ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.38
Committed: Thu Aug 15 23:48:21 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.37: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.016; # numerous features need 5.14, __SUB__ needs 5.16
23
24 our $VERSION = '1.2';
25 our $JSON_VERSION = 2; # the version of the json objects generated by this program
26
27 our $CHANGELOG = <<EOF;
28 1.2 Fri Aug 16 00:20:41 CEST 2019
29 - bcde element names now depend on the bcd object type they are in,
30 also affects "elements" output.
31 - json schema bumped to 2.
32 - new version command.
33 - numerous minor bugfixes.
34
35 EOF
36
37 =head1 NAME
38
39 pbcdedit - portable boot configuration data (BCD) store editor
40
41 =head1 SYNOPSIS
42
43 pbcdedit help # output manual page
44 pbcdedit version # output version and changelog
45
46 pbcdedit export path/to/BCD # output BCD hive as JSON
47 pbcdedit import path/to/BCD # convert standard input to BCD hive
48 pbcdedit edit path/to/BCD edit-instructions...
49
50 pbcdedit objects # list all supported object aliases and types
51 pbcdedit elements # list all supported bcd element aliases
52
53 =head1 DESCRIPTION
54
55 This program allows you to create, read and modify Boot Configuration Data
56 (BCD) stores used by Windows Vista and newer versions of Windows.
57
58 At this point, it is in relatively early stages of development and has
59 received little to no real-world testing.
60
61 Compared to other BCD editing programs it offers the following unique
62 features:
63
64 =over
65
66 =item Can create BCD hives from scratch
67
68 Practically all other BCD editing programs force you to copy existing BCD
69 stores, which might or might not be copyrighted by Microsoft.
70
71 =item Does not rely on Windows
72
73 As the "portable" in the name implies, this program does not rely on
74 C<bcdedit> or other windows programs or libraries, it works on any system
75 that supports at least perl version 5.16.
76
77 =item Decodes and encodes BCD device elements
78
79 PBCDEDIT can concisely decode and encode BCD device element contents. This
80 is pretty unique, and offers a lot of potential that can't be realised
81 with C<bcdedit> or any programs relying on it.
82
83 =item Minimal files
84
85 BCD files written by PBCDEDIT are always "minimal", that is, they don't
86 contain unused data areas and therefore don't contain old and potentially
87 sensitive data.
88
89 =back
90
91 The target audience for this program is professionals and tinkerers who
92 are ready to invest time into learning how it works. It is not an easy
93 program to use and requires patience and a good understanding of BCD
94 stores.
95
96
97 =head1 SUBCOMMANDS
98
99 PBCDEDIT expects a subcommand as first argument that tells it what to
100 do. The following subcommands exist:
101
102 =over
103
104 =item C<help>
105
106 Displays the whole manual page (this document).
107
108 =item C<version>
109
110 This outputs the PBCDEDIT version, the JSON schema version it uses and the
111 full log of changes.
112
113 =item C<export> F<path>
114
115 Reads a BCD data store and writes a JSON representation of it to standard
116 output.
117
118 The format of the data is explained later in this document.
119
120 Example: read a BCD store, modify it with an external program, write it
121 again.
122
123 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
124
125 =item C<import> F<path>
126
127 The reverse of C<export>: Reads a JSON representation of a BCD data store
128 from standard input, and creates or replaces the given BCD data store.
129
130 =item C<edit> F<path> I<instructions...>
131
132 Load a BCD data store, apply some instructions to it, and save it again.
133
134 See the section L<EDITING BCD STORES>, below, for more info.
135
136 =item C<parse> F<path> I<instructions...>
137
138 Same as C<edit>, above, except it doesn't save the data store again. Can
139 be useful to extract some data from it.
140
141 =item C<lsblk>
142
143 On a GNU/Linux system, you can get a list of partition device descriptors
144 using this command - the external C<lsblk> command is required, as well as
145 a mounted C</sys> file system.
146
147 The output will be a list of all partitions in the system and C<partition>
148 descriptors for GPT and both C<legacypartition> and C<partition>
149 descriptors for MBR partitions.
150
151 =item C<objects> [C<--json>]
152
153 Outputs two tables: a table listing all type aliases with their hex BCD
154 element ID, and all object name aliases with their GUID and default type
155 (if any).
156
157 With C<--json> it prints similar information as a JSON object, for easier parsing.
158
159 =item C<elements> [C<--json>]
160
161 Outputs a table of known element aliases with their hex ID and the format
162 type.
163
164 With C<--json> it prints similar information as a JSON object, for easier parsing.
165
166 =item C<export-regf> F<path>
167
168 This has nothing to do with BCD stores, but simply exposes PCBEDIT's
169 internal registry hive reader - it takes a registry hive file as argument
170 and outputs a JSON representation of it to standard output.
171
172 Hive versions 1.2 till 1.6 are supported.
173
174 =item C<import-regf> F<path>
175
176 The reverse of C<export-regf>: reads a JSON representation of a registry
177 hive from standard input and creates or replaces the registry hive file
178 given as argument.
179
180 The written hive will always be in a slightly modified version 1.3
181 format. It's not the format windows would generate, but it should be
182 understood by any conformant hive reader.
183
184 Note that the representation chosen by PBCDEDIT currently throws away
185 classname data (often used for feeble attempts at hiding stuff by
186 Microsoft) and security descriptors, so if you write anything other than
187 a BCD hive you will most likely destroy it.
188
189 =back
190
191
192 =head1 BCD STORE REPRESENTATION FORMAT
193
194 A BCD data store is represented as a JSON object with one special key,
195 C<meta>, and one key per BCD object. That is, each BCD object becomes
196 one key-value pair in the object, and an additional key called C<meta>
197 contains meta information.
198
199 Here is an abridged example of a real BCD store:
200
201 {
202 "meta" : {
203 "version" : 1
204 },
205 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
206 "type" : "application::osloader",
207 "description" : "Windows 10",
208 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
209 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
210 "path" : "\\Windows\\system32\\winload.exe",
211 "systemroot" : "\\Windows"
212 },
213 "{bootloadersettings}" : {
214 "inherit" : "{globalsettings} {hypervisorsettings}"
215 },
216 "{bootmgr}" : {
217 "description" : "Windows Boot Manager",
218 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
219 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
220 "inherit" : "{globalsettings}",
221 "displaybootmenu" : 0,
222 "timeout" : 30
223 },
224 "{globalsettings}" : {
225 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
226 },
227 "{hypervisorsettings}" : {
228 "hypervisorbaudrate" : 115200,
229 "hypervisordebugport" : 1,
230 "hypervisordebugtype" : 0
231 },
232 # ...
233 }
234
235 =head2 Minimal BCD to boot windows
236
237 Experimentally I found the following BCD is the minimum required to
238 successfully boot any post-XP version of Windows (assuming suitable
239 C<device> and C<osdevice> values, of course):
240
241 {
242 "{bootmgr}" : {
243 "default" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
244 },
245
246 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
247 "type" : "application::osloader",
248 "description" : "Windows Boot",
249 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
250 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
251 "path" : "\\Windows\\system32\\winload.exe",
252 "systemroot" : "\\Windows"
253 },
254 }
255
256 Note that minimal doesn't mean recommended - Windows itself will add stuff
257 to this during or after boot, and you might or might not run into issues
258 when installing updates as it might not be able to find the F<bootmgr>.
259
260 =head2 The C<meta> key
261
262 The C<meta> key is not stored in the BCD data store but is used only
263 by PBCDEDIT. It is always generated when exporting, and importing will
264 be refused when it exists and the version stored inside doesn't store
265 the JSON schema version of PBCDEDIT. This ensures that different and
266 incompatible versions of PBCDEDIT will not read and misinterpret each
267 others data.
268
269 =head2 The object keys
270
271 Every other key is a BCD object. There is usually a BCD object for the
272 boot manager, one for every boot option and a few others that store common
273 settings inherited by these.
274
275 Each BCD object is represented by a GUID wrapped in curly braces. These
276 are usually random GUIDs used only to distinguish BCD objects from each
277 other. When adding a new boot option, you can simply generate a new GUID.
278
279 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
280 into human-readable strings such as C<{globalsettings}>, which is the same
281 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
282
283 Each BCD, object has an associated type. For example,
284 C<application::osloader> for objects loading Windows via F<winload.exe>,
285 C<application::bootsector> for real mode applications and so on.
286
287 The type of a object is stored in the pseudo BCD element C<type> (see next
288 section).
289
290 Some well-known objects have a default type. If an object type matches
291 its default type, then the C<type> element will be omitted. Similarly, if
292 the C<type> element is missing and the BCD object has a default type, the
293 default type will be used when writing a BCD store.
294
295 Running F<pbcdedit objects> will give you a list of object types,
296 well-known object aliases and their default types.
297
298 If different string keys in a JSON BCD store map to the same BCD object
299 then a random one will "win" and the others will be discarded. To avoid
300 this, you should always use the "canonical" name of a BCD object, which is
301 the human-readable form (if it exists).
302
303 =head2 The object values - BCD elements
304
305 The value of each BCD object entry consists of key-value pairs called BCD
306 elements.
307
308 BCD elements are identified by a 32 bit number, but to make things
309 simpler PBCDEDIT will replace these with well-known strings such as
310 C<description>, C<device> or C<path>.
311
312 When PBCDEDIT does not know the BCD element, it will use
313 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
314 BCD element. For example, C<device> would be C<custom::11000001>. You can
315 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
316 elements>.
317
318 What was said about duplicate keys mapping to the same object is true for
319 elements as well, so, again, you should always use the canonical name,
320 which is the human readable alias, if known.
321
322 =head3 BCD element types
323
324 Each BCD element has a type such as I<string> or I<boolean>. This type
325 determines how the value is interpreted, and most of them are pretty easy
326 to explain:
327
328 =over
329
330 =item string
331
332 This is simply a unicode string. For example, the C<description> and
333 C<systemroot> elements both are of this type, one storing a human-readable
334 name for this boot option, the other a file path to the windows root
335 directory:
336
337 "description" : "Windows 10",
338 "systemroot" : "\\Windows",
339
340 =item boolean
341
342 Almost as simple are booleans, which represent I<true>/I<false>,
343 I<on>/I<off> and similar values. In the JSON form, true is represented
344 by the number C<1>, and false is represented by the number C<0>. Other
345 values will be accepted, but PBCDEDIT doesn't guarantee how these are
346 interpreted.
