ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.28
Committed: Thu Aug 15 06:57:06 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.27: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.014; # numerous features needed
23
24 our $VERSION = '1.0';
25 our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26
27 =head1 NAME
28
29 pbcdedit - portable boot configuration data (BCD) store editor
30
31 =head1 SYNOPSIS
32
33 pbcdedit help # output manual page
34
35 pbcdedit export path/to/BCD # output BCD hive as JSON
36 pbcdedit import path/to/BCD # convert standard input to BCD hive
37 pbcdedit edit path/to/BCD edit-instructions...
38
39 pbcdedit objects # list all supported object aliases and types
40 pbcdedit elements # list all supported bcd element aliases
41
42 =head1 DESCRIPTION
43
44 This program allows you to create, read and modify Boot Configuration Data
45 (BCD) stores used by Windows Vista and newer versions of Windows.
46
47 At this point, it is in relatively early stages of development and has
48 received little to no real-world testing.
49
50 Compared to other BCD editing programs it offers the following unique
51 features:
52
53 =over
54
55 =item Can create BCD hives from scratch
56
57 Practically all other BCD editing programs force you to copy existing BCD
58 stores, which might or might not be copyrighted by Microsoft.
59
60 =item Does not rely on Windows
61
62 As the "portable" in the name implies, this program does not rely on
63 C<bcdedit> or other windows programs or libraries, it works on any system
64 that supports at least perl version 5.14.
65
66 =item Decodes and encodes BCD device elements
67
68 PBCDEDIT can concisely decode and encode BCD device element contents. This
69 is pretty unique, and offers a lot of potential that can't be realised
70 with C<bcdedit> or any programs relying on it.
71
72 =item Minimal files
73
74 BCD files written by PBCDEDIT are always "minimal", that is, they don't
75 contain unused data areas and therefore don't contain old and potentially
76 sensitive data.
77
78 =back
79
80 The target audience for this program is professionals and tinkerers who
81 are ready to invest time into learning how it works. It is not an easy
82 program to use and requires patience and a good understanding of BCD
83 stores.
84
85
86 =head1 SUBCOMMANDS
87
88 PBCDEDIT expects a subcommand as first argument that tells it what to
89 do. The following subcommands exist:
90
91 =over
92
93 =item C<help>
94
95 Displays the whole manual page (this document).
96
97 =item C<export> F<path>
98
99 Reads a BCD data store and writes a JSON representation of it to standard
100 output.
101
102 The format of the data is explained later in this document.
103
104 Example: read a BCD store, modify it with an external program, write it
105 again.
106
107 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
108
109 =item C<import> F<path>
110
111 The reverse of C<export>: Reads a JSON representation of a BCD data store
112 from standard input, and creates or replaces the given BCD data store.
113
114 =item C<edit> F<path> I<instructions...>
115
116 Load a BCD data store, apply some instructions to it, and save it again.
117
118 See the section L<EDITING BCD STORES>, below, for more info.
119
120 =item C<parse> F<path> I<instructions...>
121
122 Same as C<edit>, above, except it doesn't save the data store again. Can
123 be useful to extract some data from it.
124
125 =item C<lsblk>
126
127 On a GNU/Linux system, you can get a list of partition device descriptors
128 using this command - the external C<lsblk> command is required, as well as
129 a mounted C</sys> file system.
130
131 The output will be a list of all partitions in the system and C<partition>
132 descriptors for GPT and both C<legacypartition> and C<partition>
133 descriptors for MBR partitions.
134
135 =item C<objects> [C<--json>]
136
137 Outputs two tables: a table listing all type aliases with their hex BCD
138 element ID, and all object name aliases with their GUID and default type
139 (if any).
140
141 With C<--json> it prints similar information as a JSON object, for easier parsing.
142
143 =item C<elements> [C<--json>]
144
145 Outputs a table of known element aliases with their hex ID and the format
146 type.
147
148 With C<--json> it prints similar information as a JSON object, for easier parsing.
149
150 =item C<export-regf> F<path>
151
152 This has nothing to do with BCD stores - it takes a registry hive
153 file as argument and outputs a JSON representation of it to standard
154 output.
155
156 Hive versions 1.2 till 1.6 are supported.
157
158 =item C<import-regf> F<path>
159
160 The reverse of C<export-regf>: reads a JSON representation of a registry
161 hive from standard input and creates or replaces the registry hive file
162 given as argument.
163
164 The written hive will always be in a slightly modified version 1.3
165 format. It's not the format windows would generate, but it should be
166 understood by any conformant hive reader.
167
168 Note that the representation chosen by PBCDEDIT currently throws away
169 classname data (often used for feeble attempts at hiding stuff by
170 Microsoft) and security descriptors, so if you write anything other than
171 a BCD hive you will most likely destroy it.
172
173 =back
174
175
176 =head1 BCD STORE REPRESENTATION FORMAT
177
178 A BCD data store is represented as a JSON object with one special key,
179 C<meta>, and one key per BCD object. That is, each BCD object becomes
180 one key-value pair in the object, and an additional key called C<meta>
181 contains meta information.
182
183 Here is an abridged example of a real BCD store:
184
185 {
186 "meta" : {
187 "version" : 1
188 },
189 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
190 "type" : "application::osloader",
191 "description" : "Windows 10",
192 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
194 "path" : "\\Windows\\system32\\winload.exe",
195 "systemroot" : "\\Windows"
196 },
197 "{bootloadersettings}" : {
198 "inherit" : "{globalsettings} {hypervisorsettings}"
199 },
200 "{bootmgr}" : {
201 "description" : "Windows Boot Manager",
202 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
203 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
204 "inherit" : "{globalsettings}",
205 "displaybootmenu" : 0,
206 "timeout" : 30
207 },
208 "{globalsettings}" : {
209 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
210 },
211 "{hypervisorsettings}" : {
212 "hypervisorbaudrate" : 115200,
213 "hypervisordebugport" : 1,
214 "hypervisordebugtype" : 0
215 },
216 # ...
217 }
218
219 =head2 Minimal BCD to boot windows
220
221 Experimentally I found the following BCD is the minimum required to
222 successfully boot any post-XP version of Windows (suitable C<device> and
223 C<osdevice> values, of course):
224
225 {
226 "{bootmgr}" : {
227 "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
228 },
229
230 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
231 "type" : "application::osloader",
232 "description" : "Windows Boot",
233 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
235 "path" : "\\Windows\\system32\\winload.exe",
236 "systemroot" : "\\Windows"
237 },
238 }
239
240 Note that minimal doesn't mean recommended - Windows itself will add stuff
241 to this during or after boot, and you might or might not run into issues
242 when installing updates as it might not be able to find the F<bootmgr>.
243
244 =head2 The C<meta> key
245
246 The C<meta> key is not stored in the BCD data store but is used only
247 by PBCDEDIT. It is always generated when exporting, and importing will
248 be refused when it exists and the version stored inside doesn't store
249 the JSON schema version of PBCDEDIT. This ensures that different and
250 incompatible versions of PBCDEDIT will not read and misinterpret each
251 others data.
252
253 =head2 The object keys
254
255 Every other key is a BCD object. There is usually a BCD object for the
256 boot manager, one for every boot option and a few others that store common
257 settings inherited by these.
258
259 Each BCD object is represented by a GUID wrapped in curly braces. These
260 are usually random GUIDs used only to distinguish BCD objects from each
261 other. When adding a new boot option, you can simply generate a new GUID.
262
263 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
264 into human-readable strings such as C<{globalsettings}>, which is the same
265 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
266
267 Each BCD, object has an associated type. For example,
268 C<application::osloader> for objects loading Windows via F<winload.exe>,
269 C<application::bootsector> for real mode applications and so on.
270
271 The type of a object is stored in the pseudo BCD element C<type> (see next
272 section).
273
274 Some well-known objects have a default type. If an object type matches
275 its default type, then the C<type> element will be omitted. Similarly, if
276 the C<type> element is missing and the BCD object has a default type, the
277 default type will be used when writing a BCD store.
278
279 Running F<pbcdedit objects> will give you a list of object types,
280 well-known object aliases and their default types.
281
282 If different string keys in a JSON BCD store map to the same BCD object
283 then a random one will "win" and the others will be discarded. To avoid
284 this, you should always use the "canonical" name of a BCD object, which is
285 the human-readable form (if it exists).
286
287 =head2 The object values - BCD elements
288
289 The value of each BCD object entry consists of key-value pairs called BCD
290 elements.
291
292 BCD elements are identified by a 32 bit number, but to make things
293 simpler PBCDEDIT will replace these with well-known strings such as
294 C<description>, C<device> or C<path>.
295
296 When PBCDEDIT does not know the BCD element, it will use
297 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
298 BCD element. For example, C<device> would be C<custom::11000001>. You can
299 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
300 elements>.
301
302 What was said about duplicate keys mapping to the same object is true for
303 elements as well, so, again, you should always use the canonical name,
304 which is the human readable alias, if known.
305
306 =head3 BCD element types
307
308 Each BCD element has a type such as I<string> or I<boolean>. This type
309 determines how the value is interpreted, and most of them are pretty easy
310 to explain:
311
312 =over
313
314 =item string
315
316 This is simply a unicode string. For example, the C<description> and
317 C<systemroot> elements both are of this type, one storing a human-readable
318 name for this boot option, the other a file path to the windows root
319 directory:
320
321 "description" : "Windows 10",
322 "systemroot" : "\\Windows",
323
324 =item boolean
325
326 Almost as simple are booleans, which represent I<true>/I<false>,
327 I<on>/I<off> and similar values. In the JSON form, true is represented
328 by the number C<1>, and false is represented by the number C<0>. Other
329 values will be accepted, but PBCDEDIT doesn't guarantee how these are
330 interpreted.
