the perl code from the given file and executes it. This makes it
779 easier to write more complicated or larger programs.
780
781 =back
782
783
784 =head1 SEE ALSO
785
786 For ideas on what you can do with BCD stores in
787 general, and some introductory material, try
788 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
789
790 For good reference on which BCD objects and
791 elements exist, see Geoff Chappell's pages at
792 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
793
794 =head1 AUTHOR
795
796 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
797
798 =head1 REPORTING BUGS
799
800 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
801
802 =head1 BUGS AND SHORTCOMINGS
803
804 This should be a module. Of a series of modules, even.
805
806 Registry code should preserve classname and security descriptor data, and
807 whatever else is necessary to read and write any registry hive file.
808
809 I am also not happy with device descriptors being strings rather than a
810 data structure, but strings are probably better for command line usage. In
811 any case, device descriptors could be converted by simply "splitting" at
812 "=" and "," into an array reference, recursively.
813
814 =head1 HOMEPAGE
815
816 Original versions of this program can be found at
817 L<http://software.schmorp.de/pkg/pbcdedit>.
818
819 =head1 COPYRIGHT
820
821 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
822 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
823 free to change and redistribute it. There is NO WARRANTY, to the extent
824 permitted by law.
825
826 =cut
827
828 BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
829
830 use Data::Dump;
831 use Encode ();
832 use List::Util ();
833 use IO::Handle ();
834 use Time::HiRes ();
835
836 eval { unpack "Q", pack "Q", 1 }
837 or die "perl with 64 bit integer supported required.\n";
838
839 our $JSON = eval { require JSON::XS; JSON::XS:: }
840 // eval { require JSON::PP; JSON::PP:: }
841 // die "either JSON::XS or JSON::PP must be installed\n";
842
843 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
844
845 # hack used for debugging
846 sub xxd($$) {
847 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
848 syswrite $xxd, $_[1];
849 }
850
851 sub file_load($) {
852 my ($path) = @_;
853
854 open my $fh, "<:raw", $path
855 or die "$path: $!\n";
856 my $size = -s $fh;
857 $size = read $fh, my $buf, $size
858 or die "$path: short read\n";
859
860 $buf
861 }
862
863 # sources and resources used for this:
864 # registry:
865 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
866 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
867 # bcd:
868 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
869 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
870 # bcd devices:
871 # reactos' boot/environ/include/bl.h
872 # windows .mof files
873
874 #############################################################################
875 # registry stuff
876
877 # we use a hardcoded securitya descriptor - full access for everyone
878 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
879 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
880 my $sacl = "";
881 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
882 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
883 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
884 1, 0x8004,
885 20 + (length $sacl) + (length $dacl),
886 20 + (length $sacl) + (length $dacl) + (length $sid),
887 0, 20,
888 $sacl, $dacl, $sid, $sid;
889 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
890
891 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
892
893 sub KEY_HIVE_ENTRY() { 0x0004 }
894 sub KEY_NO_DELETE () { 0x0008 }
895 sub KEY_COMP_NAME () { 0x0020 }
896
897 sub VALUE_COMP_NAME() { 0x0001 }
898
899 my @regf_typename = qw(
900 none sz expand_sz binary dword dword_be link multi_sz
901 resource_list full_resource_descriptor resource_requirements_list
902 qword qword_be
903 );
904
905 my %regf_dec_type = (
906 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
907 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
908 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
909 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
910 dword => sub { unpack "L<", shift },
911 dword_be => sub { unpack "L>", shift },
912 qword => sub { unpack "Q<", shift },
913 qword_be => sub { unpack "Q>", shift },
914 );
915
916 my %regf_enc_type = (
917 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
918 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
919 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
920 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
921 dword => sub { pack "L<", shift },
922 dword_be => sub { pack "L>", shift },
923 qword => sub { pack "Q<", shift },
924 qword_be => sub { pack "Q>", shift },
925 );
926
927 # decode a registry hive
928 sub regf_decode($) {
929 my ($hive) = @_;
930
931 "regf" eq substr $hive, 0, 4
932 or die "not a registry hive\n";
933
934 my ($major, $minor) = unpack "\@20 L< L<", $hive;
935
936 $major == 1
937 or die "registry major version is not 1, but $major\n";
938
939 $minor >= 2 && $minor <= 6
940 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
941
942 my $bins = substr $hive, 4096;
943
944 my $decode_key = sub {
945 my ($ofs) = @_;
946
947 my @res;
948
949 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
950
951 $sze < 0
952 or die "key node points to unallocated cell\n";
953
954 $sig eq "nk"
955 or die "expected key node at $ofs, got '$sig'\n";
956
957 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
958
959 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
960
961 # classnames, security descriptors
962 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
963 #if ($cofs != NO_OFS && $clen) {
964 # #warn "cofs $cofs+$clen\n";
965 # xxd substr $bins, $cofs, 16;
966 #}
967
968 $kname = Encode::decode "UTF-16LE", $kname
969 unless $flags & KEY_COMP_NAME;
970
971 if ($vnum && $vofs != NO_OFS) {
972 for ($vofs += 4; $vnum--; $vofs += 4) {
973 my $kofs = unpack "\@$vofs L<", $bins;
974
975 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
976
977 $sig eq "vk"
978 or die "key values list contains invalid node (expected vk got '$sig')\n";
979
980 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
981
982 my $name = substr $bins, $kofs + 24, $nsze;
983
984 $name = Encode::decode "UTF-16LE", $name
985 unless $flags & VALUE_COMP_NAME;
986
987 my $data;
988 if ($dsze & 0x80000000) {
989 $data = substr $bins, $kofs + 12, $dsze & 0x7;
990 } elsif ($dsze > 16344 && $minor > 3) { # big data
991 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
992
993 for ($bofs += 4; $bnum--; $bofs += 4) {
994 my $dofs = unpack "\@$bofs L<", $bins;
995 my $dsze = unpack "\@$dofs l<", $bins;
996 $data .= substr $bins, $dofs + 4, -$dsze - 4;
997 }
998 $data = substr $data, 0, $dsze; # cells might be longer than data
999 } else {
1000 $data = substr $bins, $dofs + 4, $dsze;
1001 }
1002
1003 $type = $regf_typename[$type] if $type < @regf_typename;
1004
1005 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1006 ->($data);
1007
1008 $res[0]{$name} = [$type, $data];
1009 }
1010 }
1011
1012 if ($sofs != NO_OFS) {
1013 my $decode_key = __SUB__;
1014
1015 my $decode_subkeylist = sub {
1016 my ($sofs) = @_;
1017
1018 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1019
1020 if ($sig eq "ri") { # index root
1021 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1022 __SUB__->(unpack "\@$lofs L<", $bins);
1023 }
1024 } else {
1025 my $inc;
1026
1027 if ($sig eq "li") { # subkey list
1028 $inc = 4;
1029 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1030 $inc = 8;
1031 } else {
1032 die "expected subkey list at $sofs, found '$sig'\n";
1033 }
1034
1035 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1036 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1037 $res[1]{$name} = $data;
1038 }
1039 }
1040 };
1041
1042 $decode_subkeylist->($sofs);
1043 }
1044
1045 ($kname, \@res);
1046 };
1047
1048 my ($rootcell) = unpack "\@36 L<", $hive;
1049
1050 my ($rname, $root) = $decode_key->($rootcell);
1051
1052 [$rname, $root]
1053 }
1054
1055 # return a binary windows fILETIME struct
1056 sub filetime_now {
1057 my ($s, $ms) = Time::HiRes::gettimeofday;
1058
1059 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1060 }
1061
1062 # encode a registry hive
1063 sub regf_encode($) {
1064 my ($hive) = @_;
1065
1066 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1067
1068 # the filetime is apparently used to verify log file validity,
1069 # so by generating a new timestamp the log files *should* automatically
1070 # become invalidated and windows would "self-heal" them.
