ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.29
Committed: Thu Aug 15 07:10:23 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.28: +4 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.014; # numerous features needed
23
24 our $VERSION = '1.0';
25 our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26
27 =head1 NAME
28
29 pbcdedit - portable boot configuration data (BCD) store editor
30
31 =head1 SYNOPSIS
32
33 pbcdedit help # output manual page
34
35 pbcdedit export path/to/BCD # output BCD hive as JSON
36 pbcdedit import path/to/BCD # convert standard input to BCD hive
37 pbcdedit edit path/to/BCD edit-instructions...
38
39 pbcdedit objects # list all supported object aliases and types
40 pbcdedit elements # list all supported bcd element aliases
41
42 =head1 DESCRIPTION
43
44 This program allows you to create, read and modify Boot Configuration Data
45 (BCD) stores used by Windows Vista and newer versions of Windows.
46
47 At this point, it is in relatively early stages of development and has
48 received little to no real-world testing.
49
50 Compared to other BCD editing programs it offers the following unique
51 features:
52
53 =over
54
55 =item Can create BCD hives from scratch
56
57 Practically all other BCD editing programs force you to copy existing BCD
58 stores, which might or might not be copyrighted by Microsoft.
59
60 =item Does not rely on Windows
61
62 As the "portable" in the name implies, this program does not rely on
63 C<bcdedit> or other windows programs or libraries, it works on any system
64 that supports at least perl version 5.14.
65
66 =item Decodes and encodes BCD device elements
67
68 PBCDEDIT can concisely decode and encode BCD device element contents. This
69 is pretty unique, and offers a lot of potential that can't be realised
70 with C<bcdedit> or any programs relying on it.
71
72 =item Minimal files
73
74 BCD files written by PBCDEDIT are always "minimal", that is, they don't
75 contain unused data areas and therefore don't contain old and potentially
76 sensitive data.
77
78 =back
79
80 The target audience for this program is professionals and tinkerers who
81 are ready to invest time into learning how it works. It is not an easy
82 program to use and requires patience and a good understanding of BCD
83 stores.
84
85
86 =head1 SUBCOMMANDS
87
88 PBCDEDIT expects a subcommand as first argument that tells it what to
89 do. The following subcommands exist:
90
91 =over
92
93 =item C<help>
94
95 Displays the whole manual page (this document).
96
97 =item C<export> F<path>
98
99 Reads a BCD data store and writes a JSON representation of it to standard
100 output.
101
102 The format of the data is explained later in this document.
103
104 Example: read a BCD store, modify it with an external program, write it
105 again.
106
107 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
108
109 =item C<import> F<path>
110
111 The reverse of C<export>: Reads a JSON representation of a BCD data store
112 from standard input, and creates or replaces the given BCD data store.
113
114 =item C<edit> F<path> I<instructions...>
115
116 Load a BCD data store, apply some instructions to it, and save it again.
117
118 See the section L<EDITING BCD STORES>, below, for more info.
119
120 =item C<parse> F<path> I<instructions...>
121
122 Same as C<edit>, above, except it doesn't save the data store again. Can
123 be useful to extract some data from it.
124
125 =item C<lsblk>
126
127 On a GNU/Linux system, you can get a list of partition device descriptors
128 using this command - the external C<lsblk> command is required, as well as
129 a mounted C</sys> file system.
130
131 The output will be a list of all partitions in the system and C<partition>
132 descriptors for GPT and both C<legacypartition> and C<partition>
133 descriptors for MBR partitions.
134
135 =item C<objects> [C<--json>]
136
137 Outputs two tables: a table listing all type aliases with their hex BCD
138 element ID, and all object name aliases with their GUID and default type
139 (if any).
140
141 With C<--json> it prints similar information as a JSON object, for easier parsing.
142
143 =item C<elements> [C<--json>]
144
145 Outputs a table of known element aliases with their hex ID and the format
146 type.
147
148 With C<--json> it prints similar information as a JSON object, for easier parsing.
149
150 =item C<export-regf> F<path>
151
152 This has nothing to do with BCD stores - it takes a registry hive
153 file as argument and outputs a JSON representation of it to standard
154 output.
155
156 Hive versions 1.2 till 1.6 are supported.
157
158 =item C<import-regf> F<path>
159
160 The reverse of C<export-regf>: reads a JSON representation of a registry
161 hive from standard input and creates or replaces the registry hive file
162 given as argument.
163
164 The written hive will always be in a slightly modified version 1.3
165 format. It's not the format windows would generate, but it should be
166 understood by any conformant hive reader.
167
168 Note that the representation chosen by PBCDEDIT currently throws away
169 classname data (often used for feeble attempts at hiding stuff by
170 Microsoft) and security descriptors, so if you write anything other than
171 a BCD hive you will most likely destroy it.
172
173 =back
174
175
176 =head1 BCD STORE REPRESENTATION FORMAT
177
178 A BCD data store is represented as a JSON object with one special key,
179 C<meta>, and one key per BCD object. That is, each BCD object becomes
180 one key-value pair in the object, and an additional key called C<meta>
181 contains meta information.
182
183 Here is an abridged example of a real BCD store:
184
185 {
186 "meta" : {
187 "version" : 1
188 },
189 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
190 "type" : "application::osloader",
191 "description" : "Windows 10",
192 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
194 "path" : "\\Windows\\system32\\winload.exe",
195 "systemroot" : "\\Windows"
196 },
197 "{bootloadersettings}" : {
198 "inherit" : "{globalsettings} {hypervisorsettings}"
199 },
200 "{bootmgr}" : {
201 "description" : "Windows Boot Manager",
202 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
203 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
204 "inherit" : "{globalsettings}",
205 "displaybootmenu" : 0,
206 "timeout" : 30
207 },
208 "{globalsettings}" : {
209 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
210 },
211 "{hypervisorsettings}" : {
212 "hypervisorbaudrate" : 115200,
213 "hypervisordebugport" : 1,
214 "hypervisordebugtype" : 0
215 },
216 # ...
217 }
218
219 =head2 Minimal BCD to boot windows
220
221 Experimentally I found the following BCD is the minimum required to
222 successfully boot any post-XP version of Windows (suitable C<device> and
223 C<osdevice> values, of course):
224
225 {
226 "{bootmgr}" : {
227 "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
228 },
229
230 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
231 "type" : "application::osloader",
232 "description" : "Windows Boot",
233 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
235 "path" : "\\Windows\\system32\\winload.exe",
236 "systemroot" : "\\Windows"
237 },
238 }
239
240 Note that minimal doesn't mean recommended - Windows itself will add stuff
241 to this during or after boot, and you might or might not run into issues
242 when installing updates as it might not be able to find the F<bootmgr>.
243
244 =head2 The C<meta> key
245
246 The C<meta> key is not stored in the BCD data store but is used only
247 by PBCDEDIT. It is always generated when exporting, and importing will
248 be refused when it exists and the version stored inside doesn't store
249 the JSON schema version of PBCDEDIT. This ensures that different and
250 incompatible versions of PBCDEDIT will not read and misinterpret each
251 others data.
252
253 =head2 The object keys
254
255 Every other key is a BCD object. There is usually a BCD object for the
256 boot manager, one for every boot option and a few others that store common
257 settings inherited by these.
258
259 Each BCD object is represented by a GUID wrapped in curly braces. These
260 are usually random GUIDs used only to distinguish BCD objects from each
261 other. When adding a new boot option, you can simply generate a new GUID.
262
263 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
264 into human-readable strings such as C<{globalsettings}>, which is the same
265 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
266
267 Each BCD, object has an associated type. For example,
268 C<application::osloader> for objects loading Windows via F<winload.exe>,
269 C<application::bootsector> for real mode applications and so on.
270
271 The type of a object is stored in the pseudo BCD element C<type> (see next
272 section).
273
274 Some well-known objects have a default type. If an object type matches
275 its default type, then the C<type> element will be omitted. Similarly, if
276 the C<type> element is missing and the BCD object has a default type, the
277 default type will be used when writing a BCD store.
278
279 Running F<pbcdedit objects> will give you a list of object types,
280 well-known object aliases and their default types.
281
282 If different string keys in a JSON BCD store map to the same BCD object
283 then a random one will "win" and the others will be discarded. To avoid
284 this, you should always use the "canonical" name of a BCD object, which is
285 the human-readable form (if it exists).
286
287 =head2 The object values - BCD elements
288
289 The value of each BCD object entry consists of key-value pairs called BCD
290 elements.
291
292 BCD elements are identified by a 32 bit number, but to make things
293 simpler PBCDEDIT will replace these with well-known strings such as
294 C<description>, C<device> or C<path>.
295
296 When PBCDEDIT does not know the BCD element, it will use
297 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
298 BCD element. For example, C<device> would be C<custom::11000001>. You can
299 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
300 elements>.
301
302 What was said about duplicate keys mapping to the same object is true for
303 elements as well, so, again, you should always use the canonical name,
304 which is the human readable alias, if known.
305
306 =head3 BCD element types
307
308 Each BCD element has a type such as I<string> or I<boolean>. This type
309 determines how the value is interpreted, and most of them are pretty easy
310 to explain:
311
312 =over
313
314 =item string
315
316 This is simply a unicode string. For example, the C<description> and
317 C<systemroot> elements both are of this type, one storing a human-readable
318 name for this boot option, the other a file path to the windows root
319 directory:
320
321 "description" : "Windows 10",
322 "systemroot" : "\\Windows",
323
324 =item boolean
325
326 Almost as simple are booleans, which represent I<true>/I<false>,
327 I<on>/I<off> and similar values. In the JSON form, true is represented
328 by the number C<1>, and false is represented by the number C<0>. Other
329 values will be accepted, but PBCDEDIT doesn't guarantee how these are
330 interpreted.