331
332 For example, C<displaybootmenu> is a boolean that decides whether to
333 enable the C<F8> boot menu. In the example BCD store above, this is
334 disabled:
335
336 "displaybootmenu" : 0,
337
338 =item integer
339
340 Again, very simple, this is a 64 bit integer. IT can be either specified
341 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
342 binary number (prefix C<0b>).
343
344 For example, the boot C<timeout> is an integer, specifying the automatic
345 boot delay in seconds:
346
347 "timeout" : 30,
348
349 =item integer list
350
351 This is a list of 64 bit integers separated by whitespace. It is not used
352 much, so here is a somewhat artificial an untested example of using
353 C<customactions> to specify a certain custom, eh, action to be executed
354 when pressing C<F10> at boot:
355
356 "customactions" : "0x1000044000001 0x54000001",
357
358 =item guid
359
360 This represents a single GUID value wrapped in curly braces. It is used a
361 lot to refer from one BCD object to other one.
362
363 For example, The C<{bootmgr}> object might refer to a resume boot option
364 using C<resumeobject>:
365
366 "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
367
368 Human readable aliases are used and allowed.
369
370 =item guid list
371
372 Similar to the GUID type, this represents a list of such GUIDs, separated
373 by whitespace from each other.
374
375 For example, many BCD objects can I<inherit> elements from other BCD
376 objects by specifying the GUIDs of those other objects in a GUID list
377 called surprisingly called C<inherit>:
378
379 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
380
381 This example also shows how human readable aliases can be used.
382
383 =item device
384
385 This type is why I write I<most> are easy to explain earlier: This type
386 is the pinnacle of Microsoft-typical hacks layered on top of other
387 hacks. Understanding this type took more time than writing all the rest of
388 PBCDEDIT, and because it is so complex, this type has its own subsection
389 below.
390 =back
391
392 =head4 The BCD "device" element type
393
394 Device elements specify, well, devices. They are used for such diverse
395 purposes such as finding a TFTP network boot image, serial ports or VMBUS
396 devices, but most commonly they are used to specify the disk (harddisk,
397 cdrom, ramdisk, vhd...) to boot from.
398
399 The device element is kind of a mini-language in its own which is much
400 more versatile then the limited windows interface to it - BCDEDIT -
401 reveals.
402
403 While some information can be found on the BCD store and the windows
404 registry, there is pretty much no public information about the device
405 element, so almost everything known about it had to be researched first
406 in the process of writing this script, and consequently, support for BCD
407 device elements is partial only.
408
409 On the other hand, the expressive power of PBCDEDIT in specifying devices
410 is much bigger than BCDEDIT and therefore more can be done with it. The
411 downside is that BCD device elements are much more complicated than what
412 you might think from reading the BCDEDIT documentation.
413
414 In other words, simple things are complicated, and complicated things are
415 possible.
416
417 Anyway, the general syntax of device elements is an optional GUID,
418 followed by a device type, optionally followed by hexadecimal flags in
419 angle brackets, optionally followed by C<=> and a comma-separated list of
420 arguments, some of which can be (and often are) in turn devices again.
421
422 [{GUID}]type[<flags>][=arg,arg...]
423
424 Here are some examples:
425
426 boot
427 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
428 locate=<null>,element,systemroot
429 partition=<null>,harddisk,mbr,47cbc08a,1048576
430 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
431 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
432 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
433 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
434
435 I hope you are suitably impressed. I was, too, when I realized decoding
436 these binary blobs is not as easy as I had assumed.
437
438 The optional prefixed GUID seems to refer to a device BCD object, which
439 can be used to specify more device-specific BCD elements (for example
440 C<ramdisksdidevice> and C<ramdisksdpath>).
441
442 The flags after the type are omitted when they are C<0>. The only known
443 flag is C<1>, which seems to indicate that the parent device is invalid. I
444 don't claim to fully understand it, but it seems to indicate that the
445 boot manager has to search the device itself. Why the device is specified
446 in the first place escapes me, but a lot of this device stuff seems to be
447 badly hacked together...
448
449 The types understood and used by PBCDEDIT are as follows (keep in mind
450 that not of all the following is necessarily supported in PBCDEDIT):
451
452 =over
453
454 =item C<binary=>I<hex...>
455
456 This type isn't actually a real BCD element type, but a fallback for those
457 cases where PBCDEDIT can't perfectly decode a device element (except for
458 the leading GUID, which it can always decode). In such cases, it will
459 convert the device into this type with a hexdump of the element data.
460
461 =item C<null>
462
463 This is another special type - sometimes, a device all zero-filled, which
464 is not valid. This can mark the absence of a device or something PBCDEDIT
465 does not understand, so it decodes it into this special "all zero" type
466 called C<null>.
467
468 It's most commonly found in devices that can use an optional parent
469 device, when no parent device is used.
470
471 =item C<boot>
472
473 Another type without parameters, this refers to the device that was booted
474 from (nowadays typically the EFI system partition).
475
476 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
477
478 This specifies a VMBUS device with the given interface type and interface
479 instance, both of which are "naked" (no curly braces) GUIDs.
480
481 Made-up example (couldn't find a single example on the web):
482
483 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
484
485 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
486
487 This designates a specific partition on a block device. I<parent> is an
488 optional parent device on which to search on, and is often C<null>. Note
489 that the angle brackets around I<parent> are part of the syntax.
490
491 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
492 C<file> or C<vhd>, where the first three should be self-explaining,
493 C<file> is usually used to locate a file to be used as a disk image,
494 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
495 F<vhdx> files.
496
497 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
498 used for devices without partitions, such as cdroms, where the "partition"
499 is usually the whole device.
500
501 The I<diskid> identifies the disk or device using a unique signature, and
502 the same is true for the I<partitionid>. How these are interpreted depends
503 on the I<partitiontype>:
504
505 =over
506
507 =item C<mbr>
508
509 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
510 MBR, interpreted as a 32 bit unsigned little endian integer and written as
511 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
512
513 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
514 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
515 display the I<diskid>.
516
517 The I<partitionid> is the byte offset(!) of the partition counting from
518 the beginning of the MBR.
519
520 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
521 starting at sector C<2048> (= 1048576 / 512).
522
523 partition=<null>,harddisk,mbr,47cbc08a,1048576
524
525 =item C<gpt>
526
527 The I<diskid> is the disk GUID/disk identifier GUID from the partition
528 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
529 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
530
531 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
532 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
533
534 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
535
536 =item C<raw>
537
538 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
539 disk number and signifies the whole disk. BCDEDIT cannot display the
540 resulting device, and I am doubtful whether it has a useful effect.
541
542 =back
543
544 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
545
546 This is exactly the same as the C<partition> type, except for a tiny
547 detail: instead of using the partition start offset, this type uses the
548 partition number for MBR disks. Behaviour other partition types should be
549 the same.
550
551 The partition number starts at C<1> and skips unused partition, so if
552 there are two primary partitions and another partition inside the extended
553 partition, the primary partitions are number C<1> and C<2> and the
554 partition inside the extended partition is number C<3>, regardless of any
555 gaps.
556
557 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
558
559 This device description will make the bootloader search for a partition
560 with a given path.
561
562 The I<parent> device is the device to search on (angle brackets are
563 still part of the syntax!) If it is C<null>, then C<locate> will
564 search all disks it can find.
565
566 I<locatetype> is either C<element> or C<path>, and merely distinguishes
567 between two different ways to specify the path to search for: C<element>
568 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
569 uses a relative path as I<locatearg>.
570
571 Example: find any partition which has the F<magicfile.xxx> path in the
572 root.
573
574 locate=<null>,path,\magicfile.xxx
575
576 Example: find any partition which has the path specified in the
577 C<systemroot> element (typically F<\Windows>).
578
579 locate=<null>,element,systemroot
580
581 =item C<block=>I<devicetype>,I<args...>
582
583 Last not least, the most complex type, C<block>, which... specifies block
584 devices (which could be inside a F<vhdx> file for example).
585
586 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
587 C<file> or C<vhd> - the same as for C<partiion=>.
588
589 The remaining arguments change depending on the I<devicetype>:
590
591 =over
592
593 =item C<block=file>,<I<parent>>,I<path>
594
595 Interprets the I<parent> device (typically a partition) as a
596 filesystem and specifies a file path inside.
597
598 =item C<block=vhd>,<I<parent>>
599
600 Pretty much just changes the interpretation of I<parent>, which is
601 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
602
603 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
604
605 Interprets the I<parent> device as RAM disk, using the (decimal)
606 base address, byte size and byte offset inside a file specified by
607 I<path>. The numbers are usually all C<0> because they can be extracted
608 from the RAM disk image or other parameters.
609
610 This is most commonly used to boot C<wim> images.
611
612 =item C<block=floppy>,I<drivenum>
613
614 Refers to a removable drive identified by a number. BCDEDIT cannot display
615 the resulting device, and it is not clear what effect it will have.
616
617 =item C<block=cdrom>,I<drivenum>
618
619 Pretty much the same as C<floppy> but for CD-ROMs.
620
621 =item anything else
622
623 Probably not yet implemented. Tell me of your needs...
624
625 =back
626
627 =back5 Examples
628
629 This concludes the syntax overview for device elements, but probably
630 leaves many questions open. I can't help with most of them, as I also ave
631 many questions, but I can walk you through some actual examples using more
632 complex aspects.
