ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.39
Committed: Thu Aug 15 23:49:22 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.38: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.016; # numerous features need 5.14, __SUB__ needs 5.16
23
24 our $VERSION = '1.2';
25 our $JSON_VERSION = 2; # the version of the json objects generated by this program
26
27 our $CHANGELOG = <<EOF;
28 1.2 Fri Aug 16 00:20:41 CEST 2019
29 - bcde element names now depend on the bcd object type they are in,
30 also affects "elements" output.
31 - json schema bumped to 2.
32 - new version command.
33 - numerous minor bugfixes.
34
35 EOF
36
37 =head1 NAME
38
39 pbcdedit - portable boot configuration data (BCD) store editor
40
41 =head1 SYNOPSIS
42
43 pbcdedit help # output manual page
44 pbcdedit version # output version and changelog
45
46 pbcdedit export path/to/BCD # output BCD hive as JSON
47 pbcdedit import path/to/BCD # convert standard input to BCD hive
48 pbcdedit edit path/to/BCD edit-instructions...
49
50 pbcdedit objects # list all supported object aliases and types
51 pbcdedit elements # list all supported bcd element aliases
52
53 =head1 DESCRIPTION
54
55 This program allows you to create, read and modify Boot Configuration Data
56 (BCD) stores used by Windows Vista and newer versions of Windows.
57
58 At this point, it is in relatively early stages of development and has
59 received little to no real-world testing.
60
61 Compared to other BCD editing programs it offers the following unique
62 features:
63
64 =over
65
66 =item Can create BCD hives from scratch
67
68 Practically all other BCD editing programs force you to copy existing BCD
69 stores, which might or might not be copyrighted by Microsoft.
70
71 =item Does not rely on Windows
72
73 As the "portable" in the name implies, this program does not rely on
74 C<bcdedit> or other windows programs or libraries, it works on any system
75 that supports at least perl version 5.16.
76
77 =item Decodes and encodes BCD device elements
78
79 PBCDEDIT can concisely decode and encode BCD device element contents. This
80 is pretty unique, and offers a lot of potential that can't be realised
81 with C<bcdedit> or any programs relying on it.
82
83 =item Minimal files
84
85 BCD files written by PBCDEDIT are always "minimal", that is, they don't
86 contain unused data areas and therefore don't contain old and potentially
87 sensitive data.
88
89 =back
90
91 The target audience for this program is professionals and tinkerers who
92 are ready to invest time into learning how it works. It is not an easy
93 program to use and requires patience and a good understanding of BCD
94 stores.
95
96
97 =head1 SUBCOMMANDS
98
99 PBCDEDIT expects a subcommand as first argument that tells it what to
100 do. The following subcommands exist:
101
102 =over
103
104 =item C<help>
105
106 Displays the whole manual page (this document).
107
108 =item C<version>
109
110 This outputs the PBCDEDIT version, the JSON schema version it uses and the
111 full log of changes.
112
113 =item C<export> F<path>
114
115 Reads a BCD data store and writes a JSON representation of it to standard
116 output.
117
118 The format of the data is explained later in this document.
119
120 Example: read a BCD store, modify it with an external program, write it
121 again.
122
123 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
124
125 =item C<import> F<path>
126
127 The reverse of C<export>: Reads a JSON representation of a BCD data store
128 from standard input, and creates or replaces the given BCD data store.
129
130 =item C<edit> F<path> I<instructions...>
131
132 Load a BCD data store, apply some instructions to it, and save it again.
133
134 See the section L<EDITING BCD STORES>, below, for more info.
135
136 =item C<parse> F<path> I<instructions...>
137
138 Same as C<edit>, above, except it doesn't save the data store again. Can
139 be useful to extract some data from it.
140
141 =item C<lsblk>
142
143 On a GNU/Linux system, you can get a list of partition device descriptors
144 using this command - the external C<lsblk> command is required, as well as
145 a mounted C</sys> file system.
146
147 The output will be a list of all partitions in the system and C<partition>
148 descriptors for GPT and both C<legacypartition> and C<partition>
149 descriptors for MBR partitions.
150
151 =item C<objects> [C<--json>]
152
153 Outputs two tables: a table listing all type aliases with their hex BCD
154 element ID, and all object name aliases with their GUID and default type
155 (if any).