331
332 For example, C<displaybootmenu> is a boolean that decides whether to
333 enable the C<F8> boot menu. In the example BCD store above, this is
334 disabled:
335
336 "displaybootmenu" : 0,
337
338 =item integer
339
340 Again, very simple, this is a 64 bit integer. IT can be either specified
341 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
342 binary number (prefix C<0b>).
343
344 For example, the boot C<timeout> is an integer, specifying the automatic
345 boot delay in seconds:
346
347 "timeout" : 30,
348
349 =item integer list
350
351 This is a list of 64 bit integers separated by whitespace. It is not used
352 much, so here is a somewhat artificial an untested example of using
353 C<customactions> to specify a certain custom, eh, action to be executed
354 when pressing C<F10> at boot:
355
356 "customactions" : "0x1000044000001 0x54000001",
357
358 =item guid
359
360 This represents a single GUID value wrapped in curly braces. It is used a
361 lot to refer from one BCD object to other one.
362
363 For example, The C<{bootmgr}> object might refer to a resume boot option
364 using C<resumeobject>:
365
366 "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
367
368 Human readable aliases are used and allowed.
369
370 =item guid list
371
372 Similar to the GUID type, this represents a list of such GUIDs, separated
373 by whitespace from each other.
374
375 For example, many BCD objects can I<inherit> elements from other BCD
376 objects by specifying the GUIDs of those other objects in a GUID list
377 called surprisingly called C<inherit>:
378
379 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
380
381 This example also shows how human readable aliases can be used.
382
383 =item device
384
385 This type is why I write I<most> are easy to explain earlier: This type
386 is the pinnacle of Microsoft-typical hacks layered on top of other
387 hacks. Understanding this type took more time than writing all the rest of
388 PBCDEDIT, and because it is so complex, this type has its own subsection
389 below.
390 =back
391
392 =head4 The BCD "device" element type
393
394 Device elements specify, well, devices. They are used for such diverse
395 purposes such as finding a TFTP network boot image, serial ports or VMBUS
396 devices, but most commonly they are used to specify the disk (harddisk,
397 cdrom, ramdisk, vhd...) to boot from.
398
399 The device element is kind of a mini-language in its own which is much
400 more versatile then the limited windows interface to it - BCDEDIT -
401 reveals.
402
403 While some information can be found on the BCD store and the windows
404 registry, there is pretty much no public information about the device
405 element, so almost everything known about it had to be researched first
406 in the process of writing this script, and consequently, support for BCD
407 device elements is partial only.
408
409 On the other hand, the expressive power of PBCDEDIT in specifying devices
410 is much bigger than BCDEDIT and therefore more can be done with it. The
411 downside is that BCD device elements are much more complicated than what
412 you might think from reading the BCDEDIT documentation.
413
414 In other words, simple things are complicated, and complicated things are
415 possible.
416
417 Anyway, the general syntax of device elements is an optional GUID,
418 followed by a device type, optionally followed by hexadecimal flags in
419 angle brackets, optionally followed by C<=> and a comma-separated list of
420 arguments, some of which can be (and often are) in turn devices again.
421
422 [{GUID}]type[<flags>][=arg,arg...]
423
424 Here are some examples:
425
426 boot
427 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
428 locate=<null>,element,systemroot
429 partition=<null>,harddisk,mbr,47cbc08a,1048576
430 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
431 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
432 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
433 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
434
435 I hope you are suitably impressed. I was, too, when I realized decoding
436 these binary blobs is not as easy as I had assumed.
437
438 The optional prefixed GUID seems to refer to a device BCD object, which
439 can be used to specify more device-specific BCD elements (for example
440 C<ramdisksdidevice> and C<ramdisksdpath>).
441
442 The flags after the type are omitted when they are C<0>. The only known
443 flag is C<1>, which seems to indicate that the parent device is invalid. I
444 don't claim to fully understand it, but it seems to indicate that the
445 boot manager has to search the device itself. Why the device is specified
446 in the first place escapes me, but a lot of this device stuff seems to be
447 badly hacked together...
448
449 The types understood and used by PBCDEDIT are as follows (keep in mind
450 that not of all the following is necessarily supported in PBCDEDIT):
451
452 =over
453
454 =item C<binary=>I<hex...>
455
456 This type isn't actually a real BCD element type, but a fallback for those
457 cases where PBCDEDIT can't perfectly decode a device element (except for
458 the leading GUID, which it can always decode). In such cases, it will
459 convert the device into this type with a hexdump of the element data.
460
461 =item C<null>
462
463 This is another special type - sometimes, a device all zero-filled, which
464 is not valid. This can mark the absence of a device or something PBCDEDIT
465 does not understand, so it decodes it into this special "all zero" type
466 called C<null>.
467
468 It's most commonly found in devices that can use an optional parent
469 device, when no parent device is used.
470
471 =item C<boot>
472
473 Another type without parameters, this refers to the device that was booted
474 from (nowadays typically the EFI system partition).
475
476 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
477
478 This specifies a VMBUS device with the given interface type and interface
479 instance, both of which are "naked" (no curly braces) GUIDs.
480
481 Made-up example (couldn't find a single example on the web):
482
483 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
484
485 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
486
487 This designates a specific partition on a block device. I<parent> is an
488 optional parent device on which to search on, and is often C<null>. Note
489 that the angle brackets around I<parent> are part of the syntax.
490
491 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
492 C<file> or C<vhd>, where the first three should be self-explaining,
493 C<file> is usually used to locate a file to be used as a disk image,
494 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
495 F<vhdx> files.
496
497 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
498 used for devices without partitions, such as cdroms, where the "partition"
499 is usually the whole device.
500
501 The I<diskid> identifies the disk or device using a unique signature, and
502 the same is true for the I<partitionid>. How these are interpreted depends
503 on the I<partitiontype>:
504
505 =over
506
507 =item C<mbr>
508
509 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
510 MBR, interpreted as a 32 bit unsigned little endian integer and written as
511 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
512
513 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
514 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
515 display the I<diskid>.
516
517 The I<partitionid> is the byte offset(!) of the partition counting from
518 the beginning of the MBR.
519
520 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
521 starting at sector C<2048> (= 1048576 / 512).
522
523 partition=<null>,harddisk,mbr,47cbc08a,1048576
524
525 =item C<gpt>
526
527 The I<diskid> is the disk GUID/disk identifier GUID from the partition
528 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
529 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
530
531 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
532 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
533
534 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
535
536 =item C<raw>
537
538 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
539 disk number and signifies the whole disk. BCDEDIT cannot display the
540 resulting device, and I am doubtful whether it has a useful effect.
541
542 =back
543
544 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
545
546 This is exactly the same as the C<partition> type, except for a tiny
547 detail: instead of using the partition start offset, this type uses the
548 partition number for MBR disks. Behaviour other partition types should be
549 the same.
550
551 The partition number starts at C<1> and skips unused partition, so if
552 there are two primary partitions and another partition inside the extended
553 partition, the primary partitions are number C<1> and C<2> and the
554 partition inside the extended partition is number C<3>, regardless of any
555 gaps.
556
557 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
558
559 This device description will make the bootloader search for a partition
560 with a given path.
561
562 The I<parent> device is the device to search on (angle brackets are
563 still part of the syntax!) If it is C<null>, then C<locate> will
564 search all disks it can find.
565
566 I<locatetype> is either C<element> or C<path>, and merely distinguishes
567 between two different ways to specify the path to search for: C<element>
568 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
569 uses a relative path as I<locatearg>.
570
571 Example: find any partition which has the F<magicfile.xxx> path in the
572 root.
573
574 locate=<null>,path,\magicfile.xxx
575
576 Example: find any partition which has the path specified in the
577 C<systemroot> element (typically F<\Windows>).
578
579 locate=<null>,element,systemroot
580
581 =item C<block=>I<devicetype>,I<args...>
582
583 Last not least, the most complex type, C<block>, which... specifies block
584 devices (which could be inside a F<vhdx> file for example).
585
586 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
587 C<file> or C<vhd> - the same as for C<partiion=>.
588
589 The remaining arguments change depending on the I<devicetype>:
590
591 =over
592
593 =item C<block=file>,<I<parent>>,I<path>
594
595 Interprets the I<parent> device (typically a partition) as a
596 filesystem and specifies a file path inside.
597
598 =item C<block=vhd>,<I<parent>>
599
600 Pretty much just changes the interpretation of I<parent>, which is
601 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
602
603 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
604
605 Interprets the I<parent> device as RAM disk, using the (decimal)
606 base address, byte size and byte offset inside a file specified by
607 I<path>. The numbers are usually all C<0> because they can be extracted
608 from the RAM disk image or other parameters.
609
610 This is most commonly used to boot C<wim> images.
611
612 =item C<block=floppy>,I<drivenum>
613
614 Refers to a removable drive identified by a number. BCDEDIT cannot display
615 the resulting device, and it is not clear what effect it will have.
616
617 =item C<block=cdrom>,I<drivenum>
618
619 Pretty much the same as C<floppy> but for CD-ROMs.
620
621 =item anything else
622
623 Probably not yet implemented. Tell me of your needs...
624
625 =back
626
627 =back5 Examples
628
629 This concludes the syntax overview for device elements, but probably
630 leaves many questions open. I can't help with most of them, as I also ave
631 many questions, but I can walk you through some actual examples using more
632 complex aspects.