1071 # (update: has been verified by reverse engineering)
1072 # possibly the fact that the two sequence numbes match might also
1073 # make windows think that the hive is not dirty and ignore logs.
1074 # (update: has been verified by reverse engineering)
1075
1076 my $now = filetime_now;
1077
1078 # we only create a single hbin
1079 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1080
1081 # append cell to $bind, return offset
1082 my $cell = sub {
1083 my ($cell) = @_;
1084
1085 my $res = length $bins;
1086
1087 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1088
1089 $bins .= pack "l<", -(4 + length $cell);
1090 $bins .= $cell;
1091
1092 $res
1093 };
1094
1095 my $sdofs = $cell->($sk); # add a dummy security descriptor
1096 my $sdref = 0; # refcount
1097 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1098 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1099
1100 my $encode_key = sub {
1101 my ($kname, $kdata, $flags) = @_;
1102 my ($values, $subkeys) = @$kdata;
1103
1104 if ($kname =~ /[^\x00-\xff]/) {
1105 $kname = Encode::encode "UTF-16LE", $kname;
1106 } else {
1107 $flags |= KEY_COMP_NAME;
1108 }
1109
1110 # encode subkeys
1111
1112 my @snames =
1113 map $_->[1],
1114 sort { $a->[0] cmp $b->[0] }
1115 map [(uc $_), $_],
1116 keys %$subkeys;
1117
1118 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1119 my $maxsname = 4 * List::Util::max map length, @snames;
1120
1121 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1122
1123 # encode values
1124 my $maxvname = 4 * List::Util::max map length, keys %$values;
1125 my @vofs;
1126 my $maxdsze = 0;
1127
1128 while (my ($vname, $v) = each %$values) {
1129 my $flags = 0;
1130
1131 if ($vname =~ /[^\x00-\xff]/) {
1132 $vname = Encode::encode "UTF-16LE", $kname;
1133 } else {
1134 $flags |= VALUE_COMP_NAME;
1135 }
1136
1137 my ($type, $data) = @$v;
1138
1139 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1140
1141 my $dsze;
1142 my $dofs;
1143
1144 if (length $data <= 4) {
1145 $dsze = 0x80000000 | length $data;
1146 $dofs = unpack "L<", pack "a4", $data;
1147 } else {
1148 $dsze = length $data;
1149 $dofs = $cell->($data);
1150 }
1151
1152 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1153
1154 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1155 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1156
1157 $maxdsze = $dsze if $maxdsze < $dsze;
1158 }
1159
1160 # encode key
1161
1162 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1163 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1164
1165 my $kdata = pack "
1166 a2 S< a8 x4 x4
1167 L< L< L< L< L< L<
1168 L< L< L< L< L< L<
1169 x4 S< S< a*
1170 ",
1171 nk => $flags, $now,
1172 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1173 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1174 length $kname, 0, $kname;
1175 ++$sdref;
1176
1177 my $res = $cell->($kdata);
1178
1179 substr $bins, $_ + 16, 4, pack "L<", $res
1180 for @sofs;
1181
1182 $res
1183 };
1184
1185 my ($rname, $root) = @$hive;
1186
1187 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1188
1189 if (my $pad = -(length $bins) & 4095) {
1190 $pad -= 4;
1191 $bins .= pack "l< x$pad", $pad + 4;
1192 }
1193
1194 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1195 substr $bins, 8, 4, pack "L<", length $bins;
1196
1197 my $base = pack "
1198 a4 L< L< a8 L< L< L< L<
1199 L< L< L<
1200 a64
1201 x396
1202 ",
1203 regf => 1974, 1974, $now, 1, 3, 0, 1,
1204 $rofs, length $bins, 1,
1205 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1206
1207 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1208 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1209 $chksum = 1 if $chksum == 0;
1210
1211 $base .= pack "L<", $chksum;
1212
1213 $base = pack "a* \@4095 x1", $base;
1214
1215 $base . $bins
1216 }
1217
1218 # load and parse registry from file
1219 sub regf_load($) {
1220 my ($path) = @_;
1221
1222 regf_decode file_load $path
1223 }
1224
1225 # encode and save registry to file
1226 sub regf_save {
1227 my ($path, $hive) = @_;
1228
1229 $hive = regf_encode $hive;
1230
1231 open my $regf, ">:raw", "$path~"
1232 or die "$path~: $!\n";
1233 print $regf $hive
1234 or die "$path~: short write\n";
1235 $regf->sync;
1236 close $regf;
1237
1238 rename "$path~", $path;
1239 }
1240
1241 #############################################################################
1242 # bcd stuff
1243
1244 # human-readable alises for GUID object identifiers
1245 our %bcd_objects = (
1246 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1247 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1248 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1249 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1250 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1251 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1252 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1253 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1254 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1255 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1256 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1257 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1258 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1259 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1260 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1261 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1262 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1263 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1264 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1265 );