156
157 With C<--json> it prints similar information as a JSON object, for easier parsing.
158
159 =item C<elements> [C<--json>]
160
161 Outputs a table of known element aliases with their hex ID and the format
162 type.
163
164 With C<--json> it prints similar information as a JSON object, for easier parsing.
165
166 =item C<export-regf> F<path>
167
168 This has nothing to do with BCD stores, but simply exposes PCBEDIT's
169 internal registry hive reader - it takes a registry hive file as argument
170 and outputs a JSON representation of it to standard output.
171
172 Hive versions 1.2 till 1.6 are supported.
173
174 =item C<import-regf> F<path>
175
176 The reverse of C<export-regf>: reads a JSON representation of a registry
177 hive from standard input and creates or replaces the registry hive file
178 given as argument.
179
180 The written hive will always be in a slightly modified version 1.3
181 format. It's not the format windows would generate, but it should be
182 understood by any conformant hive reader.
183
184 Note that the representation chosen by PBCDEDIT currently throws away
185 classname data (often used for feeble attempts at hiding stuff by
186 Microsoft) and security descriptors, so if you write anything other than
187 a BCD hive you will most likely destroy it.
188
189 =back
190
191
192 =head1 BCD STORE REPRESENTATION FORMAT
193
194 A BCD data store is represented as a JSON object with one special key,
195 C<meta>, and one key per BCD object. That is, each BCD object becomes
196 one key-value pair in the object, and an additional key called C<meta>
197 contains meta information.
198
199 Here is an abridged example of a real BCD store:
200
201 {
202 "meta" : {
203 "version" : 1
204 },
205 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
206 "type" : "application::osloader",
207 "description" : "Windows 10",
208 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
209 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
210 "path" : "\\Windows\\system32\\winload.exe",
211 "systemroot" : "\\Windows"
212 },
213 "{bootloadersettings}" : {
214 "inherit" : "{globalsettings} {hypervisorsettings}"
215 },
216 "{bootmgr}" : {
217 "description" : "Windows Boot Manager",
218 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
219 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
220 "inherit" : "{globalsettings}",
221 "displaybootmenu" : 0,
222 "timeout" : 30
223 },
224 "{globalsettings}" : {
225 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
226 },
227 "{hypervisorsettings}" : {
228 "hypervisorbaudrate" : 115200,
229 "hypervisordebugport" : 1,
230 "hypervisordebugtype" : 0
231 },
232 # ...
233 }
234
235 =head2 Minimal BCD to boot windows
236
237 Experimentally I found the following BCD is the minimum required to
238 successfully boot any post-XP version of Windows (assuming suitable
239 C<device> and C<osdevice> values, of course, and assuming a BIOS boot -
240 for UEFI, you should use F<winload.efi> instead of F<winload.exe>):
241
242 {
243 "{bootmgr}" : {
244 "default" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
245 },
246
247 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
248 "type" : "application::osloader",
249 "description" : "Windows Boot",
250 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
251 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
252 "path" : "\\Windows\\system32\\winload.exe",
253 "systemroot" : "\\Windows"
254 },
255 }
256
257 Note that minimal doesn't mean recommended - Windows itself will add stuff
258 to this during or after boot, and you might or might not run into issues
259 when installing updates as it might not be able to find the F<bootmgr>.
260
261 =head2 The C<meta> key
262
263 The C<meta> key is not stored in the BCD data store but is used only
264 by PBCDEDIT. It is always generated when exporting, and importing will
265 be refused when it exists and the version stored inside doesn't store
266 the JSON schema version of PBCDEDIT. This ensures that different and
267 incompatible versions of PBCDEDIT will not read and misinterpret each
268 others data.
269
270 =head2 The object keys
271
272 Every other key is a BCD object. There is usually a BCD object for the
273 boot manager, one for every boot option and a few others that store common
274 settings inherited by these.
275
276 Each BCD object is represented by a GUID wrapped in curly braces. These
277 are usually random GUIDs used only to distinguish BCD objects from each
278 other. When adding a new boot option, you can simply generate a new GUID.