633
634 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
635
636 Just like with C declarations, you best treat device descriptors as
637 instructions to find your device and work your way from the inside out:
638
639 locate=<null>,path,\disk.vhdx
640
641 First, the innermost device descriptor searches all partitions on the
642 system for a file called F<\disk.vhdx>:
643
644 block=file,<see above>,\disk.vhdx
645
646 Next, this takes the device locate has found and finds a file called
647 F<\disk.vhdx> on it. This is the same file locate was using, but that is
648 only because we find the device using the same path as finding the disk
649 image, so this is purely incidental, although quite common.
650
651 Next, this file will be opened as a virtual disk:
652
653 block=vhd,<see above>
654
655 And finally, inside this disk, another C<locate> will look for a partition
656 with a path as specified in the C<path> element, which most likely will be
657 F<\Windows\system32\winload.exe>:
658
659 locate=<see above>,element,path
660
661 As a result, this will boot the first Windows it finds on the first
662 F<disk.vhdx> disk image it can find anywhere.
663
664 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
665
666 Pretty much the same as the previous case, but with a bit of
667 variance. First, look for a specific partition on an MBR-partitioned disk:
668
669 partition=<null>,harddisk,mbr,47cbc08a,242643632128
670
671 Then open the file F<\win10.vhdx> on that partition:
672
673 block=file,<see above>,\win10.vhdx
674
675 Then, again, the file is opened as a virtual disk image:
676
677 block=vhd,<see above>
678
679 And again the windows loader (or whatever is in C<path>) will be searched:
680
681 locate=<see above>,element,path
682
683 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
684
685 This is quite different. First, it starts with a GUID. This GUID belongs
686 to a BCD object of type C<device>, which has additional parameters:
687
688 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
689 "type" : "device",
690 "description" : "sdi file for ramdisk",
691 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
692 "ramdisksdipath" : "\boot.sdi"
693 },
694
695 I will not go into many details, but this specifies a (presumably empty)
696 template ramdisk image (F<\boot.sdi>) that is used to initialize the
697 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
698 see, this F<.sdi> file resides on a different C<partition>.
699
700 Continuing, as always, from the inside out, first this device descriptor
701 finds a specific partition:
702
703 partition=<null>,harddisk,mbr,47cbc08a,242643632128
704
705 And then specifies a C<ramdisk> image on this partition:
706
707 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
708
709 I don't know what the purpose of the C<< <1> >> flag value is, but it
710 seems to be always there on this kind of entry.
711
712 If you have some good examples to add here, feel free to mail me.
713
714
715 =head1 EDITING BCD STORES
716
717 The C<edit> and C<parse> subcommands allow you to read a BCD data store
718 and modify it or extract data from it. This is done by executing a series
719 of "editing instructions" which are explained here.
720
721 =over
722
723 =item C<get> I<object> I<element>
724
725 Reads the BCD element I<element> from the BCD object I<object> and writes
726 it to standard output, followed by a newline. The I<object> can be a GUID
727 or a human-readable alias, or the special string C<{default}>, which will
728 refer to the default BCD object.
729
730 Example: find description of the default BCD object.
731
732 pbcdedit parse BCD get "{default}" description
733
734 =item C<set> I<object> I<element> I<value>
735
736 Similar to C<get>, but sets the element to the given I<value> instead.
737
738 Example: change the bootmgr default too
739 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
740
741 pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
742
743 =item C<eval> I<perlcode>
744
745 This takes the next argument, interprets it as Perl code and
746 evaluates it. This allows you to do more complicated modifications or
747 extractions.
748
749 The following variables are predefined for your use:
750
751 =over
752
753 =item C<$PATH>
754
755 The path to the BCD data store, as given to C<edit> or C<parse>.
756
757 =item C<$BCD>
758
759 The decoded BCD data store.
760
761 =item C<$DEFAULT>
762
763 The default BCD object name.
764
765 =back
766
767 The example given for C<get>, above, could be expressed like this with
768 C<eval>:
769
770 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
771
772 The example given for C<set> could be expressed like this:
773
774 pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
775
776 =item C<do> I<path>
777
778 Similar to C<eval>, above, but instead of using the argument as perl code,
779 it loads the perl code from the given file and executes it. This makes it
780 easier to write more complicated or larger programs.
781
782 =back
783
784
785 =head1 SEE ALSO
786
787 For ideas on what you can do with BCD stores in
788 general, and some introductory material, try
789 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
790
791 For good reference on which BCD objects and
792 elements exist, see Geoff Chappell's pages at
793 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
794
795 =head1 AUTHOR
796
797 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
798
799 =head1 REPORTING BUGS
800
801 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
802
803 =head1 BUGS AND SHORTCOMINGS
804
805 This should be a module. Of a series of modules, even.
806
807 Registry code should preserve classname and security descriptor data, and
808 whatever else is necessary to read and write any registry hive file.
809
810 I am also not happy with device descriptors being strings rather than a
811 data structure, but strings are probably better for command line usage. In
812 any case, device descriptors could be converted by simply "splitting" at
813 "=" and "," into an array reference, recursively.
814
815 =head1 HOMEPAGE
816
817 Original versions of this program can be found at
818 L<http://software.schmorp.de/pkg/pbcdedit>.
819
820 =head1 COPYRIGHT
821
822 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
823 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
824 free to change and redistribute it. There is NO WARRANTY, to the extent
825 permitted by law.
826
827 =cut
828
829 BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
830
831 use Data::Dump;
832 use Encode ();
833 use List::Util ();
834 use IO::Handle ();
835 use Time::HiRes ();
836
837 eval { unpack "Q", pack "Q", 1 }
838 or die "perl with 64 bit integer supported required.\n";
839
840 our $JSON = eval { require JSON::XS; JSON::XS:: }
841 // eval { require JSON::PP; JSON::PP:: }
842 // die "either JSON::XS or JSON::PP must be installed\n";
843
844 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
845
846 # hack used for debugging
847 sub xxd($$) {
848 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
849 syswrite $xxd, $_[1];
850 }
851
852 sub file_load($) {
853 my ($path) = @_;
854
855 open my $fh, "<:raw", $path
856 or die "$path: $!\n";
857 my $size = -s $fh;
858 $size = read $fh, my $buf, $size
859 or die "$path: short read\n";
860
861 $buf
862 }
863
864 # sources and resources used for this:
865 # registry:
866 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
867 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
868 # bcd:
869 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
870 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
871 # bcd devices:
872 # reactos' boot/environ/include/bl.h
873 # windows .mof files
874
875 #############################################################################
876 # registry stuff
877
878 # we use a hardcoded securitya descriptor - full access for everyone
879 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
880 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
881 my $sacl = "";
882 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
883 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
884 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
885 1, 0x8004,
886 20 + (length $sacl) + (length $dacl),
887 20 + (length $sacl) + (length $dacl) + (length $sid),
888 0, 20,
889 $sacl, $dacl, $sid, $sid;
890 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
891
892 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
893
894 sub KEY_HIVE_ENTRY() { 0x0004 }
895 sub KEY_NO_DELETE () { 0x0008 }
896 sub KEY_COMP_NAME () { 0x0020 }
897
898 sub VALUE_COMP_NAME() { 0x0001 }
899
900 my @regf_typename = qw(
901 none sz expand_sz binary dword dword_be link multi_sz
902 resource_list full_resource_descriptor resource_requirements_list
903 qword qword_be
904 );
905
906 my %regf_dec_type = (
907 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
908 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
909 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
910 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
911 dword => sub { unpack "L<", shift },
912 dword_be => sub { unpack "L>", shift },
913 qword => sub { unpack "Q<", shift },
914 qword_be => sub { unpack "Q>", shift },
915 );
916
917 my %regf_enc_type = (
918 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
919 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
920 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
921 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
922 dword => sub { pack "L<", shift },
923 dword_be => sub { pack "L>", shift },
924 qword => sub { pack "Q<", shift },
925 qword_be => sub { pack "Q>", shift },
926 );
927
928 # decode a registry hive
929 sub regf_decode($) {
930 my ($hive) = @_;
931
932 "regf" eq substr $hive, 0, 4
933 or die "not a registry hive\n";
934
935 my ($major, $minor) = unpack "\@20 L< L<", $hive;
936
937 $major == 1
938 or die "registry major version is not 1, but $major\n";
939
940 $minor >= 2 && $minor <= 6
941 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
942
943 my $bins = substr $hive, 4096;
944
945 my $decode_key = sub {
946 my ($ofs) = @_;
947
948 my @res;
949
950 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
951
952 $sze < 0
953 or die "key node points to unallocated cell\n";
954
955 $sig eq "nk"
956 or die "expected key node at $ofs, got '$sig'\n";
957
958 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
959
960 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
961
962 # classnames, security descriptors
963 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
964 #if ($cofs != NO_OFS && $clen) {
965 # #warn "cofs $cofs+$clen\n";
966 # xxd substr $bins, $cofs, 16;
967 #}
968
969 $kname = Encode::decode "UTF-16LE", $kname
970 unless $flags & KEY_COMP_NAME;
971
972 if ($vnum && $vofs != NO_OFS) {
973 for ($vofs += 4; $vnum--; $vofs += 4) {
974 my $kofs = unpack "\@$vofs L<", $bins;
975
976 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
977
978 $sig eq "vk"
979 or die "key values list contains invalid node (expected vk got '$sig')\n";
980
981 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
982
983 my $name = substr $bins, $kofs + 24, $nsze;
984
985 $name = Encode::decode "UTF-16LE", $name
986 unless $flags & VALUE_COMP_NAME;
987
988 my $data;
989 if ($dsze & 0x80000000) {
990 $data = substr $bins, $kofs + 12, $dsze & 0x7;
991 } elsif ($dsze > 16344 && $minor > 3) { # big data
992 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
993
994 for ($bofs += 4; $bnum--; $bofs += 4) {
995 my $dofs = unpack "\@$bofs L<", $bins;
996 my $dsze = unpack "\@$dofs l<", $bins;
997 $data .= substr $bins, $dofs + 4, -$dsze - 4;
998 }
999 $data = substr $data, 0, $dsze; # cells might be longer than data
1000 } else {
1001 $data = substr $bins, $dofs + 4, $dsze;
1002 }
1003
1004 $type = $regf_typename[$type] if $type < @regf_typename;
1005
1006 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1007 ->($data);
1008
1009 $res[0]{$name} = [$type, $data];
1010 }
1011 }
1012
1013 if ($sofs != NO_OFS) {
1014 my $decode_key = __SUB__;
1015
1016 my $decode_subkeylist = sub {
1017 my ($sofs) = @_;
1018
1019 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1020
1021 if ($sig eq "ri") { # index root
1022 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1023 __SUB__->(unpack "\@$lofs L<", $bins);
1024 }
1025 } else {
1026 my $inc;
1027
1028 if ($sig eq "li") { # subkey list
1029 $inc = 4;
1030 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1031 $inc = 8;
1032 } else {
1033 die "expected subkey list at $sofs, found '$sig'\n";
1034 }
1035
1036 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1037 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1038 $res[1]{$name} = $data;
1039 }
1040 }
1041 };
1042
1043 $decode_subkeylist->($sofs);
1044 }
1045
1046 ($kname, \@res);
1047 };
1048
1049 my ($rootcell) = unpack "\@36 L<", $hive;
1050
1051 my ($rname, $root) = $decode_key->($rootcell);
1052
1053 [$rname, $root]
1054 }
1055
1056 # return a binary windows fILETIME struct
1057 sub filetime_now {
1058 my ($s, $ms) = Time::HiRes::gettimeofday;
1059
1060 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1061 }
1062
1063 # encode a registry hive
1064 sub regf_encode($) {
1065 my ($hive) = @_;
1066
1067 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1068
1069 # the filetime is apparently used to verify log file validity,
1070 # so by generating a new timestamp the log files *should* automatically
1071 # become invalidated and windows would "self-heal" them.