347
348 For example, C<displaybootmenu> is a boolean that decides whether to
349 enable the C<F8> boot menu. In the example BCD store above, this is
350 disabled:
351
352 "displaybootmenu" : 0,
353
354 =item integer
355
356 Again, very simple, this is a 64 bit integer. IT can be either specified
357 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
358 binary number (prefix C<0b>).
359
360 For example, the boot C<timeout> is an integer, specifying the automatic
361 boot delay in seconds:
362
363 "timeout" : 30,
364
365 =item integer list
366
367 This is a list of 64 bit integers separated by whitespace. It is not used
368 much, so here is a somewhat artificial an untested example of using
369 C<customactions> to specify a certain custom, eh, action to be executed
370 when pressing C<F10> at boot:
371
372 "customactions" : "0x1000044000001 0x54000001",
373
374 =item guid
375
376 This represents a single GUID value wrapped in curly braces. It is used a
377 lot to refer from one BCD object to other one.
378
379 For example, The C<{bootmgr}> object might refer to a resume boot option
380 using C<default>:
381
382 "default" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
383
384 Human readable aliases are used and allowed.
385
386 =item guid list
387
388 Similar to the GUID type, this represents a list of such GUIDs, separated
389 by whitespace from each other.
390
391 For example, many BCD objects can I<inherit> elements from other BCD
392 objects by specifying the GUIDs of those other objects in a GUID list
393 called surprisingly called C<inherit>:
394
395 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
396
397 This example also shows how human readable aliases can be used.
398
399 =item device
400
401 This type is why I write I<most> are easy to explain earlier: This type
402 is the pinnacle of Microsoft-typical hacks layered on top of other
403 hacks. Understanding this type took more time than writing all the rest of
404 PBCDEDIT, and because it is so complex, this type has its own subsection
405 below.
406 =back
407
408 =head4 The BCD "device" element type
409
410 Device elements specify, well, devices. They are used for such diverse
411 purposes such as finding a TFTP network boot image, serial ports or VMBUS
412 devices, but most commonly they are used to specify the disk (harddisk,
413 cdrom, ramdisk, vhd...) to boot from.
414
415 The device element is kind of a mini-language in its own which is much
416 more versatile then the limited windows interface to it - BCDEDIT -
417 reveals.
418
419 While some information can be found on the BCD store and the windows
420 registry, there is pretty much no public information about the device
421 element, so almost everything known about it had to be researched first
422 in the process of writing this script, and consequently, support for BCD
423 device elements is partial only.
424
425 On the other hand, the expressive power of PBCDEDIT in specifying devices
426 is much bigger than BCDEDIT and therefore more can be done with it. The
427 downside is that BCD device elements are much more complicated than what
428 you might think from reading the BCDEDIT documentation.
429
430 In other words, simple things are complicated, and complicated things are
431 possible.
432
433 Anyway, the general syntax of device elements is an optional GUID,
434 followed by a device type, optionally followed by hexadecimal flags in
435 angle brackets, optionally followed by C<=> and a comma-separated list of
436 arguments, some of which can be (and often are) in turn devices again.
437
438 [{GUID}]type[<flags>][=arg,arg...]
439
440 Here are some examples:
441
442 boot
443 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
444 locate=<null>,element,systemroot
445 partition=<null>,harddisk,mbr,47cbc08a,1048576
446 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
447 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
448 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
449 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
450
451 I hope you are suitably impressed. I was, too, when I realized decoding
452 these binary blobs is not as easy as I had assumed.
453
454 The optional prefixed GUID seems to refer to a device BCD object, which
455 can be used to specify more device-specific BCD elements (for example
456 C<ramdisksdidevice> and C<ramdisksdpath>).
457
458 The flags after the type are omitted when they are C<0>. The only known
459 flag is C<1>, which seems to indicate that the parent device is invalid. I
460 don't claim to fully understand it, but it seems to indicate that the
461 boot manager has to search the device itself. Why the device is specified
462 in the first place escapes me, but a lot of this device stuff seems to be
463 badly hacked together...
464
465 The types understood and used by PBCDEDIT are as follows (keep in mind
466 that not of all the following is necessarily supported in PBCDEDIT):
467
468 =over
469
470 =item C<binary=>I<hex...>
471
472 This type isn't actually a real BCD element type, but a fallback for those
473 cases where PBCDEDIT can't perfectly decode a device element (except for
474 the leading GUID, which it can always decode). In such cases, it will
475 convert the device into this type with a hexdump of the element data.
476
477 =item C<null>
478
479 This is another special type - sometimes, a device all zero-filled, which
480 is not valid. This can mark the absence of a device or something PBCDEDIT
481 does not understand, so it decodes it into this special "all zero" type
482 called C<null>.
483
484 It's most commonly found in devices that can use an optional parent
485 device, when no parent device is used.
486
487 =item C<boot>
488
489 Another type without parameters, this refers to the device that was booted
490 from (nowadays typically the EFI system partition).
491
492 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
493
494 This specifies a VMBUS device with the given interface type and interface
495 instance, both of which are "naked" (no curly braces) GUIDs.
496
497 Made-up example (couldn't find a single example on the web):
498
499 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
500
501 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
502
503 This designates a specific partition on a block device. I<parent> is an
504 optional parent device on which to search on, and is often C<null>. Note
505 that the angle brackets around I<parent> are part of the syntax.
506
507 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
508 C<file> or C<vhd>, where the first three should be self-explaining,
509 C<file> is usually used to locate a file to be used as a disk image,
510 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
511 F<vhdx> files.
512
513 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
514 used for devices without partitions, such as cdroms, where the "partition"
515 is usually the whole device.
516
517 The I<diskid> identifies the disk or device using a unique signature, and
518 the same is true for the I<partitionid>. How these are interpreted depends
519 on the I<partitiontype>:
520
521 =over
522
523 =item C<mbr>
524
525 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
526 MBR, interpreted as a 32 bit unsigned little endian integer and written as
527 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
528
529 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
530 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
531 display the I<diskid>.
532
533 The I<partitionid> is the byte offset(!) of the partition counting from
534 the beginning of the MBR.
535
536 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
537 starting at sector C<2048> (= 1048576 / 512).
538
539 partition=<null>,harddisk,mbr,47cbc08a,1048576
540
541 =item C<gpt>
542
543 The I<diskid> is the disk GUID/disk identifier GUID from the partition
544 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
545 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
546
547 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
548 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
549
550 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
551
552 =item C<raw>
553
554 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
555 disk number and signifies the whole disk. BCDEDIT cannot display the
556 resulting device, and I am doubtful whether it has a useful effect.
557
558 =back
559
560 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
561
562 This is exactly the same as the C<partition> type, except for a tiny
563 detail: instead of using the partition start offset, this type uses the
564 partition number for MBR disks. Behaviour other partition types should be
565 the same.
566
567 The partition number starts at C<1> and skips unused partition, so if
568 there are two primary partitions and another partition inside the extended
569 partition, the primary partitions are number C<1> and C<2> and the
570 partition inside the extended partition is number C<3>, regardless of any
571 gaps.
572
573 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
574
575 This device description will make the bootloader search for a partition
576 with a given path.
577
578 The I<parent> device is the device to search on (angle brackets are
579 still part of the syntax!) If it is C<null>, then C<locate> will
580 search all disks it can find.
581
582 I<locatetype> is either C<element> or C<path>, and merely distinguishes
583 between two different ways to specify the path to search for: C<element>
584 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
585 uses a relative path as I<locatearg>.
586
587 Example: find any partition which has the F<magicfile.xxx> path in the
588 root.
589
590 locate=<null>,path,\magicfile.xxx
591
592 Example: find any partition which has the path specified in the
593 C<systemroot> element (typically F<\Windows>).
594
595 locate=<null>,element,systemroot
596
597 =item C<block=>I<devicetype>,I<args...>
598
599 Last not least, the most complex type, C<block>, which... specifies block
600 devices (which could be inside a F<vhdx> file for example).
601
602 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
603 C<file> or C<vhd> - the same as for C<partiion=>.
604
605 The remaining arguments change depending on the I<devicetype>:
606
607 =over
608
609 =item C<block=file>,<I<parent>>,I<path>
610
611 Interprets the I<parent> device (typically a partition) as a
612 filesystem and specifies a file path inside.
613
614 =item C<block=vhd>,<I<parent>>
615
616 Pretty much just changes the interpretation of I<parent>, which is
617 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
618
619 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
620
621 Interprets the I<parent> device as RAM disk, using the (decimal)
622 base address, byte size and byte offset inside a file specified by
623 I<path>. The numbers are usually all C<0> because they can be extracted
624 from the RAM disk image or other parameters.
625
626 This is most commonly used to boot C<wim> images.
627
628 =item C<block=floppy>,I<drivenum>
629
630 Refers to a removable drive identified by a number. BCDEDIT cannot display
631 the resulting device, and it is not clear what effect it will have.
632
633 =item C<block=cdrom>,I<drivenum>
634
635 Pretty much the same as C<floppy> but for CD-ROMs.
636
637 =item anything else
638
639 Probably not yet implemented. Tell me of your needs...
640
641 =back
642
643 =back5 Examples
644
645 This concludes the syntax overview for device elements, but probably
646 leaves many questions open. I can't help with most of them, as I also ave
647 many questions, but I can walk you through some actual examples using more
648 complex aspects.
649
650 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
651
652 Just like with C declarations, you best treat device descriptors as
653 instructions to find your device and work your way from the inside out:
654
655 locate=<null>,path,\disk.vhdx
656
657 First, the innermost device descriptor searches all partitions on the
658 system for a file called F<\disk.vhdx>:
659
660 block=file,<see above>,\disk.vhdx
661
662 Next, this takes the device locate has found and finds a file called
663 F<\disk.vhdx> on it. This is the same file locate was using, but that is
664 only because we find the device using the same path as finding the disk
665 image, so this is purely incidental, although quite common.