279
280 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
281 into human-readable strings such as C<{globalsettings}>, which is the same
282 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
283
284 Each BCD, object has an associated type. For example,
285 C<application::osloader> for objects loading Windows via F<winload.exe>,
286 C<application::bootsector> for real mode applications and so on.
287
288 The type of a object is stored in the pseudo BCD element C<type> (see next
289 section).
290
291 Some well-known objects have a default type. If an object type matches
292 its default type, then the C<type> element will be omitted. Similarly, if
293 the C<type> element is missing and the BCD object has a default type, the
294 default type will be used when writing a BCD store.
295
296 Running F<pbcdedit objects> will give you a list of object types,
297 well-known object aliases and their default types.
298
299 If different string keys in a JSON BCD store map to the same BCD object
300 then a random one will "win" and the others will be discarded. To avoid
301 this, you should always use the "canonical" name of a BCD object, which is
302 the human-readable form (if it exists).
303
304 =head2 The object values - BCD elements
305
306 The value of each BCD object entry consists of key-value pairs called BCD
307 elements.
308
309 BCD elements are identified by a 32 bit number, but to make things
310 simpler PBCDEDIT will replace these with well-known strings such as
311 C<description>, C<device> or C<path>.
312
313 When PBCDEDIT does not know the BCD element, it will use
314 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
315 BCD element. For example, C<device> would be C<custom::11000001>. You can
316 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
317 elements>.
318
319 What was said about duplicate keys mapping to the same object is true for
320 elements as well, so, again, you should always use the canonical name,
321 which is the human readable alias, if known.
322
323 =head3 BCD element types
324
325 Each BCD element has a type such as I<string> or I<boolean>. This type
326 determines how the value is interpreted, and most of them are pretty easy
327 to explain:
328
329 =over
330
331 =item string
332
333 This is simply a unicode string. For example, the C<description> and
334 C<systemroot> elements both are of this type, one storing a human-readable
335 name for this boot option, the other a file path to the windows root
336 directory:
337
338 "description" : "Windows 10",
339 "systemroot" : "\\Windows",
340
341 =item boolean
342
343 Almost as simple are booleans, which represent I<true>/I<false>,
344 I<on>/I<off> and similar values. In the JSON form, true is represented
345 by the number C<1>, and false is represented by the number C<0>. Other
346 values will be accepted, but PBCDEDIT doesn't guarantee how these are
347 interpreted.
348
349 For example, C<displaybootmenu> is a boolean that decides whether to
350 enable the C<F8> boot menu. In the example BCD store above, this is
351 disabled:
352
353 "displaybootmenu" : 0,
354
355 =item integer
356
357 Again, very simple, this is a 64 bit integer. IT can be either specified
358 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
359 binary number (prefix C<0b>).
360
361 For example, the boot C<timeout> is an integer, specifying the automatic
362 boot delay in seconds:
363
364 "timeout" : 30,
365
366 =item integer list
367
368 This is a list of 64 bit integers separated by whitespace. It is not used
369 much, so here is a somewhat artificial an untested example of using
370 C<customactions> to specify a certain custom, eh, action to be executed
371 when pressing C<F10> at boot:
372
373 "customactions" : "0x1000044000001 0x54000001",
374
375 =item guid
376
377 This represents a single GUID value wrapped in curly braces. It is used a
378 lot to refer from one BCD object to other one.
379
380 For example, The C<{bootmgr}> object might refer to a resume boot option
381 using C<default>:
382
383 "default" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
384
385 Human readable aliases are used and allowed.
386
387 =item guid list
388
389 Similar to the GUID type, this represents a list of such GUIDs, separated
390 by whitespace from each other.
391
392 For example, many BCD objects can I<inherit> elements from other BCD
393 objects by specifying the GUIDs of those other objects in a GUID list
394 called surprisingly called C<inherit>:
395
396 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
397
398 This example also shows how human readable aliases can be used.
399
400 =item device
401
402 This type is why I write I<most> are easy to explain earlier: This type
403 is the pinnacle of Microsoft-typical hacks layered on top of other
404 hacks. Understanding this type took more time than writing all the rest of
405 PBCDEDIT, and because it is so complex, this type has its own subsection
406 below.
407 =back
408
409 =head4 The BCD "device" element type
410
411 Device elements specify, well, devices. They are used for such diverse
412 purposes such as finding a TFTP network boot image, serial ports or VMBUS
413 devices, but most commonly they are used to specify the disk (harddisk,
414 cdrom, ramdisk, vhd...) to boot from.