1266
1267 # default types
1268 our %bcd_object_types = (
1269 '{fwbootmgr}' => 0x10100001,
1270 '{bootmgr}' => 0x10100002,
1271 '{memdiag}' => 0x10200005,
1272 '{ntldr}' => 0x10300006,
1273 '{badmemory}' => 0x20100000,
1274 '{dbgsettings}' => 0x20100000,
1275 '{emssettings}' => 0x20100000,
1276 '{globalsettings}' => 0x20100000,
1277 '{bootloadersettings}' => 0x20200003,
1278 '{hypervisorsettings}' => 0x20200003,
1279 '{kerneldbgsettings}' => 0x20200003,
1280 '{resumeloadersettings}' => 0x20200004,
1281 '{ramdiskoptions}' => 0x30000000,
1282 );
1283
1284 # object types
1285 our %bcd_types = (
1286 0x10100001 => 'application::fwbootmgr',
1287 0x10100002 => 'application::bootmgr',
1288 0x10200003 => 'application::osloader',
1289 0x10200004 => 'application::resume',
1290 0x10100005 => 'application::memdiag',
1291 0x10100006 => 'application::ntldr',
1292 0x10100007 => 'application::setupldr',
1293 0x10400008 => 'application::bootsector',
1294 0x10400009 => 'application::startup',
1295 0x1020000a => 'application::bootapp',
1296 0x20100000 => 'settings',
1297 0x20200001 => 'inherit::fwbootmgr',
1298 0x20200002 => 'inherit::bootmgr',
1299 0x20200003 => 'inherit::osloader',
1300 0x20200004 => 'inherit::resume',
1301 0x20200005 => 'inherit::memdiag',
1302 0x20200006 => 'inherit::ntldr',
1303 0x20200007 => 'inherit::setupldr',
1304 0x20200008 => 'inherit::bootsector',
1305 0x20200009 => 'inherit::startup',
1306 0x20300000 => 'inherit::device',
1307 0x30000000 => 'device',
1308 );
1309
1310 our %rbcd_objects = reverse %bcd_objects;
1311
1312 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1313
1314 sub dec_guid($) {
1315 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1316 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1317 }
1318
1319 sub enc_guid($) {
1320 $_[0] =~ /^$RE_GUID\z/o
1321 or return;
1322
1323 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1324 }
1325
1326 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1327 sub dec_wguid($) {
1328 my $guid = "{" . (dec_guid shift) . "}";
1329
1330 $bcd_objects{$guid} // $guid
1331 }
1332
1333 sub enc_wguid($) {
1334 my ($guid) = @_;
1335
1336 if (my $alias = $rbcd_objects{$guid}) {
1337 $guid = $alias;
1338 }
1339
1340 $guid =~ /^\{($RE_GUID)\}\z/o
1341 or return;
1342
1343 enc_guid $1
1344 }
1345
1346 sub BCDE_CLASS () { 0xf0000000 }
1347 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1348 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1349 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1350 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1351
1352 sub BCDE_FORMAT () { 0x0f000000 }
1353 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1354 sub BCDE_FORMAT_STRING () { 0x02000000 }
1355 sub BCDE_FORMAT_GUID () { 0x03000000 }
1356 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1357 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1358 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1359 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1360
1361 sub dec_device;
1362 sub enc_device;
1363
1364 sub enc_integer($) {
1365 no warnings 'portable'; # ugh
1366 my $value = shift;
1367 $value = oct $value if $value =~ /^0[bBxX]/;
1368 unpack "H*", pack "Q<", $value
1369 }
1370
1371 our %bcde_dec = (
1372 BCDE_FORMAT_DEVICE , \&dec_device,
1373 # # for round-trip verification
1374 # BCDE_FORMAT_DEVICE , sub {
1375 # my $dev = dec_device $_[0];
1376 # $_[0] eq enc_device $dev
1377 # or die "bcd device decoding does not round trip for $_[0]\n";
1378 # $dev
1379 # },
1380 BCDE_FORMAT_STRING , sub { shift },
1381 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1382 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1383 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1384 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1385 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1386 );
1387
1388 our %bcde_enc = (
1389 BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1390 BCDE_FORMAT_STRING , sub { sz => shift },
1391 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1392 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1393 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1394 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1395 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1396 );
1397
1398 # BCD Elements
1399 our %bcde = (
1400 0x11000001 => 'device',
1401 0x12000002 => 'path',
1402 0x12000004 => 'description',
1403 0x12000005 => 'locale',
1404 0x14000006 => 'inherit',
1405 0x15000007 => 'truncatememory',
1406 0x14000008 => 'recoverysequence',
1407 0x16000009 => 'recoveryenabled',
1408 0x1700000a => 'badmemorylist',
1409 0x1600000b => 'badmemoryaccess',