666
667 Next, this file will be opened as a virtual disk:
668
669 block=vhd,<see above>
670
671 And finally, inside this disk, another C<locate> will look for a partition
672 with a path as specified in the C<path> element, which most likely will be
673 F<\Windows\system32\winload.exe>:
674
675 locate=<see above>,element,path
676
677 As a result, this will boot the first Windows it finds on the first
678 F<disk.vhdx> disk image it can find anywhere.
679
680 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
681
682 Pretty much the same as the previous case, but with a bit of
683 variance. First, look for a specific partition on an MBR-partitioned disk:
684
685 partition=<null>,harddisk,mbr,47cbc08a,242643632128
686
687 Then open the file F<\win10.vhdx> on that partition:
688
689 block=file,<see above>,\win10.vhdx
690
691 Then, again, the file is opened as a virtual disk image:
692
693 block=vhd,<see above>
694
695 And again the windows loader (or whatever is in C<path>) will be searched:
696
697 locate=<see above>,element,path
698
699 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
700
701 This is quite different. First, it starts with a GUID. This GUID belongs
702 to a BCD object of type C<device>, which has additional parameters:
703
704 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
705 "type" : "device",
706 "description" : "sdi file for ramdisk",
707 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
708 "ramdisksdipath" : "\boot.sdi"
709 },
710
711 I will not go into many details, but this specifies a (presumably empty)
712 template ramdisk image (F<\boot.sdi>) that is used to initialize the
713 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
714 see, this F<.sdi> file resides on a different C<partition>.
715
716 Continuing, as always, from the inside out, first this device descriptor
717 finds a specific partition:
718
719 partition=<null>,harddisk,mbr,47cbc08a,242643632128
720
721 And then specifies a C<ramdisk> image on this partition:
722
723 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
724
725 I don't know what the purpose of the C<< <1> >> flag value is, but it
726 seems to be always there on this kind of entry.
727
728 If you have some good examples to add here, feel free to mail me.
729
730
731 =head1 EDITING BCD STORES
732
733 The C<edit> and C<parse> subcommands allow you to read a BCD data store
734 and modify it or extract data from it. This is done by executing a series
735 of "editing instructions" which are explained here.
736
737 =over
738
739 =item C<get> I<object> I<element>
740
741 Reads the BCD element I<element> from the BCD object I<object> and writes
742 it to standard output, followed by a newline. The I<object> can be a GUID
743 or a human-readable alias, or the special string C<{default}>, which will
744 refer to the default BCD object.
745
746 Example: find description of the default BCD object.
747
748 pbcdedit parse BCD get "{default}" description
749
750 =item C<set> I<object> I<element> I<value>
751
752 Similar to C<get>, but sets the element to the given I<value> instead.
753
754 Example: change the bootmgr default too
755 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
756
757 pbcdedit edit BCD set "{bootmgr}" default "{b097d2ad-bc00-11e9-8a9a-525400123456}"
758
759 =item C<eval> I<perlcode>
760
761 This takes the next argument, interprets it as Perl code and
762 evaluates it. This allows you to do more complicated modifications or
763 extractions.
764
765 The following variables are predefined for your use:
766
767 =over
768
769 =item C<$PATH>
770
771 The path to the BCD data store, as given to C<edit> or C<parse>.
772
773 =item C<$BCD>
774
775 The decoded BCD data store.
776
777 =item C<$DEFAULT>
778
779 The default BCD object name.
780
781 =back
782
783 The example given for C<get>, above, could be expressed like this with
784 C<eval>:
785
786 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
787
788 The example given for C<set> could be expressed like this:
789
790 pbcdedit edit BCD eval '$BCD->{"{bootmgr}"{default} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
791
792 =item C<do> I<path>
793
794 Similar to C<eval>, above, but instead of using the argument as perl code,
795 it loads the perl code from the given file and executes it. This makes it
796 easier to write more complicated or larger programs.
797
798 =back
799
800
801 =head1 SEE ALSO
802
803 For ideas on what you can do with BCD stores in
804 general, and some introductory material, try
805 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
806
807 For good reference on which BCD objects and
808 elements exist, see Geoff Chappell's pages at
809 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
810
811 =head1 AUTHOR
812
813 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
814
815 =head1 REPORTING BUGS
816
817 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
818
819 =head1 BUGS AND SHORTCOMINGS
820
821 This should be a module. Of a series of modules, even.
822
823 Registry code should preserve classname and security descriptor data, and
824 whatever else is necessary to read and write any registry hive file.
825
826 I am also not happy with device descriptors being strings rather than a
827 data structure, but strings are probably better for command line usage. In
828 any case, device descriptors could be converted by simply "splitting" at
829 "=" and "," into an array reference, recursively.
830
831 =head1 HOMEPAGE
832
833 Original versions of this program can be found at
834 L<http://software.schmorp.de/pkg/pbcdedit>.
835
836 =head1 COPYRIGHT
837
838 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
839 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
840 free to change and redistribute it. There is NO WARRANTY, to the extent
841 permitted by law.
842
843 =cut
844
845 # common sense is optional, but recommended
846 BEGIN { eval { require "common/sense.pm"; } && common::sense->import }
847
848 no warnings 'portable'; # avoid 32 bit integer warnings
849
850 use Encode ();
851 use List::Util ();
852 use IO::Handle ();
853 use Time::HiRes ();
854
855 eval { unpack "Q", pack "Q", 1 }
856 or die "perl with 64 bit integer supported required.\n";
857
858 our $JSON = eval { require JSON::XS; JSON::XS:: }
859 // eval { require JSON::PP; JSON::PP:: }
860 // die "either JSON::XS or JSON::PP must be installed\n";
861
862 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
863
864 # hack used for debugging
865 sub xxd($$) {
866 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
867 syswrite $xxd, $_[1];
868 }
869
870 sub file_load($) {
871 my ($path) = @_;
872
873 open my $fh, "<:raw", $path
874 or die "$path: $!\n";
875 my $size = -s $fh;
876 $size = read $fh, my $buf, $size
877 or die "$path: short read\n";
878
879 $buf
880 }
881
882 # sources and resources used for writing pbcdedit
883 #
884 # registry:
885 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
886 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
887 # bcd:
888 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
889 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
890 # bcd devices:
891 # reactos' boot/environ/include/bl.h
892 # windows .mof files
893
894 #############################################################################
895 # registry stuff
896
897 # we use a hardcoded securitya descriptor - full access for everyone
898 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
899 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
900 my $sacl = "";
901 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
902 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
903 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
904 1, 0x8004,
905 20 + (length $sacl) + (length $dacl),
906 20 + (length $sacl) + (length $dacl) + (length $sid),
907 0, 20,
908 $sacl, $dacl, $sid, $sid;
909 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
910
911 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
912
913 sub KEY_HIVE_ENTRY() { 0x0004 }
914 sub KEY_NO_DELETE () { 0x0008 }
915 sub KEY_COMP_NAME () { 0x0020 }
916
917 sub VALUE_COMP_NAME() { 0x0001 }
918
919 my @regf_typename = qw(
920 none sz expand_sz binary dword dword_be link multi_sz
921 resource_list full_resource_descriptor resource_requirements_list
922 qword qword_be
923 );
924
925 my %regf_dec_type = (
926 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
927 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
928 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
929 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
930 dword => sub { unpack "L<", shift },
931 dword_be => sub { unpack "L>", shift },
932 qword => sub { unpack "Q<", shift },
933 qword_be => sub { unpack "Q>", shift },
934 );
935
936 my %regf_enc_type = (
937 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
938 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
939 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
940 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
941 dword => sub { pack "L<", shift },
942 dword_be => sub { pack "L>", shift },
943 qword => sub { pack "Q<", shift },
944 qword_be => sub { pack "Q>", shift },
945 );
946
947 # decode a registry hive
948 sub regf_decode($) {
949 my ($hive) = @_;
950
951 "regf" eq substr $hive, 0, 4
952 or die "not a registry hive\n";
953
954 my ($major, $minor) = unpack "\@20 L< L<", $hive;
955
956 $major == 1
957 or die "registry major version is not 1, but $major\n";
958
959 $minor >= 2 && $minor <= 6
960 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
961
962 my $bins = substr $hive, 4096;
963
964 my $decode_key = sub {
965 my ($ofs) = @_;
966
967 my @res;
968
969 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
970
971 $sze < 0
972 or die "key node points to unallocated cell\n";
973
974 $sig eq "nk"
975 or die "expected key node at $ofs, got '$sig'\n";
976
977 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
978
979 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
980
981 # classnames, security descriptors
982 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
983 #if ($cofs != NO_OFS && $clen) {
984 # #warn "cofs $cofs+$clen\n";
985 # xxd substr $bins, $cofs, 16;
986 #}
987
988 $kname = Encode::decode "UTF-16LE", $kname
989 unless $flags & KEY_COMP_NAME;
990
991 if ($vnum && $vofs != NO_OFS) {
992 for ($vofs += 4; $vnum--; $vofs += 4) {
993 my $kofs = unpack "\@$vofs L<", $bins;
994
995 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
996
997 $sig eq "vk"
998 or die "key values list contains invalid node (expected vk got '$sig')\n";
999
1000 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
1001
1002 my $name = substr $bins, $kofs + 24, $nsze;
1003
1004 $name = Encode::decode "UTF-16LE", $name
1005 unless $flags & VALUE_COMP_NAME;
1006
1007 my $data;
1008 if ($dsze & 0x80000000) {
1009 $data = substr $bins, $kofs + 12, $dsze & 0x7;
1010 } elsif ($dsze > 16344 && $minor > 3) { # big data
1011 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
1012
1013 for ($bofs += 4; $bnum--; $bofs += 4) {
1014 my $dofs = unpack "\@$bofs L<", $bins;
1015 my $dsze = unpack "\@$dofs l<", $bins;
1016 $data .= substr $bins, $dofs + 4, -$dsze - 4;
1017 }
1018 $data = substr $data, 0, $dsze; # cells might be longer than data
1019 } else {
1020 $data = substr $bins, $dofs + 4, $dsze;
1021 }
1022
1023 $type = $regf_typename[$type] if $type < @regf_typename;
1024
1025 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1026 ->($data);
1027
1028 $res[0]{$name} = [$type, $data];
1029 }
1030 }
1031
1032 if ($sofs != NO_OFS) {
1033 my $decode_key = __SUB__;
1034
1035 my $decode_subkeylist = sub {
1036 my ($sofs) = @_;
1037
1038 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1039
1040 if ($sig eq "ri") { # index root
1041 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1042 __SUB__->(unpack "\@$lofs L<", $bins);
1043 }
1044 } else {
1045 my $inc;
1046
1047 if ($sig eq "li") { # subkey list
1048 $inc = 4;
1049 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1050 $inc = 8;
1051 } else {
1052 die "expected subkey list at $sofs, found '$sig'\n";
1053 }
1054
1055 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1056 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1057 $res[1]{$name} = $data;
1058 }
1059 }
1060 };
1061
1062 $decode_subkeylist->($sofs);
1063 }
1064
1065 ($kname, \@res);
1066 };
1067
1068 my ($rootcell) = unpack "\@36 L<", $hive;
1069
1070 my ($rname, $root) = $decode_key->($rootcell);
1071
1072 [$rname, $root]
1073 }
1074
1075 # return a binary windows fILETIME struct
1076 sub filetime_now {
1077 my ($s, $ms) = Time::HiRes::gettimeofday;
1078
1079 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1080 }
1081
1082 # encode a registry hive
1083 sub regf_encode($) {
1084 my ($hive) = @_;
1085
1086 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1087
1088 # the filetime is apparently used to verify log file validity,
1089 # so by generating a new timestamp the log files *should* automatically
1090 # become invalidated and windows would "self-heal" them.
