ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.33
Committed: Thu Aug 15 08:39:11 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.32: +2 -2 lines
Log Message:
temporary workaround

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.014; # numerous features needed
23
24 our $VERSION = '1.0';
25 our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26
27 =head1 NAME
28
29 pbcdedit - portable boot configuration data (BCD) store editor
30
31 =head1 SYNOPSIS
32
33 pbcdedit help # output manual page
34
35 pbcdedit export path/to/BCD # output BCD hive as JSON
36 pbcdedit import path/to/BCD # convert standard input to BCD hive
37 pbcdedit edit path/to/BCD edit-instructions...
38
39 pbcdedit objects # list all supported object aliases and types
40 pbcdedit elements # list all supported bcd element aliases
41
42 =head1 DESCRIPTION
43
44 This program allows you to create, read and modify Boot Configuration Data
45 (BCD) stores used by Windows Vista and newer versions of Windows.
46
47 At this point, it is in relatively early stages of development and has
48 received little to no real-world testing.
49
50 Compared to other BCD editing programs it offers the following unique
51 features:
52
53 =over
54
55 =item Can create BCD hives from scratch
56
57 Practically all other BCD editing programs force you to copy existing BCD
58 stores, which might or might not be copyrighted by Microsoft.
59
60 =item Does not rely on Windows
61
62 As the "portable" in the name implies, this program does not rely on
63 C<bcdedit> or other windows programs or libraries, it works on any system
64 that supports at least perl version 5.14.
65
66 =item Decodes and encodes BCD device elements
67
68 PBCDEDIT can concisely decode and encode BCD device element contents. This
69 is pretty unique, and offers a lot of potential that can't be realised
70 with C<bcdedit> or any programs relying on it.
71
72 =item Minimal files
73
74 BCD files written by PBCDEDIT are always "minimal", that is, they don't
75 contain unused data areas and therefore don't contain old and potentially
76 sensitive data.
77
78 =back
79
80 The target audience for this program is professionals and tinkerers who
81 are ready to invest time into learning how it works. It is not an easy
82 program to use and requires patience and a good understanding of BCD
83 stores.
84
85
86 =head1 SUBCOMMANDS
87
88 PBCDEDIT expects a subcommand as first argument that tells it what to
89 do. The following subcommands exist:
90
91 =over
92
93 =item C<help>
94
95 Displays the whole manual page (this document).
96
97 =item C<export> F<path>
98
99 Reads a BCD data store and writes a JSON representation of it to standard
100 output.
101
102 The format of the data is explained later in this document.
103
104 Example: read a BCD store, modify it with an external program, write it
105 again.
106
107 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
108
109 =item C<import> F<path>
110
111 The reverse of C<export>: Reads a JSON representation of a BCD data store
112 from standard input, and creates or replaces the given BCD data store.
113
114 =item C<edit> F<path> I<instructions...>
115
116 Load a BCD data store, apply some instructions to it, and save it again.
117
118 See the section L<EDITING BCD STORES>, below, for more info.
119
120 =item C<parse> F<path> I<instructions...>
121
122 Same as C<edit>, above, except it doesn't save the data store again. Can
123 be useful to extract some data from it.
124
125 =item C<lsblk>
126
127 On a GNU/Linux system, you can get a list of partition device descriptors
128 using this command - the external C<lsblk> command is required, as well as
129 a mounted C</sys> file system.
130
131 The output will be a list of all partitions in the system and C<partition>
132 descriptors for GPT and both C<legacypartition> and C<partition>
133 descriptors for MBR partitions.
134
135 =item C<objects> [C<--json>]
136
137 Outputs two tables: a table listing all type aliases with their hex BCD
138 element ID, and all object name aliases with their GUID and default type
139 (if any).
140
141 With C<--json> it prints similar information as a JSON object, for easier parsing.
142
143 =item C<elements> [C<--json>]
144
145 Outputs a table of known element aliases with their hex ID and the format
146 type.
147
148 With C<--json> it prints similar information as a JSON object, for easier parsing.
149
150 =item C<export-regf> F<path>
151
152 This has nothing to do with BCD stores, but simply exposes PCBEDIT's
153 internal registry hive reader - it takes a registry hive file as argument
154 and outputs a JSON representation of it to standard output.
155
156 Hive versions 1.2 till 1.6 are supported.
157
158 =item C<import-regf> F<path>
159
160 The reverse of C<export-regf>: reads a JSON representation of a registry
161 hive from standard input and creates or replaces the registry hive file
162 given as argument.
163
164 The written hive will always be in a slightly modified version 1.3
165 format. It's not the format windows would generate, but it should be
166 understood by any conformant hive reader.
167
168 Note that the representation chosen by PBCDEDIT currently throws away
169 classname data (often used for feeble attempts at hiding stuff by
170 Microsoft) and security descriptors, so if you write anything other than
171 a BCD hive you will most likely destroy it.
172
173 =back
174
175
176 =head1 BCD STORE REPRESENTATION FORMAT
177
178 A BCD data store is represented as a JSON object with one special key,
179 C<meta>, and one key per BCD object. That is, each BCD object becomes
180 one key-value pair in the object, and an additional key called C<meta>
181 contains meta information.
182
183 Here is an abridged example of a real BCD store:
184
185 {
186 "meta" : {
187 "version" : 1
188 },
189 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
190 "type" : "application::osloader",
191 "description" : "Windows 10",
192 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
193 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
194 "path" : "\\Windows\\system32\\winload.exe",
195 "systemroot" : "\\Windows"
196 },
197 "{bootloadersettings}" : {
198 "inherit" : "{globalsettings} {hypervisorsettings}"
199 },
200 "{bootmgr}" : {
201 "description" : "Windows Boot Manager",
202 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
203 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
204 "inherit" : "{globalsettings}",
205 "displaybootmenu" : 0,
206 "timeout" : 30
207 },
208 "{globalsettings}" : {
209 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
210 },
211 "{hypervisorsettings}" : {
212 "hypervisorbaudrate" : 115200,
213 "hypervisordebugport" : 1,
214 "hypervisordebugtype" : 0
215 },
216 # ...
217 }
218
219 =head2 Minimal BCD to boot windows
220
221 Experimentally I found the following BCD is the minimum required to
222 successfully boot any post-XP version of Windows (suitable C<device> and
223 C<osdevice> values, of course):
224
225 {
226 "{bootmgr}" : {
227 "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
228 },
229
230 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
231 "type" : "application::osloader",
232 "description" : "Windows Boot",
233 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
234 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
235 "path" : "\\Windows\\system32\\winload.exe",
236 "systemroot" : "\\Windows"
237 },
238 }
239
240 Note that minimal doesn't mean recommended - Windows itself will add stuff
241 to this during or after boot, and you might or might not run into issues
242 when installing updates as it might not be able to find the F<bootmgr>.
243
244 =head2 The C<meta> key
245
246 The C<meta> key is not stored in the BCD data store but is used only
247 by PBCDEDIT. It is always generated when exporting, and importing will
248 be refused when it exists and the version stored inside doesn't store
249 the JSON schema version of PBCDEDIT. This ensures that different and
250 incompatible versions of PBCDEDIT will not read and misinterpret each
251 others data.
252
253 =head2 The object keys
254
255 Every other key is a BCD object. There is usually a BCD object for the
256 boot manager, one for every boot option and a few others that store common
257 settings inherited by these.
258
259 Each BCD object is represented by a GUID wrapped in curly braces. These
260 are usually random GUIDs used only to distinguish BCD objects from each
261 other. When adding a new boot option, you can simply generate a new GUID.
262
263 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
264 into human-readable strings such as C<{globalsettings}>, which is the same
265 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
266
267 Each BCD, object has an associated type. For example,
268 C<application::osloader> for objects loading Windows via F<winload.exe>,
269 C<application::bootsector> for real mode applications and so on.
270
271 The type of a object is stored in the pseudo BCD element C<type> (see next
272 section).
273
274 Some well-known objects have a default type. If an object type matches
275 its default type, then the C<type> element will be omitted. Similarly, if
276 the C<type> element is missing and the BCD object has a default type, the
277 default type will be used when writing a BCD store.
278
279 Running F<pbcdedit objects> will give you a list of object types,
280 well-known object aliases and their default types.
281
282 If different string keys in a JSON BCD store map to the same BCD object
283 then a random one will "win" and the others will be discarded. To avoid
284 this, you should always use the "canonical" name of a BCD object, which is
285 the human-readable form (if it exists).
286
287 =head2 The object values - BCD elements
288
289 The value of each BCD object entry consists of key-value pairs called BCD
290 elements.
291
292 BCD elements are identified by a 32 bit number, but to make things
293 simpler PBCDEDIT will replace these with well-known strings such as
294 C<description>, C<device> or C<path>.
295
296 When PBCDEDIT does not know the BCD element, it will use
297 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
298 BCD element. For example, C<device> would be C<custom::11000001>. You can
299 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
300 elements>.
301
302 What was said about duplicate keys mapping to the same object is true for
303 elements as well, so, again, you should always use the canonical name,
304 which is the human readable alias, if known.
305
306 =head3 BCD element types
307
308 Each BCD element has a type such as I<string> or I<boolean>. This type
309 determines how the value is interpreted, and most of them are pretty easy
310 to explain:
311
312 =over
313
314 =item string
315
316 This is simply a unicode string. For example, the C<description> and
317 C<systemroot> elements both are of this type, one storing a human-readable
318 name for this boot option, the other a file path to the windows root
319 directory:
320
321 "description" : "Windows 10",
322 "systemroot" : "\\Windows",
323
324 =item boolean
325
326 Almost as simple are booleans, which represent I<true>/I<false>,
327 I<on>/I<off> and similar values. In the JSON form, true is represented
328 by the number C<1>, and false is represented by the number C<0>. Other
329 values will be accepted, but PBCDEDIT doesn't guarantee how these are
330 interpreted.