1410 0x1500000c => 'firstmegabytepolicy',
1411 0x1500000d => 'relocatephysical',
1412 0x1500000e => 'avoidlowmemory',
1413 0x1600000f => 'traditionalkseg',
1414 0x16000010 => 'bootdebug',
1415 0x15000011 => 'debugtype',
1416 0x15000012 => 'debugaddress',
1417 0x15000013 => 'debugport',
1418 0x15000014 => 'baudrate',
1419 0x15000015 => 'channel',
1420 0x12000016 => 'targetname',
1421 0x16000017 => 'noumex',
1422 0x15000018 => 'debugstart',
1423 0x12000019 => 'busparams',
1424 0x1500001a => 'hostip',
1425 0x1500001b => 'port',
1426 0x1600001c => 'dhcp',
1427 0x1200001d => 'key',
1428 0x1600001e => 'vm',
1429 0x16000020 => 'bootems',
1430 0x15000022 => 'emsport',
1431 0x15000023 => 'emsbaudrate',
1432 0x12000030 => 'loadoptions',
1433 0x16000040 => 'advancedoptions',
1434 0x16000041 => 'optionsedit',
1435 0x15000042 => 'keyringaddress',
1436 0x11000043 => 'bootstatdevice',
1437 0x12000044 => 'bootstatfilepath',
1438 0x16000045 => 'preservebootstat',
1439 0x16000046 => 'graphicsmodedisabled',
1440 0x15000047 => 'configaccesspolicy',
1441 0x16000048 => 'nointegritychecks',
1442 0x16000049 => 'testsigning',
1443 0x1200004a => 'fontpath',
1444 0x1500004b => 'integrityservices',
1445 0x1500004c => 'volumebandid',
1446 0x16000050 => 'extendedinput',
1447 0x15000051 => 'initialconsoleinput',
1448 0x15000052 => 'graphicsresolution',
1449 0x16000053 => 'restartonfailure',
1450 0x16000054 => 'highestmode',
1451 0x16000060 => 'isolatedcontext',
1452 0x15000065 => 'displaymessage',
1453 0x15000066 => 'displaymessageoverride',
1454 0x16000068 => 'nobootuxtext',
1455 0x16000069 => 'nobootuxprogress',
1456 0x1600006a => 'nobootuxfade',
1457 0x1600006b => 'bootuxreservepooldebug',
1458 0x1600006c => 'bootuxdisabled',
1459 0x1500006d => 'bootuxfadeframes',
1460 0x1600006e => 'bootuxdumpstats',
1461 0x1600006f => 'bootuxshowstats',
1462 0x16000071 => 'multibootsystem',
1463 0x16000072 => 'nokeyboard',
1464 0x15000073 => 'aliaswindowskey',
1465 0x16000074 => 'bootshutdowndisabled',
1466 0x15000075 => 'performancefrequency',
1467 0x15000076 => 'securebootrawpolicy',
1468 0x17000077 => 'allowedinmemorysettings',
1469 0x15000079 => 'bootuxtransitiontime',
1470 0x1600007a => 'mobilegraphics',
1471 0x1600007b => 'forcefipscrypto',
1472 0x1500007d => 'booterrorux',
1473 0x1600007e => 'flightsigning',
1474 0x1500007f => 'measuredbootlogformat',
1475 0x15000080 => 'displayrotation',
1476 0x15000081 => 'logcontrol',
1477 0x16000082 => 'nofirmwaresync',
1478 0x11000084 => 'windowssyspart',
1479 0x16000087 => 'numlock',
1480 0x22000001 => 'bpbstring',
1481 0x24000001 => 'displayorder',
1482 0x21000001 => 'filedevice',
1483 0x21000001 => 'osdevice',
1484 0x25000001 => 'passcount',
1485 0x26000001 => 'pxesoftreboot',
1486 0x22000002 => 'applicationname',
1487 0x24000002 => 'bootsequence',
1488 0x22000002 => 'filepath',
1489 0x22000002 => 'systemroot',
1490 0x25000002 => 'testmix',
1491 0x26000003 => 'cacheenable',
1492 0x26000003 => 'customsettings',
1493 0x23000003 => 'default',
1494 0x25000003 => 'failurecount',
1495 0x23000003 => 'resumeobject',
1496 0x26000004 => 'failuresenabled',
1497 0x26000004 => 'pae',
1498 0x26000004 => 'stampdisks',
1499 0x25000004 => 'testtofail',
1500 0x25000004 => 'timeout',
1501 0x21000005 => 'associatedosdevice',
1502 0x26000005 => 'cacheenable',
1503 0x26000005 => 'resume',
1504 0x25000005 => 'stridefailcount',
1505 0x26000006 => 'debugoptionenabled',
1506 0x25000006 => 'invcfailcount',
1507 0x23000006 => 'resumeobject',
1508 0x25000007 => 'bootux',
1509 0x25000007 => 'matsfailcount',
1510 0x24000007 => 'startupsequence',
1511 0x25000008 => 'bootmenupolicy',
1512 0x25000008 => 'randfailcount',
1513 0x25000009 => 'chckrfailcount',
1514 0x26000010 => 'detecthal',
1515 0x24000010 => 'toolsdisplayorder',
1516 0x22000011 => 'kernel',
1517 0x22000012 => 'hal',
1518 0x22000013 => 'dbgtransport',
1519 0x26000020 => 'displaybootmenu',
1520 0x25000020 => 'nx',
1521 0x26000021 => 'noerrordisplay',
1522 0x25000021 => 'pae',
1523 0x21000022 => 'bcddevice',
1524 0x26000022 => 'winpe',
1525 0x22000023 => 'bcdfilepath',
1526 0x26000024 => 'hormenabled',
1527 0x26000024 => 'hormenabled',
1528 0x26000024 => 'nocrashautoreboot',
1529 0x26000025 => 'hiberboot',
1530 0x26000025 => 'lastknowngood',
1531 0x26000026 => 'oslnointegritychecks',
1532 0x22000026 => 'passwordoverride',
1533 0x26000027 => 'osltestsigning',
1534 0x22000027 => 'pinpassphraseoverride',
1535 0x26000028 => 'processcustomactionsfirst',
1536 0x27000030 => 'customactions',
1537 0x26000030 => 'nolowmem',
1538 0x26000031 => 'persistbootsequence',
1539 0x25000031 => 'removememory',
1540 0x25000032 => 'increaseuserva',
1541 0x26000032 => 'skipstartupsequence',
1542 0x25000033 => 'perfmem',
1543 0x22000040 => 'fverecoveryurl',
1544 0x26000040 => 'vga',
1545 0x22000041 => 'fverecoverymessage',
1546 0x26000041 => 'quietboot',
1547 0x26000042 => 'novesa',
1548 0x26000043 => 'novga',
1549 0x25000050 => 'clustermodeaddressing',
1550 0x26000051 => 'usephysicaldestination',
1551 0x25000052 => 'restrictapiccluster',
1552 0x22000053 => 'evstore',
1553 0x26000054 => 'uselegacyapicmode',