415
416 The device element is kind of a mini-language in its own which is much
417 more versatile then the limited windows interface to it - BCDEDIT -
418 reveals.
419
420 While some information can be found on the BCD store and the windows
421 registry, there is pretty much no public information about the device
422 element, so almost everything known about it had to be researched first
423 in the process of writing this script, and consequently, support for BCD
424 device elements is partial only.
425
426 On the other hand, the expressive power of PBCDEDIT in specifying devices
427 is much bigger than BCDEDIT and therefore more can be done with it. The
428 downside is that BCD device elements are much more complicated than what
429 you might think from reading the BCDEDIT documentation.
430
431 In other words, simple things are complicated, and complicated things are
432 possible.
433
434 Anyway, the general syntax of device elements is an optional GUID,
435 followed by a device type, optionally followed by hexadecimal flags in
436 angle brackets, optionally followed by C<=> and a comma-separated list of
437 arguments, some of which can be (and often are) in turn devices again.
438
439 [{GUID}]type[<flags>][=arg,arg...]
440
441 Here are some examples:
442
443 boot
444 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
445 locate=<null>,element,systemroot
446 partition=<null>,harddisk,mbr,47cbc08a,1048576
447 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
448 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
449 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
450 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
451
452 I hope you are suitably impressed. I was, too, when I realized decoding
453 these binary blobs is not as easy as I had assumed.
454
455 The optional prefixed GUID seems to refer to a device BCD object, which
456 can be used to specify more device-specific BCD elements (for example
457 C<ramdisksdidevice> and C<ramdisksdpath>).
458
459 The flags after the type are omitted when they are C<0>. The only known
460 flag is C<1>, which seems to indicate that the parent device is invalid. I
461 don't claim to fully understand it, but it seems to indicate that the
462 boot manager has to search the device itself. Why the device is specified
463 in the first place escapes me, but a lot of this device stuff seems to be
464 badly hacked together...
465
466 The types understood and used by PBCDEDIT are as follows (keep in mind
467 that not of all the following is necessarily supported in PBCDEDIT):
468
469 =over
470
471 =item C<binary=>I<hex...>
472
473 This type isn't actually a real BCD element type, but a fallback for those
474 cases where PBCDEDIT can't perfectly decode a device element (except for
475 the leading GUID, which it can always decode). In such cases, it will
476 convert the device into this type with a hexdump of the element data.
477
478 =item C<null>
479
480 This is another special type - sometimes, a device all zero-filled, which
481 is not valid. This can mark the absence of a device or something PBCDEDIT
482 does not understand, so it decodes it into this special "all zero" type
483 called C<null>.
484
485 It's most commonly found in devices that can use an optional parent
486 device, when no parent device is used.
487
488 =item C<boot>
489
490 Another type without parameters, this refers to the device that was booted
491 from (nowadays typically the EFI system partition).
492
493 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
494
495 This specifies a VMBUS device with the given interface type and interface
496 instance, both of which are "naked" (no curly braces) GUIDs.
497
498 Made-up example (couldn't find a single example on the web):
499
500 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
501
502 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
503
504 This designates a specific partition on a block device. I<parent> is an
505 optional parent device on which to search on, and is often C<null>. Note
506 that the angle brackets around I<parent> are part of the syntax.
507
508 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
509 C<file> or C<vhd>, where the first three should be self-explaining,
510 C<file> is usually used to locate a file to be used as a disk image,
511 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
512 F<vhdx> files.
513
514 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
515 used for devices without partitions, such as cdroms, where the "partition"
516 is usually the whole device.
517
518 The I<diskid> identifies the disk or device using a unique signature, and
519 the same is true for the I<partitionid>. How these are interpreted depends
520 on the I<partitiontype>:
521
522 =over
523
524 =item C<mbr>
525
526 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
527 MBR, interpreted as a 32 bit unsigned little endian integer and written as
528 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
529
530 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
531 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
532 display the I<diskid>.
533
534 The I<partitionid> is the byte offset(!) of the partition counting from
535 the beginning of the MBR.
536
537 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
538 starting at sector C<2048> (= 1048576 / 512).