1072 # (update: has been verified by reverse engineering)
1073 # possibly the fact that the two sequence numbes match might also
1074 # make windows think that the hive is not dirty and ignore logs.
1075 # (update: has been verified by reverse engineering)
1076
1077 my $now = filetime_now;
1078
1079 # we only create a single hbin
1080 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1081
1082 # append cell to $bind, return offset
1083 my $cell = sub {
1084 my ($cell) = @_;
1085
1086 my $res = length $bins;
1087
1088 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1089
1090 $bins .= pack "l<", -(4 + length $cell);
1091 $bins .= $cell;
1092
1093 $res
1094 };
1095
1096 my $sdofs = $cell->($sk); # add a dummy security descriptor
1097 my $sdref = 0; # refcount
1098 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1099 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1100
1101 my $encode_key = sub {
1102 my ($kname, $kdata, $flags) = @_;
1103 my ($values, $subkeys) = @$kdata;
1104
1105 if ($kname =~ /[^\x00-\xff]/) {
1106 $kname = Encode::encode "UTF-16LE", $kname;
1107 } else {
1108 $flags |= KEY_COMP_NAME;
1109 }
1110
1111 # encode subkeys
1112
1113 my @snames =
1114 map $_->[1],
1115 sort { $a->[0] cmp $b->[0] }
1116 map [(uc $_), $_],
1117 keys %$subkeys;
1118
1119 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1120 my $maxsname = 4 * List::Util::max map length, @snames;
1121
1122 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1123
1124 # encode values
1125 my $maxvname = 4 * List::Util::max map length, keys %$values;
1126 my @vofs;
1127 my $maxdsze = 0;
1128
1129 while (my ($vname, $v) = each %$values) {
1130 my $flags = 0;
1131
1132 if ($vname =~ /[^\x00-\xff]/) {
1133 $vname = Encode::encode "UTF-16LE", $kname;
1134 } else {
1135 $flags |= VALUE_COMP_NAME;
1136 }
1137
1138 my ($type, $data) = @$v;
1139
1140 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1141
1142 my $dsze;
1143 my $dofs;
1144
1145 if (length $data <= 4) {
1146 $dsze = 0x80000000 | length $data;
1147 $dofs = unpack "L<", pack "a4", $data;
1148 } else {
1149 $dsze = length $data;
1150 $dofs = $cell->($data);
1151 }
1152
1153 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1154
1155 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1156 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1157
1158 $maxdsze = $dsze if $maxdsze < $dsze;
1159 }
1160
1161 # encode key
1162
1163 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1164 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1165
1166 my $kdata = pack "
1167 a2 S< a8 x4 x4
1168 L< L< L< L< L< L<
1169 L< L< L< L< L< L<
1170 x4 S< S< a*
1171 ",
1172 nk => $flags, $now,
1173 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1174 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1175 length $kname, 0, $kname;
1176 ++$sdref;
1177
1178 my $res = $cell->($kdata);
1179
1180 substr $bins, $_ + 16, 4, pack "L<", $res
1181 for @sofs;
1182
1183 $res
1184 };
1185
1186 my ($rname, $root) = @$hive;
1187
1188 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1189
1190 if (my $pad = -(length $bins) & 4095) {
1191 $pad -= 4;
1192 $bins .= pack "l< x$pad", $pad + 4;
1193 }
1194
1195 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1196 substr $bins, 8, 4, pack "L<", length $bins;
1197
1198 my $base = pack "
1199 a4 L< L< a8 L< L< L< L<
1200 L< L< L<
1201 a64
1202 x396
1203 ",
1204 regf => 1974, 1974, $now, 1, 3, 0, 1,
1205 $rofs, length $bins, 1,
1206 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1207
1208 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1209 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1210 $chksum = 1 if $chksum == 0;
1211
1212 $base .= pack "L<", $chksum;
1213
1214 $base = pack "a* \@4095 x1", $base;
1215
1216 $base . $bins
1217 }
1218
1219 # load and parse registry from file
1220 sub regf_load($) {
1221 my ($path) = @_;
1222
1223 regf_decode file_load $path
1224 }
1225
1226 # encode and save registry to file
1227 sub regf_save {
1228 my ($path, $hive) = @_;
1229
1230 $hive = regf_encode $hive;
1231
1232 open my $regf, ">:raw", "$path~"
1233 or die "$path~: $!\n";
1234 print $regf $hive
1235 or die "$path~: short write\n";
1236 $regf->sync;
1237 close $regf;
1238
1239 rename "$path~", $path;
1240 }
1241
1242 #############################################################################
1243 # bcd stuff
1244
1245 # human-readable alises for GUID object identifiers
1246 our %bcd_objects = (
1247 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1248 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1249 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1250 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1251 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1252 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1253 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1254 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1255 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1256 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1257 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1258 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1259 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1260 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1261 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1262 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1263 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1264 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1265 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1266 );
1267
1268 # default types
1269 our %bcd_object_types = (
1270 '{fwbootmgr}' => 0x10100001,
1271 '{bootmgr}' => 0x10100002,
1272 '{memdiag}' => 0x10200005,
1273 '{ntldr}' => 0x10300006,
1274 '{badmemory}' => 0x20100000,
1275 '{dbgsettings}' => 0x20100000,
1276 '{emssettings}' => 0x20100000,
1277 '{globalsettings}' => 0x20100000,
1278 '{bootloadersettings}' => 0x20200003,
1279 '{hypervisorsettings}' => 0x20200003,
1280 '{kerneldbgsettings}' => 0x20200003,
1281 '{resumeloadersettings}' => 0x20200004,
1282 '{ramdiskoptions}' => 0x30000000,
1283 );
1284
1285 # object types
1286 our %bcd_types = (
1287 0x10100001 => 'application::fwbootmgr',
1288 0x10100002 => 'application::bootmgr',
1289 0x10200003 => 'application::osloader',
1290 0x10200004 => 'application::resume',
1291 0x10100005 => 'application::memdiag',
1292 0x10100006 => 'application::ntldr',
1293 0x10100007 => 'application::setupldr',
1294 0x10400008 => 'application::bootsector',
1295 0x10400009 => 'application::startup',
1296 0x1020000a => 'application::bootapp',
1297 0x20100000 => 'settings',
1298 0x20200001 => 'inherit::fwbootmgr',
1299 0x20200002 => 'inherit::bootmgr',
1300 0x20200003 => 'inherit::osloader',
1301 0x20200004 => 'inherit::resume',
1302 0x20200005 => 'inherit::memdiag',
1303 0x20200006 => 'inherit::ntldr',
1304 0x20200007 => 'inherit::setupldr',
1305 0x20200008 => 'inherit::bootsector',
1306 0x20200009 => 'inherit::startup',
1307 0x20300000 => 'inherit::device',
1308 0x30000000 => 'device',
1309 );
1310
1311 our %rbcd_objects = reverse %bcd_objects;
1312
1313 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1314
1315 sub dec_guid($) {
1316 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1317 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1318 }
1319
1320 sub enc_guid($) {
1321 $_[0] =~ /^$RE_GUID\z/o
1322 or return;
1323
1324 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1325 }
1326
1327 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1328 sub dec_wguid($) {
1329 my $guid = "{" . (dec_guid shift) . "}";
1330
1331 $bcd_objects{$guid} // $guid
1332 }
1333
1334 sub enc_wguid($) {
1335 my ($guid) = @_;
1336
1337 if (my $alias = $rbcd_objects{$guid}) {
1338 $guid = $alias;
1339 }
1340
1341 $guid =~ /^\{($RE_GUID)\}\z/o
1342 or return;
1343
1344 enc_guid $1
1345 }
1346
1347 sub BCDE_CLASS () { 0xf0000000 }
1348 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1349 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1350 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1351 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1352
1353 sub BCDE_FORMAT () { 0x0f000000 }
1354 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1355 sub BCDE_FORMAT_STRING () { 0x02000000 }
1356 sub BCDE_FORMAT_GUID () { 0x03000000 }
1357 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1358 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1359 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1360 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1361
1362 sub dec_device;
1363 sub enc_device;
1364
1365 sub enc_integer($) {
1366 no warnings 'portable'; # ugh
1367 my $value = shift;
1368 $value = oct $value if $value =~ /^0[bBxX]/;
1369 unpack "H*", pack "Q<", $value
1370 }
1371
1372 our %bcde_dec = (
1373 BCDE_FORMAT_DEVICE , \&dec_device,
1374 # # for round-trip verification
1375 # BCDE_FORMAT_DEVICE , sub {
1376 # my $dev = dec_device $_[0];
1377 # $_[0] eq enc_device $dev
1378 # or die "bcd device decoding does not round trip for $_[0]\n";
1379 # $dev
1380 # },
1381 BCDE_FORMAT_STRING , sub { shift },
1382 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1383 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1384 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1385 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1386 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1387 );
1388
1389 our %bcde_enc = (
1390 BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1391 BCDE_FORMAT_STRING , sub { sz => shift },
1392 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1393 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1394 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1395 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1396 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1397 );
1398
1399 # BCD Elements
1400 our %bcde = (
1401 0x11000001 => 'device',
1402 0x12000002 => 'path',
1403 0x12000004 => 'description',
1404 0x12000005 => 'locale',
1405 0x14000006 => 'inherit',
1406 0x15000007 => 'truncatememory',
1407 0x14000008 => 'recoverysequence',
1408 0x16000009 => 'recoveryenabled',
1409 0x1700000a => 'badmemorylist',
1410 0x1600000b => 'badmemoryaccess',