1554 0x26000060 => 'onecpu',
1555 0x25000061 => 'numproc',
1556 0x26000062 => 'maxproc',
1557 0x25000063 => 'configflags',
1558 0x26000064 => 'maxgroup',
1559 0x26000065 => 'groupaware',
1560 0x25000066 => 'groupsize',
1561 0x26000070 => 'usefirmwarepcisettings',
1562 0x25000071 => 'msi',
1563 0x25000072 => 'pciexpress',
1564 0x25000080 => 'safeboot',
1565 0x26000081 => 'safebootalternateshell',
1566 0x26000090 => 'bootlog',
1567 0x26000091 => 'sos',
1568 0x260000a0 => 'debug',
1569 0x260000a1 => 'halbreakpoint',
1570 0x260000a2 => 'useplatformclock',
1571 0x260000a3 => 'forcelegacyplatform',
1572 0x260000a4 => 'useplatformtick',
1573 0x260000a5 => 'disabledynamictick',
1574 0x250000a6 => 'tscsyncpolicy',
1575 0x260000b0 => 'ems',
1576 0x250000c0 => 'forcefailure',
1577 0x250000c1 => 'driverloadfailurepolicy',
1578 0x250000c2 => 'bootmenupolicy',
1579 0x260000c3 => 'onetimeadvancedoptions',
1580 0x260000c4 => 'onetimeoptionsedit',
1581 0x250000e0 => 'bootstatuspolicy',
1582 0x260000e1 => 'disableelamdrivers',
1583 0x250000f0 => 'hypervisorlaunchtype',
1584 0x220000f1 => 'hypervisorpath',
1585 0x260000f2 => 'hypervisordebug',
1586 0x250000f3 => 'hypervisordebugtype',
1587 0x250000f4 => 'hypervisordebugport',
1588 0x250000f5 => 'hypervisorbaudrate',
1589 0x250000f6 => 'hypervisorchannel',
1590 0x250000f7 => 'bootux',
1591 0x260000f8 => 'hypervisordisableslat',
1592 0x220000f9 => 'hypervisorbusparams',
1593 0x250000fa => 'hypervisornumproc',
1594 0x250000fb => 'hypervisorrootprocpernode',
1595 0x260000fc => 'hypervisoruselargevtlb',
1596 0x250000fd => 'hypervisorhostip',
1597 0x250000fe => 'hypervisorhostport',
1598 0x250000ff => 'hypervisordebugpages',
1599 0x25000100 => 'tpmbootentropy',
1600 0x22000110 => 'hypervisorusekey',
1601 0x22000112 => 'hypervisorproductskutype',
1602 0x25000113 => 'hypervisorrootproc',
1603 0x26000114 => 'hypervisordhcp',
1604 0x25000115 => 'hypervisoriommupolicy',
1605 0x26000116 => 'hypervisorusevapic',
1606 0x22000117 => 'hypervisorloadoptions',
1607 0x25000118 => 'hypervisormsrfilterpolicy',
1608 0x25000119 => 'hypervisormmionxpolicy',
1609 0x2500011a => 'hypervisorschedulertype',
1610 0x25000120 => 'xsavepolicy',
1611 0x25000121 => 'xsaveaddfeature0',
1612 0x25000122 => 'xsaveaddfeature1',
1613 0x25000123 => 'xsaveaddfeature2',
1614 0x25000124 => 'xsaveaddfeature3',
1615 0x25000125 => 'xsaveaddfeature4',
1616 0x25000126 => 'xsaveaddfeature5',
1617 0x25000127 => 'xsaveaddfeature6',
1618 0x25000128 => 'xsaveaddfeature7',
1619 0x25000129 => 'xsaveremovefeature',
1620 0x2500012a => 'xsaveprocessorsmask',
1621 0x2500012b => 'xsavedisable',
1622 0x2500012c => 'kerneldebugtype',
1623 0x2200012d => 'kernelbusparams',
1624 0x2500012e => 'kerneldebugaddress',
1625 0x2500012f => 'kerneldebugport',
1626 0x25000130 => 'claimedtpmcounter',
1627 0x25000131 => 'kernelchannel',
1628 0x22000132 => 'kerneltargetname',
1629 0x25000133 => 'kernelhostip',
1630 0x25000134 => 'kernelport',
1631 0x26000135 => 'kerneldhcp',
1632 0x22000136 => 'kernelkey',
1633 0x22000137 => 'imchivename',
1634 0x21000138 => 'imcdevice',
1635 0x25000139 => 'kernelbaudrate',
1636 0x22000140 => 'mfgmode',
1637 0x26000141 => 'event',
1638 0x25000142 => 'vsmlaunchtype',
1639 0x25000144 => 'hypervisorenforcedcodeintegrity',
1640 0x26000145 => 'enablebootdebugpolicy',
1641 0x26000146 => 'enablebootorderclean',
1642 0x26000147 => 'enabledeviceid',
1643 0x26000148 => 'enableffuloader',
1644 0x26000149 => 'enableiuloader',
1645 0x2600014a => 'enablemassstorage',
1646 0x2600014b => 'enablerpmbprovisioning',
1647 0x2600014c => 'enablesecurebootpolicy',
1648 0x2600014d => 'enablestartcharge',
1649 0x2600014e => 'enableresettpm',
1650 0x21000150 => 'systemdatadevice',
1651 0x21000151 => 'osarcdevice',
1652 0x21000153 => 'osdatadevice',
1653 0x21000154 => 'bspdevice',
1654 0x21000155 => 'bspfilepath',
1655 0x26000202 => 'skipffumode',
1656 0x26000203 => 'forceffumode',
1657 0x25000510 => 'chargethreshold',
1658 0x26000512 => 'offmodecharging',
1659 0x25000aaa => 'bootflow',
1660 0x35000001 => 'ramdiskimageoffset',
1661 0x35000002 => 'ramdisktftpclientport',
1662 0x31000003 => 'ramdisksdidevice',
1663 0x32000004 => 'ramdisksdipath',
1664 0x35000005 => 'ramdiskimagelength',
1665 0x36000006 => 'exportascd',
1666 0x35000007 => 'ramdisktftpblocksize',
1667 0x35000008 => 'ramdisktftpwindowsize',
1668 0x36000009 => 'ramdiskmcenabled',
1669 0x3600000a => 'ramdiskmctftpfallback',
1670 0x3600000b => 'ramdisktftpvarwindow',
1671 0x45000001 => 'devicetype',
1672 0x42000002 => 'applicationrelativepath',
1673 0x42000003 => 'ramdiskdevicerelativepath',
1674 0x46000004 => 'omitosloaderelements',
1675 0x47000006 => 'elementstomigrate',
1676 0x46000010 => 'recoveryos',
1677 );
1678
1679 our %rbcde = reverse %bcde;
1680
1681 sub dec_bcde_id($) {
1682 $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1683 }
1684
1685 sub enc_bcde_id($) {
1686 $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1687 ? hex $1
1688 : $rbcde{$_[0]}
1689 }
1690
1691 # decode/encode bcd device element - the horror, no documentaion
1692 # whatsoever, supercomplex, superinconsistent.