539
540 partition=<null>,harddisk,mbr,47cbc08a,1048576
541
542 =item C<gpt>
543
544 The I<diskid> is the disk GUID/disk identifier GUID from the partition
545 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
546 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
547
548 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
549 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
550
551 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
552
553 =item C<raw>
554
555 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
556 disk number and signifies the whole disk. BCDEDIT cannot display the
557 resulting device, and I am doubtful whether it has a useful effect.
558
559 =back
560
561 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
562
563 This is exactly the same as the C<partition> type, except for a tiny
564 detail: instead of using the partition start offset, this type uses the
565 partition number for MBR disks. Behaviour other partition types should be
566 the same.
567
568 The partition number starts at C<1> and skips unused partition, so if
569 there are two primary partitions and another partition inside the extended
570 partition, the primary partitions are number C<1> and C<2> and the
571 partition inside the extended partition is number C<3>, regardless of any
572 gaps.
573
574 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
575
576 This device description will make the bootloader search for a partition
577 with a given path.
578
579 The I<parent> device is the device to search on (angle brackets are
580 still part of the syntax!) If it is C<null>, then C<locate> will
581 search all disks it can find.
582
583 I<locatetype> is either C<element> or C<path>, and merely distinguishes
584 between two different ways to specify the path to search for: C<element>
585 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
586 uses a relative path as I<locatearg>.
587
588 Example: find any partition which has the F<magicfile.xxx> path in the
589 root.
590
591 locate=<null>,path,\magicfile.xxx
592
593 Example: find any partition which has the path specified in the
594 C<systemroot> element (typically F<\Windows>).
595
596 locate=<null>,element,systemroot
597
598 =item C<block=>I<devicetype>,I<args...>
599
600 Last not least, the most complex type, C<block>, which... specifies block
601 devices (which could be inside a F<vhdx> file for example).
602
603 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
604 C<file> or C<vhd> - the same as for C<partiion=>.
605
606 The remaining arguments change depending on the I<devicetype>:
607
608 =over
609
610 =item C<block=file>,<I<parent>>,I<path>
611
612 Interprets the I<parent> device (typically a partition) as a
613 filesystem and specifies a file path inside.
614
615 =item C<block=vhd>,<I<parent>>
616
617 Pretty much just changes the interpretation of I<parent>, which is
618 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
619
620 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
621
622 Interprets the I<parent> device as RAM disk, using the (decimal)
623 base address, byte size and byte offset inside a file specified by
624 I<path>. The numbers are usually all C<0> because they can be extracted
625 from the RAM disk image or other parameters.
626
627 This is most commonly used to boot C<wim> images.
628
629 =item C<block=floppy>,I<drivenum>
630
631 Refers to a removable drive identified by a number. BCDEDIT cannot display
632 the resulting device, and it is not clear what effect it will have.
633
634 =item C<block=cdrom>,I<drivenum>
635
636 Pretty much the same as C<floppy> but for CD-ROMs.
637
638 =item anything else
639
640 Probably not yet implemented. Tell me of your needs...
641
642 =back
643
644 =back5 Examples
645
646 This concludes the syntax overview for device elements, but probably
647 leaves many questions open. I can't help with most of them, as I also ave
648 many questions, but I can walk you through some actual examples using more
649 complex aspects.
650
651 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
652
653 Just like with C declarations, you best treat device descriptors as
654 instructions to find your device and work your way from the inside out:
655
656 locate=<null>,path,\disk.vhdx
657
658 First, the innermost device descriptor searches all partitions on the
659 system for a file called F<\disk.vhdx>:
660
661 block=file,<see above>,\disk.vhdx
662
663 Next, this takes the device locate has found and finds a file called
664 F<\disk.vhdx> on it. This is the same file locate was using, but that is
665 only because we find the device using the same path as finding the disk
666 image, so this is purely incidental, although quite common.