1411 0x1500000c => 'firstmegabytepolicy',
1412 0x1500000d => 'relocatephysical',
1413 0x1500000e => 'avoidlowmemory',
1414 0x1600000f => 'traditionalkseg',
1415 0x16000010 => 'bootdebug',
1416 0x15000011 => 'debugtype',
1417 0x15000012 => 'debugaddress',
1418 0x15000013 => 'debugport',
1419 0x15000014 => 'baudrate',
1420 0x15000015 => 'channel',
1421 0x12000016 => 'targetname',
1422 0x16000017 => 'noumex',
1423 0x15000018 => 'debugstart',
1424 0x12000019 => 'busparams',
1425 0x1500001a => 'hostip',
1426 0x1500001b => 'port',
1427 0x1600001c => 'dhcp',
1428 0x1200001d => 'key',
1429 0x1600001e => 'vm',
1430 0x16000020 => 'bootems',
1431 0x15000022 => 'emsport',
1432 0x15000023 => 'emsbaudrate',
1433 0x12000030 => 'loadoptions',
1434 0x16000040 => 'advancedoptions',
1435 0x16000041 => 'optionsedit',
1436 0x15000042 => 'keyringaddress',
1437 0x11000043 => 'bootstatdevice',
1438 0x12000044 => 'bootstatfilepath',
1439 0x16000045 => 'preservebootstat',
1440 0x16000046 => 'graphicsmodedisabled',
1441 0x15000047 => 'configaccesspolicy',
1442 0x16000048 => 'nointegritychecks',
1443 0x16000049 => 'testsigning',
1444 0x1200004a => 'fontpath',
1445 0x1500004b => 'integrityservices',
1446 0x1500004c => 'volumebandid',
1447 0x16000050 => 'extendedinput',
1448 0x15000051 => 'initialconsoleinput',
1449 0x15000052 => 'graphicsresolution',
1450 0x16000053 => 'restartonfailure',
1451 0x16000054 => 'highestmode',
1452 0x16000060 => 'isolatedcontext',
1453 0x15000065 => 'displaymessage',
1454 0x15000066 => 'displaymessageoverride',
1455 0x16000068 => 'nobootuxtext',
1456 0x16000069 => 'nobootuxprogress',
1457 0x1600006a => 'nobootuxfade',
1458 0x1600006b => 'bootuxreservepooldebug',
1459 0x1600006c => 'bootuxdisabled',
1460 0x1500006d => 'bootuxfadeframes',
1461 0x1600006e => 'bootuxdumpstats',
1462 0x1600006f => 'bootuxshowstats',
1463 0x16000071 => 'multibootsystem',
1464 0x16000072 => 'nokeyboard',
1465 0x15000073 => 'aliaswindowskey',
1466 0x16000074 => 'bootshutdowndisabled',
1467 0x15000075 => 'performancefrequency',
1468 0x15000076 => 'securebootrawpolicy',
1469 0x17000077 => 'allowedinmemorysettings',
1470 0x15000079 => 'bootuxtransitiontime',
1471 0x1600007a => 'mobilegraphics',
1472 0x1600007b => 'forcefipscrypto',
1473 0x1500007d => 'booterrorux',
1474 0x1600007e => 'flightsigning',
1475 0x1500007f => 'measuredbootlogformat',
1476 0x15000080 => 'displayrotation',
1477 0x15000081 => 'logcontrol',
1478 0x16000082 => 'nofirmwaresync',
1479 0x11000084 => 'windowssyspart',
1480 0x16000087 => 'numlock',
1481 0x22000001 => 'bpbstring',
1482 0x24000001 => 'displayorder',
1483 0x21000001 => 'filedevice',
1484 0x21000001 => 'osdevice',
1485 0x25000001 => 'passcount',
1486 0x26000001 => 'pxesoftreboot',
1487 0x22000002 => 'applicationname',
1488 0x24000002 => 'bootsequence',
1489 0x22000002 => 'filepath',
1490 0x22000002 => 'systemroot',
1491 0x25000002 => 'testmix',
1492 0x26000003 => 'cacheenable',
1493 0x26000003 => 'customsettings',
1494 0x23000003 => 'default',
1495 0x25000003 => 'failurecount',
1496 0x23000003 => 'resumeobject',
1497 0x26000004 => 'failuresenabled',
1498 0x26000004 => 'pae',
1499 0x26000004 => 'stampdisks',
1500 0x25000004 => 'testtofail',
1501 0x25000004 => 'timeout',
1502 0x21000005 => 'associatedosdevice',
1503 0x26000005 => 'cacheenable',
1504 0x26000005 => 'resume',
1505 0x25000005 => 'stridefailcount',
1506 0x26000006 => 'debugoptionenabled',
1507 0x25000006 => 'invcfailcount',
1508 0x23000006 => 'resumeobject',
1509 0x25000007 => 'bootux',
1510 0x25000007 => 'matsfailcount',
1511 0x24000007 => 'startupsequence',
1512 0x25000008 => 'bootmenupolicy',
1513 0x25000008 => 'randfailcount',
1514 0x25000009 => 'chckrfailcount',
1515 0x26000010 => 'detecthal',
1516 0x24000010 => 'toolsdisplayorder',
1517 0x22000011 => 'kernel',
1518 0x22000012 => 'hal',
1519 0x22000013 => 'dbgtransport',
1520 0x26000020 => 'displaybootmenu',
1521 0x25000020 => 'nx',
1522 0x26000021 => 'noerrordisplay',
1523 0x25000021 => 'pae',
1524 0x21000022 => 'bcddevice',
1525 0x26000022 => 'winpe',
1526 0x22000023 => 'bcdfilepath',
1527 0x26000024 => 'hormenabled',
1528 0x26000024 => 'hormenabled',
1529 0x26000024 => 'nocrashautoreboot',
1530 0x26000025 => 'hiberboot',
1531 0x26000025 => 'lastknowngood',
1532 0x26000026 => 'oslnointegritychecks',
1533 0x22000026 => 'passwordoverride',
1534 0x26000027 => 'osltestsigning',
1535 0x22000027 => 'pinpassphraseoverride',
1536 0x26000028 => 'processcustomactionsfirst',
1537 0x27000030 => 'customactions',
1538 0x26000030 => 'nolowmem',
1539 0x26000031 => 'persistbootsequence',
1540 0x25000031 => 'removememory',
1541 0x25000032 => 'increaseuserva',
1542 0x26000032 => 'skipstartupsequence',
1543 0x25000033 => 'perfmem',
1544 0x22000040 => 'fverecoveryurl',
1545 0x26000040 => 'vga',
1546 0x22000041 => 'fverecoverymessage',
1547 0x26000041 => 'quietboot',
1548 0x26000042 => 'novesa',
1549 0x26000043 => 'novga',
1550 0x25000050 => 'clustermodeaddressing',
1551 0x26000051 => 'usephysicaldestination',
1552 0x25000052 => 'restrictapiccluster',
1553 0x22000053 => 'evstore',
1554 0x26000054 => 'uselegacyapicmode',
1555 0x26000060 => 'onecpu',
1556 0x25000061 => 'numproc',
1557 0x26000062 => 'maxproc',
1558 0x25000063 => 'configflags',
1559 0x26000064 => 'maxgroup',
1560 0x26000065 => 'groupaware',
1561 0x25000066 => 'groupsize',
1562 0x26000070 => 'usefirmwarepcisettings',
1563 0x25000071 => 'msi',
1564 0x25000072 => 'pciexpress',
1565 0x25000080 => 'safeboot',
1566 0x26000081 => 'safebootalternateshell',
1567 0x26000090 => 'bootlog',
1568 0x26000091 => 'sos',
1569 0x260000a0 => 'debug',
1570 0x260000a1 => 'halbreakpoint',
1571 0x260000a2 => 'useplatformclock',
1572 0x260000a3 => 'forcelegacyplatform',
1573 0x260000a4 => 'useplatformtick',
1574 0x260000a5 => 'disabledynamictick',
1575 0x250000a6 => 'tscsyncpolicy',
1576 0x260000b0 => 'ems',
1577 0x250000c0 => 'forcefailure',
1578 0x250000c1 => 'driverloadfailurepolicy',
1579 0x250000c2 => 'bootmenupolicy',
1580 0x260000c3 => 'onetimeadvancedoptions',
1581 0x260000c4 => 'onetimeoptionsedit',
1582 0x250000e0 => 'bootstatuspolicy',
1583 0x260000e1 => 'disableelamdrivers',
1584 0x250000f0 => 'hypervisorlaunchtype',
1585 0x220000f1 => 'hypervisorpath',
1586 0x260000f2 => 'hypervisordebug',
1587 0x250000f3 => 'hypervisordebugtype',
1588 0x250000f4 => 'hypervisordebugport',
1589 0x250000f5 => 'hypervisorbaudrate',
1590 0x250000f6 => 'hypervisorchannel',
1591 0x250000f7 => 'bootux',
1592 0x260000f8 => 'hypervisordisableslat',
1593 0x220000f9 => 'hypervisorbusparams',
1594 0x250000fa => 'hypervisornumproc',
1595 0x250000fb => 'hypervisorrootprocpernode',
1596 0x260000fc => 'hypervisoruselargevtlb',
1597 0x250000fd => 'hypervisorhostip',
1598 0x250000fe => 'hypervisorhostport',
1599 0x250000ff => 'hypervisordebugpages',
1600 0x25000100 => 'tpmbootentropy',
1601 0x22000110 => 'hypervisorusekey',
1602 0x22000112 => 'hypervisorproductskutype',
1603 0x25000113 => 'hypervisorrootproc',
1604 0x26000114 => 'hypervisordhcp',
1605 0x25000115 => 'hypervisoriommupolicy',
1606 0x26000116 => 'hypervisorusevapic',
1607 0x22000117 => 'hypervisorloadoptions',
1608 0x25000118 => 'hypervisormsrfilterpolicy',
1609 0x25000119 => 'hypervisormmionxpolicy',
1610 0x2500011a => 'hypervisorschedulertype',
1611 0x25000120 => 'xsavepolicy',
1612 0x25000121 => 'xsaveaddfeature0',
1613 0x25000122 => 'xsaveaddfeature1',
1614 0x25000123 => 'xsaveaddfeature2',
1615 0x25000124 => 'xsaveaddfeature3',
1616 0x25000125 => 'xsaveaddfeature4',
1617 0x25000126 => 'xsaveaddfeature5',
1618 0x25000127 => 'xsaveaddfeature6',
1619 0x25000128 => 'xsaveaddfeature7',
1620 0x25000129 => 'xsaveremovefeature',
1621 0x2500012a => 'xsaveprocessorsmask',
1622 0x2500012b => 'xsavedisable',
1623 0x2500012c => 'kerneldebugtype',
1624 0x2200012d => 'kernelbusparams',
1625 0x2500012e => 'kerneldebugaddress',
1626 0x2500012f => 'kerneldebugport',
1627 0x25000130 => 'claimedtpmcounter',
1628 0x25000131 => 'kernelchannel',
1629 0x22000132 => 'kerneltargetname',
1630 0x25000133 => 'kernelhostip',
1631 0x25000134 => 'kernelport',
1632 0x26000135 => 'kerneldhcp',
1633 0x22000136 => 'kernelkey',
1634 0x22000137 => 'imchivename',
1635 0x21000138 => 'imcdevice',
1636 0x25000139 => 'kernelbaudrate',
1637 0x22000140 => 'mfgmode',
1638 0x26000141 => 'event',
1639 0x25000142 => 'vsmlaunchtype',
1640 0x25000144 => 'hypervisorenforcedcodeintegrity',
1641 0x26000145 => 'enablebootdebugpolicy',
1642 0x26000146 => 'enablebootorderclean',
1643 0x26000147 => 'enabledeviceid',
1644 0x26000148 => 'enableffuloader',
1645 0x26000149 => 'enableiuloader',
1646 0x2600014a => 'enablemassstorage',
1647 0x2600014b => 'enablerpmbprovisioning',
1648 0x2600014c => 'enablesecurebootpolicy',
1649 0x2600014d => 'enablestartcharge',
1650 0x2600014e => 'enableresettpm',
1651 0x21000150 => 'systemdatadevice',
1652 0x21000151 => 'osarcdevice',
1653 0x21000153 => 'osdatadevice',
1654 0x21000154 => 'bspdevice',
1655 0x21000155 => 'bspfilepath',
1656 0x26000202 => 'skipffumode',
1657 0x26000203 => 'forceffumode',
1658 0x25000510 => 'chargethreshold',
1659 0x26000512 => 'offmodecharging',
1660 0x25000aaa => 'bootflow',
1661 0x35000001 => 'ramdiskimageoffset',
1662 0x35000002 => 'ramdisktftpclientport',
1663 0x31000003 => 'ramdisksdidevice',
1664 0x32000004 => 'ramdisksdipath',
1665 0x35000005 => 'ramdiskimagelength',
1666 0x36000006 => 'exportascd',
1667 0x35000007 => 'ramdisktftpblocksize',
1668 0x35000008 => 'ramdisktftpwindowsize',
1669 0x36000009 => 'ramdiskmcenabled',
1670 0x3600000a => 'ramdiskmctftpfallback',
1671 0x3600000b => 'ramdisktftpvarwindow',
1672 0x45000001 => 'devicetype',
1673 0x42000002 => 'applicationrelativepath',
1674 0x42000003 => 'ramdiskdevicerelativepath',
1675 0x46000004 => 'omitosloaderelements',
1676 0x47000006 => 'elementstomigrate',
1677 0x46000010 => 'recoveryos',
1678 );
1679
1680 our %rbcde = reverse %bcde;
1681
1682 sub dec_bcde_id($) {
1683 $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1684 }
1685
1686 sub enc_bcde_id($) {
1687 $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1688 ? hex $1
1689 : $rbcde{$_[0]}
1690 }
1691
1692 # decode/encode bcd device element - the horror, no documentaion
1693 # whatsoever, supercomplex, superinconsistent.