1693
1694 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1695 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1696 our @part_type = qw(gpt mbr raw);
1697
1698 our $NULL_DEVICE = "\x00" x 16;
1699
1700 # biggest bitch to decode, ever
1701 # this decoded a device portion after the GUID
1702 sub dec_device_($);
1703 sub dec_device_($) {
1704 my ($device) = @_;
1705
1706 my $res;
1707
1708 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1709
1710 $pad == 0
1711 or die "non-zero reserved field in device descriptor\n";
1712
1713 if ($length == 0 && $type == 0 && $flags == 0) {
1714 return ("null", $device);
1715 }
1716
1717 $length >= 16
1718 or die "device element size too small ($length)\n";
1719
1720 $type = $dev_type[$type] // die "$type: unknown device type\n";
1721 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1722
1723 $res .= $type;
1724 $res .= sprintf "<%x>", $flags if $flags;
1725
1726 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1727
1728 $length == 4 * 4 + length $device
1729 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1730
1731 my $dec_path = sub {
1732 my ($path, $error) = @_;
1733
1734 $path =~ /^((?:..)*)\x00\x00\z/s
1735 or die "$error\n";
1736
1737 $path = Encode::decode "UTF-16LE", $1;
1738
1739 $path
1740 };
1741
1742 if ($type eq "partition" or $type eq "legacypartition") {
1743 my $partdata = substr $device, 0, 16, "";
1744 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1745
1746 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1747 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1748
1749 my $diskid = substr $device, 0, 16, "";
1750
1751 $diskid = $parttype eq "gpt"
1752 ? dec_guid substr $diskid, 0, 16
1753 : sprintf "%08x", unpack "V", $diskid;
1754
1755 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1756 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1757 : unpack "L<", $partdata; # partition number, one-based
1758
1759 (my $parent, $device) = dec_device_ $device;
1760
1761 $res .= "=";
1762 $res .= "<$parent>";
1763 $res .= ",$blocktype,$parttype,$diskid,$partid";
1764
1765 # PartitionType (gpt, mbr, raw)
1766 # guid | partsig | disknumber
1767
1768 } elsif ($type eq "boot") {
1769 $device =~ s/^\x00{56}\z//
1770 or die "boot device type with extra data not supported\n";
1771
1772 } elsif ($type eq "block") {
1773 my $blocktype = unpack "V", substr $device, 0, 4, "";
1774
1775 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1776
1777 # decode a "file path" structure
1778 my $dec_file = sub {
1779 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1780
1781 my $path = substr $device, 0, $flen - 12, "";
1782
1783 $fver == 1
1784 or die "unsupported file descriptor version '$fver'\n";
1785
1786 $ftype == 5
1787 or die "unsupported file descriptor path type '$type'\n";
1788
1789 (my $parent, $path) = dec_device_ $path;
1790
1791 $path = $dec_path->($path, "file device without path");
1792
1793 ($parent, $path)
1794 };
1795
1796 if ($blocktype eq "file") {
1797 my ($parent, $path) = $dec_file->();
1798
1799 $res .= "=file,<$parent>,$path";
1800
1801 } elsif ($blocktype eq "vhd") {
1802 $device =~ s/^\x00{20}//s
1803 or die "virtualdisk has non-zero fields I don't understand\n";
1804
1805 (my $parent, $device) = dec_device_ $device;
1806
1807 $res .= "=vhd,<$parent>";
1808
1809 } elsif ($blocktype eq "ramdisk") {
1810 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1811 my ($subdev, $path) = $dec_file->();
1812
1813 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1814
1815 } else {
1816 die "unsupported block type '$blocktype'\n";
1817 }
1818
1819 } elsif ($type eq "locate") {
1820 # mode, bcde_id, unknown, string
1821 # we assume locate has _either_ an element id _or_ a path, but not both
1822
1823 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1824
1825 if ($parent) {
1826 # not sure why this is an offset - it must come after the path
1827 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1828 ($parent, my $tail) = dec_device_ $parent;
1829 0 == length $tail
1830 or die "trailing data after locate device parent\n";
1831 } else {
1832 $parent = "null";
1833 }
1834
1835 my $path = $device; $device = "";
1836 $path = $dec_path->($path, "device locate mode without path");
1837
1838 $res .= "=<$parent>,";
1839
1840 if ($mode == 0) { # "Element"
1841 !length $path
1842 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1843
1844 $elem = dec_bcde_id $elem;
1845 $res .= "element,$elem";
1846
1847 } elsif ($mode == 1) { # "String"
1848 !$elem
1849 or die "device locate mode 1 having non-zero element\n";
1850
1851 $res .= "path,$path";
1852 } else {
1853 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1854 die "device locate mode '$mode' not supported\n";
1855 }
1856
1857 } elsif ($type eq "vmbus") {
1858 my $type = dec_guid substr $device, 0, 16, "";
1859 my $instance = dec_guid substr $device, 0, 16, "";
1860
1861 $device =~ s/^\x00{24}\z//
1862 or die "vmbus has non-zero fields I don't understand\n";
1863
1864 $res .= "=$type,$instance";
1865
1866 } else {
1867 die "unsupported device type '$type'\n";
1868 }
1869
1870 warn "unexpected trailing device data($res), " . unpack "H*",$device
1871 if length $device;
1872 #length $device
1873 # and die "unexpected trailing device data\n";
1874
1875 ($res, $tail)
1876 }
1877
1878 # decode a full binary BCD device descriptor
1879 sub dec_device($) {
1880 my ($device) = @_;
1881
1882 $device = pack "H*", $device;
1883
1884 my $guid = dec_guid substr $device, 0, 16, "";
1885 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1886 ? "" : "{$guid}";
1887
1888 eval {
1889 my ($dev, $tail) = dec_device_ $device;
1890
1891 $tail eq ""
1892 or die "unsupported trailing data after device descriptor\n";
1893
1894 "$guid$dev"
1895 # } // scalar ((warn $@), "$guid$fallback")
1896 } // ($guid . "binary=" . unpack "H*", $device)
1897 }
1898
1899 sub indexof($@) {
1900 my $value = shift;
1901
1902 for (0 .. $#_) {
1903 $value eq $_[$_]
1904 and return $_;
1905 }
1906
1907 undef
1908 }
1909
1910 # encode the device portion after the GUID
1911 sub enc_device_;
1912 sub enc_device_ {
1913 my ($device) = @_;
1914
1915 my $enc_path = sub {
1916 my $path = shift;
1917 $path =~ s/\//\\/g;
1918 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1919 };
1920
1921 my $enc_file = sub {
1922 my ($parent, $path) = @_; # parent and path must already be encoded
1923
1924 $path = $parent . $path;
1925
1926 # fver 1, ftype 5
1927 pack "VVVa*", 1, 12 + length $path, 5, $path
1928 };
1929
1930 my $parse_path = sub {
1931 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1932 or die "$_: invalid path\n";
1933
1934 $enc_path->($1)
1935 };
1936
1937 my $parse_parent = sub {
1938 my $parent;