331
332 For example, C<displaybootmenu> is a boolean that decides whether to
333 enable the C<F8> boot menu. In the example BCD store above, this is
334 disabled:
335
336 "displaybootmenu" : 0,
337
338 =item integer
339
340 Again, very simple, this is a 64 bit integer. IT can be either specified
341 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
342 binary number (prefix C<0b>).
343
344 For example, the boot C<timeout> is an integer, specifying the automatic
345 boot delay in seconds:
346
347 "timeout" : 30,
348
349 =item integer list
350
351 This is a list of 64 bit integers separated by whitespace. It is not used
352 much, so here is a somewhat artificial an untested example of using
353 C<customactions> to specify a certain custom, eh, action to be executed
354 when pressing C<F10> at boot:
355
356 "customactions" : "0x1000044000001 0x54000001",
357
358 =item guid
359
360 This represents a single GUID value wrapped in curly braces. It is used a
361 lot to refer from one BCD object to other one.
362
363 For example, The C<{bootmgr}> object might refer to a resume boot option
364 using C<resumeobject>:
365
366 "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
367
368 Human readable aliases are used and allowed.
369
370 =item guid list
371
372 Similar to the GUID type, this represents a list of such GUIDs, separated
373 by whitespace from each other.
374
375 For example, many BCD objects can I<inherit> elements from other BCD
376 objects by specifying the GUIDs of those other objects in a GUID list
377 called surprisingly called C<inherit>:
378
379 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
380
381 This example also shows how human readable aliases can be used.
382
383 =item device
384
385 This type is why I write I<most> are easy to explain earlier: This type
386 is the pinnacle of Microsoft-typical hacks layered on top of other
387 hacks. Understanding this type took more time than writing all the rest of
388 PBCDEDIT, and because it is so complex, this type has its own subsection
389 below.
390 =back
391
392 =head4 The BCD "device" element type
393
394 Device elements specify, well, devices. They are used for such diverse
395 purposes such as finding a TFTP network boot image, serial ports or VMBUS
396 devices, but most commonly they are used to specify the disk (harddisk,
397 cdrom, ramdisk, vhd...) to boot from.
398
399 The device element is kind of a mini-language in its own which is much
400 more versatile then the limited windows interface to it - BCDEDIT -
401 reveals.
402
403 While some information can be found on the BCD store and the windows
404 registry, there is pretty much no public information about the device
405 element, so almost everything known about it had to be researched first
406 in the process of writing this script, and consequently, support for BCD
407 device elements is partial only.
408
409 On the other hand, the expressive power of PBCDEDIT in specifying devices
410 is much bigger than BCDEDIT and therefore more can be done with it. The
411 downside is that BCD device elements are much more complicated than what
412 you might think from reading the BCDEDIT documentation.
413
414 In other words, simple things are complicated, and complicated things are
415 possible.
416
417 Anyway, the general syntax of device elements is an optional GUID,
418 followed by a device type, optionally followed by hexadecimal flags in
419 angle brackets, optionally followed by C<=> and a comma-separated list of
420 arguments, some of which can be (and often are) in turn devices again.
421
422 [{GUID}]type[<flags>][=arg,arg...]
423
424 Here are some examples:
425
426 boot
427 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
428 locate=<null>,element,systemroot
429 partition=<null>,harddisk,mbr,47cbc08a,1048576
430 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
431 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
432 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
433 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
434
435 I hope you are suitably impressed. I was, too, when I realized decoding
436 these binary blobs is not as easy as I had assumed.
437
438 The optional prefixed GUID seems to refer to a device BCD object, which
439 can be used to specify more device-specific BCD elements (for example
440 C<ramdisksdidevice> and C<ramdisksdpath>).
441
442 The flags after the type are omitted when they are C<0>. The only known
443 flag is C<1>, which seems to indicate that the parent device is invalid. I
444 don't claim to fully understand it, but it seems to indicate that the
445 boot manager has to search the device itself. Why the device is specified
446 in the first place escapes me, but a lot of this device stuff seems to be
447 badly hacked together...
448
449 The types understood and used by PBCDEDIT are as follows (keep in mind
450 that not of all the following is necessarily supported in PBCDEDIT):
451
452 =over
453
454 =item C<binary=>I<hex...>
455
456 This type isn't actually a real BCD element type, but a fallback for those
457 cases where PBCDEDIT can't perfectly decode a device element (except for
458 the leading GUID, which it can always decode). In such cases, it will
459 convert the device into this type with a hexdump of the element data.
460
461 =item C<null>
462
463 This is another special type - sometimes, a device all zero-filled, which
464 is not valid. This can mark the absence of a device or something PBCDEDIT
465 does not understand, so it decodes it into this special "all zero" type
466 called C<null>.
467
468 It's most commonly found in devices that can use an optional parent
469 device, when no parent device is used.
470
471 =item C<boot>
472
473 Another type without parameters, this refers to the device that was booted
474 from (nowadays typically the EFI system partition).
475
476 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
477
478 This specifies a VMBUS device with the given interface type and interface
479 instance, both of which are "naked" (no curly braces) GUIDs.
480
481 Made-up example (couldn't find a single example on the web):
482
483 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
484
485 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
486
487 This designates a specific partition on a block device. I<parent> is an
488 optional parent device on which to search on, and is often C<null>. Note
489 that the angle brackets around I<parent> are part of the syntax.
490
491 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
492 C<file> or C<vhd>, where the first three should be self-explaining,
493 C<file> is usually used to locate a file to be used as a disk image,
494 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
495 F<vhdx> files.
496
497 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
498 used for devices without partitions, such as cdroms, where the "partition"
499 is usually the whole device.
500
501 The I<diskid> identifies the disk or device using a unique signature, and
502 the same is true for the I<partitionid>. How these are interpreted depends
503 on the I<partitiontype>:
504
505 =over
506
507 =item C<mbr>
508
509 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
510 MBR, interpreted as a 32 bit unsigned little endian integer and written as
511 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
512
513 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
514 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
515 display the I<diskid>.
516
517 The I<partitionid> is the byte offset(!) of the partition counting from
518 the beginning of the MBR.
519
520 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
521 starting at sector C<2048> (= 1048576 / 512).
522
523 partition=<null>,harddisk,mbr,47cbc08a,1048576
524
525 =item C<gpt>
526
527 The I<diskid> is the disk GUID/disk identifier GUID from the partition
528 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
529 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
530
531 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
532 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
533
534 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
535
536 =item C<raw>
537
538 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
539 disk number and signifies the whole disk. BCDEDIT cannot display the
540 resulting device, and I am doubtful whether it has a useful effect.
541
542 =back
543
544 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
545
546 This is exactly the same as the C<partition> type, except for a tiny
547 detail: instead of using the partition start offset, this type uses the
548 partition number for MBR disks. Behaviour other partition types should be
549 the same.
550
551 The partition number starts at C<1> and skips unused partition, so if
552 there are two primary partitions and another partition inside the extended
553 partition, the primary partitions are number C<1> and C<2> and the
554 partition inside the extended partition is number C<3>, regardless of any
555 gaps.
556
557 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
558
559 This device description will make the bootloader search for a partition
560 with a given path.
561
562 The I<parent> device is the device to search on (angle brackets are
563 still part of the syntax!) If it is C<null>, then C<locate> will
564 search all disks it can find.
565
566 I<locatetype> is either C<element> or C<path>, and merely distinguishes
567 between two different ways to specify the path to search for: C<element>
568 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
569 uses a relative path as I<locatearg>.
570
571 Example: find any partition which has the F<magicfile.xxx> path in the
572 root.
573
574 locate=<null>,path,\magicfile.xxx
575
576 Example: find any partition which has the path specified in the
577 C<systemroot> element (typically F<\Windows>).
578
579 locate=<null>,element,systemroot
580
581 =item C<block=>I<devicetype>,I<args...>
582
583 Last not least, the most complex type, C<block>, which... specifies block
584 devices (which could be inside a F<vhdx> file for example).
585
586 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
587 C<file> or C<vhd> - the same as for C<partiion=>.
588
589 The remaining arguments change depending on the I<devicetype>:
590
591 =over
592
593 =item C<block=file>,<I<parent>>,I<path>
594
595 Interprets the I<parent> device (typically a partition) as a
596 filesystem and specifies a file path inside.
597
598 =item C<block=vhd>,<I<parent>>
599
600 Pretty much just changes the interpretation of I<parent>, which is
601 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
602
603 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
604
605 Interprets the I<parent> device as RAM disk, using the (decimal)
606 base address, byte size and byte offset inside a file specified by
607 I<path>. The numbers are usually all C<0> because they can be extracted
608 from the RAM disk image or other parameters.
609
610 This is most commonly used to boot C<wim> images.
611
612 =item C<block=floppy>,I<drivenum>
613
614 Refers to a removable drive identified by a number. BCDEDIT cannot display
615 the resulting device, and it is not clear what effect it will have.
616
617 =item C<block=cdrom>,I<drivenum>
618
619 Pretty much the same as C<floppy> but for CD-ROMs.
620
621 =item anything else
622
623 Probably not yet implemented. Tell me of your needs...
624
625 =back
626
627 =back5 Examples
628
629 This concludes the syntax overview for device elements, but probably
630 leaves many questions open. I can't help with most of them, as I also ave
631 many questions, but I can walk you through some actual examples using more
632 complex aspects.