633
634 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
635
636 Just like with C declarations, you best treat device descriptors as
637 instructions to find your device and work your way from the inside out:
638
639 locate=<null>,path,\disk.vhdx
640
641 First, the innermost device descriptor searches all partitions on the
642 system for a file called F<\disk.vhdx>:
643
644 block=file,<see above>,\disk.vhdx
645
646 Next, this takes the device locate has found and finds a file called
647 F<\disk.vhdx> on it. This is the same file locate was using, but that is
648 only because we find the device using the same path as finding the disk
649 image, so this is purely incidental, although quite common.
650
651 Next, this file will be opened as a virtual disk:
652
653 block=vhd,<see above>
654
655 And finally, inside this disk, another C<locate> will look for a partition
656 with a path as specified in the C<path> element, which most likely will be
657 F<\Windows\system32\winload.exe>:
658
659 locate=<see above>,element,path
660
661 As a result, this will boot the first Windows it finds on the first
662 F<disk.vhdx> disk image it can find anywhere.
663
664 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
665
666 Pretty much the same as the previous case, but with a bit of
667 variance. First, look for a specific partition on an MBR-partitioned disk:
668
669 partition=<null>,harddisk,mbr,47cbc08a,242643632128
670
671 Then open the file F<\win10.vhdx> on that partition:
672
673 block=file,<see above>,\win10.vhdx
674
675 Then, again, the file is opened as a virtual disk image:
676
677 block=vhd,<see above>
678
679 And again the windows loader (or whatever is in C<path>) will be searched:
680
681 locate=<see above>,element,path
682
683 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
684
685 This is quite different. First, it starts with a GUID. This GUID belongs
686 to a BCD object of type C<device>, which has additional parameters:
687
688 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
689 "type" : "device",
690 "description" : "sdi file for ramdisk",
691 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
692 "ramdisksdipath" : "\boot.sdi"
693 },
694
695 I will not go into many details, but this specifies a (presumably empty)
696 template ramdisk image (F<\boot.sdi>) that is used to initialize the
697 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
698 see, this F<.sdi> file resides on a different C<partition>.
699
700 Continuing, as always, from the inside out, first this device descriptor
701 finds a specific partition:
702
703 partition=<null>,harddisk,mbr,47cbc08a,242643632128
704
705 And then specifies a C<ramdisk> image on this partition:
706
707 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
708
709 I don't know what the purpose of the C<< <1> >> flag value is, but it
710 seems to be always there on this kind of entry.
711
712 If you have some good examples to add here, feel free to mail me.
713
714
715 =head1 EDITING BCD STORES
716
717 The C<edit> and C<parse> subcommands allow you to read a BCD data store
718 and modify it or extract data from it. This is done by executing a series
719 of "editing instructions" which are explained here.
720
721 =over
722
723 =item C<get> I<object> I<element>
724
725 Reads the BCD element I<element> from the BCD object I<object> and writes
726 it to standard output, followed by a newline. The I<object> can be a GUID
727 or a human-readable alias, or the special string C<{default}>, which will
728 refer to the default BCD object.
729
730 Example: find description of the default BCD object.
731
732 pbcdedit parse BCD get "{default}" description
733
734 =item C<set> I<object> I<element> I<value>
735
736 Similar to C<get>, but sets the element to the given I<value> instead.
737
738 Example: change the bootmgr default too
739 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
740
741 pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
742
743 =item C<eval> I<perlcode>
744
745 This takes the next argument, interprets it as Perl code and
746 evaluates it. This allows you to do more complicated modifications or
747 extractions.
748
749 The following variables are predefined for your use:
750
751 =over
752
753 =item C<$PATH>
754
755 The path to the BCD data store, as given to C<edit> or C<parse>.
756
757 =item C<$BCD>
758
759 The decoded BCD data store.
760
761 =item C<$DEFAULT>
762
763 The default BCD object name.
764
765 =back
766
767 The example given for C<get>, above, could be expressed like this with
768 C<eval>:
769
770 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
771
772 The example given for C<set> could be expressed like this:
773
774 pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
775
776 =item C<do> I<path>
777
778 Similar to C<eval>, above, but instead of using the argument as perl code,
779 it loads the perl code from the given file and executes it. This makes it
780 easier to write more complicated or larger programs.
781
782 =back
783
784
785 =head1 SEE ALSO
786
787 For ideas on what you can do with BCD stores in
788 general, and some introductory material, try
789 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
790
791 For good reference on which BCD objects and
792 elements exist, see Geoff Chappell's pages at
793 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
794
795 =head1 AUTHOR
796
797 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
798
799 =head1 REPORTING BUGS
800
801 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
802
803 =head1 BUGS AND SHORTCOMINGS
804
805 This should be a module. Of a series of modules, even.
806
807 Registry code should preserve classname and security descriptor data, and
808 whatever else is necessary to read and write any registry hive file.
809
810 I am also not happy with device descriptors being strings rather than a
811 data structure, but strings are probably better for command line usage. In
812 any case, device descriptors could be converted by simply "splitting" at
813 "=" and "," into an array reference, recursively.
814
815 =head1 HOMEPAGE
816
817 Original versions of this program can be found at
818 L<http://software.schmorp.de/pkg/pbcdedit>.
819
820 =head1 COPYRIGHT
821
822 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
823 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
824 free to change and redistribute it. There is NO WARRANTY, to the extent
825 permitted by law.
826
827 =cut
828
829 BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
830
831 use Data::Dump;
832 use Encode ();
833 use List::Util ();
834 use IO::Handle ();
835 use Time::HiRes ();
836
837 eval { unpack "Q", pack "Q", 1 }
838 or die "perl with 64 bit integer supported required.\n";
839
840 our $JSON = eval { require JSON::XS; JSON::XS:: }
841 // eval { require JSON::PP; JSON::PP:: }
842 // die "either JSON::XS or JSON::PP must be installed\n";
843
844 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
845
846 # hack used for debugging
847 sub xxd($$) {
848 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
849 syswrite $xxd, $_[1];
850 }
851
852 sub file_load($) {
853 my ($path) = @_;
854
855 open my $fh, "<:raw", $path
856 or die "$path: $!\n";
857 my $size = -s $fh;
858 $size = read $fh, my $buf, $size
859 or die "$path: short read\n";
860
861 $buf
862 }
863
864 # sources and resources used for writing pbcdedit
865 #
866 # registry:
867 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
868 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
869 # bcd:
870 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
871 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
872 # bcd devices:
873 # reactos' boot/environ/include/bl.h
874 # windows .mof files
875
876 #############################################################################
877 # registry stuff
878
879 # we use a hardcoded securitya descriptor - full access for everyone
880 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
881 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
882 my $sacl = "";
883 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
884 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
885 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
886 1, 0x8004,
887 20 + (length $sacl) + (length $dacl),
888 20 + (length $sacl) + (length $dacl) + (length $sid),
889 0, 20,
890 $sacl, $dacl, $sid, $sid;
891 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
892
893 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
894
895 sub KEY_HIVE_ENTRY() { 0x0004 }
896 sub KEY_NO_DELETE () { 0x0008 }
897 sub KEY_COMP_NAME () { 0x0020 }
898
899 sub VALUE_COMP_NAME() { 0x0001 }
900
901 my @regf_typename = qw(
902 none sz expand_sz binary dword dword_be link multi_sz
903 resource_list full_resource_descriptor resource_requirements_list
904 qword qword_be
905 );
906
907 my %regf_dec_type = (
908 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
909 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
910 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
911 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
912 dword => sub { unpack "L<", shift },
913 dword_be => sub { unpack "L>", shift },
914 qword => sub { unpack "Q<", shift },
915 qword_be => sub { unpack "Q>", shift },
916 );
917
918 my %regf_enc_type = (
919 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
920 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
921 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
922 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
923 dword => sub { pack "L<", shift },
924 dword_be => sub { pack "L>", shift },
925 qword => sub { pack "Q<", shift },
926 qword_be => sub { pack "Q>", shift },
927 );
928
929 # decode a registry hive
930 sub regf_decode($) {
931 my ($hive) = @_;
932
933 "regf" eq substr $hive, 0, 4
934 or die "not a registry hive\n";
935
936 my ($major, $minor) = unpack "\@20 L< L<", $hive;
937
938 $major == 1
939 or die "registry major version is not 1, but $major\n";
940
941 $minor >= 2 && $minor <= 6
942 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
943
944 my $bins = substr $hive, 4096;
945
946 my $decode_key = sub {
947 my ($ofs) = @_;
948
949 my @res;
950
951 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
952
953 $sze < 0
954 or die "key node points to unallocated cell\n";
955
956 $sig eq "nk"
957 or die "expected key node at $ofs, got '$sig'\n";
958
959 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
960
961 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
962
963 # classnames, security descriptors
964 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
965 #if ($cofs != NO_OFS && $clen) {
966 # #warn "cofs $cofs+$clen\n";
967 # xxd substr $bins, $cofs, 16;
968 #}
969
970 $kname = Encode::decode "UTF-16LE", $kname
971 unless $flags & KEY_COMP_NAME;
972
973 if ($vnum && $vofs != NO_OFS) {
974 for ($vofs += 4; $vnum--; $vofs += 4) {
975 my $kofs = unpack "\@$vofs L<", $bins;
976
977 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
978
979 $sig eq "vk"
980 or die "key values list contains invalid node (expected vk got '$sig')\n";
981
982 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
983
984 my $name = substr $bins, $kofs + 24, $nsze;
985
986 $name = Encode::decode "UTF-16LE", $name
987 unless $flags & VALUE_COMP_NAME;
988
989 my $data;
990 if ($dsze & 0x80000000) {
991 $data = substr $bins, $kofs + 12, $dsze & 0x7;
992 } elsif ($dsze > 16344 && $minor > 3) { # big data
993 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
994
995 for ($bofs += 4; $bnum--; $bofs += 4) {
996 my $dofs = unpack "\@$bofs L<", $bins;
997 my $dsze = unpack "\@$dofs l<", $bins;
998 $data .= substr $bins, $dofs + 4, -$dsze - 4;
999 }
1000 $data = substr $data, 0, $dsze; # cells might be longer than data
1001 } else {
1002 $data = substr $bins, $dofs + 4, $dsze;
1003 }
1004
1005 $type = $regf_typename[$type] if $type < @regf_typename;
1006
1007 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1008 ->($data);
1009
1010 $res[0]{$name} = [$type, $data];
1011 }
1012 }
1013
1014 if ($sofs != NO_OFS) {
1015 my $decode_key = __SUB__;
1016
1017 my $decode_subkeylist = sub {
1018 my ($sofs) = @_;
1019
1020 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1021
1022 if ($sig eq "ri") { # index root
1023 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1024 __SUB__->(unpack "\@$lofs L<", $bins);
1025 }
1026 } else {
1027 my $inc;
1028
1029 if ($sig eq "li") { # subkey list
1030 $inc = 4;
1031 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1032 $inc = 8;
1033 } else {
1034 die "expected subkey list at $sofs, found '$sig'\n";
1035 }
1036
1037 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1038 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1039 $res[1]{$name} = $data;
1040 }
1041 }
1042 };
1043
1044 $decode_subkeylist->($sofs);
1045 }
1046
1047 ($kname, \@res);
1048 };
1049
1050 my ($rootcell) = unpack "\@36 L<", $hive;
1051
1052 my ($rname, $root) = $decode_key->($rootcell);
1053
1054 [$rname, $root]
1055 }
1056
1057 # return a binary windows fILETIME struct
1058 sub filetime_now {
1059 my ($s, $ms) = Time::HiRes::gettimeofday;
1060
1061 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1062 }
1063
1064 # encode a registry hive
1065 sub regf_encode($) {
1066 my ($hive) = @_;
1067
1068 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1069
1070 # the filetime is apparently used to verify log file validity,
1071 # so by generating a new timestamp the log files *should* automatically
1072 # become invalidated and windows would "self-heal" them.