667
668 Next, this file will be opened as a virtual disk:
669
670 block=vhd,<see above>
671
672 And finally, inside this disk, another C<locate> will look for a partition
673 with a path as specified in the C<path> element, which most likely will be
674 F<\Windows\system32\winload.exe>:
675
676 locate=<see above>,element,path
677
678 As a result, this will boot the first Windows it finds on the first
679 F<disk.vhdx> disk image it can find anywhere.
680
681 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
682
683 Pretty much the same as the previous case, but with a bit of
684 variance. First, look for a specific partition on an MBR-partitioned disk:
685
686 partition=<null>,harddisk,mbr,47cbc08a,242643632128
687
688 Then open the file F<\win10.vhdx> on that partition:
689
690 block=file,<see above>,\win10.vhdx
691
692 Then, again, the file is opened as a virtual disk image:
693
694 block=vhd,<see above>
695
696 And again the windows loader (or whatever is in C<path>) will be searched:
697
698 locate=<see above>,element,path
699
700 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
701
702 This is quite different. First, it starts with a GUID. This GUID belongs
703 to a BCD object of type C<device>, which has additional parameters:
704
705 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
706 "type" : "device",
707 "description" : "sdi file for ramdisk",
708 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
709 "ramdisksdipath" : "\boot.sdi"
710 },
711
712 I will not go into many details, but this specifies a (presumably empty)
713 template ramdisk image (F<\boot.sdi>) that is used to initialize the
714 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
715 see, this F<.sdi> file resides on a different C<partition>.
716
717 Continuing, as always, from the inside out, first this device descriptor
718 finds a specific partition:
719
720 partition=<null>,harddisk,mbr,47cbc08a,242643632128
721
722 And then specifies a C<ramdisk> image on this partition:
723
724 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
725
726 I don't know what the purpose of the C<< <1> >> flag value is, but it
727 seems to be always there on this kind of entry.
728
729 If you have some good examples to add here, feel free to mail me.
730
731
732 =head1 EDITING BCD STORES
733
734 The C<edit> and C<parse> subcommands allow you to read a BCD data store
735 and modify it or extract data from it. This is done by executing a series
736 of "editing instructions" which are explained here.
737
738 =over
739
740 =item C<get> I<object> I<element>
741
742 Reads the BCD element I<element> from the BCD object I<object> and writes
743 it to standard output, followed by a newline. The I<object> can be a GUID
744 or a human-readable alias, or the special string C<{default}>, which will
745 refer to the default BCD object.
746
747 Example: find description of the default BCD object.
748
749 pbcdedit parse BCD get "{default}" description
750
751 =item C<set> I<object> I<element> I<value>
752
753 Similar to C<get>, but sets the element to the given I<value> instead.
754
755 Example: change the bootmgr default too
756 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
757
758 pbcdedit edit BCD set "{bootmgr}" default "{b097d2ad-bc00-11e9-8a9a-525400123456}"
759
760 =item C<eval> I<perlcode>
761
762 This takes the next argument, interprets it as Perl code and
763 evaluates it. This allows you to do more complicated modifications or
764 extractions.
765
766 The following variables are predefined for your use:
767
768 =over
769
770 =item C<$PATH>
771
772 The path to the BCD data store, as given to C<edit> or C<parse>.
773
774 =item C<$BCD>
775
776 The decoded BCD data store.
777
778 =item C<$DEFAULT>
779
780 The default BCD object name.
781
782 =back
783
784 The example given for C<get>, above, could be expressed like this with
785 C<eval>:
786
787 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
788
789 The example given for C<set> could be expressed like this:
790
791 pbcdedit edit BCD eval '$BCD->{"{bootmgr}"{default} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
792
793 =item C<do> I<path>
794
795 Similar to C<eval>, above, but instead of using the argument as perl code,
796 it loads the perl code from the given file and executes it. This makes it
797 easier to write more complicated or larger programs.
798
799 =back
800
801
802 =head1 SEE ALSO
803
804 For ideas on what you can do with BCD stores in
805 general, and some introductory material, try
806 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
807
808 For good reference on which BCD objects and
809 elements exist, see Geoff Chappell's pages at
810 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
811
812 =head1 AUTHOR
813
814 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
815
816 =head1 REPORTING BUGS
817
818 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
819
820 =head1 BUGS AND SHORTCOMINGS
821
822 This should be a module. Of a series of modules, even.
823
824 Registry code should preserve classname and security descriptor data, and
825 whatever else is necessary to read and write any registry hive file.
826
827 I am also not happy with device descriptors being strings rather than a
828 data structure, but strings are probably better for command line usage. In
829 any case, device descriptors could be converted by simply "splitting" at
830 "=" and "," into an array reference, recursively.