1939
1940 if (s/^<//) {
1941 ($parent, $_) = enc_device_ $_;
1942 s/^>//
1943 or die "$device: syntax error: parent device not followed by '>'\n";
1944 } else {
1945 $parent = $NULL_DEVICE;
1946 }
1947
1948 $parent
1949 };
1950
1951 for ($device) {
1952 s/^([a-z]+)//
1953 or die "$_: device does not start with type string\n";
1954
1955 my $type = $1;
1956 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1957 my $payload;
1958
1959 if ($type eq "binary") {
1960 s/^=([0-9a-fA-F]+)//
1961 or die "binary type must have a hex string argument\n";
1962
1963 $payload = pack "H*", $1;
1964
1965 } elsif ($type eq "null") {
1966 return ($NULL_DEVICE, $_);
1967
1968 } elsif ($type eq "boot") {
1969 $payload = "\x00" x 56;
1970
1971 } elsif ($type eq "partition" or $type eq "legacypartition") {
1972 s/^=//
1973 or die "$_: missing '=' after $type\n";
1974
1975 my $parent = $parse_parent->();
1976
1977 s/^,//
1978 or die "$_: comma missing after partition parent device\n";
1979
1980 s/^([a-z]+),//
1981 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1982 my $blocktype = $1;
1983
1984 s/^([a-z]+),//
1985 or die "$_: partition block type not followed by partiton type\n";
1986 my $parttype = $1;
1987
1988 my ($partdata, $diskdata);
1989
1990 if ($parttype eq "mbr") {
1991 s/^([0-9a-f]{8}),//i
1992 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1993 $diskdata = pack "Vx12", hex $1;
1994
1995 s/^([0-9]+)//
1996 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1997
1998 # the following works for both 64 bit offset and 32 bit partno
1999 $partdata = pack "Q< x8", $1;
2000
2001 } elsif ($parttype eq "gpt") {
2002 s/^($RE_GUID),//
2003 or die "$_: partition disk guid missing or malformed\n";
2004 $diskdata = enc_guid $1;
2005
2006 s/^($RE_GUID)//
2007 or die "$_: partition guid missing or malformed\n";
2008 $partdata = enc_guid $1;
2009
2010 } elsif ($parttype eq "raw") {
2011 s/^([0-9]+)//
2012 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2013
2014 $partdata = pack "L< x12", $1;
2015
2016 } else {
2017 die "$parttype: partition type not supported\n";
2018 }
2019
2020 $payload = pack "a16 L< L< a16 a*",
2021 $partdata,
2022 (indexof $blocktype, @block_type),
2023 (indexof $parttype, @part_type),
2024 $diskdata,
2025 $parent;
2026
2027 } elsif ($type eq "locate") {
2028 s/^=//
2029 or die "$_: missing '=' after $type\n";
2030
2031 my ($mode, $elem, $path);
2032
2033 my $parent = $parse_parent->();
2034
2035 s/^,//
2036 or die "$_: missing comma after locate parent device\n";
2037
2038 if (s/^element,//) {
2039 s/^([0-9a-z]+)//i
2040 or die "$_ locate element must be either name or 8-digit hex id\n";
2041 $elem = enc_bcde_id $1;
2042 $mode = 0;
2043 $path = $enc_path->("");
2044
2045 } elsif (s/^path,//) {
2046 $mode = 1;
2047 $path = $parse_path->();
2048
2049 } else {
2050 die "$_ second locate argument must be subtype (either element or path)\n";
2051 }
2052
2053 if ($parent ne $NULL_DEVICE) {
2054 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2055 } else {
2056 $parent = 0;
2057 }
2058
2059 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2060
2061 } elsif ($type eq "block") {
2062 s/^=//
2063 or die "$_: missing '=' after $type\n";
2064
2065 s/^([a-z]+),//
2066 or die "$_: block device does not start with block type (e.g. disk)\n";
2067 my $blocktype = $1;
2068
2069 my $blockdata;
2070
2071 if ($blocktype eq "file") {
2072 my $parent = $parse_parent->();
2073 s/^,// or die "$_: comma missing after file block device parent\n";
2074 my $path = $parse_path->();
2075
2076 $blockdata = $enc_file->($parent, $path);
2077
2078 } elsif ($blocktype eq "vhd") {
2079 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2080 $blockdata .= $parse_parent->();
2081
2082 } elsif ($blocktype eq "ramdisk") {
2083 my $parent = $parse_parent->();
2084
2085 s/^,(\d+),(\d+),(\d+),//a
2086 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2087
2088 my ($base, $size, $offset) = ($1, $2, $3);
2089
2090 my $path = $parse_path->();
2091
2092 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2093
2094 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2095 # this is guesswork
2096 s/^(\d+)//a
2097 or die "$_: missing device number for cdrom\n";
2098 $blockdata = pack "V", $1;
2099
2100 } else {
2101 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2102 }
2103
2104 $payload = pack "Va*",
2105 (indexof $blocktype, @block_type),
2106 $blockdata;
2107
2108 } elsif ($type eq "vmbus") {
2109 s/^=($RE_GUID)//
2110 or die "$_: malformed or missing vmbus interface type guid\n";
2111 my $type = enc_guid $1;
2112 s/^,($RE_GUID)//
2113 or die "$_: malformed or missing vmbus interface instance guid\n";
2114 my $instance = enc_guid $1;
2115
2116 $payload = pack "a16a16x24", $type, $instance;
2117
2118 } else {
2119 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2120 }
2121
2122 return (
2123 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2124 $_
2125 );
2126 }
2127 }
2128
2129 # encode a full binary BCD device descriptor
2130 sub enc_device {
2131 my ($device) = @_;
2132
2133 my $guid = "\x00" x 16;
2134
2135 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2136 $guid = enc_guid $1
2137 or die "$device: does not start with valid guid\n";
2138 }
2139
2140 my ($descriptor, $tail) = enc_device_ $device;
2141
2142 length $tail
2143 and die "$device: garbage after device descriptor\n";
2144
2145 unpack "H*", $guid . $descriptor
2146 }
2147
2148 # decode a registry hive into the BCD structure used by pbcdedit
2149 sub bcd_decode {
2150 my ($hive) = @_;
2151
2152 my %bcd;
2153
2154 my $objects = $hive->[1][1]{Objects}[1];
2155
2156 while (my ($k, $v) = each %$objects) {
2157 my %kv;
2158 $v = $v->[1];
2159
2160 $k = $bcd_objects{$k} // $k;
2161
2162 my $type = $v->{Description}[0]{Type}[1];
2163
2164 if ($type != $bcd_object_types{$k}) {
2165 $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2166 $kv{type} = $type;
2167 }
2168
2169 my $elems = $v->{Elements}[1];
2170
2171 while (my ($k, $v) = each %$elems) {
2172 my $k = hex $k;
2173
2174 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2175 my $k = dec_bcde_id $k;
2176
2177 $kv{$k} = $v;
2178 }
2179
2180 $bcd{$k} = \%kv;
2181 }
2182
2183 $bcd{meta} = { version => $JSON_VERSION };
2184
2185 \%bcd
2186 }
2187
2188 # encode a pbcdedit structure into a registry hive
2189 sub bcd_encode {
2190 my ($bcd) = @_;
2191
2192 if (my $meta = $bcd->{meta}) {
2193 $meta->{version} eq $JSON_VERSION
2194 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2195 }
2196
2197 my %objects;
2198 my %rbcd_types = reverse %bcd_types;
2199
2200 while (my ($k, $v) = each %$bcd) {
2201 my %kv;
2202
2203 next if $k eq "meta";
2204
2205 $k = lc $k; # I know you windows types!