1073 # (update: has been verified by reverse engineering)
1074 # possibly the fact that the two sequence numbes match might also
1075 # make windows think that the hive is not dirty and ignore logs.
1076 # (update: has been verified by reverse engineering)
1077
1078 my $now = filetime_now;
1079
1080 # we only create a single hbin
1081 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1082
1083 # append cell to $bind, return offset
1084 my $cell = sub {
1085 my ($cell) = @_;
1086
1087 my $res = length $bins;
1088
1089 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1090
1091 $bins .= pack "l<", -(4 + length $cell);
1092 $bins .= $cell;
1093
1094 $res
1095 };
1096
1097 my $sdofs = $cell->($sk); # add a dummy security descriptor
1098 my $sdref = 0; # refcount
1099 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1100 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1101
1102 my $encode_key = sub {
1103 my ($kname, $kdata, $flags) = @_;
1104 my ($values, $subkeys) = @$kdata;
1105
1106 if ($kname =~ /[^\x00-\xff]/) {
1107 $kname = Encode::encode "UTF-16LE", $kname;
1108 } else {
1109 $flags |= KEY_COMP_NAME;
1110 }
1111
1112 # encode subkeys
1113
1114 my @snames =
1115 map $_->[1],
1116 sort { $a->[0] cmp $b->[0] }
1117 map [(uc $_), $_],
1118 keys %$subkeys;
1119
1120 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1121 my $maxsname = 4 * List::Util::max map length, @snames;
1122
1123 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1124
1125 # encode values
1126 my $maxvname = 4 * List::Util::max map length, keys %$values;
1127 my @vofs;
1128 my $maxdsze = 0;
1129
1130 while (my ($vname, $v) = each %$values) {
1131 my $flags = 0;
1132
1133 if ($vname =~ /[^\x00-\xff]/) {
1134 $vname = Encode::encode "UTF-16LE", $kname;
1135 } else {
1136 $flags |= VALUE_COMP_NAME;
1137 }
1138
1139 my ($type, $data) = @$v;
1140
1141 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1142
1143 my $dsze;
1144 my $dofs;
1145
1146 if (length $data <= 4) {
1147 $dsze = 0x80000000 | length $data;
1148 $dofs = unpack "L<", pack "a4", $data;
1149 } else {
1150 $dsze = length $data;
1151 $dofs = $cell->($data);
1152 }
1153
1154 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1155
1156 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1157 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1158
1159 $maxdsze = $dsze if $maxdsze < $dsze;
1160 }
1161
1162 # encode key
1163
1164 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1165 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1166
1167 my $kdata = pack "
1168 a2 S< a8 x4 x4
1169 L< L< L< L< L< L<
1170 L< L< L< L< L< L<
1171 x4 S< S< a*
1172 ",
1173 nk => $flags, $now,
1174 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1175 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1176 length $kname, 0, $kname;
1177 ++$sdref;
1178
1179 my $res = $cell->($kdata);
1180
1181 substr $bins, $_ + 16, 4, pack "L<", $res
1182 for @sofs;
1183
1184 $res
1185 };
1186
1187 my ($rname, $root) = @$hive;
1188
1189 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1190
1191 if (my $pad = -(length $bins) & 4095) {
1192 $pad -= 4;
1193 $bins .= pack "l< x$pad", $pad + 4;
1194 }
1195
1196 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1197 substr $bins, 8, 4, pack "L<", length $bins;
1198
1199 my $base = pack "
1200 a4 L< L< a8 L< L< L< L<
1201 L< L< L<
1202 a64
1203 x396
1204 ",
1205 regf => 1974, 1974, $now, 1, 3, 0, 1,
1206 $rofs, length $bins, 1,
1207 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1208
1209 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1210 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1211 $chksum = 1 if $chksum == 0;
1212
1213 $base .= pack "L<", $chksum;
1214
1215 $base = pack "a* \@4095 x1", $base;
1216
1217 $base . $bins
1218 }
1219
1220 # load and parse registry from file
1221 sub regf_load($) {
1222 my ($path) = @_;
1223
1224 regf_decode file_load $path
1225 }
1226
1227 # encode and save registry to file
1228 sub regf_save {
1229 my ($path, $hive) = @_;
1230
1231 $hive = regf_encode $hive;
1232
1233 open my $regf, ">:raw", "$path~"
1234 or die "$path~: $!\n";
1235 print $regf $hive
1236 or die "$path~: short write\n";
1237 $regf->sync;
1238 close $regf;
1239
1240 rename "$path~", $path;
1241 }
1242
1243 #############################################################################
1244 # bcd stuff
1245
1246 # human-readable alises for GUID object identifiers
1247 our %bcd_objects = (
1248 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1249 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1250 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1251 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1252 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1253 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1254 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1255 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1256 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1257 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1258 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1259 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1260 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1261 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1262 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1263 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1264 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1265 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1266 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1267 );
1268
1269 # default types
1270 our %bcd_object_types = (
1271 '{fwbootmgr}' => 0x10100001,
1272 '{bootmgr}' => 0x10100002,
1273 '{memdiag}' => 0x10200005,
1274 '{ntldr}' => 0x10300006,
1275 '{badmemory}' => 0x20100000,
1276 '{dbgsettings}' => 0x20100000,
1277 '{emssettings}' => 0x20100000,
1278 '{globalsettings}' => 0x20100000,
1279 '{bootloadersettings}' => 0x20200003,
1280 '{hypervisorsettings}' => 0x20200003,
1281 '{kerneldbgsettings}' => 0x20200003,
1282 '{resumeloadersettings}' => 0x20200004,
1283 '{ramdiskoptions}' => 0x30000000,
1284 );
1285
1286 # object types
1287 our %bcd_types = (
1288 0x10100001 => 'application::fwbootmgr',
1289 0x10100002 => 'application::bootmgr',
1290 0x10200003 => 'application::osloader',
1291 0x10200004 => 'application::resume',
1292 0x10100005 => 'application::memdiag',
1293 0x10100006 => 'application::ntldr',
1294 0x10100007 => 'application::setupldr',
1295 0x10400008 => 'application::bootsector',
1296 0x10400009 => 'application::startup',
1297 0x1020000a => 'application::bootapp',
1298 0x20100000 => 'settings',
1299 0x20200001 => 'inherit::fwbootmgr',
1300 0x20200002 => 'inherit::bootmgr',
1301 0x20200003 => 'inherit::osloader',
1302 0x20200004 => 'inherit::resume',
1303 0x20200005 => 'inherit::memdiag',
1304 0x20200006 => 'inherit::ntldr',
1305 0x20200007 => 'inherit::setupldr',
1306 0x20200008 => 'inherit::bootsector',
1307 0x20200009 => 'inherit::startup',
1308 0x20300000 => 'inherit::device',
1309 0x30000000 => 'device',
1310 );
1311
1312 our %rbcd_objects = reverse %bcd_objects;
1313
1314 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1315
1316 sub dec_guid($) {
1317 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1318 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1319 }
1320
1321 sub enc_guid($) {
1322 $_[0] =~ /^$RE_GUID\z/o
1323 or return;
1324
1325 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1326 }
1327
1328 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1329 sub dec_wguid($) {
1330 my $guid = "{" . (dec_guid shift) . "}";
1331
1332 $bcd_objects{$guid} // $guid
1333 }
1334
1335 sub enc_wguid($) {
1336 my ($guid) = @_;
1337
1338 if (my $alias = $rbcd_objects{$guid}) {
1339 $guid = $alias;
1340 }
1341
1342 $guid =~ /^\{($RE_GUID)\}\z/o
1343 or return;
1344
1345 enc_guid $1
1346 }
1347
1348 sub BCDE_CLASS () { 0xf0000000 }
1349 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1350 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1351 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1352 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1353
1354 sub BCDE_FORMAT () { 0x0f000000 }
1355 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1356 sub BCDE_FORMAT_STRING () { 0x02000000 }
1357 sub BCDE_FORMAT_GUID () { 0x03000000 }
1358 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1359 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1360 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1361 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1362
1363 sub dec_device;
1364 sub enc_device;
1365
1366 sub enc_integer($) {
1367 no warnings 'portable'; # ugh
1368 my $value = shift;
1369 $value = oct $value if $value =~ /^0[bBxX]/;
1370 unpack "H*", pack "Q<", $value
1371 }
1372
1373 our %bcde_dec = (
1374 BCDE_FORMAT_DEVICE , \&dec_device,
1375 # # for round-trip verification
1376 # BCDE_FORMAT_DEVICE , sub {
1377 # my $dev = dec_device $_[0];
1378 # $_[0] eq enc_device $dev
1379 # or die "bcd device decoding does not round trip for $_[0]\n";
1380 # $dev
1381 # },
1382 BCDE_FORMAT_STRING , sub { shift },
1383 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1384 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1385 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1386 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1387 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1388 );
1389
1390 our %bcde_enc = (
1391 BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1392 BCDE_FORMAT_STRING , sub { sz => shift },
1393 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1394 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1395 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1396 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1397 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1398 );
1399
1400 # BCD Elements
1401 our %bcde = (
1402 0x11000001 => 'device',
1403 0x12000002 => 'path',
1404 0x12000004 => 'description',
1405 0x12000005 => 'locale',
1406 0x14000006 => 'inherit',
1407 0x15000007 => 'truncatememory',
1408 0x14000008 => 'recoverysequence',
1409 0x16000009 => 'recoveryenabled',
1410 0x1700000a => 'badmemorylist',
1411 0x1600000b => 'badmemoryaccess',