1091 # (update: has been verified by reverse engineering)
1092 # possibly the fact that the two sequence numbes match might also
1093 # make windows think that the hive is not dirty and ignore logs.
1094 # (update: has been verified by reverse engineering)
1095
1096 my $now = filetime_now;
1097
1098 # we only create a single hbin
1099 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1100
1101 # append cell to $bind, return offset
1102 my $cell = sub {
1103 my ($cell) = @_;
1104
1105 my $res = length $bins;
1106
1107 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1108
1109 $bins .= pack "l<", -(4 + length $cell);
1110 $bins .= $cell;
1111
1112 $res
1113 };
1114
1115 my $sdofs = $cell->($sk); # add a dummy security descriptor
1116 my $sdref = 0; # refcount
1117 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1118 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1119
1120 my $encode_key = sub {
1121 my ($kname, $kdata, $flags) = @_;
1122 my ($values, $subkeys) = @$kdata;
1123
1124 if ($kname =~ /[^\x00-\xff]/) {
1125 $kname = Encode::encode "UTF-16LE", $kname;
1126 } else {
1127 $flags |= KEY_COMP_NAME;
1128 }
1129
1130 # encode subkeys
1131
1132 my @snames =
1133 map $_->[1],
1134 sort { $a->[0] cmp $b->[0] }
1135 map [(uc $_), $_],
1136 keys %$subkeys;
1137
1138 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1139 my $maxsname = 4 * List::Util::max map length, @snames;
1140
1141 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1142
1143 # encode values
1144 my $maxvname = 4 * List::Util::max map length, keys %$values;
1145 my @vofs;
1146 my $maxdsze = 0;
1147
1148 while (my ($vname, $v) = each %$values) {
1149 my $flags = 0;
1150
1151 if ($vname =~ /[^\x00-\xff]/) {
1152 $vname = Encode::encode "UTF-16LE", $kname;
1153 } else {
1154 $flags |= VALUE_COMP_NAME;
1155 }
1156
1157 my ($type, $data) = @$v;
1158
1159 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1160
1161 my $dsze;
1162 my $dofs;
1163
1164 if (length $data <= 4) {
1165 $dsze = 0x80000000 | length $data;
1166 $dofs = unpack "L<", pack "a4", $data;
1167 } else {
1168 $dsze = length $data;
1169 $dofs = $cell->($data);
1170 }
1171
1172 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1173
1174 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1175 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1176
1177 $maxdsze = $dsze if $maxdsze < $dsze;
1178 }
1179
1180 # encode key
1181
1182 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1183 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1184
1185 my $kdata = pack "
1186 a2 S< a8 x4 x4
1187 L< L< L< L< L< L<
1188 L< L< L< L< L< L<
1189 x4 S< S< a*
1190 ",
1191 nk => $flags, $now,
1192 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1193 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1194 length $kname, 0, $kname;
1195 ++$sdref;
1196
1197 my $res = $cell->($kdata);
1198
1199 substr $bins, $_ + 16, 4, pack "L<", $res
1200 for @sofs;
1201
1202 $res
1203 };
1204
1205 my ($rname, $root) = @$hive;
1206
1207 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1208
1209 if (my $pad = -(length $bins) & 4095) {
1210 $pad -= 4;
1211 $bins .= pack "l< x$pad", $pad + 4;
1212 }
1213
1214 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1215 substr $bins, 8, 4, pack "L<", length $bins;
1216
1217 my $base = pack "
1218 a4 L< L< a8 L< L< L< L<
1219 L< L< L<
1220 a64
1221 x396
1222 ",
1223 regf => 1974, 1974, $now, 1, 3, 0, 1,
1224 $rofs, length $bins, 1,
1225 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1226
1227 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1228 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1229 $chksum = 1 if $chksum == 0;
1230
1231 $base .= pack "L<", $chksum;
1232
1233 $base = pack "a* \@4095 x1", $base;
1234
1235 $base . $bins
1236 }
1237
1238 # load and parse registry from file
1239 sub regf_load($) {
1240 my ($path) = @_;
1241
1242 regf_decode file_load $path
1243 }
1244
1245 # encode and save registry to file
1246 sub regf_save {
1247 my ($path, $hive) = @_;
1248
1249 $hive = regf_encode $hive;
1250
1251 open my $regf, ">:raw", "$path~"
1252 or die "$path~: $!\n";
1253 print $regf $hive
1254 or die "$path~: short write\n";
1255 $regf->sync;
1256 close $regf;
1257
1258 rename "$path~", $path;
1259 }
1260
1261 #############################################################################
1262 # bcd stuff
1263
1264 # human-readable alises for GUID object identifiers
1265 our %bcd_objects = (
1266 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1267 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1268 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1269 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1270 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1271 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1272 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1273 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1274 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1275 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1276 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1277 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1278 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1279 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1280 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1281 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1282 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1283 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1284 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1285 );
1286
1287 # default types
1288 our %bcd_object_types = (
1289 '{fwbootmgr}' => 0x10100001,
1290 '{bootmgr}' => 0x10100002,
1291 '{memdiag}' => 0x10200005,
1292 '{ntldr}' => 0x10300006,
1293 '{badmemory}' => 0x20100000,
1294 '{dbgsettings}' => 0x20100000,
1295 '{emssettings}' => 0x20100000,
1296 '{globalsettings}' => 0x20100000,
1297 '{bootloadersettings}' => 0x20200003,
1298 '{hypervisorsettings}' => 0x20200003,
1299 '{kerneldbgsettings}' => 0x20200003,
1300 '{resumeloadersettings}' => 0x20200004,
1301 '{ramdiskoptions}' => 0x30000000,
1302 );
1303
1304 # object types
1305 our %bcd_types = (
1306 0x10100001 => 'application::fwbootmgr',
1307 0x10100002 => 'application::bootmgr',
1308 0x10200003 => 'application::osloader',
1309 0x10200004 => 'application::resume',
1310 0x10100005 => 'application::memdiag',
1311 0x10100006 => 'application::ntldr',
1312 0x10100007 => 'application::setupldr',
1313 0x10400008 => 'application::bootsector',
1314 0x10400009 => 'application::startup',
1315 0x1020000a => 'application::bootapp',
1316 0x20100000 => 'settings',
1317 0x20200001 => 'inherit::fwbootmgr',
1318 0x20200002 => 'inherit::bootmgr',
1319 0x20200003 => 'inherit::osloader',
1320 0x20200004 => 'inherit::resume',
1321 0x20200005 => 'inherit::memdiag',
1322 0x20200006 => 'inherit::ntldr',
1323 0x20200007 => 'inherit::setupldr',
1324 0x20200008 => 'inherit::bootsector',
1325 0x20200009 => 'inherit::startup',
1326 0x20300000 => 'inherit::device',
1327 0x30000000 => 'device',
1328 );
1329
1330 our %rbcd_objects = reverse %bcd_objects;
1331
1332 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1333
1334 sub dec_guid($) {
1335 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1336 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1337 }
1338
1339 sub enc_guid($) {
1340 $_[0] =~ /^$RE_GUID\z/o