1694
1695 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1696 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1697 our @part_type = qw(gpt mbr raw);
1698
1699 our $NULL_DEVICE = "\x00" x 16;
1700
1701 # biggest bitch to decode, ever
1702 # this decoded a device portion after the GUID
1703 sub dec_device_($);
1704 sub dec_device_($) {
1705 my ($device) = @_;
1706
1707 my $res;
1708
1709 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1710
1711 $pad == 0
1712 or die "non-zero reserved field in device descriptor\n";
1713
1714 if ($length == 0 && $type == 0 && $flags == 0) {
1715 return ("null", $device);
1716 }
1717
1718 $length >= 16
1719 or die "device element size too small ($length)\n";
1720
1721 $type = $dev_type[$type] // die "$type: unknown device type\n";
1722 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1723
1724 $res .= $type;
1725 $res .= sprintf "<%x>", $flags if $flags;
1726
1727 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1728
1729 $length == 4 * 4 + length $device
1730 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1731
1732 my $dec_path = sub {
1733 my ($path, $error) = @_;
1734
1735 $path =~ /^((?:..)*)\x00\x00\z/s
1736 or die "$error\n";
1737
1738 $path = Encode::decode "UTF-16LE", $1;
1739
1740 $path
1741 };
1742
1743 if ($type eq "partition" or $type eq "legacypartition") {
1744 my $partdata = substr $device, 0, 16, "";
1745 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1746
1747 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1748 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1749
1750 my $diskid = substr $device, 0, 16, "";
1751
1752 $diskid = $parttype eq "gpt"
1753 ? dec_guid substr $diskid, 0, 16
1754 : sprintf "%08x", unpack "V", $diskid;
1755
1756 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1757 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1758 : unpack "L<", $partdata; # partition number, one-based
1759
1760 (my $parent, $device) = dec_device_ $device;
1761
1762 $res .= "=";
1763 $res .= "<$parent>";
1764 $res .= ",$blocktype,$parttype,$diskid,$partid";
1765
1766 # PartitionType (gpt, mbr, raw)
1767 # guid | partsig | disknumber
1768
1769 } elsif ($type eq "boot") {
1770 $device =~ s/^\x00{56}\z//
1771 or die "boot device type with extra data not supported\n";
1772
1773 } elsif ($type eq "block") {
1774 my $blocktype = unpack "V", substr $device, 0, 4, "";
1775
1776 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1777
1778 # decode a "file path" structure
1779 my $dec_file = sub {
1780 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1781
1782 my $path = substr $device, 0, $flen - 12, "";
1783
1784 $fver == 1
1785 or die "unsupported file descriptor version '$fver'\n";
1786
1787 $ftype == 5
1788 or die "unsupported file descriptor path type '$type'\n";
1789
1790 (my $parent, $path) = dec_device_ $path;
1791
1792 $path = $dec_path->($path, "file device without path");
1793
1794 ($parent, $path)
1795 };
1796
1797 if ($blocktype eq "file") {
1798 my ($parent, $path) = $dec_file->();
1799
1800 $res .= "=file,<$parent>,$path";
1801
1802 } elsif ($blocktype eq "vhd") {
1803 $device =~ s/^\x00{20}//s
1804 or die "virtualdisk has non-zero fields I don't understand\n";
1805
1806 (my $parent, $device) = dec_device_ $device;
1807
1808 $res .= "=vhd,<$parent>";
1809
1810 } elsif ($blocktype eq "ramdisk") {
1811 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1812 my ($subdev, $path) = $dec_file->();
1813
1814 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1815
1816 } else {
1817 die "unsupported block type '$blocktype'\n";
1818 }
1819
1820 } elsif ($type eq "locate") {
1821 # mode, bcde_id, unknown, string
1822 # we assume locate has _either_ an element id _or_ a path, but not both
1823
1824 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1825
1826 if ($parent) {
1827 # not sure why this is an offset - it must come after the path
1828 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1829 ($parent, my $tail) = dec_device_ $parent;
1830 0 == length $tail
1831 or die "trailing data after locate device parent\n";
1832 } else {
1833 $parent = "null";
1834 }
1835
1836 my $path = $device; $device = "";
1837 $path = $dec_path->($path, "device locate mode without path");
1838
1839 $res .= "=<$parent>,";
1840
1841 if ($mode == 0) { # "Element"
1842 !length $path
1843 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1844
1845 $elem = dec_bcde_id $elem;
1846 $res .= "element,$elem";
1847
1848 } elsif ($mode == 1) { # "String"
1849 !$elem
1850 or die "device locate mode 1 having non-zero element\n";
1851
1852 $res .= "path,$path";
1853 } else {
1854 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1855 die "device locate mode '$mode' not supported\n";
1856 }
1857
1858 } elsif ($type eq "vmbus") {
1859 my $type = dec_guid substr $device, 0, 16, "";
1860 my $instance = dec_guid substr $device, 0, 16, "";
1861
1862 $device =~ s/^\x00{24}\z//
1863 or die "vmbus has non-zero fields I don't understand\n";
1864
1865 $res .= "=$type,$instance";
1866
1867 } else {
1868 die "unsupported device type '$type'\n";
1869 }
1870
1871 warn "unexpected trailing device data($res), " . unpack "H*",$device
1872 if length $device;
1873 #length $device
1874 # and die "unexpected trailing device data\n";
1875
1876 ($res, $tail)
1877 }
1878
1879 # decode a full binary BCD device descriptor
1880 sub dec_device($) {
1881 my ($device) = @_;
1882
1883 $device = pack "H*", $device;
1884
1885 my $guid = dec_guid substr $device, 0, 16, "";
1886 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1887 ? "" : "{$guid}";
1888
1889 eval {
1890 my ($dev, $tail) = dec_device_ $device;
1891
1892 $tail eq ""
1893 or die "unsupported trailing data after device descriptor\n";
1894
1895 "$guid$dev"
1896 # } // scalar ((warn $@), "$guid$fallback")
1897 } // ($guid . "binary=" . unpack "H*", $device)
1898 }
1899
1900 sub indexof($@) {
1901 my $value = shift;
1902
1903 for (0 .. $#_) {
1904 $value eq $_[$_]
1905 and return $_;
1906 }
1907
1908 undef
1909 }
1910
1911 # encode the device portion after the GUID
1912 sub enc_device_;
1913 sub enc_device_ {
1914 my ($device) = @_;
1915
1916 my $enc_path = sub {
1917 my $path = shift;
1918 $path =~ s/\//\\/g;
1919 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1920 };
1921
1922 my $enc_file = sub {
1923 my ($parent, $path) = @_; # parent and path must already be encoded
1924
1925 $path = $parent . $path;
1926
1927 # fver 1, ftype 5
1928 pack "VVVa*", 1, 12 + length $path, 5, $path
1929 };
1930
1931 my $parse_path = sub {
1932 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1933 or die "$_: invalid path\n";
1934
1935 $enc_path->($1)
1936 };
1937
1938 my $parse_parent = sub {
1939 my $parent;