633
634 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
635
636 Just like with C declarations, you best treat device descriptors as
637 instructions to find your device and work your way from the inside out:
638
639 locate=<null>,path,\disk.vhdx
640
641 First, the innermost device descriptor searches all partitions on the
642 system for a file called F<\disk.vhdx>:
643
644 block=file,<see above>,\disk.vhdx
645
646 Next, this takes the device locate has found and finds a file called
647 F<\disk.vhdx> on it. This is the same file locate was using, but that is
648 only because we find the device using the same path as finding the disk
649 image, so this is purely incidental, although quite common.
650
651 Next, this file will be opened as a virtual disk:
652
653 block=vhd,<see above>
654
655 And finally, inside this disk, another C<locate> will look for a partition
656 with a path as specified in the C<path> element, which most likely will be
657 F<\Windows\system32\winload.exe>:
658
659 locate=<see above>,element,path
660
661 As a result, this will boot the first Windows it finds on the first
662 F<disk.vhdx> disk image it can find anywhere.
663
664 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
665
666 Pretty much the same as the previous case, but with a bit of
667 variance. First, look for a specific partition on an MBR-partitioned disk:
668
669 partition=<null>,harddisk,mbr,47cbc08a,242643632128
670
671 Then open the file F<\win10.vhdx> on that partition:
672
673 block=file,<see above>,\win10.vhdx
674
675 Then, again, the file is opened as a virtual disk image:
676
677 block=vhd,<see above>
678
679 And again the windows loader (or whatever is in C<path>) will be searched:
680
681 locate=<see above>,element,path
682
683 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
684
685 This is quite different. First, it starts with a GUID. This GUID belongs
686 to a BCD object of type C<device>, which has additional parameters:
687
688 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
689 "type" : "device",
690 "description" : "sdi file for ramdisk",
691 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
692 "ramdisksdipath" : "\boot.sdi"
693 },
694
695 I will not go into many details, but this specifies a (presumably empty)
696 template ramdisk image (F<\boot.sdi>) that is used to initialize the
697 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
698 see, this F<.sdi> file resides on a different C<partition>.
699
700 Continuing, as always, from the inside out, first this device descriptor
701 finds a specific partition:
702
703 partition=<null>,harddisk,mbr,47cbc08a,242643632128
704
705 And then specifies a C<ramdisk> image on this partition:
706
707 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
708
709 I don't know what the purpose of the C<< <1> >> flag value is, but it
710 seems to be always there on this kind of entry.
711
712 If you have some good examples to add here, feel free to mail me.
713
714
715 =head1 EDITING BCD STORES
716
717 The C<edit> and C<parse> subcommands allow you to read a BCD data store
718 and modify it or extract data from it. This is done by executing a series
719 of "editing instructions" which are explained here.
720
721 =over
722
723 =item C<get> I<object> I<element>
724
725 Reads the BCD element I<element> from the BCD object I<object> and writes
726 it to standard output, followed by a newline. The I<object> can be a GUID
727 or a human-readable alias, or the special string C<{default}>, which will
728 refer to the default BCD object.
729
730 Example: find description of the default BCD object.
731
732 pbcdedit parse BCD get "{default}" description
733
734 =item C<set> I<object> I<element> I<value>
735
736 Similar to C<get>, but sets the element to the given I<value> instead.
737
738 Example: change the bootmgr default too
739 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
740
741 pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
742
743 =item C<eval> I<perlcode>
744
745 This takes the next argument, interprets it as Perl code and
746 evaluates it. This allows you to do more complicated modifications or
747 extractions.
748
749 The following variables are predefined for your use:
750
751 =over
752
753 =item C<$PATH>
754
755 The path to the BCD data store, as given to C<edit> or C<parse>.
756
757 =item C<$BCD>
758
759 The decoded BCD data store.
760
761 =item C<$DEFAULT>
762
763 The default BCD object name.
764
765 =back
766
767 The example given for C<get>, above, could be expressed like this with
768 C<eval>:
769
770 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
771
772 The example given for C<set> could be expressed like this:
773
774 pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
775
776 =item C<do> I<path>
777
778 Similar to C<eval>, above, but instead of using the argument as perl code,
779 it loads the perl code from the given file and executes it. This makes it
780 easier to write more complicated or larger programs.
781
782 =back
783
784
785 =head1 SEE ALSO
786
787 For ideas on what you can do with BCD stores in
788 general, and some introductory material, try
789 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
790
791 For good reference on which BCD objects and
792 elements exist, see Geoff Chappell's pages at
793 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
794
795 =head1 AUTHOR
796
797 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
798
799 =head1 REPORTING BUGS
800
801 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
802
803 =head1 BUGS AND SHORTCOMINGS
804
805 This should be a module. Of a series of modules, even.
806
807 Registry code should preserve classname and security descriptor data, and
808 whatever else is necessary to read and write any registry hive file.
809
810 I am also not happy with device descriptors being strings rather than a
811 data structure, but strings are probably better for command line usage. In
812 any case, device descriptors could be converted by simply "splitting" at
813 "=" and "," into an array reference, recursively.
814
815 =head1 HOMEPAGE
816
817 Original versions of this program can be found at
818 L<http://software.schmorp.de/pkg/pbcdedit>.
819
820 =head1 COPYRIGHT
821
822 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
823 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
824 free to change and redistribute it. There is NO WARRANTY, to the extent
825 permitted by law.
826
827 =cut
828
829 # common sense is optional, but recommended
830 #BEGIN { eval { require "common/sensex.pm"; } && common::sensex->import }
831 no warnings;
832 no strict;
833
834 use Encode ();
835 use List::Util ();
836 use IO::Handle ();
837 use Time::HiRes ();
838
839 eval { unpack "Q", pack "Q", 1 }
840 or die "perl with 64 bit integer supported required.\n";
841
842 our $JSON = eval { require JSON::XS; JSON::XS:: }
843 // eval { require JSON::PP; JSON::PP:: }
844 // die "either JSON::XS or JSON::PP must be installed\n";
845
846 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
847
848 # hack used for debugging
849 sub xxd($$) {
850 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
851 syswrite $xxd, $_[1];
852 }
853
854 sub file_load($) {
855 my ($path) = @_;
856
857 open my $fh, "<:raw", $path
858 or die "$path: $!\n";
859 my $size = -s $fh;
860 $size = read $fh, my $buf, $size
861 or die "$path: short read\n";
862
863 $buf
864 }
865
866 # sources and resources used for writing pbcdedit
867 #
868 # registry:
869 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
870 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
871 # bcd:
872 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
873 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
874 # bcd devices:
875 # reactos' boot/environ/include/bl.h
876 # windows .mof files
877
878 #############################################################################
879 # registry stuff
880
881 # we use a hardcoded securitya descriptor - full access for everyone
882 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
883 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
884 my $sacl = "";
885 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
886 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
887 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
888 1, 0x8004,
889 20 + (length $sacl) + (length $dacl),
890 20 + (length $sacl) + (length $dacl) + (length $sid),
891 0, 20,
892 $sacl, $dacl, $sid, $sid;
893 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
894
895 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
896
897 sub KEY_HIVE_ENTRY() { 0x0004 }
898 sub KEY_NO_DELETE () { 0x0008 }
899 sub KEY_COMP_NAME () { 0x0020 }
900
901 sub VALUE_COMP_NAME() { 0x0001 }
902
903 my @regf_typename = qw(
904 none sz expand_sz binary dword dword_be link multi_sz
905 resource_list full_resource_descriptor resource_requirements_list
906 qword qword_be
907 );
908
909 my %regf_dec_type = (
910 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
911 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
912 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
913 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
914 dword => sub { unpack "L<", shift },
915 dword_be => sub { unpack "L>", shift },
916 qword => sub { unpack "Q<", shift },
917 qword_be => sub { unpack "Q>", shift },
918 );
919
920 my %regf_enc_type = (
921 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
922 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
923 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
924 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
925 dword => sub { pack "L<", shift },
926 dword_be => sub { pack "L>", shift },
927 qword => sub { pack "Q<", shift },
928 qword_be => sub { pack "Q>", shift },
929 );
930
931 # decode a registry hive
932 sub regf_decode($) {
933 my ($hive) = @_;
934
935 "regf" eq substr $hive, 0, 4
936 or die "not a registry hive\n";
937
938 my ($major, $minor) = unpack "\@20 L< L<", $hive;
939
940 $major == 1
941 or die "registry major version is not 1, but $major\n";
942
943 $minor >= 2 && $minor <= 6
944 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
945
946 my $bins = substr $hive, 4096;
947
948 my $decode_key = sub {
949 my ($ofs) = @_;
950
951 my @res;
952
953 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
954
955 $sze < 0
956 or die "key node points to unallocated cell\n";
957
958 $sig eq "nk"
959 or die "expected key node at $ofs, got '$sig'\n";
960
961 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
962
963 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
964
965 # classnames, security descriptors
966 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
967 #if ($cofs != NO_OFS && $clen) {
968 # #warn "cofs $cofs+$clen\n";
969 # xxd substr $bins, $cofs, 16;
970 #}
971
972 $kname = Encode::decode "UTF-16LE", $kname
973 unless $flags & KEY_COMP_NAME;
974
975 if ($vnum && $vofs != NO_OFS) {
976 for ($vofs += 4; $vnum--; $vofs += 4) {
977 my $kofs = unpack "\@$vofs L<", $bins;
978
979 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
980
981 $sig eq "vk"
982 or die "key values list contains invalid node (expected vk got '$sig')\n";
983
984 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
985
986 my $name = substr $bins, $kofs + 24, $nsze;
987
988 $name = Encode::decode "UTF-16LE", $name
989 unless $flags & VALUE_COMP_NAME;
990
991 my $data;
992 if ($dsze & 0x80000000) {
993 $data = substr $bins, $kofs + 12, $dsze & 0x7;
994 } elsif ($dsze > 16344 && $minor > 3) { # big data
995 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
996
997 for ($bofs += 4; $bnum--; $bofs += 4) {
998 my $dofs = unpack "\@$bofs L<", $bins;
999 my $dsze = unpack "\@$dofs l<", $bins;
1000 $data .= substr $bins, $dofs + 4, -$dsze - 4;
1001 }
1002 $data = substr $data, 0, $dsze; # cells might be longer than data
1003 } else {
1004 $data = substr $bins, $dofs + 4, $dsze;
1005 }
1006
1007 $type = $regf_typename[$type] if $type < @regf_typename;
1008
1009 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1010 ->($data);
1011
1012 $res[0]{$name} = [$type, $data];
1013 }
1014 }
1015
1016 if ($sofs != NO_OFS) {
1017 my $decode_key = __SUB__;
1018
1019 my $decode_subkeylist = sub {
1020 my ($sofs) = @_;
1021
1022 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1023
1024 if ($sig eq "ri") { # index root
1025 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1026 __SUB__->(unpack "\@$lofs L<", $bins);
1027 }
1028 } else {
1029 my $inc;
1030
1031 if ($sig eq "li") { # subkey list
1032 $inc = 4;
1033 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1034 $inc = 8;
1035 } else {
1036 die "expected subkey list at $sofs, found '$sig'\n";
1037 }
1038
1039 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1040 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1041 $res[1]{$name} = $data;
1042 }
1043 }
1044 };
1045
1046 $decode_subkeylist->($sofs);
1047 }
1048
1049 ($kname, \@res);
1050 };
1051
1052 my ($rootcell) = unpack "\@36 L<", $hive;
1053
1054 my ($rname, $root) = $decode_key->($rootcell);
1055
1056 [$rname, $root]
1057 }
1058
1059 # return a binary windows fILETIME struct
1060 sub filetime_now {
1061 my ($s, $ms) = Time::HiRes::gettimeofday;
1062
1063 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1064 }
1065
1066 # encode a registry hive
1067 sub regf_encode($) {
1068 my ($hive) = @_;
1069
1070 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1071
1072 # the filetime is apparently used to verify log file validity,
1073 # so by generating a new timestamp the log files *should* automatically
1074 # become invalidated and windows would "self-heal" them.