1341 or return;
1342
1343 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1344 }
1345
1346 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1347 sub dec_wguid($) {
1348 my $guid = "{" . (dec_guid shift) . "}";
1349
1350 $bcd_objects{$guid} // $guid
1351 }
1352
1353 sub enc_wguid($) {
1354 my ($guid) = @_;
1355
1356 if (my $alias = $rbcd_objects{$guid}) {
1357 $guid = $alias;
1358 }
1359
1360 $guid =~ /^\{($RE_GUID)\}\z/o
1361 or return;
1362
1363 enc_guid $1
1364 }
1365
1366 sub BCDE_CLASS () { 0xf0000000 }
1367 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1368 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1369 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1370 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1371
1372 sub BCDE_FORMAT () { 0x0f000000 }
1373 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1374 sub BCDE_FORMAT_STRING () { 0x02000000 }
1375 sub BCDE_FORMAT_GUID () { 0x03000000 }
1376 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1377 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1378 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1379 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1380
1381 sub enc_integer($) {
1382 my $value = shift;
1383 $value = oct $value if $value =~ /^0[bBxX]/;
1384 unpack "H*", pack "Q<", $value
1385 }
1386
1387 sub enc_device($$);
1388 sub dec_device($$);
1389
1390 our %bcde_dec = (
1391 BCDE_FORMAT_DEVICE , \&dec_device,
1392 # # for round-trip verification
1393 # BCDE_FORMAT_DEVICE , sub {
1394 # my $dev = dec_device $_[0];
1395 # $_[0] eq enc_device $dev
1396 # or die "bcd device decoding does not round trip for $_[0]\n";
1397 # $dev
1398 # },
1399 BCDE_FORMAT_STRING , sub { shift },
1400 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1401 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1402 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1403 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1404 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1405 );
1406
1407 our %bcde_enc = (
1408 BCDE_FORMAT_DEVICE , sub { binary => enc_device $_[0], $_[1] },
1409 BCDE_FORMAT_STRING , sub { sz => shift },
1410 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1411 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1412 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1413 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1414 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1415 );
1416
1417 # BCD Elements
1418 our %bcde_byclass = (
1419 any => {
1420 0x11000001 => 'device',
1421 0x12000002 => 'path',
1422 0x12000004 => 'description',
1423 0x12000005 => 'locale',
1424 0x14000006 => 'inherit',
1425 0x15000007 => 'truncatememory',
1426 0x14000008 => 'recoverysequence',
1427 0x16000009 => 'recoveryenabled',
1428 0x1700000a => 'badmemorylist',
1429 0x1600000b => 'badmemoryaccess',
1430 0x1500000c => 'firstmegabytepolicy',
1431 0x1500000d => 'relocatephysical',
1432 0x1500000e => 'avoidlowmemory',
1433 0x1600000f => 'traditionalkseg',
1434 0x16000010 => 'bootdebug',
1435 0x15000011 => 'debugtype',
1436 0x15000012 => 'debugaddress',
1437 0x15000013 => 'debugport',
1438 0x15000014 => 'baudrate',
1439 0x15000015 => 'channel',
1440 0x12000016 => 'targetname',
1441 0x16000017 => 'noumex',
1442 0x15000018 => 'debugstart',
1443 0x12000019 => 'busparams',
1444 0x1500001a => 'hostip',
1445 0x1500001b => 'port',
1446 0x1600001c => 'dhcp',
1447 0x1200001d => 'key',
1448 0x1600001e => 'vm',
1449 0x16000020 => 'bootems',
1450 0x15000022 => 'emsport',
1451 0x15000023 => 'emsbaudrate',
1452 0x12000030 => 'loadoptions',
1453 0x16000040 => 'advancedoptions',
1454 0x16000041 => 'optionsedit',
1455 0x15000042 => 'keyringaddress',
1456 0x11000043 => 'bootstatdevice',
1457 0x12000044 => 'bootstatfilepath',
1458 0x16000045 => 'preservebootstat',
1459 0x16000046 => 'graphicsmodedisabled',
1460 0x15000047 => 'configaccesspolicy',
1461 0x16000048 => 'nointegritychecks',
1462 0x16000049 => 'testsigning',
1463 0x1200004a => 'fontpath',
1464 0x1500004b => 'integrityservices',
1465 0x1500004c => 'volumebandid',
1466 0x16000050 => 'extendedinput',
1467 0x15000051 => 'initialconsoleinput',
1468 0x15000052 => 'graphicsresolution',
1469 0x16000053 => 'restartonfailure',
1470 0x16000054 => 'highestmode',
1471 0x16000060 => 'isolatedcontext',
1472 0x15000065 => 'displaymessage',
1473 0x15000066 => 'displaymessageoverride',
1474 0x16000068 => 'nobootuxtext',
1475 0x16000069 => 'nobootuxprogress',
1476 0x1600006a => 'nobootuxfade',
1477 0x1600006b => 'bootuxreservepooldebug',
1478 0x1600006c => 'bootuxdisabled',
1479 0x1500006d => 'bootuxfadeframes',
1480 0x1600006e => 'bootuxdumpstats',
1481 0x1600006f => 'bootuxshowstats',
1482 0x16000071 => 'multibootsystem',
1483 0x16000072 => 'nokeyboard',
1484 0x15000073 => 'aliaswindowskey',
1485 0x16000074 => 'bootshutdowndisabled',
1486 0x15000075 => 'performancefrequency',
1487 0x15000076 => 'securebootrawpolicy',
1488 0x17000077 => 'allowedinmemorysettings',
1489 0x15000079 => 'bootuxtransitiontime',
1490 0x1600007a => 'mobilegraphics',
1491 0x1600007b => 'forcefipscrypto',
1492 0x1500007d => 'booterrorux',
1493 0x1600007e => 'flightsigning',
1494 0x1500007f => 'measuredbootlogformat',
1495 0x15000080 => 'displayrotation',
1496 0x15000081 => 'logcontrol',
1497 0x16000082 => 'nofirmwaresync',
1498 0x11000084 => 'windowssyspart',
1499 0x16000087 => 'numlock',
1500 0x26000202 => 'skipffumode',
1501 0x26000203 => 'forceffumode',
1502 0x25000510 => 'chargethreshold',
1503 0x26000512 => 'offmodecharging',
1504 0x25000aaa => 'bootflow',
1505 0x45000001 => 'devicetype',
1506 0x42000002 => 'applicationrelativepath',
1507 0x42000003 => 'ramdiskdevicerelativepath',
1508 0x46000004 => 'omitosloaderelements',
1509 0x47000006 => 'elementstomigrate',
1510 0x46000010 => 'recoveryos',
1511 },
1512 bootapp => {
1513 0x26000145 => 'enablebootdebugpolicy',
1514 0x26000146 => 'enablebootorderclean',
1515 0x26000147 => 'enabledeviceid',
1516 0x26000148 => 'enableffuloader',
1517 0x26000149 => 'enableiuloader',
1518 0x2600014a => 'enablemassstorage',
1519 0x2600014b => 'enablerpmbprovisioning',
1520 0x2600014c => 'enablesecurebootpolicy',
1521 0x2600014d => 'enablestartcharge',
1522 0x2600014e => 'enableresettpm',
1523 },
1524 bootmgr => {
1525 0x24000001 => 'displayorder',
1526 0x24000002 => 'bootsequence',
1527 0x23000003 => 'default',
1528 0x25000004 => 'timeout',
1529 0x26000005 => 'resume',
1530 0x23000006 => 'resumeobject',
1531 0x24000007 => 'startupsequence',
1532 0x24000010 => 'toolsdisplayorder',
1533 0x26000020 => 'displaybootmenu',
1534 0x26000021 => 'noerrordisplay',
1535 0x21000022 => 'bcddevice',
1536 0x22000023 => 'bcdfilepath',
1537 0x26000024 => 'hormenabled',
1538 0x26000025 => 'hiberboot',
1539 0x22000026 => 'passwordoverride',
1540 0x22000027 => 'pinpassphraseoverride',
1541 0x26000028 => 'processcustomactionsfirst',
1542 0x27000030 => 'customactions',
1543 0x26000031 => 'persistbootsequence',
1544 0x26000032 => 'skipstartupsequence',
1545 0x22000040 => 'fverecoveryurl',
1546 0x22000041 => 'fverecoverymessage',
1547 },
1548 device => {
1549 0x35000001 => 'ramdiskimageoffset',
1550 0x35000002 => 'ramdisktftpclientport',
1551 0x31000003 => 'ramdisksdidevice',
1552 0x32000004 => 'ramdisksdipath',
1553 0x35000005 => 'ramdiskimagelength',
1554 0x36000006 => 'exportascd',
1555 0x35000007 => 'ramdisktftpblocksize',