1412 0x1500000c => 'firstmegabytepolicy',
1413 0x1500000d => 'relocatephysical',
1414 0x1500000e => 'avoidlowmemory',
1415 0x1600000f => 'traditionalkseg',
1416 0x16000010 => 'bootdebug',
1417 0x15000011 => 'debugtype',
1418 0x15000012 => 'debugaddress',
1419 0x15000013 => 'debugport',
1420 0x15000014 => 'baudrate',
1421 0x15000015 => 'channel',
1422 0x12000016 => 'targetname',
1423 0x16000017 => 'noumex',
1424 0x15000018 => 'debugstart',
1425 0x12000019 => 'busparams',
1426 0x1500001a => 'hostip',
1427 0x1500001b => 'port',
1428 0x1600001c => 'dhcp',
1429 0x1200001d => 'key',
1430 0x1600001e => 'vm',
1431 0x16000020 => 'bootems',
1432 0x15000022 => 'emsport',
1433 0x15000023 => 'emsbaudrate',
1434 0x12000030 => 'loadoptions',
1435 0x16000040 => 'advancedoptions',
1436 0x16000041 => 'optionsedit',
1437 0x15000042 => 'keyringaddress',
1438 0x11000043 => 'bootstatdevice',
1439 0x12000044 => 'bootstatfilepath',
1440 0x16000045 => 'preservebootstat',
1441 0x16000046 => 'graphicsmodedisabled',
1442 0x15000047 => 'configaccesspolicy',
1443 0x16000048 => 'nointegritychecks',
1444 0x16000049 => 'testsigning',
1445 0x1200004a => 'fontpath',
1446 0x1500004b => 'integrityservices',
1447 0x1500004c => 'volumebandid',
1448 0x16000050 => 'extendedinput',
1449 0x15000051 => 'initialconsoleinput',
1450 0x15000052 => 'graphicsresolution',
1451 0x16000053 => 'restartonfailure',
1452 0x16000054 => 'highestmode',
1453 0x16000060 => 'isolatedcontext',
1454 0x15000065 => 'displaymessage',
1455 0x15000066 => 'displaymessageoverride',
1456 0x16000068 => 'nobootuxtext',
1457 0x16000069 => 'nobootuxprogress',
1458 0x1600006a => 'nobootuxfade',
1459 0x1600006b => 'bootuxreservepooldebug',
1460 0x1600006c => 'bootuxdisabled',
1461 0x1500006d => 'bootuxfadeframes',
1462 0x1600006e => 'bootuxdumpstats',
1463 0x1600006f => 'bootuxshowstats',
1464 0x16000071 => 'multibootsystem',
1465 0x16000072 => 'nokeyboard',
1466 0x15000073 => 'aliaswindowskey',
1467 0x16000074 => 'bootshutdowndisabled',
1468 0x15000075 => 'performancefrequency',
1469 0x15000076 => 'securebootrawpolicy',
1470 0x17000077 => 'allowedinmemorysettings',
1471 0x15000079 => 'bootuxtransitiontime',
1472 0x1600007a => 'mobilegraphics',
1473 0x1600007b => 'forcefipscrypto',
1474 0x1500007d => 'booterrorux',
1475 0x1600007e => 'flightsigning',
1476 0x1500007f => 'measuredbootlogformat',
1477 0x15000080 => 'displayrotation',
1478 0x15000081 => 'logcontrol',
1479 0x16000082 => 'nofirmwaresync',
1480 0x11000084 => 'windowssyspart',
1481 0x16000087 => 'numlock',
1482 0x22000001 => 'bpbstring',
1483 0x24000001 => 'displayorder',
1484 0x21000001 => 'filedevice',
1485 0x21000001 => 'osdevice',
1486 0x25000001 => 'passcount',
1487 0x26000001 => 'pxesoftreboot',
1488 0x22000002 => 'applicationname',
1489 0x24000002 => 'bootsequence',
1490 0x22000002 => 'filepath',
1491 0x22000002 => 'systemroot',
1492 0x25000002 => 'testmix',
1493 0x26000003 => 'cacheenable',
1494 0x26000003 => 'customsettings',
1495 0x23000003 => 'default',
1496 0x25000003 => 'failurecount',
1497 0x23000003 => 'resumeobject',
1498 0x26000004 => 'failuresenabled',
1499 0x26000004 => 'pae',
1500 0x26000004 => 'stampdisks',
1501 0x25000004 => 'testtofail',
1502 0x25000004 => 'timeout',
1503 0x21000005 => 'associatedosdevice',
1504 0x26000005 => 'cacheenable',
1505 0x26000005 => 'resume',
1506 0x25000005 => 'stridefailcount',
1507 0x26000006 => 'debugoptionenabled',
1508 0x25000006 => 'invcfailcount',
1509 0x23000006 => 'resumeobject',
1510 0x25000007 => 'bootux',
1511 0x25000007 => 'matsfailcount',
1512 0x24000007 => 'startupsequence',
1513 0x25000008 => 'bootmenupolicy',
1514 0x25000008 => 'randfailcount',
1515 0x25000009 => 'chckrfailcount',
1516 0x26000010 => 'detecthal',
1517 0x24000010 => 'toolsdisplayorder',
1518 0x22000011 => 'kernel',
1519 0x22000012 => 'hal',
1520 0x22000013 => 'dbgtransport',
1521 0x26000020 => 'displaybootmenu',
1522 0x25000020 => 'nx',
1523 0x26000021 => 'noerrordisplay',
1524 0x25000021 => 'pae',
1525 0x21000022 => 'bcddevice',
1526 0x26000022 => 'winpe',
1527 0x22000023 => 'bcdfilepath',
1528 0x26000024 => 'hormenabled',
1529 0x26000024 => 'hormenabled',
1530 0x26000024 => 'nocrashautoreboot',
1531 0x26000025 => 'hiberboot',
1532 0x26000025 => 'lastknowngood',
1533 0x26000026 => 'oslnointegritychecks',
1534 0x22000026 => 'passwordoverride',
1535 0x26000027 => 'osltestsigning',
1536 0x22000027 => 'pinpassphraseoverride',
1537 0x26000028 => 'processcustomactionsfirst',
1538 0x27000030 => 'customactions',
1539 0x26000030 => 'nolowmem',
1540 0x26000031 => 'persistbootsequence',
1541 0x25000031 => 'removememory',
1542 0x25000032 => 'increaseuserva',
1543 0x26000032 => 'skipstartupsequence',
1544 0x25000033 => 'perfmem',
1545 0x22000040 => 'fverecoveryurl',
1546 0x26000040 => 'vga',
1547 0x22000041 => 'fverecoverymessage',
1548 0x26000041 => 'quietboot',
1549 0x26000042 => 'novesa',
1550 0x26000043 => 'novga',
1551 0x25000050 => 'clustermodeaddressing',
1552 0x26000051 => 'usephysicaldestination',
1553 0x25000052 => 'restrictapiccluster',
1554 0x22000053 => 'evstore',
1555 0x26000054 => 'uselegacyapicmode',
1556 0x26000060 => 'onecpu',
1557 0x25000061 => 'numproc',
1558 0x26000062 => 'maxproc',
1559 0x25000063 => 'configflags',
1560 0x26000064 => 'maxgroup',
1561 0x26000065 => 'groupaware',
1562 0x25000066 => 'groupsize',
1563 0x26000070 => 'usefirmwarepcisettings',
1564 0x25000071 => 'msi',
1565 0x25000072 => 'pciexpress',
1566 0x25000080 => 'safeboot',
1567 0x26000081 => 'safebootalternateshell',
1568 0x26000090 => 'bootlog',
1569 0x26000091 => 'sos',
1570 0x260000a0 => 'debug',
1571 0x260000a1 => 'halbreakpoint',
1572 0x260000a2 => 'useplatformclock',
1573 0x260000a3 => 'forcelegacyplatform',
1574 0x260000a4 => 'useplatformtick',
1575 0x260000a5 => 'disabledynamictick',
1576 0x250000a6 => 'tscsyncpolicy',
1577 0x260000b0 => 'ems',
1578 0x250000c0 => 'forcefailure',
1579 0x250000c1 => 'driverloadfailurepolicy',
1580 0x250000c2 => 'bootmenupolicy',
1581 0x260000c3 => 'onetimeadvancedoptions',
1582 0x260000c4 => 'onetimeoptionsedit',
1583 0x250000e0 => 'bootstatuspolicy',
1584 0x260000e1 => 'disableelamdrivers',
1585 0x250000f0 => 'hypervisorlaunchtype',
1586 0x220000f1 => 'hypervisorpath',
1587 0x260000f2 => 'hypervisordebug',
1588 0x250000f3 => 'hypervisordebugtype',
1589 0x250000f4 => 'hypervisordebugport',
1590 0x250000f5 => 'hypervisorbaudrate',
1591 0x250000f6 => 'hypervisorchannel',
1592 0x250000f7 => 'bootux',
1593 0x260000f8 => 'hypervisordisableslat',
1594 0x220000f9 => 'hypervisorbusparams',
1595 0x250000fa => 'hypervisornumproc',
1596 0x250000fb => 'hypervisorrootprocpernode',
1597 0x260000fc => 'hypervisoruselargevtlb',
1598 0x250000fd => 'hypervisorhostip',
1599 0x250000fe => 'hypervisorhostport',
1600 0x250000ff => 'hypervisordebugpages',
1601 0x25000100 => 'tpmbootentropy',
1602 0x22000110 => 'hypervisorusekey',
1603 0x22000112 => 'hypervisorproductskutype',
1604 0x25000113 => 'hypervisorrootproc',
1605 0x26000114 => 'hypervisordhcp',
1606 0x25000115 => 'hypervisoriommupolicy',
1607 0x26000116 => 'hypervisorusevapic',
1608 0x22000117 => 'hypervisorloadoptions',
1609 0x25000118 => 'hypervisormsrfilterpolicy',
1610 0x25000119 => 'hypervisormmionxpolicy',
1611 0x2500011a => 'hypervisorschedulertype',
1612 0x25000120 => 'xsavepolicy',
1613 0x25000121 => 'xsaveaddfeature0',
1614 0x25000122 => 'xsaveaddfeature1',
1615 0x25000123 => 'xsaveaddfeature2',
1616 0x25000124 => 'xsaveaddfeature3',
1617 0x25000125 => 'xsaveaddfeature4',
1618 0x25000126 => 'xsaveaddfeature5',
1619 0x25000127 => 'xsaveaddfeature6',
1620 0x25000128 => 'xsaveaddfeature7',
1621 0x25000129 => 'xsaveremovefeature',
1622 0x2500012a => 'xsaveprocessorsmask',
1623 0x2500012b => 'xsavedisable',
1624 0x2500012c => 'kerneldebugtype',
1625 0x2200012d => 'kernelbusparams',
1626 0x2500012e => 'kerneldebugaddress',
1627 0x2500012f => 'kerneldebugport',
1628 0x25000130 => 'claimedtpmcounter',
1629 0x25000131 => 'kernelchannel',
1630 0x22000132 => 'kerneltargetname',
1631 0x25000133 => 'kernelhostip',
1632 0x25000134 => 'kernelport',
1633 0x26000135 => 'kerneldhcp',
1634 0x22000136 => 'kernelkey',
1635 0x22000137 => 'imchivename',
1636 0x21000138 => 'imcdevice',
1637 0x25000139 => 'kernelbaudrate',
1638 0x22000140 => 'mfgmode',
1639 0x26000141 => 'event',
1640 0x25000142 => 'vsmlaunchtype',
1641 0x25000144 => 'hypervisorenforcedcodeintegrity',
1642 0x26000145 => 'enablebootdebugpolicy',
1643 0x26000146 => 'enablebootorderclean',
1644 0x26000147 => 'enabledeviceid',
1645 0x26000148 => 'enableffuloader',
1646 0x26000149 => 'enableiuloader',
1647 0x2600014a => 'enablemassstorage',
1648 0x2600014b => 'enablerpmbprovisioning',
1649 0x2600014c => 'enablesecurebootpolicy',
1650 0x2600014d => 'enablestartcharge',
1651 0x2600014e => 'enableresettpm',
1652 0x21000150 => 'systemdatadevice',
1653 0x21000151 => 'osarcdevice',
1654 0x21000153 => 'osdatadevice',
1655 0x21000154 => 'bspdevice',
1656 0x21000155 => 'bspfilepath',
1657 0x26000202 => 'skipffumode',
1658 0x26000203 => 'forceffumode',
1659 0x25000510 => 'chargethreshold',
1660 0x26000512 => 'offmodecharging',
1661 0x25000aaa => 'bootflow',
1662 0x35000001 => 'ramdiskimageoffset',
1663 0x35000002 => 'ramdisktftpclientport',
1664 0x31000003 => 'ramdisksdidevice',
1665 0x32000004 => 'ramdisksdipath',
1666 0x35000005 => 'ramdiskimagelength',
1667 0x36000006 => 'exportascd',
1668 0x35000007 => 'ramdisktftpblocksize',
1669 0x35000008 => 'ramdisktftpwindowsize',
1670 0x36000009 => 'ramdiskmcenabled',
1671 0x3600000a => 'ramdiskmctftpfallback',
1672 0x3600000b => 'ramdisktftpvarwindow',
1673 0x45000001 => 'devicetype',
1674 0x42000002 => 'applicationrelativepath',
1675 0x42000003 => 'ramdiskdevicerelativepath',
1676 0x46000004 => 'omitosloaderelements',
1677 0x47000006 => 'elementstomigrate',
1678 0x46000010 => 'recoveryos',
1679 );
1680
1681 our %rbcde = reverse %bcde;
1682
1683 sub dec_bcde_id($) {
1684 $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1685 }
1686
1687 sub enc_bcde_id($) {
1688 $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1689 ? hex $1
1690 : $rbcde{$_[0]}
1691 }
1692
1693 # decode/encode bcd device element - the horror, no documentaion
1694 # whatsoever, supercomplex, superinconsistent.