1075 # (update: has been verified by reverse engineering)
1076 # possibly the fact that the two sequence numbes match might also
1077 # make windows think that the hive is not dirty and ignore logs.
1078 # (update: has been verified by reverse engineering)
1079
1080 my $now = filetime_now;
1081
1082 # we only create a single hbin
1083 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1084
1085 # append cell to $bind, return offset
1086 my $cell = sub {
1087 my ($cell) = @_;
1088
1089 my $res = length $bins;
1090
1091 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1092
1093 $bins .= pack "l<", -(4 + length $cell);
1094 $bins .= $cell;
1095
1096 $res
1097 };
1098
1099 my $sdofs = $cell->($sk); # add a dummy security descriptor
1100 my $sdref = 0; # refcount
1101 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1102 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1103
1104 my $encode_key = sub {
1105 my ($kname, $kdata, $flags) = @_;
1106 my ($values, $subkeys) = @$kdata;
1107
1108 if ($kname =~ /[^\x00-\xff]/) {
1109 $kname = Encode::encode "UTF-16LE", $kname;
1110 } else {
1111 $flags |= KEY_COMP_NAME;
1112 }
1113
1114 # encode subkeys
1115
1116 my @snames =
1117 map $_->[1],
1118 sort { $a->[0] cmp $b->[0] }
1119 map [(uc $_), $_],
1120 keys %$subkeys;
1121
1122 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1123 my $maxsname = 4 * List::Util::max map length, @snames;
1124
1125 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1126
1127 # encode values
1128 my $maxvname = 4 * List::Util::max map length, keys %$values;
1129 my @vofs;
1130 my $maxdsze = 0;
1131
1132 while (my ($vname, $v) = each %$values) {
1133 my $flags = 0;
1134
1135 if ($vname =~ /[^\x00-\xff]/) {
1136 $vname = Encode::encode "UTF-16LE", $kname;
1137 } else {
1138 $flags |= VALUE_COMP_NAME;
1139 }
1140
1141 my ($type, $data) = @$v;
1142
1143 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1144
1145 my $dsze;
1146 my $dofs;
1147
1148 if (length $data <= 4) {
1149 $dsze = 0x80000000 | length $data;
1150 $dofs = unpack "L<", pack "a4", $data;
1151 } else {
1152 $dsze = length $data;
1153 $dofs = $cell->($data);
1154 }
1155
1156 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1157
1158 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1159 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1160
1161 $maxdsze = $dsze if $maxdsze < $dsze;
1162 }
1163
1164 # encode key
1165
1166 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1167 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1168
1169 my $kdata = pack "
1170 a2 S< a8 x4 x4
1171 L< L< L< L< L< L<
1172 L< L< L< L< L< L<
1173 x4 S< S< a*
1174 ",
1175 nk => $flags, $now,
1176 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1177 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1178 length $kname, 0, $kname;
1179 ++$sdref;
1180
1181 my $res = $cell->($kdata);
1182
1183 substr $bins, $_ + 16, 4, pack "L<", $res
1184 for @sofs;
1185
1186 $res
1187 };
1188
1189 my ($rname, $root) = @$hive;
1190
1191 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1192
1193 if (my $pad = -(length $bins) & 4095) {
1194 $pad -= 4;
1195 $bins .= pack "l< x$pad", $pad + 4;
1196 }
1197
1198 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1199 substr $bins, 8, 4, pack "L<", length $bins;
1200
1201 my $base = pack "
1202 a4 L< L< a8 L< L< L< L<
1203 L< L< L<
1204 a64
1205 x396
1206 ",
1207 regf => 1974, 1974, $now, 1, 3, 0, 1,
1208 $rofs, length $bins, 1,
1209 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1210
1211 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1212 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1213 $chksum = 1 if $chksum == 0;
1214
1215 $base .= pack "L<", $chksum;
1216
1217 $base = pack "a* \@4095 x1", $base;
1218
1219 $base . $bins
1220 }
1221
1222 # load and parse registry from file
1223 sub regf_load($) {
1224 my ($path) = @_;
1225
1226 regf_decode file_load $path
1227 }
1228
1229 # encode and save registry to file
1230 sub regf_save {
1231 my ($path, $hive) = @_;
1232
1233 $hive = regf_encode $hive;
1234
1235 open my $regf, ">:raw", "$path~"
1236 or die "$path~: $!\n";
1237 print $regf $hive
1238 or die "$path~: short write\n";
1239 $regf->sync;
1240 close $regf;
1241
1242 rename "$path~", $path;
1243 }
1244
1245 #############################################################################
1246 # bcd stuff
1247
1248 # human-readable alises for GUID object identifiers
1249 our %bcd_objects = (
1250 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1251 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1252 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1253 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1254 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1255 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1256 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1257 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1258 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1259 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1260 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1261 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1262 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1263 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1264 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1265 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1266 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1267 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1268 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1269 );
1270
1271 # default types
1272 our %bcd_object_types = (
1273 '{fwbootmgr}' => 0x10100001,
1274 '{bootmgr}' => 0x10100002,
1275 '{memdiag}' => 0x10200005,
1276 '{ntldr}' => 0x10300006,
1277 '{badmemory}' => 0x20100000,
1278 '{dbgsettings}' => 0x20100000,
1279 '{emssettings}' => 0x20100000,
1280 '{globalsettings}' => 0x20100000,
1281 '{bootloadersettings}' => 0x20200003,
1282 '{hypervisorsettings}' => 0x20200003,
1283 '{kerneldbgsettings}' => 0x20200003,
1284 '{resumeloadersettings}' => 0x20200004,
1285 '{ramdiskoptions}' => 0x30000000,
1286 );
1287
1288 # object types
1289 our %bcd_types = (
1290 0x10100001 => 'application::fwbootmgr',
1291 0x10100002 => 'application::bootmgr',
1292 0x10200003 => 'application::osloader',
1293 0x10200004 => 'application::resume',
1294 0x10100005 => 'application::memdiag',
1295 0x10100006 => 'application::ntldr',
1296 0x10100007 => 'application::setupldr',
1297 0x10400008 => 'application::bootsector',
1298 0x10400009 => 'application::startup',
1299 0x1020000a => 'application::bootapp',
1300 0x20100000 => 'settings',
1301 0x20200001 => 'inherit::fwbootmgr',
1302 0x20200002 => 'inherit::bootmgr',
1303 0x20200003 => 'inherit::osloader',
1304 0x20200004 => 'inherit::resume',
1305 0x20200005 => 'inherit::memdiag',
1306 0x20200006 => 'inherit::ntldr',
1307 0x20200007 => 'inherit::setupldr',
1308 0x20200008 => 'inherit::bootsector',
1309 0x20200009 => 'inherit::startup',
1310 0x20300000 => 'inherit::device',
1311 0x30000000 => 'device',
1312 );
1313
1314 our %rbcd_objects = reverse %bcd_objects;
1315
1316 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1317
1318 sub dec_guid($) {
1319 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1320 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1321 }
1322
1323 sub enc_guid($) {
1324 $_[0] =~ /^$RE_GUID\z/o
1325 or return;
1326
1327 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1328 }
1329
1330 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1331 sub dec_wguid($) {
1332 my $guid = "{" . (dec_guid shift) . "}";
1333
1334 $bcd_objects{$guid} // $guid
1335 }
1336
1337 sub enc_wguid($) {
1338 my ($guid) = @_;
1339
1340 if (my $alias = $rbcd_objects{$guid}) {
1341 $guid = $alias;
1342 }
1343
1344 $guid =~ /^\{($RE_GUID)\}\z/o
1345 or return;
1346
1347 enc_guid $1
1348 }
1349
1350 sub BCDE_CLASS () { 0xf0000000 }
1351 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1352 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1353 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1354 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1355
1356 sub BCDE_FORMAT () { 0x0f000000 }
1357 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1358 sub BCDE_FORMAT_STRING () { 0x02000000 }
1359 sub BCDE_FORMAT_GUID () { 0x03000000 }
1360 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1361 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1362 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1363 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1364
1365 sub dec_device;
1366 sub enc_device;
1367
1368 sub enc_integer($) {
1369 no warnings 'portable'; # ugh
1370 my $value = shift;
1371 $value = oct $value if $value =~ /^0[bBxX]/;
1372 unpack "H*", pack "Q<", $value
1373 }
1374
1375 our %bcde_dec = (
1376 BCDE_FORMAT_DEVICE , \&dec_device,
1377 # # for round-trip verification
1378 # BCDE_FORMAT_DEVICE , sub {
1379 # my $dev = dec_device $_[0];
1380 # $_[0] eq enc_device $dev
1381 # or die "bcd device decoding does not round trip for $_[0]\n";
1382 # $dev
1383 # },
1384 BCDE_FORMAT_STRING , sub { shift },
1385 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1386 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1387 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1388 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1389 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1390 );
1391
1392 our %bcde_enc = (
1393 BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1394 BCDE_FORMAT_STRING , sub { sz => shift },
1395 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1396 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1397 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1398 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1399 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1400 );
1401
1402 # BCD Elements
1403 our %bcde = (
1404 0x11000001 => 'device',
1405 0x12000002 => 'path',
1406 0x12000004 => 'description',
1407 0x12000005 => 'locale',
1408 0x14000006 => 'inherit',
1409 0x15000007 => 'truncatememory',
1410 0x14000008 => 'recoverysequence',
1411 0x16000009 => 'recoveryenabled',
1412 0x1700000a => 'badmemorylist',
1413 0x1600000b => 'badmemoryaccess',