1556 0x35000008 => 'ramdisktftpwindowsize',
1557 0x36000009 => 'ramdiskmcenabled',
1558 0x3600000a => 'ramdiskmctftpfallback',
1559 0x3600000b => 'ramdisktftpvarwindow',
1560 },
1561 memdiag => {
1562 0x25000001 => 'passcount',
1563 0x25000002 => 'testmix',
1564 0x25000003 => 'failurecount',
1565 0x26000003 => 'cacheenable',
1566 0x25000004 => 'testtofail',
1567 0x26000004 => 'failuresenabled',
1568 0x25000005 => 'stridefailcount',
1569 0x26000005 => 'cacheenable',
1570 0x25000006 => 'invcfailcount',
1571 0x25000007 => 'matsfailcount',
1572 0x25000008 => 'randfailcount',
1573 0x25000009 => 'chckrfailcount',
1574 },
1575 ntldr => {
1576 0x22000001 => 'bpbstring',
1577 },
1578 osloader => {
1579 0x21000001 => 'osdevice',
1580 0x22000002 => 'systemroot',
1581 0x23000003 => 'resumeobject',
1582 0x26000004 => 'stampdisks',
1583 0x26000010 => 'detecthal',
1584 0x22000011 => 'kernel',
1585 0x22000012 => 'hal',
1586 0x22000013 => 'dbgtransport',
1587 0x25000020 => 'nx',
1588 0x25000021 => 'pae',
1589 0x26000022 => 'winpe',
1590 0x26000024 => 'nocrashautoreboot',
1591 0x26000025 => 'lastknowngood',
1592 0x26000026 => 'oslnointegritychecks',
1593 0x26000027 => 'osltestsigning',
1594 0x26000030 => 'nolowmem',
1595 0x25000031 => 'removememory',
1596 0x25000032 => 'increaseuserva',
1597 0x25000033 => 'perfmem',
1598 0x26000040 => 'vga',
1599 0x26000041 => 'quietboot',
1600 0x26000042 => 'novesa',
1601 0x26000043 => 'novga',
1602 0x25000050 => 'clustermodeaddressing',
1603 0x26000051 => 'usephysicaldestination',
1604 0x25000052 => 'restrictapiccluster',
1605 0x22000053 => 'evstore',
1606 0x26000054 => 'uselegacyapicmode',
1607 0x26000060 => 'onecpu',
1608 0x25000061 => 'numproc',
1609 0x26000062 => 'maxproc',
1610 0x25000063 => 'configflags',
1611 0x26000064 => 'maxgroup',
1612 0x26000065 => 'groupaware',
1613 0x25000066 => 'groupsize',
1614 0x26000070 => 'usefirmwarepcisettings',
1615 0x25000071 => 'msi',
1616 0x25000072 => 'pciexpress',
1617 0x25000080 => 'safeboot',
1618 0x26000081 => 'safebootalternateshell',
1619 0x26000090 => 'bootlog',
1620 0x26000091 => 'sos',
1621 0x260000a0 => 'debug',
1622 0x260000a1 => 'halbreakpoint',
1623 0x260000a2 => 'useplatformclock',
1624 0x260000a3 => 'forcelegacyplatform',
1625 0x260000a4 => 'useplatformtick',
1626 0x260000a5 => 'disabledynamictick',
1627 0x250000a6 => 'tscsyncpolicy',
1628 0x260000b0 => 'ems',
1629 0x250000c0 => 'forcefailure',
1630 0x250000c1 => 'driverloadfailurepolicy',
1631 0x250000c2 => 'bootmenupolicy',
1632 0x260000c3 => 'onetimeadvancedoptions',
1633 0x260000c4 => 'onetimeoptionsedit',
1634 0x250000e0 => 'bootstatuspolicy',
1635 0x260000e1 => 'disableelamdrivers',
1636 0x250000f0 => 'hypervisorlaunchtype',
1637 0x220000f1 => 'hypervisorpath',
1638 0x260000f2 => 'hypervisordebug',
1639 0x250000f3 => 'hypervisordebugtype',
1640 0x250000f4 => 'hypervisordebugport',
1641 0x250000f5 => 'hypervisorbaudrate',
1642 0x250000f6 => 'hypervisorchannel',
1643 0x250000f7 => 'bootux',
1644 0x260000f8 => 'hypervisordisableslat',
1645 0x220000f9 => 'hypervisorbusparams',
1646 0x250000fa => 'hypervisornumproc',
1647 0x250000fb => 'hypervisorrootprocpernode',
1648 0x260000fc => 'hypervisoruselargevtlb',
1649 0x250000fd => 'hypervisorhostip',
1650 0x250000fe => 'hypervisorhostport',
1651 0x250000ff => 'hypervisordebugpages',
1652 0x25000100 => 'tpmbootentropy',
1653 0x22000110 => 'hypervisorusekey',
1654 0x22000112 => 'hypervisorproductskutype',
1655 0x25000113 => 'hypervisorrootproc',
1656 0x26000114 => 'hypervisordhcp',
1657 0x25000115 => 'hypervisoriommupolicy',
1658 0x26000116 => 'hypervisorusevapic',
1659 0x22000117 => 'hypervisorloadoptions',
1660 0x25000118 => 'hypervisormsrfilterpolicy',
1661 0x25000119 => 'hypervisormmionxpolicy',
1662 0x2500011a => 'hypervisorschedulertype',
1663 0x25000120 => 'xsavepolicy',
1664 0x25000121 => 'xsaveaddfeature0',
1665 0x25000122 => 'xsaveaddfeature1',
1666 0x25000123 => 'xsaveaddfeature2',
1667 0x25000124 => 'xsaveaddfeature3',
1668 0x25000125 => 'xsaveaddfeature4',
1669 0x25000126 => 'xsaveaddfeature5',
1670 0x25000127 => 'xsaveaddfeature6',
1671 0x25000128 => 'xsaveaddfeature7',
1672 0x25000129 => 'xsaveremovefeature',
1673 0x2500012a => 'xsaveprocessorsmask',
1674 0x2500012b => 'xsavedisable',
1675 0x2500012c => 'kerneldebugtype',
1676 0x2200012d => 'kernelbusparams',
1677 0x2500012e => 'kerneldebugaddress',
1678 0x2500012f => 'kerneldebugport',
1679 0x25000130 => 'claimedtpmcounter',
1680 0x25000131 => 'kernelchannel',
1681 0x22000132 => 'kerneltargetname',
1682 0x25000133 => 'kernelhostip',
1683 0x25000134 => 'kernelport',
1684 0x26000135 => 'kerneldhcp',
1685 0x22000136 => 'kernelkey',
1686 0x22000137 => 'imchivename',
1687 0x21000138 => 'imcdevice',
1688 0x25000139 => 'kernelbaudrate',
1689 0x22000140 => 'mfgmode',
1690 0x26000141 => 'event',
1691 0x25000142 => 'vsmlaunchtype',
1692 0x25000144 => 'hypervisorenforcedcodeintegrity',
1693 0x21000150 => 'systemdatadevice',
1694 0x21000151 => 'osarcdevice',
1695 0x21000153 => 'osdatadevice',
1696 0x21000154 => 'bspdevice',
1697 0x21000155 => 'bspfilepath',
1698 },
1699 resume => {
1700 0x21000001 => 'filedevice',
1701 0x22000002 => 'filepath',
1702 0x26000003 => 'customsettings',
1703 0x26000004 => 'pae',
1704 0x21000005 => 'associatedosdevice',
1705 0x26000006 => 'debugoptionenabled',
1706 0x25000007 => 'bootux',
1707 0x25000008 => 'bootmenupolicy',
1708 0x26000024 => 'hormenabled',
1709 },
1710 startup => {
1711 0x26000001 => 'pxesoftreboot',
1712 0x22000002 => 'applicationname',
1713 },
1714 );
1715
1716 # mask, value => class
1717 our @bcde_typeclass = (
1718 [0x00000000, 0x00000000, 'any'],
1719 [0xf00fffff, 0x1000000a, 'bootapp'],
1720 [0xf0ffffff, 0x2020000a, 'bootapp'],
1721 [0xf00fffff, 0x10000001, 'bootmgr'],
1722 [0xf00fffff, 0x10000002, 'bootmgr'],
1723 [0xf0ffffff, 0x20200001, 'bootmgr'],
1724 [0xf0ffffff, 0x20200002, 'bootmgr'],
1725 [0xf0f00000, 0x20300000, 'device'],
1726 [0xf0000000, 0x30000000, 'device'],
1727 [0xf00fffff, 0x10000005, 'memdiag'],
1728 [0xf0ffffff, 0x20200005, 'memdiag'],
1729 [0xf00fffff, 0x10000006, 'ntldr'],
1730 [0xf00fffff, 0x10000007, 'ntldr'],
1731 [0xf0ffffff, 0x20200006, 'ntldr'],
1732 [0xf0ffffff, 0x20200007, 'ntldr'],
1733 [0xf00fffff, 0x10000003, 'osloader'],
1734 [0xf0ffffff, 0x20200003, 'osloader'],
1735 [0xf00fffff, 0x10000004, 'resume'],
1736 [0xf0ffffff, 0x20200004, 'resume'],
1737 [0xf00fffff, 0x10000009, 'startup'],
1738 [0xf0ffffff, 0x20200009, 'startup'],
1739 );
1740
1741 our %rbcde_byclass;
1742
1743 while (my ($k, $v) = each %bcde_byclass) {
1744 $rbcde_byclass{$k} = { reverse %$v };
1745 }
1746
1747 # decodes (numerical elem, type) to name
1748 sub dec_bcde_id($$) {
1749 for my $class (@bcde_typeclass) {
1750 if (($_[1] & $class->[0]) == $class->[1]) {
1751 if (my $id = $bcde_byclass{$class->[2]}{$_[0]}) {
1752 return $id;
1753 }
1754 }
1755 }
1756
1757 sprintf "custom:%08x", $_[0]
1758 }
1759
1760 # encodes (elem as name, type)
1761 sub enc_bcde_id($$) {
1762 $_[0] =~ /^custom:(?:0x)?([0-9a-fA-F]{8}$)/
1763 and return hex $1;
1764
1765 for my $class (@bcde_typeclass) {
1766 if (($_[1] & $class->[0]) == $class->[1]) {
1767 if (my $value = $rbcde_byclass{$class->[2]}{$_[0]}) {
1768 return $value;
1769 }
1770 }
1771 }
1772
1773 undef
1774 }
1775
1776 # decode/encode bcd device element - the horror, no documentaion
1777 # whatsoever, supercomplex, superinconsistent.