1695
1696 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1697 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1698 our @part_type = qw(gpt mbr raw);
1699
1700 our $NULL_DEVICE = "\x00" x 16;
1701
1702 # biggest bitch to decode, ever
1703 # this decoded a device portion after the GUID
1704 sub dec_device_($);
1705 sub dec_device_($) {
1706 my ($device) = @_;
1707
1708 my $res;
1709
1710 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1711
1712 $pad == 0
1713 or die "non-zero reserved field in device descriptor\n";
1714
1715 if ($length == 0 && $type == 0 && $flags == 0) {
1716 return ("null", $device);
1717 }
1718
1719 $length >= 16
1720 or die "device element size too small ($length)\n";
1721
1722 $type = $dev_type[$type] // die "$type: unknown device type\n";
1723 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1724
1725 $res .= $type;
1726 $res .= sprintf "<%x>", $flags if $flags;
1727
1728 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1729
1730 $length == 4 * 4 + length $device
1731 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1732
1733 my $dec_path = sub {
1734 my ($path, $error) = @_;
1735
1736 $path =~ /^((?:..)*)\x00\x00\z/s
1737 or die "$error\n";
1738
1739 $path = Encode::decode "UTF-16LE", $1;
1740
1741 $path
1742 };
1743
1744 if ($type eq "partition" or $type eq "legacypartition") {
1745 my $partdata = substr $device, 0, 16, "";
1746 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1747
1748 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1749 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1750
1751 my $diskid = substr $device, 0, 16, "";
1752
1753 $diskid = $parttype eq "gpt"
1754 ? dec_guid substr $diskid, 0, 16
1755 : sprintf "%08x", unpack "V", $diskid;
1756
1757 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1758 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1759 : unpack "L<", $partdata; # partition number, one-based
1760
1761 (my $parent, $device) = dec_device_ $device;
1762
1763 $res .= "=";
1764 $res .= "<$parent>";
1765 $res .= ",$blocktype,$parttype,$diskid,$partid";
1766
1767 # PartitionType (gpt, mbr, raw)
1768 # guid | partsig | disknumber
1769
1770 } elsif ($type eq "boot") {
1771 $device =~ s/^\x00{56}\z//
1772 or die "boot device type with extra data not supported\n";
1773
1774 } elsif ($type eq "block") {
1775 my $blocktype = unpack "V", substr $device, 0, 4, "";
1776
1777 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1778
1779 # decode a "file path" structure
1780 my $dec_file = sub {
1781 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1782
1783 my $path = substr $device, 0, $flen - 12, "";
1784
1785 $fver == 1
1786 or die "unsupported file descriptor version '$fver'\n";
1787
1788 $ftype == 5
1789 or die "unsupported file descriptor path type '$type'\n";
1790
1791 (my $parent, $path) = dec_device_ $path;
1792
1793 $path = $dec_path->($path, "file device without path");
1794
1795 ($parent, $path)
1796 };
1797
1798 if ($blocktype eq "file") {
1799 my ($parent, $path) = $dec_file->();
1800
1801 $res .= "=file,<$parent>,$path";
1802
1803 } elsif ($blocktype eq "vhd") {
1804 $device =~ s/^\x00{20}//s
1805 or die "virtualdisk has non-zero fields I don't understand\n";
1806
1807 (my $parent, $device) = dec_device_ $device;
1808
1809 $res .= "=vhd,<$parent>";
1810
1811 } elsif ($blocktype eq "ramdisk") {
1812 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1813 my ($subdev, $path) = $dec_file->();
1814
1815 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1816
1817 } else {
1818 die "unsupported block type '$blocktype'\n";
1819 }
1820
1821 } elsif ($type eq "locate") {
1822 # mode, bcde_id, unknown, string
1823 # we assume locate has _either_ an element id _or_ a path, but not both
1824
1825 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1826
1827 if ($parent) {
1828 # not sure why this is an offset - it must come after the path
1829 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1830 ($parent, my $tail) = dec_device_ $parent;
1831 0 == length $tail
1832 or die "trailing data after locate device parent\n";
1833 } else {
1834 $parent = "null";
1835 }
1836
1837 my $path = $device; $device = "";
1838 $path = $dec_path->($path, "device locate mode without path");
1839
1840 $res .= "=<$parent>,";
1841
1842 if ($mode == 0) { # "Element"
1843 !length $path
1844 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1845
1846 $elem = dec_bcde_id $elem;
1847 $res .= "element,$elem";
1848
1849 } elsif ($mode == 1) { # "String"
1850 !$elem
1851 or die "device locate mode 1 having non-zero element\n";
1852
1853 $res .= "path,$path";
1854 } else {
1855 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1856 die "device locate mode '$mode' not supported\n";
1857 }
1858
1859 } elsif ($type eq "vmbus") {
1860 my $type = dec_guid substr $device, 0, 16, "";
1861 my $instance = dec_guid substr $device, 0, 16, "";
1862
1863 $device =~ s/^\x00{24}\z//
1864 or die "vmbus has non-zero fields I don't understand\n";
1865
1866 $res .= "=$type,$instance";
1867
1868 } else {
1869 die "unsupported device type '$type'\n";
1870 }
1871
1872 warn "unexpected trailing device data($res), " . unpack "H*",$device
1873 if length $device;
1874 #length $device
1875 # and die "unexpected trailing device data\n";
1876
1877 ($res, $tail)
1878 }
1879
1880 # decode a full binary BCD device descriptor
1881 sub dec_device($) {
1882 my ($device) = @_;
1883
1884 $device = pack "H*", $device;
1885
1886 my $guid = dec_guid substr $device, 0, 16, "";
1887 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1888 ? "" : "{$guid}";
1889
1890 eval {
1891 my ($dev, $tail) = dec_device_ $device;
1892
1893 $tail eq ""
1894 or die "unsupported trailing data after device descriptor\n";
1895
1896 "$guid$dev"
1897 # } // scalar ((warn $@), "$guid$fallback")
1898 } // ($guid . "binary=" . unpack "H*", $device)
1899 }
1900
1901 sub indexof($@) {
1902 my $value = shift;
1903
1904 for (0 .. $#_) {
1905 $value eq $_[$_]
1906 and return $_;
1907 }
1908
1909 undef
1910 }
1911
1912 # encode the device portion after the GUID
1913 sub enc_device_;
1914 sub enc_device_ {
1915 my ($device) = @_;
1916
1917 my $enc_path = sub {
1918 my $path = shift;
1919 $path =~ s/\//\\/g;
1920 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1921 };
1922
1923 my $enc_file = sub {
1924 my ($parent, $path) = @_; # parent and path must already be encoded
1925
1926 $path = $parent . $path;
1927
1928 # fver 1, ftype 5
1929 pack "VVVa*", 1, 12 + length $path, 5, $path
1930 };
1931
1932 my $parse_path = sub {
1933 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1934 or die "$_: invalid path\n";
1935
1936 $enc_path->($1)
1937 };
1938
1939 my $parse_parent = sub {
1940 my $parent;