1414 0x1500000c => 'firstmegabytepolicy',
1415 0x1500000d => 'relocatephysical',
1416 0x1500000e => 'avoidlowmemory',
1417 0x1600000f => 'traditionalkseg',
1418 0x16000010 => 'bootdebug',
1419 0x15000011 => 'debugtype',
1420 0x15000012 => 'debugaddress',
1421 0x15000013 => 'debugport',
1422 0x15000014 => 'baudrate',
1423 0x15000015 => 'channel',
1424 0x12000016 => 'targetname',
1425 0x16000017 => 'noumex',
1426 0x15000018 => 'debugstart',
1427 0x12000019 => 'busparams',
1428 0x1500001a => 'hostip',
1429 0x1500001b => 'port',
1430 0x1600001c => 'dhcp',
1431 0x1200001d => 'key',
1432 0x1600001e => 'vm',
1433 0x16000020 => 'bootems',
1434 0x15000022 => 'emsport',
1435 0x15000023 => 'emsbaudrate',
1436 0x12000030 => 'loadoptions',
1437 0x16000040 => 'advancedoptions',
1438 0x16000041 => 'optionsedit',
1439 0x15000042 => 'keyringaddress',
1440 0x11000043 => 'bootstatdevice',
1441 0x12000044 => 'bootstatfilepath',
1442 0x16000045 => 'preservebootstat',
1443 0x16000046 => 'graphicsmodedisabled',
1444 0x15000047 => 'configaccesspolicy',
1445 0x16000048 => 'nointegritychecks',
1446 0x16000049 => 'testsigning',
1447 0x1200004a => 'fontpath',
1448 0x1500004b => 'integrityservices',
1449 0x1500004c => 'volumebandid',
1450 0x16000050 => 'extendedinput',
1451 0x15000051 => 'initialconsoleinput',
1452 0x15000052 => 'graphicsresolution',
1453 0x16000053 => 'restartonfailure',
1454 0x16000054 => 'highestmode',
1455 0x16000060 => 'isolatedcontext',
1456 0x15000065 => 'displaymessage',
1457 0x15000066 => 'displaymessageoverride',
1458 0x16000068 => 'nobootuxtext',
1459 0x16000069 => 'nobootuxprogress',
1460 0x1600006a => 'nobootuxfade',
1461 0x1600006b => 'bootuxreservepooldebug',
1462 0x1600006c => 'bootuxdisabled',
1463 0x1500006d => 'bootuxfadeframes',
1464 0x1600006e => 'bootuxdumpstats',
1465 0x1600006f => 'bootuxshowstats',
1466 0x16000071 => 'multibootsystem',
1467 0x16000072 => 'nokeyboard',
1468 0x15000073 => 'aliaswindowskey',
1469 0x16000074 => 'bootshutdowndisabled',
1470 0x15000075 => 'performancefrequency',
1471 0x15000076 => 'securebootrawpolicy',
1472 0x17000077 => 'allowedinmemorysettings',
1473 0x15000079 => 'bootuxtransitiontime',
1474 0x1600007a => 'mobilegraphics',
1475 0x1600007b => 'forcefipscrypto',
1476 0x1500007d => 'booterrorux',
1477 0x1600007e => 'flightsigning',
1478 0x1500007f => 'measuredbootlogformat',
1479 0x15000080 => 'displayrotation',
1480 0x15000081 => 'logcontrol',
1481 0x16000082 => 'nofirmwaresync',
1482 0x11000084 => 'windowssyspart',
1483 0x16000087 => 'numlock',
1484 0x22000001 => 'bpbstring',
1485 0x24000001 => 'displayorder',
1486 0x21000001 => 'filedevice',
1487 0x21000001 => 'osdevice',
1488 0x25000001 => 'passcount',
1489 0x26000001 => 'pxesoftreboot',
1490 0x22000002 => 'applicationname',
1491 0x24000002 => 'bootsequence',
1492 0x22000002 => 'filepath',
1493 0x22000002 => 'systemroot',
1494 0x25000002 => 'testmix',
1495 0x26000003 => 'cacheenable',
1496 0x26000003 => 'customsettings',
1497 0x23000003 => 'default',
1498 0x25000003 => 'failurecount',
1499 0x23000003 => 'resumeobject',
1500 0x26000004 => 'failuresenabled',
1501 0x26000004 => 'pae',
1502 0x26000004 => 'stampdisks',
1503 0x25000004 => 'testtofail',
1504 0x25000004 => 'timeout',
1505 0x21000005 => 'associatedosdevice',
1506 0x26000005 => 'cacheenable',
1507 0x26000005 => 'resume',
1508 0x25000005 => 'stridefailcount',
1509 0x26000006 => 'debugoptionenabled',
1510 0x25000006 => 'invcfailcount',
1511 0x23000006 => 'resumeobject',
1512 0x25000007 => 'bootux',
1513 0x25000007 => 'matsfailcount',
1514 0x24000007 => 'startupsequence',
1515 0x25000008 => 'bootmenupolicy',
1516 0x25000008 => 'randfailcount',
1517 0x25000009 => 'chckrfailcount',
1518 0x26000010 => 'detecthal',
1519 0x24000010 => 'toolsdisplayorder',
1520 0x22000011 => 'kernel',
1521 0x22000012 => 'hal',
1522 0x22000013 => 'dbgtransport',
1523 0x26000020 => 'displaybootmenu',
1524 0x25000020 => 'nx',
1525 0x26000021 => 'noerrordisplay',
1526 0x25000021 => 'pae',
1527 0x21000022 => 'bcddevice',
1528 0x26000022 => 'winpe',
1529 0x22000023 => 'bcdfilepath',
1530 0x26000024 => 'hormenabled',
1531 0x26000024 => 'hormenabled',
1532 0x26000024 => 'nocrashautoreboot',
1533 0x26000025 => 'hiberboot',
1534 0x26000025 => 'lastknowngood',
1535 0x26000026 => 'oslnointegritychecks',
1536 0x22000026 => 'passwordoverride',
1537 0x26000027 => 'osltestsigning',
1538 0x22000027 => 'pinpassphraseoverride',
1539 0x26000028 => 'processcustomactionsfirst',
1540 0x27000030 => 'customactions',
1541 0x26000030 => 'nolowmem',
1542 0x26000031 => 'persistbootsequence',
1543 0x25000031 => 'removememory',
1544 0x25000032 => 'increaseuserva',
1545 0x26000032 => 'skipstartupsequence',
1546 0x25000033 => 'perfmem',
1547 0x22000040 => 'fverecoveryurl',
1548 0x26000040 => 'vga',
1549 0x22000041 => 'fverecoverymessage',
1550 0x26000041 => 'quietboot',
1551 0x26000042 => 'novesa',
1552 0x26000043 => 'novga',
1553 0x25000050 => 'clustermodeaddressing',
1554 0x26000051 => 'usephysicaldestination',
1555 0x25000052 => 'restrictapiccluster',
1556 0x22000053 => 'evstore',
1557 0x26000054 => 'uselegacyapicmode',
1558 0x26000060 => 'onecpu',
1559 0x25000061 => 'numproc',
1560 0x26000062 => 'maxproc',
1561 0x25000063 => 'configflags',
1562 0x26000064 => 'maxgroup',
1563 0x26000065 => 'groupaware',
1564 0x25000066 => 'groupsize',
1565 0x26000070 => 'usefirmwarepcisettings',
1566 0x25000071 => 'msi',
1567 0x25000072 => 'pciexpress',
1568 0x25000080 => 'safeboot',
1569 0x26000081 => 'safebootalternateshell',
1570 0x26000090 => 'bootlog',
1571 0x26000091 => 'sos',
1572 0x260000a0 => 'debug',
1573 0x260000a1 => 'halbreakpoint',
1574 0x260000a2 => 'useplatformclock',
1575 0x260000a3 => 'forcelegacyplatform',
1576 0x260000a4 => 'useplatformtick',
1577 0x260000a5 => 'disabledynamictick',
1578 0x250000a6 => 'tscsyncpolicy',
1579 0x260000b0 => 'ems',
1580 0x250000c0 => 'forcefailure',
1581 0x250000c1 => 'driverloadfailurepolicy',
1582 0x250000c2 => 'bootmenupolicy',
1583 0x260000c3 => 'onetimeadvancedoptions',
1584 0x260000c4 => 'onetimeoptionsedit',
1585 0x250000e0 => 'bootstatuspolicy',
1586 0x260000e1 => 'disableelamdrivers',
1587 0x250000f0 => 'hypervisorlaunchtype',
1588 0x220000f1 => 'hypervisorpath',
1589 0x260000f2 => 'hypervisordebug',
1590 0x250000f3 => 'hypervisordebugtype',
1591 0x250000f4 => 'hypervisordebugport',
1592 0x250000f5 => 'hypervisorbaudrate',
1593 0x250000f6 => 'hypervisorchannel',
1594 0x250000f7 => 'bootux',
1595 0x260000f8 => 'hypervisordisableslat',
1596 0x220000f9 => 'hypervisorbusparams',
1597 0x250000fa => 'hypervisornumproc',
1598 0x250000fb => 'hypervisorrootprocpernode',
1599 0x260000fc => 'hypervisoruselargevtlb',
1600 0x250000fd => 'hypervisorhostip',
1601 0x250000fe => 'hypervisorhostport',
1602 0x250000ff => 'hypervisordebugpages',
1603 0x25000100 => 'tpmbootentropy',
1604 0x22000110 => 'hypervisorusekey',
1605 0x22000112 => 'hypervisorproductskutype',
1606 0x25000113 => 'hypervisorrootproc',
1607 0x26000114 => 'hypervisordhcp',
1608 0x25000115 => 'hypervisoriommupolicy',
1609 0x26000116 => 'hypervisorusevapic',
1610 0x22000117 => 'hypervisorloadoptions',
1611 0x25000118 => 'hypervisormsrfilterpolicy',
1612 0x25000119 => 'hypervisormmionxpolicy',
1613 0x2500011a => 'hypervisorschedulertype',
1614 0x25000120 => 'xsavepolicy',
1615 0x25000121 => 'xsaveaddfeature0',
1616 0x25000122 => 'xsaveaddfeature1',
1617 0x25000123 => 'xsaveaddfeature2',
1618 0x25000124 => 'xsaveaddfeature3',
1619 0x25000125 => 'xsaveaddfeature4',
1620 0x25000126 => 'xsaveaddfeature5',
1621 0x25000127 => 'xsaveaddfeature6',
1622 0x25000128 => 'xsaveaddfeature7',
1623 0x25000129 => 'xsaveremovefeature',
1624 0x2500012a => 'xsaveprocessorsmask',
1625 0x2500012b => 'xsavedisable',
1626 0x2500012c => 'kerneldebugtype',
1627 0x2200012d => 'kernelbusparams',
1628 0x2500012e => 'kerneldebugaddress',
1629 0x2500012f => 'kerneldebugport',
1630 0x25000130 => 'claimedtpmcounter',
1631 0x25000131 => 'kernelchannel',
1632 0x22000132 => 'kerneltargetname',
1633 0x25000133 => 'kernelhostip',
1634 0x25000134 => 'kernelport',
1635 0x26000135 => 'kerneldhcp',
1636 0x22000136 => 'kernelkey',
1637 0x22000137 => 'imchivename',
1638 0x21000138 => 'imcdevice',
1639 0x25000139 => 'kernelbaudrate',
1640 0x22000140 => 'mfgmode',
1641 0x26000141 => 'event',
1642 0x25000142 => 'vsmlaunchtype',
1643 0x25000144 => 'hypervisorenforcedcodeintegrity',
1644 0x26000145 => 'enablebootdebugpolicy',
1645 0x26000146 => 'enablebootorderclean',
1646 0x26000147 => 'enabledeviceid',
1647 0x26000148 => 'enableffuloader',
1648 0x26000149 => 'enableiuloader',
1649 0x2600014a => 'enablemassstorage',
1650 0x2600014b => 'enablerpmbprovisioning',
1651 0x2600014c => 'enablesecurebootpolicy',
1652 0x2600014d => 'enablestartcharge',
1653 0x2600014e => 'enableresettpm',
1654 0x21000150 => 'systemdatadevice',
1655 0x21000151 => 'osarcdevice',
1656 0x21000153 => 'osdatadevice',
1657 0x21000154 => 'bspdevice',
1658 0x21000155 => 'bspfilepath',
1659 0x26000202 => 'skipffumode',
1660 0x26000203 => 'forceffumode',
1661 0x25000510 => 'chargethreshold',
1662 0x26000512 => 'offmodecharging',
1663 0x25000aaa => 'bootflow',
1664 0x35000001 => 'ramdiskimageoffset',
1665 0x35000002 => 'ramdisktftpclientport',
1666 0x31000003 => 'ramdisksdidevice',
1667 0x32000004 => 'ramdisksdipath',
1668 0x35000005 => 'ramdiskimagelength',
1669 0x36000006 => 'exportascd',
1670 0x35000007 => 'ramdisktftpblocksize',
1671 0x35000008 => 'ramdisktftpwindowsize',
1672 0x36000009 => 'ramdiskmcenabled',
1673 0x3600000a => 'ramdiskmctftpfallback',
1674 0x3600000b => 'ramdisktftpvarwindow',
1675 0x45000001 => 'devicetype',
1676 0x42000002 => 'applicationrelativepath',
1677 0x42000003 => 'ramdiskdevicerelativepath',
1678 0x46000004 => 'omitosloaderelements',
1679 0x47000006 => 'elementstomigrate',
1680 0x46000010 => 'recoveryos',
1681 );
1682
1683 our %rbcde = reverse %bcde;
1684
1685 sub dec_bcde_id($) {
1686 $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1687 }
1688
1689 sub enc_bcde_id($) {
1690 $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1691 ? hex $1
1692 : $rbcde{$_[0]}
1693 }
1694
1695 # decode/encode bcd device element - the horror, no documentaion
1696 # whatsoever, supercomplex, superinconsistent.