1940
1941 if (s/^<//) {
1942 ($parent, $_) = enc_device_ $_;
1943 s/^>//
1944 or die "$device: syntax error: parent device not followed by '>'\n";
1945 } else {
1946 $parent = $NULL_DEVICE;
1947 }
1948
1949 $parent
1950 };
1951
1952 for ($device) {
1953 s/^([a-z]+)//
1954 or die "$_: device does not start with type string\n";
1955
1956 my $type = $1;
1957 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1958 my $payload;
1959
1960 if ($type eq "binary") {
1961 s/^=([0-9a-fA-F]+)//
1962 or die "binary type must have a hex string argument\n";
1963
1964 $payload = pack "H*", $1;
1965
1966 } elsif ($type eq "null") {
1967 return ($NULL_DEVICE, $_);
1968
1969 } elsif ($type eq "boot") {
1970 $payload = "\x00" x 56;
1971
1972 } elsif ($type eq "partition" or $type eq "legacypartition") {
1973 s/^=//
1974 or die "$_: missing '=' after $type\n";
1975
1976 my $parent = $parse_parent->();
1977
1978 s/^,//
1979 or die "$_: comma missing after partition parent device\n";
1980
1981 s/^([a-z]+),//
1982 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1983 my $blocktype = $1;
1984
1985 s/^([a-z]+),//
1986 or die "$_: partition block type not followed by partiton type\n";
1987 my $parttype = $1;
1988
1989 my ($partdata, $diskdata);
1990
1991 if ($parttype eq "mbr") {
1992 s/^([0-9a-f]{8}),//i
1993 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1994 $diskdata = pack "Vx12", hex $1;
1995
1996 s/^([0-9]+)//
1997 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1998
1999 # the following works for both 64 bit offset and 32 bit partno
2000 $partdata = pack "Q< x8", $1;
2001
2002 } elsif ($parttype eq "gpt") {
2003 s/^($RE_GUID),//
2004 or die "$_: partition disk guid missing or malformed\n";
2005 $diskdata = enc_guid $1;
2006
2007 s/^($RE_GUID)//
2008 or die "$_: partition guid missing or malformed\n";
2009 $partdata = enc_guid $1;
2010
2011 } elsif ($parttype eq "raw") {
2012 s/^([0-9]+)//
2013 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2014
2015 $partdata = pack "L< x12", $1;
2016
2017 } else {
2018 die "$parttype: partition type not supported\n";
2019 }
2020
2021 $payload = pack "a16 L< L< a16 a*",
2022 $partdata,
2023 (indexof $blocktype, @block_type),
2024 (indexof $parttype, @part_type),
2025 $diskdata,
2026 $parent;
2027
2028 } elsif ($type eq "locate") {
2029 s/^=//
2030 or die "$_: missing '=' after $type\n";
2031
2032 my ($mode, $elem, $path);
2033
2034 my $parent = $parse_parent->();
2035
2036 s/^,//
2037 or die "$_: missing comma after locate parent device\n";
2038
2039 if (s/^element,//) {
2040 s/^([0-9a-z]+)//i
2041 or die "$_ locate element must be either name or 8-digit hex id\n";
2042 $elem = enc_bcde_id $1;
2043 $mode = 0;
2044 $path = $enc_path->("");
2045
2046 } elsif (s/^path,//) {
2047 $mode = 1;
2048 $path = $parse_path->();
2049
2050 } else {
2051 die "$_ second locate argument must be subtype (either element or path)\n";
2052 }
2053
2054 if ($parent ne $NULL_DEVICE) {
2055 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2056 } else {
2057 $parent = 0;
2058 }
2059
2060 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2061
2062 } elsif ($type eq "block") {
2063 s/^=//
2064 or die "$_: missing '=' after $type\n";
2065
2066 s/^([a-z]+),//
2067 or die "$_: block device does not start with block type (e.g. disk)\n";
2068 my $blocktype = $1;
2069
2070 my $blockdata;
2071
2072 if ($blocktype eq "file") {
2073 my $parent = $parse_parent->();
2074 s/^,// or die "$_: comma missing after file block device parent\n";
2075 my $path = $parse_path->();
2076
2077 $blockdata = $enc_file->($parent, $path);
2078
2079 } elsif ($blocktype eq "vhd") {
2080 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2081 $blockdata .= $parse_parent->();
2082
2083 } elsif ($blocktype eq "ramdisk") {
2084 my $parent = $parse_parent->();
2085
2086 s/^,(\d+),(\d+),(\d+),//a
2087 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2088
2089 my ($base, $size, $offset) = ($1, $2, $3);
2090
2091 my $path = $parse_path->();
2092
2093 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2094
2095 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2096 # this is guesswork
2097 s/^(\d+)//a
2098 or die "$_: missing device number for cdrom\n";
2099 $blockdata = pack "V", $1;
2100
2101 } else {
2102 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2103 }
2104
2105 $payload = pack "Va*",
2106 (indexof $blocktype, @block_type),
2107 $blockdata;
2108
2109 } elsif ($type eq "vmbus") {
2110 s/^=($RE_GUID)//
2111 or die "$_: malformed or missing vmbus interface type guid\n";
2112 my $type = enc_guid $1;
2113 s/^,($RE_GUID)//
2114 or die "$_: malformed or missing vmbus interface instance guid\n";
2115 my $instance = enc_guid $1;
2116
2117 $payload = pack "a16a16x24", $type, $instance;
2118
2119 } else {
2120 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2121 }
2122
2123 return (
2124 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2125 $_
2126 );
2127 }
2128 }
2129
2130 # encode a full binary BCD device descriptor
2131 sub enc_device {
2132 my ($device) = @_;
2133
2134 my $guid = "\x00" x 16;
2135
2136 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2137 $guid = enc_guid $1
2138 or die "$device: does not start with valid guid\n";
2139 }
2140
2141 my ($descriptor, $tail) = enc_device_ $device;
2142
2143 length $tail
2144 and die "$device: garbage after device descriptor\n";
2145
2146 unpack "H*", $guid . $descriptor
2147 }
2148
2149 # decode a registry hive into the BCD structure used by pbcdedit
2150 sub bcd_decode {
2151 my ($hive) = @_;
2152
2153 my %bcd;
2154
2155 my $objects = $hive->[1][1]{Objects}[1];
2156
2157 while (my ($k, $v) = each %$objects) {
2158 my %kv;
2159 $v = $v->[1];
2160
2161 $k = $bcd_objects{$k} // $k;
2162
2163 my $type = $v->{Description}[0]{Type}[1];
2164
2165 if ($type != $bcd_object_types{$k}) {
2166 $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2167 $kv{type} = $type;
2168 }
2169
2170 my $elems = $v->{Elements}[1];
2171
2172 while (my ($k, $v) = each %$elems) {
2173 my $k = hex $k;
2174
2175 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2176 my $k = dec_bcde_id $k;
2177
2178 $kv{$k} = $v;
2179 }
2180
2181 $bcd{$k} = \%kv;
2182 }
2183
2184 $bcd{meta} = { version => $JSON_VERSION };
2185
2186 \%bcd
2187 }
2188
2189 # encode a pbcdedit structure into a registry hive
2190 sub bcd_encode {
2191 my ($bcd) = @_;
2192
2193 if (my $meta = $bcd->{meta}) {
2194 $meta->{version} eq $JSON_VERSION
2195 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2196 }
2197
2198 my %objects;
2199 my %rbcd_types = reverse %bcd_types;
2200
2201 while (my ($k, $v) = each %$bcd) {
2202 my %kv;
2203
2204 next if $k eq "meta";
2205
2206 $k = lc $k; # I know you windows types!