1778
1779 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1780 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1781 our @part_type = qw(gpt mbr raw);
1782
1783 our $NULL_DEVICE = "\x00" x 16;
1784
1785 # biggest bitch to decode, ever
1786 # this decoded a device portion after the GUID
1787 sub dec_device_($$);
1788 sub dec_device_($$) {
1789 my ($device, $type) = @_;
1790
1791 my $res;
1792
1793 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1794
1795 $pad == 0
1796 or die "non-zero reserved field in device descriptor\n";
1797
1798 if ($length == 0 && $type == 0 && $flags == 0) {
1799 return ("null", $device);
1800 }
1801
1802 $length >= 16
1803 or die "device element size too small ($length)\n";
1804
1805 $type = $dev_type[$type] // die "$type: unknown device type\n";
1806 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1807
1808 $res .= $type;
1809 $res .= sprintf "<%x>", $flags if $flags;
1810
1811 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1812
1813 $length == 4 * 4 + length $device
1814 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1815
1816 my $dec_path = sub {
1817 my ($path, $error) = @_;
1818
1819 $path =~ /^((?:..)*)\x00\x00\z/s
1820 or die "$error\n";
1821
1822 $path = Encode::decode "UTF-16LE", $1;
1823
1824 $path
1825 };
1826
1827 if ($type eq "partition" or $type eq "legacypartition") {
1828 my $partdata = substr $device, 0, 16, "";
1829 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1830
1831 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1832 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1833
1834 my $diskid = substr $device, 0, 16, "";
1835
1836 $diskid = $parttype eq "gpt"
1837 ? dec_guid substr $diskid, 0, 16
1838 : sprintf "%08x", unpack "V", $diskid;
1839
1840 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1841 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1842 : unpack "L<", $partdata; # partition number, one-based
1843
1844 (my $parent, $device) = dec_device_ $device, $type;
1845
1846 $res .= "=";
1847 $res .= "<$parent>";
1848 $res .= ",$blocktype,$parttype,$diskid,$partid";
1849
1850 # PartitionType (gpt, mbr, raw)
1851 # guid | partsig | disknumber
1852
1853 } elsif ($type eq "boot") {
1854 $device =~ s/^\x00{56}\z//
1855 or die "boot device type with extra data not supported\n";
1856
1857 } elsif ($type eq "block") {
1858 my $blocktype = unpack "V", substr $device, 0, 4, "";
1859
1860 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1861
1862 # decode a "file path" structure
1863 my $dec_file = sub {
1864 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1865
1866 my $path = substr $device, 0, $flen - 12, "";
1867
1868 $fver == 1
1869 or die "unsupported file descriptor version '$fver'\n";
1870
1871 $ftype == 5
1872 or die "unsupported file descriptor path type '$type'\n";
1873
1874 (my $parent, $path) = dec_device_ $path, $type;
1875
1876 $path = $dec_path->($path, "file device without path");
1877
1878 ($parent, $path)
1879 };
1880
1881 if ($blocktype eq "file") {
1882 my ($parent, $path) = $dec_file->();
1883
1884 $res .= "=file,<$parent>,$path";
1885
1886 } elsif ($blocktype eq "vhd") {
1887 $device =~ s/^\x00{20}//s
1888 or die "virtualdisk has non-zero fields I don't understand\n";
1889
1890 (my $parent, $device) = dec_device_ $device, $type;
1891
1892 $res .= "=vhd,<$parent>";
1893
1894 } elsif ($blocktype eq "ramdisk") {
1895 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1896 my ($subdev, $path) = $dec_file->();
1897
1898 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1899
1900 } else {
1901 die "unsupported block type '$blocktype'\n";
1902 }
1903
1904 } elsif ($type eq "locate") {
1905 # mode, bcde_id, unknown, string
1906 # we assume locate has _either_ an element id _or_ a path, but not both
1907
1908 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1909
1910 if ($parent) {
1911 # not sure why this is an offset - it must come after the path
1912 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1913 ($parent, my $tail) = dec_device_ $parent, $type;
1914 0 == length $tail
1915 or die "trailing data after locate device parent\n";
1916 } else {
1917 $parent = "null";
1918 }
1919
1920 my $path = $device; $device = "";
1921 $path = $dec_path->($path, "device locate mode without path");
1922
1923 $res .= "=<$parent>,";
1924
1925 if ($mode == 0) { # "Element"
1926 !length $path
1927 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1928
1929 $elem = dec_bcde_id $elem, $type;
1930 $res .= "element,$elem";
1931
1932 } elsif ($mode == 1) { # "String"
1933 !$elem
1934 or die "device locate mode 1 having non-zero element\n";
1935
1936 $res .= "path,$path";
1937 } else {
1938 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1939 die "device locate mode '$mode' not supported\n";
1940 }
1941
1942 } elsif ($type eq "vmbus") {
1943 my $type = dec_guid substr $device, 0, 16, "";
1944 my $instance = dec_guid substr $device, 0, 16, "";
1945
1946 $device =~ s/^\x00{24}\z//
1947 or die "vmbus has non-zero fields I don't understand\n";
1948
1949 $res .= "=$type,$instance";
1950
1951 } else {
1952 die "unsupported device type '$type'\n";
1953 }
1954
1955 warn "unexpected trailing device data($res), " . unpack "H*",$device
1956 if length $device;
1957 #length $device
1958 # and die "unexpected trailing device data\n";
1959
1960 ($res, $tail)
1961 }
1962
1963 # decode a full binary BCD device descriptor
1964 sub dec_device($$) {
1965 my ($device, $type) = @_;
1966
1967 $device = pack "H*", $device;
1968
1969 my $guid = dec_guid substr $device, 0, 16, "";
1970 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1971 ? "" : "{$guid}";
1972
1973 eval {
1974 my ($dev, $tail) = dec_device_ $device, $type;
1975
1976 $tail eq ""
1977 or die "unsupported trailing data after device descriptor\n";
1978
1979 "$guid$dev"
1980 # } // scalar ((warn $@), "$guid$fallback")
1981 } // ($guid . "binary=" . unpack "H*", $device)
1982 }
1983
1984 sub indexof($@) {
1985 my $value = shift;
1986
1987 for (0 .. $#_) {
1988 $value eq $_[$_]
1989 and return $_;
1990 }
1991
1992 undef
1993 }
1994
1995 # encode the device portion after the GUID
1996 sub enc_device_($$);
1997 sub enc_device_($$) {
1998 my ($device, $type) = @_;
1999
2000 my $enc_path = sub {
2001 my $path = shift;
2002 $path =~ s/\//\\/g;
2003 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
2004 };
2005
2006 my $enc_file = sub {
2007 my ($parent, $path) = @_; # parent and path must already be encoded
2008
2009 $path = $parent . $path;
2010
2011 # fver 1, ftype 5
2012 pack "VVVa*", 1, 12 + length $path, 5, $path
2013 };
2014
2015 my $parse_path = sub {
2016 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
2017 or die "$_: invalid path\n";
2018
2019 $enc_path->($1)
2020 };
2021
2022 my $parse_parent = sub {
2023 my $parent;
2024
2025 if (s/^<//) {
2026 ($parent, $_) = enc_device_ $_, $type;
2027 s/^>//
2028 or die "$device: syntax error: parent device not followed by '>'\n";
2029 } else {
2030 $parent = $NULL_DEVICE;
2031 }
2032
2033 $parent
2034 };
2035
2036 for ($device) {
2037 s/^([a-z]+)//
2038 or die "$_: device does not start with type string\n";
2039
2040 my $type = $1;
2041 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
2042 my $payload;
2043
2044 if ($type eq "binary") {
2045 s/^=([0-9a-fA-F]+)//
2046 or die "binary type must have a hex string argument\n";
2047
2048 $payload = pack "H*", $1;
2049
2050 } elsif ($type eq "null") {
2051 return ($NULL_DEVICE, $_);
2052
2053 } elsif ($type eq "boot") {
2054 $payload = "\x00" x 56;
2055
2056 } elsif ($type eq "partition" or $type eq "legacypartition") {
2057 s/^=//
2058 or die "$_: missing '=' after $type\n";
2059
2060 my $parent = $parse_parent->();
2061
2062 s/^,//
2063 or die "$_: comma missing after partition parent device\n";
2064
2065 s/^([a-z]+),//
2066 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
2067 my $blocktype = $1;
2068
2069 s/^([a-z]+),//
2070 or die "$_: partition block type not followed by partiton type\n";
2071 my $parttype = $1;
2072
2073 my ($partdata, $diskdata);
2074
2075 if ($parttype eq "mbr") {
2076 s/^([0-9a-f]{8}),//i
2077 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
2078 $diskdata = pack "Vx12", hex $1;
2079
2080 s/^([0-9]+)//
2081 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
2082
2083 # the following works for both 64 bit offset and 32 bit partno
2084 $partdata = pack "Q< x8", $1;
2085
2086 } elsif ($parttype eq "gpt") {
2087 s/^($RE_GUID),//
2088 or die "$_: partition disk guid missing or malformed\n";
2089 $diskdata = enc_guid $1;
2090
2091 s/^($RE_GUID)//
2092 or die "$_: partition guid missing or malformed\n";
2093 $partdata = enc_guid $1;
2094
2095 } elsif ($parttype eq "raw") {
2096 s/^([0-9]+)//
2097 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2098
2099 $partdata = pack "L< x12", $1;
2100
2101 } else {
2102 die "$parttype: partition type not supported\n";
2103 }
2104
2105 $payload = pack "a16 L< L< a16 a*",
2106 $partdata,
2107 (indexof $blocktype, @block_type),
2108 (indexof $parttype, @part_type),
2109 $diskdata,
2110 $parent;
2111
2112 } elsif ($type eq "locate") {
2113 s/^=//
2114 or die "$_: missing '=' after $type\n";
2115
2116 my ($mode, $elem, $path);
2117
2118 my $parent = $parse_parent->();
2119
2120 s/^,//
2121 or die "$_: missing comma after locate parent device\n";
2122
2123 if (s/^element,//) {
2124 s/^([0-9a-z:]+)//i
2125 or die "$_ locate element must be either name or 8-digit hex id\n";
2126 $elem = enc_bcde_id $1, $type;
2127 $mode = 0;
2128 $path = $enc_path->("");
2129
2130 } elsif (s/^path,//) {
2131 $mode = 1;
2132 $path = $parse_path->();
2133
2134 } else {
2135 die "$_ second locate argument must be subtype (either element or path)\n";
2136 }
2137
2138 if ($parent ne $NULL_DEVICE) {
2139 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2140 } else {
2141 $parent = 0;
2142 }
2143
2144 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2145
2146 } elsif ($type eq "block") {
2147 s/^=//
2148 or die "$_: missing '=' after $type\n";
2149
2150 s/^([a-z]+),//
2151 or die "$_: block device does not start with block type (e.g. disk)\n";
2152 my $blocktype = $1;
2153
2154 my $blockdata;
2155
2156 if ($blocktype eq "file") {
2157 my $parent = $parse_parent->();
2158 s/^,// or die "$_: comma missing after file block device parent\n";
2159 my $path = $parse_path->();
2160
2161 $blockdata = $enc_file->($parent, $path);
2162
2163 } elsif ($blocktype eq "vhd") {
2164 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2165 $blockdata .= $parse_parent->();
2166
2167 } elsif ($blocktype eq "ramdisk") {
2168 my $parent = $parse_parent->();
2169
2170 s/^,(\d+),(\d+),(\d+),//a
2171 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2172
2173 my ($base, $size, $offset) = ($1, $2, $3);
2174
2175 my $path = $parse_path->();
2176
2177 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2178
2179 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2180 # this is guesswork
2181 s/^(\d+)//a
2182 or die "$_: missing device number for cdrom\n";
2183 $blockdata = pack "V", $1;
2184
2185 } else {
2186 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2187 }
2188
2189 $payload = pack "Va*",
2190 (indexof $blocktype, @block_type),
2191 $blockdata;
2192
2193 } elsif ($type eq "vmbus") {
2194 s/^=($RE_GUID)//
2195 or die "$_: malformed or missing vmbus interface type guid\n";
2196 my $type = enc_guid $1;
2197 s/^,($RE_GUID)//
2198 or die "$_: malformed or missing vmbus interface instance guid\n";
2199 my $instance = enc_guid $1;
2200
2201 $payload = pack "a16a16x24", $type, $instance;
2202
2203 } else {
2204 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2205 }
2206
2207 return (
2208 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2209 $_
2210 );
2211 }
2212 }
2213
2214 # encode a full binary BCD device descriptor
2215 sub enc_device($$) {
2216 my ($device, $type) = @_;
2217
2218 my $guid = "\x00" x 16;
2219
2220 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2221 $guid = enc_guid $1
2222 or die "$device: does not start with valid guid\n";
2223 }
2224
2225 my ($descriptor, $tail) = enc_device_ $device, $type;
2226
2227 length $tail
2228 and die "$device: garbage after device descriptor\n";
2229
2230 unpack "H*", $guid . $descriptor
2231 }
2232
2233 # decode a registry hive into the BCD structure used by pbcdedit
2234 sub bcd_decode {
2235 my ($hive) = @_;
2236
2237 my %bcd;
2238
2239 my $objects = $hive->[1][1]{Objects}[1];
2240
2241 while (my ($k, $v) = each %$objects) {
2242 my %kv;
2243 $v = $v->[1];
2244
2245 $k = $bcd_objects{$k} // $k;
2246
2247 my $type = $v->{Description}[0]{Type}[1];
2248
2249 if ($type != $bcd_object_types{$k}) {
2250 $kv{type} = $bcd_types{$type} // sprintf "0x%08x", $type;
2251 }
2252
2253 my $elems = $v->{Elements}[1];
2254
2255 while (my ($k, $v) = each %$elems) {
2256 my $k = hex $k;
2257
2258 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1], $type);
2259 my $k = dec_bcde_id $k, $type;
2260
2261 $kv{$k} = $v;
2262 }
2263
2264 $bcd{$k} = \%kv;
2265 }
2266
2267 $bcd{meta} = { version => $JSON_VERSION };
2268
2269 \%bcd
2270 }
2271
2272 # encode a pbcdedit structure into a registry hive
2273 sub bcd_encode {
2274 my ($bcd) = @_;
2275
2276 if (my $meta = $bcd->{meta}) {
2277 $meta->{version} eq $JSON_VERSION
2278 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2279 }
2280
2281 my %objects;
2282 my %rbcd_types = reverse %bcd_types;
2283
2284 while (my ($k, $v) = each %$bcd) {
2285 my %kv;
2286
2287 next if $k eq "meta";
2288
2289 $k = lc $k; # I know you windows types!