1697
1698 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1699 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1700 our @part_type = qw(gpt mbr raw);
1701
1702 our $NULL_DEVICE = "\x00" x 16;
1703
1704 # biggest bitch to decode, ever
1705 # this decoded a device portion after the GUID
1706 sub dec_device_($);
1707 sub dec_device_($) {
1708 my ($device) = @_;
1709
1710 my $res;
1711
1712 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1713
1714 $pad == 0
1715 or die "non-zero reserved field in device descriptor\n";
1716
1717 if ($length == 0 && $type == 0 && $flags == 0) {
1718 return ("null", $device);
1719 }
1720
1721 $length >= 16
1722 or die "device element size too small ($length)\n";
1723
1724 $type = $dev_type[$type] // die "$type: unknown device type\n";
1725 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1726
1727 $res .= $type;
1728 $res .= sprintf "<%x>", $flags if $flags;
1729
1730 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1731
1732 $length == 4 * 4 + length $device
1733 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1734
1735 my $dec_path = sub {
1736 my ($path, $error) = @_;
1737
1738 $path =~ /^((?:..)*)\x00\x00\z/s
1739 or die "$error\n";
1740
1741 $path = Encode::decode "UTF-16LE", $1;
1742
1743 $path
1744 };
1745
1746 if ($type eq "partition" or $type eq "legacypartition") {
1747 my $partdata = substr $device, 0, 16, "";
1748 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1749
1750 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1751 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1752
1753 my $diskid = substr $device, 0, 16, "";
1754
1755 $diskid = $parttype eq "gpt"
1756 ? dec_guid substr $diskid, 0, 16
1757 : sprintf "%08x", unpack "V", $diskid;
1758
1759 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1760 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1761 : unpack "L<", $partdata; # partition number, one-based
1762
1763 (my $parent, $device) = dec_device_ $device;
1764
1765 $res .= "=";
1766 $res .= "<$parent>";
1767 $res .= ",$blocktype,$parttype,$diskid,$partid";
1768
1769 # PartitionType (gpt, mbr, raw)
1770 # guid | partsig | disknumber
1771
1772 } elsif ($type eq "boot") {
1773 $device =~ s/^\x00{56}\z//
1774 or die "boot device type with extra data not supported\n";
1775
1776 } elsif ($type eq "block") {
1777 my $blocktype = unpack "V", substr $device, 0, 4, "";
1778
1779 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1780
1781 # decode a "file path" structure
1782 my $dec_file = sub {
1783 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1784
1785 my $path = substr $device, 0, $flen - 12, "";
1786
1787 $fver == 1
1788 or die "unsupported file descriptor version '$fver'\n";
1789
1790 $ftype == 5
1791 or die "unsupported file descriptor path type '$type'\n";
1792
1793 (my $parent, $path) = dec_device_ $path;
1794
1795 $path = $dec_path->($path, "file device without path");
1796
1797 ($parent, $path)
1798 };
1799
1800 if ($blocktype eq "file") {
1801 my ($parent, $path) = $dec_file->();
1802
1803 $res .= "=file,<$parent>,$path";
1804
1805 } elsif ($blocktype eq "vhd") {
1806 $device =~ s/^\x00{20}//s
1807 or die "virtualdisk has non-zero fields I don't understand\n";
1808
1809 (my $parent, $device) = dec_device_ $device;
1810
1811 $res .= "=vhd,<$parent>";
1812
1813 } elsif ($blocktype eq "ramdisk") {
1814 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1815 my ($subdev, $path) = $dec_file->();
1816
1817 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1818
1819 } else {
1820 die "unsupported block type '$blocktype'\n";
1821 }
1822
1823 } elsif ($type eq "locate") {
1824 # mode, bcde_id, unknown, string
1825 # we assume locate has _either_ an element id _or_ a path, but not both
1826
1827 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1828
1829 if ($parent) {
1830 # not sure why this is an offset - it must come after the path
1831 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1832 ($parent, my $tail) = dec_device_ $parent;
1833 0 == length $tail
1834 or die "trailing data after locate device parent\n";
1835 } else {
1836 $parent = "null";
1837 }
1838
1839 my $path = $device; $device = "";
1840 $path = $dec_path->($path, "device locate mode without path");
1841
1842 $res .= "=<$parent>,";
1843
1844 if ($mode == 0) { # "Element"
1845 !length $path
1846 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1847
1848 $elem = dec_bcde_id $elem;
1849 $res .= "element,$elem";
1850
1851 } elsif ($mode == 1) { # "String"
1852 !$elem
1853 or die "device locate mode 1 having non-zero element\n";
1854
1855 $res .= "path,$path";
1856 } else {
1857 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1858 die "device locate mode '$mode' not supported\n";
1859 }
1860
1861 } elsif ($type eq "vmbus") {
1862 my $type = dec_guid substr $device, 0, 16, "";
1863 my $instance = dec_guid substr $device, 0, 16, "";
1864
1865 $device =~ s/^\x00{24}\z//
1866 or die "vmbus has non-zero fields I don't understand\n";
1867
1868 $res .= "=$type,$instance";
1869
1870 } else {
1871 die "unsupported device type '$type'\n";
1872 }
1873
1874 warn "unexpected trailing device data($res), " . unpack "H*",$device
1875 if length $device;
1876 #length $device
1877 # and die "unexpected trailing device data\n";
1878
1879 ($res, $tail)
1880 }
1881
1882 # decode a full binary BCD device descriptor
1883 sub dec_device($) {
1884 my ($device) = @_;
1885
1886 $device = pack "H*", $device;
1887
1888 my $guid = dec_guid substr $device, 0, 16, "";
1889 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1890 ? "" : "{$guid}";
1891
1892 eval {
1893 my ($dev, $tail) = dec_device_ $device;
1894
1895 $tail eq ""
1896 or die "unsupported trailing data after device descriptor\n";
1897
1898 "$guid$dev"
1899 # } // scalar ((warn $@), "$guid$fallback")
1900 } // ($guid . "binary=" . unpack "H*", $device)
1901 }
1902
1903 sub indexof($@) {
1904 my $value = shift;
1905
1906 for (0 .. $#_) {
1907 $value eq $_[$_]
1908 and return $_;
1909 }
1910
1911 undef
1912 }
1913
1914 # encode the device portion after the GUID
1915 sub enc_device_;
1916 sub enc_device_ {
1917 my ($device) = @_;
1918
1919 my $enc_path = sub {
1920 my $path = shift;
1921 $path =~ s/\//\\/g;
1922 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1923 };
1924
1925 my $enc_file = sub {
1926 my ($parent, $path) = @_; # parent and path must already be encoded
1927
1928 $path = $parent . $path;
1929
1930 # fver 1, ftype 5
1931 pack "VVVa*", 1, 12 + length $path, 5, $path
1932 };
1933
1934 my $parse_path = sub {
1935 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1936 or die "$_: invalid path\n";
1937
1938 $enc_path->($1)
1939 };
1940
1941 my $parse_parent = sub {
1942 my $parent;