2207
2208 my $type = $v->{type};
2209
2210 if ($type) {
2211 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2212 ? hex $type
2213 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2214 }
2215
2216 my $guid = enc_wguid $k
2217 or die "$k: invalid bcd object identifier\n";
2218
2219 # default type if not given
2220 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2221
2222 my %elem;
2223
2224 while (my ($k, $v) = each %$v) {
2225 next if $k eq "type";
2226
2227 $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2228 $elem{sprintf "%08x", $k} = [{
2229 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2230 }];
2231 }
2232
2233 $guid = dec_guid $guid;
2234
2235 $objects{"{$guid}"} = [undef, {
2236 Description => [{ Type => [dword => $type] }],
2237 Elements => [undef, \%elem],
2238 }];
2239 }
2240
2241 [NewStoreRoot => [undef, {
2242 Description => [{
2243 KeyName => [sz => "BCD00000001"],
2244 System => [dword => 1],
2245 pbcdedit => [sz => $VERSION],
2246 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2247 }],
2248 Objects => [undef, \%objects],
2249 }]]
2250 }
2251
2252 #############################################################################
2253
2254 sub bcd_edit_eval {
2255 package pbcdedit;
2256
2257 our ($PATH, $BCD, $DEFAULT);
2258
2259 eval shift;
2260 die "$@" if $@;
2261 }
2262
2263 sub bcd_edit {
2264 my ($path, $bcd, @insns) = @_;
2265
2266 my $default = $bcd->{"{bootmgr}"}{resumeobject};
2267
2268 # prepare "officially visible" variables
2269 local $pbcdedit::PATH = $path;
2270 local $pbcdedit::BCD = $bcd;
2271 local $pbcdedit::DEFAULT = $default;
2272
2273 while (@insns) {
2274 my $insn = shift @insns;
2275
2276 if ($insn eq "get") {
2277 my $object = shift @insns;
2278 my $elem = shift @insns;
2279
2280 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2281
2282 print $bcd->{$object}{$elem}, "\n";
2283
2284 } elsif ($insn eq "set") {
2285 my $object = shift @insns;
2286 my $elem = shift @insns;
2287 my $value = shift @insns;
2288
2289 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2290
2291 $bcd->{$object}{$elem} = $value;
2292
2293 } elsif ($insn eq "eval") {
2294 bcd_edit_eval shift @insns;
2295
2296 } elsif ($insn eq "do") {
2297 my $path = shift @insns;
2298 my $file = file_load $path;
2299 bcd_edit_eval "#line 1 '$path'\n$file";
2300
2301 } else {
2302 die "$insn: not a recognized instruction for edit/parse\n";
2303 }
2304 }
2305
2306 }
2307
2308 #############################################################################
2309
2310 # json to stdout
2311 sub prjson($) {
2312 print $json_coder->encode ($_[0]);
2313 }
2314
2315 # json from stdin
2316 sub rdjson() {
2317 my $json;
2318 1 while read STDIN, $json, 65536, length $json;
2319 $json_coder->decode ($json)
2320 }
2321
2322 # all subcommands
2323 our %CMD = (
2324 help => sub {
2325 require Pod::Usage;
2326 Pod::Usage::pod2usage (-verbose => 2);
2327 },
2328
2329 objects => sub {
2330 my %rbcd_types = reverse %bcd_types;
2331 $_ = sprintf "%08x", $_ for values %rbcd_types;
2332
2333 if ($_[0] eq "--json") {
2334 my %default_type = %bcd_object_types;
2335 $_ = sprintf "%08x", $_ for values %default_type;
2336
2337 prjson {
2338 version => $JSON_VERSION,
2339 object_alias => \%bcd_objects,
2340 object_type => \%rbcd_types,
2341 object_default_type => \%default_type,
2342 };
2343 } else {
2344 my %rbcd_objects = reverse %bcd_objects;
2345
2346 print "\n";
2347
2348 printf "%-9s %s\n", "Type", "Alias";
2349 for my $tname (sort keys %rbcd_types) {
2350 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2351 }
2352
2353 print "\n";
2354
2355 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2356 for my $name (sort keys %rbcd_objects) {
2357 my $guid = $rbcd_objects{$name};
2358 my $type = $bcd_object_types{$name};
2359 my $tname = $bcd_types{$type};
2360
2361 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2362
2363 printf "%-39s %-23s %s\n", $guid, $name, $type;
2364 }
2365
2366 print "\n";
2367 }
2368 },
2369
2370 elements => sub {
2371 my $json = $_[0] eq "--json";
2372
2373 my %format_name = (
2374 BCDE_FORMAT_DEVICE , "device",
2375 BCDE_FORMAT_STRING , "string",
2376 BCDE_FORMAT_GUID , "guid",
2377 BCDE_FORMAT_GUID_LIST , "guid list",
2378 BCDE_FORMAT_INTEGER , "integer",
2379 BCDE_FORMAT_BOOLEAN , "boolean",
2380 BCDE_FORMAT_INTEGER_LIST, "integer list",
2381 );
2382 my %rbcde = reverse %bcde;
2383 $_ = sprintf "%08x", $_ for values %rbcde;
2384
2385 my %element;
2386
2387 unless ($json) {
2388 print "\n";
2389 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2390 }
2391 for my $name (sort keys %rbcde) {
2392 my $id = $rbcde{$name};
2393 my $format = $format_name{(hex $id) & BCDE_FORMAT};
2394
2395 if ($json) {
2396 $element{$id} = [$format, $name];
2397 } else {
2398 printf "%-9s %-12s %s\n", $id, $format, $name;
2399 }
2400 }
2401 print "\n" unless $json;
2402
2403 prjson {
2404 version => $JSON_VERSION,
2405 element => \%element,
2406 } if $json;
2407
2408 },
2409
2410 export => sub {
2411 prjson bcd_decode regf_load shift;
2412 },
2413
2414 import => sub {
2415 regf_save shift, bcd_encode rdjson;
2416 },
2417
2418 edit => sub {
2419 my $path = shift;
2420 my $bcd = bcd_decode regf_load $path;
2421 bcd_edit $path, $bcd, @_;
2422 regf_save $path, bcd_encode $bcd;
2423 },
2424
2425 parse => sub {
2426 my $path = shift;
2427 my $bcd = bcd_decode regf_load $path;
2428 bcd_edit $path, $bcd, @_;
2429 },
2430
2431 "export-regf" => sub {
2432 prjson regf_load shift;
2433
2434 },
2435
2436 "import-regf" => sub {
2437 regf_save shift, rdjson;
2438 },
2439
2440 lsblk => sub {
2441 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2442
2443 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2444
2445 for my $dev (@{ $lsblk->{blockdevices} }) {
2446 my $pr = sub {
2447 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2448 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2449 };
2450
2451 if ($dev->{type} eq "part") {
2452 if ($dev->{pttype} eq "gpt") {
2453 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2454 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2455 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2456 my ($diskid, $partno) = ($1, hex $2);
2457 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2458 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2459 my $start = 512 * readline $fh;
2460 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2461 }
2462 }
2463 }
2464 }
2465 }
2466 },
2467 );
2468
2469 my $cmd = shift;
2470
2471 unless (exists $CMD{$cmd}) {
2472 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2473 exit 126;
2474 }
2475
2476 $CMD{$cmd}->(@ARGV);
2477