1941
1942 if (s/^<//) {
1943 ($parent, $_) = enc_device_ $_;
1944 s/^>//
1945 or die "$device: syntax error: parent device not followed by '>'\n";
1946 } else {
1947 $parent = $NULL_DEVICE;
1948 }
1949
1950 $parent
1951 };
1952
1953 for ($device) {
1954 s/^([a-z]+)//
1955 or die "$_: device does not start with type string\n";
1956
1957 my $type = $1;
1958 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1959 my $payload;
1960
1961 if ($type eq "binary") {
1962 s/^=([0-9a-fA-F]+)//
1963 or die "binary type must have a hex string argument\n";
1964
1965 $payload = pack "H*", $1;
1966
1967 } elsif ($type eq "null") {
1968 return ($NULL_DEVICE, $_);
1969
1970 } elsif ($type eq "boot") {
1971 $payload = "\x00" x 56;
1972
1973 } elsif ($type eq "partition" or $type eq "legacypartition") {
1974 s/^=//
1975 or die "$_: missing '=' after $type\n";
1976
1977 my $parent = $parse_parent->();
1978
1979 s/^,//
1980 or die "$_: comma missing after partition parent device\n";
1981
1982 s/^([a-z]+),//
1983 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1984 my $blocktype = $1;
1985
1986 s/^([a-z]+),//
1987 or die "$_: partition block type not followed by partiton type\n";
1988 my $parttype = $1;
1989
1990 my ($partdata, $diskdata);
1991
1992 if ($parttype eq "mbr") {
1993 s/^([0-9a-f]{8}),//i
1994 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1995 $diskdata = pack "Vx12", hex $1;
1996
1997 s/^([0-9]+)//
1998 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1999
2000 # the following works for both 64 bit offset and 32 bit partno
2001 $partdata = pack "Q< x8", $1;
2002
2003 } elsif ($parttype eq "gpt") {
2004 s/^($RE_GUID),//
2005 or die "$_: partition disk guid missing or malformed\n";
2006 $diskdata = enc_guid $1;
2007
2008 s/^($RE_GUID)//
2009 or die "$_: partition guid missing or malformed\n";
2010 $partdata = enc_guid $1;
2011
2012 } elsif ($parttype eq "raw") {
2013 s/^([0-9]+)//
2014 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2015
2016 $partdata = pack "L< x12", $1;
2017
2018 } else {
2019 die "$parttype: partition type not supported\n";
2020 }
2021
2022 $payload = pack "a16 L< L< a16 a*",
2023 $partdata,
2024 (indexof $blocktype, @block_type),
2025 (indexof $parttype, @part_type),
2026 $diskdata,
2027 $parent;
2028
2029 } elsif ($type eq "locate") {
2030 s/^=//
2031 or die "$_: missing '=' after $type\n";
2032
2033 my ($mode, $elem, $path);
2034
2035 my $parent = $parse_parent->();
2036
2037 s/^,//
2038 or die "$_: missing comma after locate parent device\n";
2039
2040 if (s/^element,//) {
2041 s/^([0-9a-z]+)//i
2042 or die "$_ locate element must be either name or 8-digit hex id\n";
2043 $elem = enc_bcde_id $1;
2044 $mode = 0;
2045 $path = $enc_path->("");
2046
2047 } elsif (s/^path,//) {
2048 $mode = 1;
2049 $path = $parse_path->();
2050
2051 } else {
2052 die "$_ second locate argument must be subtype (either element or path)\n";
2053 }
2054
2055 if ($parent ne $NULL_DEVICE) {
2056 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2057 } else {
2058 $parent = 0;
2059 }
2060
2061 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2062
2063 } elsif ($type eq "block") {
2064 s/^=//
2065 or die "$_: missing '=' after $type\n";
2066
2067 s/^([a-z]+),//
2068 or die "$_: block device does not start with block type (e.g. disk)\n";
2069 my $blocktype = $1;
2070
2071 my $blockdata;
2072
2073 if ($blocktype eq "file") {
2074 my $parent = $parse_parent->();
2075 s/^,// or die "$_: comma missing after file block device parent\n";
2076 my $path = $parse_path->();
2077
2078 $blockdata = $enc_file->($parent, $path);
2079
2080 } elsif ($blocktype eq "vhd") {
2081 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2082 $blockdata .= $parse_parent->();
2083
2084 } elsif ($blocktype eq "ramdisk") {
2085 my $parent = $parse_parent->();
2086
2087 s/^,(\d+),(\d+),(\d+),//a
2088 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2089
2090 my ($base, $size, $offset) = ($1, $2, $3);
2091
2092 my $path = $parse_path->();
2093
2094 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2095
2096 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2097 # this is guesswork
2098 s/^(\d+)//a
2099 or die "$_: missing device number for cdrom\n";
2100 $blockdata = pack "V", $1;
2101
2102 } else {
2103 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2104 }
2105
2106 $payload = pack "Va*",
2107 (indexof $blocktype, @block_type),
2108 $blockdata;
2109
2110 } elsif ($type eq "vmbus") {
2111 s/^=($RE_GUID)//
2112 or die "$_: malformed or missing vmbus interface type guid\n";
2113 my $type = enc_guid $1;
2114 s/^,($RE_GUID)//
2115 or die "$_: malformed or missing vmbus interface instance guid\n";
2116 my $instance = enc_guid $1;
2117
2118 $payload = pack "a16a16x24", $type, $instance;
2119
2120 } else {
2121 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2122 }
2123
2124 return (
2125 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2126 $_
2127 );
2128 }
2129 }
2130
2131 # encode a full binary BCD device descriptor
2132 sub enc_device {
2133 my ($device) = @_;
2134
2135 my $guid = "\x00" x 16;
2136
2137 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2138 $guid = enc_guid $1
2139 or die "$device: does not start with valid guid\n";
2140 }
2141
2142 my ($descriptor, $tail) = enc_device_ $device;
2143
2144 length $tail
2145 and die "$device: garbage after device descriptor\n";
2146
2147 unpack "H*", $guid . $descriptor
2148 }
2149
2150 # decode a registry hive into the BCD structure used by pbcdedit
2151 sub bcd_decode {
2152 my ($hive) = @_;
2153
2154 my %bcd;
2155
2156 my $objects = $hive->[1][1]{Objects}[1];
2157
2158 while (my ($k, $v) = each %$objects) {
2159 my %kv;
2160 $v = $v->[1];
2161
2162 $k = $bcd_objects{$k} // $k;
2163
2164 my $type = $v->{Description}[0]{Type}[1];
2165
2166 if ($type != $bcd_object_types{$k}) {
2167 $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2168 $kv{type} = $type;
2169 }
2170
2171 my $elems = $v->{Elements}[1];
2172
2173 while (my ($k, $v) = each %$elems) {
2174 my $k = hex $k;
2175
2176 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2177 my $k = dec_bcde_id $k;
2178
2179 $kv{$k} = $v;
2180 }
2181
2182 $bcd{$k} = \%kv;
2183 }
2184
2185 $bcd{meta} = { version => $JSON_VERSION };
2186
2187 \%bcd
2188 }
2189
2190 # encode a pbcdedit structure into a registry hive
2191 sub bcd_encode {
2192 my ($bcd) = @_;
2193
2194 if (my $meta = $bcd->{meta}) {
2195 $meta->{version} eq $JSON_VERSION
2196 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2197 }
2198
2199 my %objects;
2200 my %rbcd_types = reverse %bcd_types;
2201
2202 while (my ($k, $v) = each %$bcd) {
2203 my %kv;
2204
2205 next if $k eq "meta";
2206
2207 $k = lc $k; # I know you windows types!