1943
1944 if (s/^<//) {
1945 ($parent, $_) = enc_device_ $_;
1946 s/^>//
1947 or die "$device: syntax error: parent device not followed by '>'\n";
1948 } else {
1949 $parent = $NULL_DEVICE;
1950 }
1951
1952 $parent
1953 };
1954
1955 for ($device) {
1956 s/^([a-z]+)//
1957 or die "$_: device does not start with type string\n";
1958
1959 my $type = $1;
1960 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1961 my $payload;
1962
1963 if ($type eq "binary") {
1964 s/^=([0-9a-fA-F]+)//
1965 or die "binary type must have a hex string argument\n";
1966
1967 $payload = pack "H*", $1;
1968
1969 } elsif ($type eq "null") {
1970 return ($NULL_DEVICE, $_);
1971
1972 } elsif ($type eq "boot") {
1973 $payload = "\x00" x 56;
1974
1975 } elsif ($type eq "partition" or $type eq "legacypartition") {
1976 s/^=//
1977 or die "$_: missing '=' after $type\n";
1978
1979 my $parent = $parse_parent->();
1980
1981 s/^,//
1982 or die "$_: comma missing after partition parent device\n";
1983
1984 s/^([a-z]+),//
1985 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1986 my $blocktype = $1;
1987
1988 s/^([a-z]+),//
1989 or die "$_: partition block type not followed by partiton type\n";
1990 my $parttype = $1;
1991
1992 my ($partdata, $diskdata);
1993
1994 if ($parttype eq "mbr") {
1995 s/^([0-9a-f]{8}),//i
1996 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1997 $diskdata = pack "Vx12", hex $1;
1998
1999 s/^([0-9]+)//
2000 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
2001
2002 # the following works for both 64 bit offset and 32 bit partno
2003 $partdata = pack "Q< x8", $1;
2004
2005 } elsif ($parttype eq "gpt") {
2006 s/^($RE_GUID),//
2007 or die "$_: partition disk guid missing or malformed\n";
2008 $diskdata = enc_guid $1;
2009
2010 s/^($RE_GUID)//
2011 or die "$_: partition guid missing or malformed\n";
2012 $partdata = enc_guid $1;
2013
2014 } elsif ($parttype eq "raw") {
2015 s/^([0-9]+)//
2016 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2017
2018 $partdata = pack "L< x12", $1;
2019
2020 } else {
2021 die "$parttype: partition type not supported\n";
2022 }
2023
2024 $payload = pack "a16 L< L< a16 a*",
2025 $partdata,
2026 (indexof $blocktype, @block_type),
2027 (indexof $parttype, @part_type),
2028 $diskdata,
2029 $parent;
2030
2031 } elsif ($type eq "locate") {
2032 s/^=//
2033 or die "$_: missing '=' after $type\n";
2034
2035 my ($mode, $elem, $path);
2036
2037 my $parent = $parse_parent->();
2038
2039 s/^,//
2040 or die "$_: missing comma after locate parent device\n";
2041
2042 if (s/^element,//) {
2043 s/^([0-9a-z]+)//i
2044 or die "$_ locate element must be either name or 8-digit hex id\n";
2045 $elem = enc_bcde_id $1;
2046 $mode = 0;
2047 $path = $enc_path->("");
2048
2049 } elsif (s/^path,//) {
2050 $mode = 1;
2051 $path = $parse_path->();
2052
2053 } else {
2054 die "$_ second locate argument must be subtype (either element or path)\n";
2055 }
2056
2057 if ($parent ne $NULL_DEVICE) {
2058 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2059 } else {
2060 $parent = 0;
2061 }
2062
2063 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2064
2065 } elsif ($type eq "block") {
2066 s/^=//
2067 or die "$_: missing '=' after $type\n";
2068
2069 s/^([a-z]+),//
2070 or die "$_: block device does not start with block type (e.g. disk)\n";
2071 my $blocktype = $1;
2072
2073 my $blockdata;
2074
2075 if ($blocktype eq "file") {
2076 my $parent = $parse_parent->();
2077 s/^,// or die "$_: comma missing after file block device parent\n";
2078 my $path = $parse_path->();
2079
2080 $blockdata = $enc_file->($parent, $path);
2081
2082 } elsif ($blocktype eq "vhd") {
2083 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2084 $blockdata .= $parse_parent->();
2085
2086 } elsif ($blocktype eq "ramdisk") {
2087 my $parent = $parse_parent->();
2088
2089 s/^,(\d+),(\d+),(\d+),//a
2090 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2091
2092 my ($base, $size, $offset) = ($1, $2, $3);
2093
2094 my $path = $parse_path->();
2095
2096 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2097
2098 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2099 # this is guesswork
2100 s/^(\d+)//a
2101 or die "$_: missing device number for cdrom\n";
2102 $blockdata = pack "V", $1;
2103
2104 } else {
2105 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2106 }
2107
2108 $payload = pack "Va*",
2109 (indexof $blocktype, @block_type),
2110 $blockdata;
2111
2112 } elsif ($type eq "vmbus") {
2113 s/^=($RE_GUID)//
2114 or die "$_: malformed or missing vmbus interface type guid\n";
2115 my $type = enc_guid $1;
2116 s/^,($RE_GUID)//
2117 or die "$_: malformed or missing vmbus interface instance guid\n";
2118 my $instance = enc_guid $1;
2119
2120 $payload = pack "a16a16x24", $type, $instance;
2121
2122 } else {
2123 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2124 }
2125
2126 return (
2127 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2128 $_
2129 );
2130 }
2131 }
2132
2133 # encode a full binary BCD device descriptor
2134 sub enc_device {
2135 my ($device) = @_;
2136
2137 my $guid = "\x00" x 16;
2138
2139 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2140 $guid = enc_guid $1
2141 or die "$device: does not start with valid guid\n";
2142 }
2143
2144 my ($descriptor, $tail) = enc_device_ $device;
2145
2146 length $tail
2147 and die "$device: garbage after device descriptor\n";
2148
2149 unpack "H*", $guid . $descriptor
2150 }
2151
2152 # decode a registry hive into the BCD structure used by pbcdedit
2153 sub bcd_decode {
2154 my ($hive) = @_;
2155
2156 my %bcd;
2157
2158 my $objects = $hive->[1][1]{Objects}[1];
2159
2160 while (my ($k, $v) = each %$objects) {
2161 my %kv;
2162 $v = $v->[1];
2163
2164 $k = $bcd_objects{$k} // $k;
2165
2166 my $type = $v->{Description}[0]{Type}[1];
2167
2168 if ($type != $bcd_object_types{$k}) {
2169 $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2170 $kv{type} = $type;
2171 }
2172
2173 my $elems = $v->{Elements}[1];
2174
2175 while (my ($k, $v) = each %$elems) {
2176 my $k = hex $k;
2177
2178 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2179 my $k = dec_bcde_id $k;
2180
2181 $kv{$k} = $v;
2182 }
2183
2184 $bcd{$k} = \%kv;
2185 }
2186
2187 $bcd{meta} = { version => $JSON_VERSION };
2188
2189 \%bcd
2190 }
2191
2192 # encode a pbcdedit structure into a registry hive
2193 sub bcd_encode {
2194 my ($bcd) = @_;
2195
2196 if (my $meta = $bcd->{meta}) {
2197 $meta->{version} eq $JSON_VERSION
2198 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2199 }
2200
2201 my %objects;
2202 my %rbcd_types = reverse %bcd_types;
2203
2204 while (my ($k, $v) = each %$bcd) {
2205 my %kv;
2206
2207 next if $k eq "meta";
2208
2209 $k = lc $k; # I know you windows types!