2206
2207 my $type = $v->{type};
2208
2209 if ($type) {
2210 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2211 ? hex $type
2212 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2213 }
2214
2215 my $guid = enc_wguid $k
2216 or die "$k: invalid bcd object identifier\n";
2217
2218 # default type if not given
2219 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2220
2221 my %elem;
2222
2223 while (my ($k, $v) = each %$v) {
2224 next if $k eq "type";
2225
2226 $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2227 $elem{sprintf "%08x", $k} = [{
2228 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2229 }];
2230 }
2231
2232 $guid = dec_guid $guid;
2233
2234 $objects{"{$guid}"} = [undef, {
2235 Description => [{ Type => [dword => $type] }],
2236 Elements => [undef, \%elem],
2237 }];
2238 }
2239
2240 [NewStoreRoot => [undef, {
2241 Description => [{
2242 KeyName => [sz => "BCD00000001"],
2243 System => [dword => 1],
2244 pbcdedit => [sz => $VERSION],
2245 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2246 }],
2247 Objects => [undef, \%objects],
2248 }]]
2249 }
2250
2251 #############################################################################
2252
2253 sub bcd_edit_eval {
2254 package pbcdedit;
2255
2256 our ($PATH, $BCD, $DEFAULT);
2257
2258 eval shift;
2259 die "$@" if $@;
2260 }
2261
2262 sub bcd_edit {
2263 my ($path, $bcd, @insns) = @_;
2264
2265 my $default = $bcd->{"{bootmgr}"}{resumeobject};
2266
2267 # prepare "officially visible" variables
2268 local $pbcdedit::PATH = $path;
2269 local $pbcdedit::BCD = $bcd;
2270 local $pbcdedit::DEFAULT = $default;
2271
2272 while (@insns) {
2273 my $insn = shift @insns;
2274
2275 if ($insn eq "get") {
2276 my $object = shift @insns;
2277 my $elem = shift @insns;
2278
2279 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2280
2281 print $bcd->{$object}{$elem}, "\n";
2282
2283 } elsif ($insn eq "set") {
2284 my $object = shift @insns;
2285 my $elem = shift @insns;
2286 my $value = shift @insns;
2287
2288 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2289
2290 $bcd->{$object}{$elem} = $value;
2291
2292 } elsif ($insn eq "eval") {
2293 bcd_edit_eval shift @insns;
2294
2295 } elsif ($insn eq "do") {
2296 my $path = shift @insns;
2297 my $file = file_load $path;
2298 bcd_edit_eval "#line 1 '$path'\n$file";
2299
2300 } else {
2301 die "$insn: not a recognized instruction for edit/parse\n";
2302 }
2303 }
2304
2305 }
2306
2307 #############################################################################
2308
2309 # json to stdout
2310 sub prjson($) {
2311 print $json_coder->encode ($_[0]);
2312 }
2313
2314 # json from stdin
2315 sub rdjson() {
2316 my $json;
2317 1 while read STDIN, $json, 65536, length $json;
2318 $json_coder->decode ($json)
2319 }
2320
2321 # all subcommands
2322 our %CMD = (
2323 help => sub {
2324 require Pod::Usage;
2325 Pod::Usage::pod2usage (-verbose => 2);
2326 },
2327
2328 objects => sub {
2329 my %rbcd_types = reverse %bcd_types;
2330 $_ = sprintf "%08x", $_ for values %rbcd_types;
2331
2332 if ($_[0] eq "--json") {
2333 my %default_type = %bcd_object_types;
2334 $_ = sprintf "%08x", $_ for values %default_type;
2335
2336 prjson {
2337 version => $JSON_VERSION,
2338 object_alias => \%bcd_objects,
2339 object_type => \%rbcd_types,
2340 object_default_type => \%default_type,
2341 };
2342 } else {
2343 my %rbcd_objects = reverse %bcd_objects;
2344
2345 print "\n";
2346
2347 printf "%-9s %s\n", "Type", "Alias";
2348 for my $tname (sort keys %rbcd_types) {
2349 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2350 }
2351
2352 print "\n";
2353
2354 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2355 for my $name (sort keys %rbcd_objects) {
2356 my $guid = $rbcd_objects{$name};
2357 my $type = $bcd_object_types{$name};
2358 my $tname = $bcd_types{$type};
2359
2360 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2361
2362 printf "%-39s %-23s %s\n", $guid, $name, $type;
2363 }
2364
2365 print "\n";
2366 }
2367 },
2368
2369 elements => sub {
2370 my $json = $_[0] eq "--json";
2371
2372 my %format_name = (
2373 BCDE_FORMAT_DEVICE , "device",
2374 BCDE_FORMAT_STRING , "string",
2375 BCDE_FORMAT_GUID , "guid",
2376 BCDE_FORMAT_GUID_LIST , "guid list",
2377 BCDE_FORMAT_INTEGER , "integer",
2378 BCDE_FORMAT_BOOLEAN , "boolean",
2379 BCDE_FORMAT_INTEGER_LIST, "integer list",
2380 );
2381 my %rbcde = reverse %bcde;
2382 $_ = sprintf "%08x", $_ for values %rbcde;
2383
2384 my %element;
2385
2386 unless ($json) {
2387 print "\n";
2388 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2389 }
2390 for my $name (sort keys %rbcde) {
2391 my $id = $rbcde{$name};
2392 my $format = $format_name{(hex $id) & BCDE_FORMAT};
2393
2394 if ($json) {
2395 $element{$id} = [$format, $name];
2396 } else {
2397 printf "%-9s %-12s %s\n", $id, $format, $name;
2398 }
2399 }
2400 print "\n" unless $json;
2401
2402 prjson {
2403 version => $JSON_VERSION,
2404 element => \%element,
2405 } if $json;
2406
2407 },
2408
2409 export => sub {
2410 prjson bcd_decode regf_load shift;
2411 },
2412
2413 import => sub {
2414 regf_save shift, bcd_encode rdjson;
2415 },
2416
2417 edit => sub {
2418 my $path = shift;
2419 my $bcd = bcd_decode regf_load $path;
2420 bcd_edit $path, $bcd, @_;
2421 regf_save $path, bcd_encode $bcd;
2422 },
2423
2424 parse => sub {
2425 my $path = shift;
2426 my $bcd = bcd_decode regf_load $path;
2427 bcd_edit $path, $bcd, @_;
2428 },
2429
2430 "export-regf" => sub {
2431 prjson regf_load shift;
2432
2433 },
2434
2435 "import-regf" => sub {
2436 regf_save shift, rdjson;
2437 },
2438
2439 lsblk => sub {
2440 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2441
2442 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2443
2444 for my $dev (@{ $lsblk->{blockdevices} }) {
2445 my $pr = sub {
2446 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2447 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2448 };
2449
2450 if ($dev->{type} eq "part") {
2451 if ($dev->{pttype} eq "gpt") {
2452 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2453 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2454 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2455 my ($diskid, $partno) = ($1, hex $2);
2456 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2457 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2458 my $start = 512 * readline $fh;
2459 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2460 }
2461 }
2462 }
2463 }
2464 }
2465 },
2466 );
2467
2468 my $cmd = shift;
2469
2470 unless (exists $CMD{$cmd}) {
2471 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2472 exit 126;
2473 }
2474
2475 $CMD{$cmd}->(@ARGV);
2476