2208
2209 my $type = $v->{type};
2210
2211 if ($type) {
2212 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2213 ? hex $type
2214 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2215 }
2216
2217 my $guid = enc_wguid $k
2218 or die "$k: invalid bcd object identifier\n";
2219
2220 # default type if not given
2221 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2222
2223 my %elem;
2224
2225 while (my ($k, $v) = each %$v) {
2226 next if $k eq "type";
2227
2228 $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2229 $elem{sprintf "%08x", $k} = [{
2230 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2231 }];
2232 }
2233
2234 $guid = dec_guid $guid;
2235
2236 $objects{"{$guid}"} = [undef, {
2237 Description => [{ Type => [dword => $type] }],
2238 Elements => [undef, \%elem],
2239 }];
2240 }
2241
2242 [NewStoreRoot => [undef, {
2243 Description => [{
2244 KeyName => [sz => "BCD00000001"],
2245 System => [dword => 1],
2246 pbcdedit => [sz => $VERSION],
2247 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2248 }],
2249 Objects => [undef, \%objects],
2250 }]]
2251 }
2252
2253 #############################################################################
2254 # edit instructions
2255
2256 sub bcd_edit_eval {
2257 package pbcdedit;
2258
2259 our ($PATH, $BCD, $DEFAULT);
2260
2261 eval shift;
2262 die "$@" if $@;
2263 }
2264
2265 sub bcd_edit {
2266 my ($path, $bcd, @insns) = @_;
2267
2268 my $default = $bcd->{"{bootmgr}"}{resumeobject};
2269
2270 # prepare "officially visible" variables
2271 local $pbcdedit::PATH = $path;
2272 local $pbcdedit::BCD = $bcd;
2273 local $pbcdedit::DEFAULT = $default;
2274
2275 while (@insns) {
2276 my $insn = shift @insns;
2277
2278 if ($insn eq "get") {
2279 my $object = shift @insns;
2280 my $elem = shift @insns;
2281
2282 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2283
2284 print $bcd->{$object}{$elem}, "\n";
2285
2286 } elsif ($insn eq "set") {
2287 my $object = shift @insns;
2288 my $elem = shift @insns;
2289 my $value = shift @insns;
2290
2291 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2292
2293 $bcd->{$object}{$elem} = $value;
2294
2295 } elsif ($insn eq "eval") {
2296 bcd_edit_eval shift @insns;
2297
2298 } elsif ($insn eq "do") {
2299 my $path = shift @insns;
2300 my $file = file_load $path;
2301 bcd_edit_eval "#line 1 '$path'\n$file";
2302
2303 } else {
2304 die "$insn: not a recognized instruction for edit/parse\n";
2305 }
2306 }
2307
2308 }
2309
2310 #############################################################################
2311 # command line parser
2312
2313 # json to stdout
2314 sub prjson($) {
2315 print $json_coder->encode ($_[0]);
2316 }
2317
2318 # json from stdin
2319 sub rdjson() {
2320 my $json;
2321 1 while read STDIN, $json, 65536, length $json;
2322 $json_coder->decode ($json)
2323 }
2324
2325 # all subcommands
2326 our %CMD = (
2327 help => sub {
2328 require Pod::Usage;
2329 Pod::Usage::pod2usage (-verbose => 2);
2330 },
2331
2332 objects => sub {
2333 my %rbcd_types = reverse %bcd_types;
2334 $_ = sprintf "%08x", $_ for values %rbcd_types;
2335
2336 if ($_[0] eq "--json") {
2337 my %default_type = %bcd_object_types;
2338 $_ = sprintf "%08x", $_ for values %default_type;
2339
2340 prjson {
2341 version => $JSON_VERSION,
2342 object_alias => \%bcd_objects,
2343 object_type => \%rbcd_types,
2344 object_default_type => \%default_type,
2345 };
2346 } else {
2347 my %rbcd_objects = reverse %bcd_objects;
2348
2349 print "\n";
2350
2351 printf "%-9s %s\n", "Type", "Alias";
2352 for my $tname (sort keys %rbcd_types) {
2353 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2354 }
2355
2356 print "\n";
2357
2358 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2359 for my $name (sort keys %rbcd_objects) {
2360 my $guid = $rbcd_objects{$name};
2361 my $type = $bcd_object_types{$name};
2362 my $tname = $bcd_types{$type};
2363
2364 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2365
2366 printf "%-39s %-23s %s\n", $guid, $name, $type;
2367 }
2368
2369 print "\n";
2370 }
2371 },
2372
2373 elements => sub {
2374 my $json = $_[0] eq "--json";
2375
2376 my %format_name = (
2377 BCDE_FORMAT_DEVICE , "device",
2378 BCDE_FORMAT_STRING , "string",
2379 BCDE_FORMAT_GUID , "guid",
2380 BCDE_FORMAT_GUID_LIST , "guid list",
2381 BCDE_FORMAT_INTEGER , "integer",
2382 BCDE_FORMAT_BOOLEAN , "boolean",
2383 BCDE_FORMAT_INTEGER_LIST, "integer list",
2384 );
2385 my %rbcde = reverse %bcde;
2386 $_ = sprintf "%08x", $_ for values %rbcde;
2387
2388 my %element;
2389
2390 unless ($json) {
2391 print "\n";
2392 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2393 }
2394 for my $name (sort keys %rbcde) {
2395 my $id = $rbcde{$name};
2396 my $format = $format_name{(hex $id) & BCDE_FORMAT};
2397
2398 if ($json) {
2399 $element{$id} = [$format, $name];
2400 } else {
2401 printf "%-9s %-12s %s\n", $id, $format, $name;
2402 }
2403 }
2404 print "\n" unless $json;
2405
2406 prjson {
2407 version => $JSON_VERSION,
2408 element => \%element,
2409 } if $json;
2410
2411 },
2412
2413 export => sub {
2414 prjson bcd_decode regf_load shift;
2415 },
2416
2417 import => sub {
2418 regf_save shift, bcd_encode rdjson;
2419 },
2420
2421 edit => sub {
2422 my $path = shift;
2423 my $bcd = bcd_decode regf_load $path;
2424 bcd_edit $path, $bcd, @_;
2425 regf_save $path, bcd_encode $bcd;
2426 },
2427
2428 parse => sub {
2429 my $path = shift;
2430 my $bcd = bcd_decode regf_load $path;
2431 bcd_edit $path, $bcd, @_;
2432 },
2433
2434 "export-regf" => sub {
2435 prjson regf_load shift;
2436
2437 },
2438
2439 "import-regf" => sub {
2440 regf_save shift, rdjson;
2441 },
2442
2443 lsblk => sub {
2444 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2445
2446 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2447
2448 for my $dev (@{ $lsblk->{blockdevices} }) {
2449 my $pr = sub {
2450 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2451 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2452 };
2453
2454 if ($dev->{type} eq "part") {
2455 if ($dev->{pttype} eq "gpt") {
2456 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2457 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2458 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2459 my ($diskid, $partno) = ($1, hex $2);
2460 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2461 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2462 my $start = 512 * readline $fh;
2463 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2464 }
2465 }
2466 }
2467 }
2468 }
2469 },
2470 );
2471
2472 my $cmd = shift;
2473
2474 unless (exists $CMD{$cmd}) {
2475 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2476 exit 126;
2477 }
2478
2479 $CMD{$cmd}->(@ARGV);
2480