2210
2211 my $type = $v->{type};
2212
2213 if ($type) {
2214 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2215 ? hex $type
2216 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2217 }
2218
2219 my $guid = enc_wguid $k
2220 or die "$k: invalid bcd object identifier\n";
2221
2222 # default type if not given
2223 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2224
2225 my %elem;
2226
2227 while (my ($k, $v) = each %$v) {
2228 next if $k eq "type";
2229
2230 $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2231 $elem{sprintf "%08x", $k} = [{
2232 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2233 }];
2234 }
2235
2236 $guid = dec_guid $guid;
2237
2238 $objects{"{$guid}"} = [undef, {
2239 Description => [{ Type => [dword => $type] }],
2240 Elements => [undef, \%elem],
2241 }];
2242 }
2243
2244 [NewStoreRoot => [undef, {
2245 Description => [{
2246 KeyName => [sz => "BCD00000001"],
2247 System => [dword => 1],
2248 pbcdedit => [sz => $VERSION],
2249 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2250 }],
2251 Objects => [undef, \%objects],
2252 }]]
2253 }
2254
2255 #############################################################################
2256 # edit instructions
2257
2258 sub bcd_edit_eval {
2259 package pbcdedit;
2260
2261 our ($PATH, $BCD, $DEFAULT);
2262
2263 eval shift;
2264 die "$@" if $@;
2265 }
2266
2267 sub bcd_edit {
2268 my ($path, $bcd, @insns) = @_;
2269
2270 my $default = $bcd->{"{bootmgr}"}{resumeobject};
2271
2272 # prepare "officially visible" variables
2273 local $pbcdedit::PATH = $path;
2274 local $pbcdedit::BCD = $bcd;
2275 local $pbcdedit::DEFAULT = $default;
2276
2277 while (@insns) {
2278 my $insn = shift @insns;
2279
2280 if ($insn eq "get") {
2281 my $object = shift @insns;
2282 my $elem = shift @insns;
2283
2284 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2285
2286 print $bcd->{$object}{$elem}, "\n";
2287
2288 } elsif ($insn eq "set") {
2289 my $object = shift @insns;
2290 my $elem = shift @insns;
2291 my $value = shift @insns;
2292
2293 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2294
2295 $bcd->{$object}{$elem} = $value;
2296
2297 } elsif ($insn eq "eval") {
2298 bcd_edit_eval shift @insns;
2299
2300 } elsif ($insn eq "do") {
2301 my $path = shift @insns;
2302 my $file = file_load $path;
2303 bcd_edit_eval "#line 1 '$path'\n$file";
2304
2305 } else {
2306 die "$insn: not a recognized instruction for edit/parse\n";
2307 }
2308 }
2309
2310 }
2311
2312 #############################################################################
2313 # command line parser
2314
2315 # json to stdout
2316 sub prjson($) {
2317 print $json_coder->encode ($_[0]);
2318 }
2319
2320 # json from stdin
2321 sub rdjson() {
2322 my $json;
2323 1 while read STDIN, $json, 65536, length $json;
2324 $json_coder->decode ($json)
2325 }
2326
2327 # all subcommands
2328 our %CMD = (
2329 help => sub {
2330 require Pod::Usage;
2331 Pod::Usage::pod2usage (-verbose => 2);
2332 },
2333
2334 objects => sub {
2335 my %rbcd_types = reverse %bcd_types;
2336 $_ = sprintf "%08x", $_ for values %rbcd_types;
2337
2338 if ($_[0] eq "--json") {
2339 my %default_type = %bcd_object_types;
2340 $_ = sprintf "%08x", $_ for values %default_type;
2341
2342 prjson {
2343 version => $JSON_VERSION,
2344 object_alias => \%bcd_objects,
2345 object_type => \%rbcd_types,
2346 object_default_type => \%default_type,
2347 };
2348 } else {
2349 my %rbcd_objects = reverse %bcd_objects;
2350
2351 print "\n";
2352
2353 printf "%-9s %s\n", "Type", "Alias";
2354 for my $tname (sort keys %rbcd_types) {
2355 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2356 }
2357
2358 print "\n";
2359
2360 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2361 for my $name (sort keys %rbcd_objects) {
2362 my $guid = $rbcd_objects{$name};
2363 my $type = $bcd_object_types{$name};
2364 my $tname = $bcd_types{$type};
2365
2366 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2367
2368 printf "%-39s %-23s %s\n", $guid, $name, $type;
2369 }
2370
2371 print "\n";
2372 }
2373 },
2374
2375 elements => sub {
2376 my $json = $_[0] eq "--json";
2377
2378 my %format_name = (
2379 BCDE_FORMAT_DEVICE , "device",
2380 BCDE_FORMAT_STRING , "string",
2381 BCDE_FORMAT_GUID , "guid",
2382 BCDE_FORMAT_GUID_LIST , "guid list",
2383 BCDE_FORMAT_INTEGER , "integer",
2384 BCDE_FORMAT_BOOLEAN , "boolean",
2385 BCDE_FORMAT_INTEGER_LIST, "integer list",
2386 );
2387 my %rbcde = reverse %bcde;
2388 $_ = sprintf "%08x", $_ for values %rbcde;
2389
2390 my %element;
2391
2392 unless ($json) {
2393 print "\n";
2394 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2395 }
2396 for my $name (sort keys %rbcde) {
2397 my $id = $rbcde{$name};
2398 my $format = $format_name{(hex $id) & BCDE_FORMAT};
2399
2400 if ($json) {
2401 $element{$id} = [$format, $name];
2402 } else {
2403 printf "%-9s %-12s %s\n", $id, $format, $name;
2404 }
2405 }
2406 print "\n" unless $json;
2407
2408 prjson {
2409 version => $JSON_VERSION,
2410 element => \%element,
2411 } if $json;
2412
2413 },
2414
2415 export => sub {
2416 prjson bcd_decode regf_load shift;
2417 },
2418
2419 import => sub {
2420 regf_save shift, bcd_encode rdjson;
2421 },
2422
2423 edit => sub {
2424 my $path = shift;
2425 my $bcd = bcd_decode regf_load $path;
2426 bcd_edit $path, $bcd, @_;
2427 regf_save $path, bcd_encode $bcd;
2428 },
2429
2430 parse => sub {
2431 my $path = shift;
2432 my $bcd = bcd_decode regf_load $path;
2433 bcd_edit $path, $bcd, @_;
2434 },
2435
2436 "export-regf" => sub {
2437 prjson regf_load shift;
2438
2439 },
2440
2441 "import-regf" => sub {
2442 regf_save shift, rdjson;
2443 },
2444
2445 lsblk => sub {
2446 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2447
2448 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2449
2450 for my $dev (@{ $lsblk->{blockdevices} }) {
2451 my $pr = sub {
2452 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2453 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2454 };
2455
2456 if ($dev->{type} eq "part") {
2457 if ($dev->{pttype} eq "gpt") {
2458 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2459 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2460 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2461 my ($diskid, $partno) = ($1, hex $2);
2462 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2463 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2464 my $start = 512 * readline $fh;
2465 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2466 }
2467 }
2468 }
2469 }
2470 }
2471 },
2472 );
2473
2474 my $cmd = shift;
2475
2476 unless (exists $CMD{$cmd}) {
2477 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2478 exit 126;
2479 }
2480
2481 $CMD{$cmd}->(@ARGV);
2482