2290
2291 my $type = $v->{type};
2292
2293 if ($type) {
2294 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2295 ? hex $type
2296 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2297 }
2298
2299 my $guid = enc_wguid $k
2300 or die "$k: invalid bcd object identifier\n";
2301
2302 # default type if not given
2303 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2304
2305 my %elem;
2306
2307 while (my ($k, $v) = each %$v) {
2308 next if $k eq "type";
2309
2310 $k = (enc_bcde_id $k, $type) // die "$k: invalid bcde element name or id\n";
2311 $elem{sprintf "%08x", $k} = [{
2312 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2313 }];
2314 }
2315
2316 $guid = dec_guid $guid;
2317
2318 $objects{"{$guid}"} = [undef, {
2319 Description => [{ Type => [dword => $type] }],
2320 Elements => [undef, \%elem],
2321 }];
2322 }
2323
2324 [NewStoreRoot => [undef, {
2325 Description => [{
2326 KeyName => [sz => "BCD00000001"],
2327 System => [dword => 1],
2328 pbcdedit => [sz => $VERSION],
2329 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2330 }],
2331 Objects => [undef, \%objects],
2332 }]]
2333 }
2334
2335 #############################################################################
2336 # edit instructions
2337
2338 sub bcd_edit_eval {
2339 package pbcdedit;
2340
2341 our ($PATH, $BCD, $DEFAULT);
2342
2343 eval shift;
2344 die "$@" if $@;
2345 }
2346
2347 sub bcd_edit {
2348 my ($path, $bcd, @insns) = @_;
2349
2350 my $default = $bcd->{"{bootmgr}"}{default};
2351
2352 # prepare "officially visible" variables
2353 local $pbcdedit::PATH = $path;
2354 local $pbcdedit::BCD = $bcd;
2355 local $pbcdedit::DEFAULT = $default;
2356
2357 while (@insns) {
2358 my $insn = shift @insns;
2359
2360 if ($insn eq "get") {
2361 my $object = shift @insns;
2362 my $elem = shift @insns;
2363
2364 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2365
2366 print $bcd->{$object}{$elem}, "\n";
2367
2368 } elsif ($insn eq "set") {
2369 my $object = shift @insns;
2370 my $elem = shift @insns;
2371 my $value = shift @insns;
2372
2373 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2374
2375 $bcd->{$object}{$elem} = $value;
2376
2377 } elsif ($insn eq "eval") {
2378 my $perl = shift @insns;
2379 bcd_edit_eval "#line 1 'eval'\n$perl";
2380
2381 } elsif ($insn eq "do") {
2382 my $path = shift @insns;
2383 my $file = file_load $path;
2384 bcd_edit_eval "#line 1 '$path'\n$file";
2385
2386 } else {
2387 die "$insn: not a recognized instruction for edit/parse\n";
2388 }
2389 }
2390
2391 }
2392
2393 #############################################################################
2394 # command line parser
2395
2396 # json to stdout
2397 sub prjson($) {
2398 print $json_coder->encode ($_[0]);
2399 }
2400
2401 # json from stdin
2402 sub rdjson() {
2403 my $json;
2404 1 while read STDIN, $json, 65536, length $json;
2405 $json_coder->decode ($json)
2406 }
2407
2408 # all subcommands
2409 our %CMD = (
2410 help => sub {
2411 require Pod::Usage;
2412 Pod::Usage::pod2usage (-verbose => 2);
2413 },
2414
2415 objects => sub {
2416 my %rbcd_types = reverse %bcd_types;
2417 $_ = sprintf "%08x", $_ for values %rbcd_types;
2418
2419 if ($_[0] eq "--json") {
2420 my %default_type = %bcd_object_types;
2421 $_ = sprintf "%08x", $_ for values %default_type;
2422
2423 prjson {
2424 version => $JSON_VERSION,
2425 object_alias => \%bcd_objects,
2426 object_type => \%rbcd_types,
2427 object_default_type => \%default_type,
2428 };
2429 } else {
2430 my %rbcd_objects = reverse %bcd_objects;
2431
2432 print "\n";
2433
2434 printf "%-9s %s\n", "Type", "Alias";
2435 for my $tname (sort keys %rbcd_types) {
2436 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2437 }
2438
2439 print "\n";
2440
2441 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2442 for my $name (sort keys %rbcd_objects) {
2443 my $guid = $rbcd_objects{$name};
2444 my $type = $bcd_object_types{$name};
2445 my $tname = $bcd_types{$type};
2446
2447 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2448
2449 printf "%-39s %-23s %s\n", $guid, $name, $type;
2450 }
2451
2452 print "\n";
2453 }
2454 },
2455
2456 elements => sub {
2457 my $json = $_[0] eq "--json";
2458
2459 my %format_name = (
2460 BCDE_FORMAT_DEVICE , "device",
2461 BCDE_FORMAT_STRING , "string",
2462 BCDE_FORMAT_GUID , "guid",
2463 BCDE_FORMAT_GUID_LIST , "guid list",
2464 BCDE_FORMAT_INTEGER , "integer",
2465 BCDE_FORMAT_BOOLEAN , "boolean",
2466 BCDE_FORMAT_INTEGER_LIST, "integer list",
2467 );
2468
2469 my %element;
2470
2471 for my $class (sort keys %rbcde_byclass) {
2472 my $rbcde = $rbcde_byclass{$class};
2473
2474 unless ($json) {
2475 print "\n";
2476 printf "Elements applicable to class(es): $class\n";
2477 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2478 }
2479 for my $name (sort keys %$rbcde) {
2480 my $id = $rbcde->{$name};
2481 my $format = $format_name{$id & BCDE_FORMAT};
2482 $id = sprintf "%08x", $id;
2483
2484 if ($json) {
2485 $element{$id} = [$class, $format, $name];
2486 } else {
2487 printf "%-9s %-12s %s\n", $id, $format, $name;
2488 }
2489 }
2490 }
2491 print "\n" unless $json;
2492
2493 prjson {
2494 version => $JSON_VERSION,
2495 element => \%element,
2496 class => \@bcde_typeclass,
2497 } if $json;
2498
2499 },
2500
2501 export => sub {
2502 prjson bcd_decode regf_load shift;
2503 },
2504
2505 import => sub {
2506 regf_save shift, bcd_encode rdjson;
2507 },
2508
2509 edit => sub {
2510 my $path = shift;
2511 my $bcd = bcd_decode regf_load $path;
2512 bcd_edit $path, $bcd, @_;
2513 regf_save $path, bcd_encode $bcd;
2514 },
2515
2516 parse => sub {
2517 my $path = shift;
2518 my $bcd = bcd_decode regf_load $path;
2519 bcd_edit $path, $bcd, @_;
2520 },
2521
2522 "export-regf" => sub {
2523 prjson regf_load shift;
2524
2525 },
2526
2527 "import-regf" => sub {
2528 regf_save shift, rdjson;
2529 },
2530
2531 lsblk => sub {
2532 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2533
2534 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2535
2536 for my $dev (@{ $lsblk->{blockdevices} }) {
2537 my $pr = sub {
2538 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2539 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2540 };
2541
2542 if ($dev->{type} eq "part") {
2543 if ($dev->{pttype} eq "gpt") {
2544 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2545 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2546 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2547 my ($diskid, $partno) = ($1, hex $2);
2548 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2549 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2550 my $start = 512 * readline $fh;
2551 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2552 }
2553 }
2554 }
2555 }
2556 }
2557 },
2558
2559 version => sub {
2560 print "\n",
2561 "PBCDEDIT version $VERSION, copyright 2019 Marc A. Lehmann <pbcdedit\@schmorp.de>.\n",
2562 "JSON schema version: $JSON_VERSION\n",
2563 "Licensed under the GNU General Public License Version 3.0, or any later version.\n",
2564 "\n",
2565 $CHANGELOG,
2566 "\n";
2567 },
2568 );
2569
2570 my $cmd = shift;
2571
2572 unless (exists $CMD{$cmd}) {
2573 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2574 exit 126;
2575 }
2576
2577 $CMD{$cmd}->(@ARGV);
2578