831
832 =head1 HOMEPAGE
833
834 Original versions of this program can be found at
835 L<http://software.schmorp.de/pkg/pbcdedit>.
836
837 =head1 COPYRIGHT
838
839 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
840 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
841 free to change and redistribute it. There is NO WARRANTY, to the extent
842 permitted by law.
843
844 =cut
845
846 # common sense is optional, but recommended
847 BEGIN { eval { require "common/sense.pm"; } && common::sense->import }
848
849 no warnings 'portable'; # avoid 32 bit integer warnings
850
851 use Encode ();
852 use List::Util ();
853 use IO::Handle ();
854 use Time::HiRes ();
855
856 eval { unpack "Q", pack "Q", 1 }
857 or die "perl with 64 bit integer supported required.\n";
858
859 our $JSON = eval { require JSON::XS; JSON::XS:: }
860 // eval { require JSON::PP; JSON::PP:: }
861 // die "either JSON::XS or JSON::PP must be installed\n";
862
863 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
864
865 # hack used for debugging
866 sub xxd($$) {
867 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
868 syswrite $xxd, $_[1];
869 }
870
871 sub file_load($) {
872 my ($path) = @_;
873
874 open my $fh, "<:raw", $path
875 or die "$path: $!\n";
876 my $size = -s $fh;
877 $size = read $fh, my $buf, $size
878 or die "$path: short read\n";
879
880 $buf
881 }
882
883 # sources and resources used for writing pbcdedit
884 #
885 # registry:
886 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
887 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
888 # bcd:
889 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
890 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
891 # bcd devices:
892 # reactos' boot/environ/include/bl.h
893 # windows .mof files
894
895 #############################################################################
896 # registry stuff
897
898 # we use a hardcoded securitya descriptor - full access for everyone
899 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
900 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
901 my $sacl = "";
902 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
903 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
904 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
905 1, 0x8004,
906 20 + (length $sacl) + (length $dacl),
907 20 + (length $sacl) + (length $dacl) + (length $sid),
908 0, 20,
909 $sacl, $dacl, $sid, $sid;
910 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
911
912 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
913
914 sub KEY_HIVE_ENTRY() { 0x0004 }
915 sub KEY_NO_DELETE () { 0x0008 }
916 sub KEY_COMP_NAME () { 0x0020 }
917
918 sub VALUE_COMP_NAME() { 0x0001 }
919
920 my @regf_typename = qw(
921 none sz expand_sz binary dword dword_be link multi_sz
922 resource_list full_resource_descriptor resource_requirements_list
923 qword qword_be
924 );
925
926 my %regf_dec_type = (
927 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
928 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
929 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
930 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
931 dword => sub { unpack "L<", shift },
932 dword_be => sub { unpack "L>", shift },
933 qword => sub { unpack "Q<", shift },
934 qword_be => sub { unpack "Q>", shift },
935 );
936
937 my %regf_enc_type = (
938 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
939 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
940 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
941 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
942 dword => sub { pack "L<", shift },
943 dword_be => sub { pack "L>", shift },
944 qword => sub { pack "Q<", shift },
945 qword_be => sub { pack "Q>", shift },
946 );
947
948 # decode a registry hive
949 sub regf_decode($) {
950 my ($hive) = @_;
951
952 "regf" eq substr $hive, 0, 4
953 or die "not a registry hive\n";
954
955 my ($major, $minor) = unpack "\@20 L< L<", $hive;
956
957 $major == 1
958 or die "registry major version is not 1, but $major\n";
959
960 $minor >= 2 && $minor <= 6
961 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
962
963 my $bins = substr $hive, 4096;
964
965 my $decode_key = sub {
966 my ($ofs) = @_;
967
968 my @res;
969
970 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
971
972 $sze < 0
973 or die "key node points to unallocated cell\n";
974
975 $sig eq "nk"
976 or die "expected key node at $ofs, got '$sig'\n";
977
978 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
979
980 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
981
982 # classnames, security descriptors
983 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
984 #if ($cofs != NO_OFS && $clen) {
985 # #warn "cofs $cofs+$clen\n";
986 # xxd substr $bins, $cofs, 16;
987 #}
988
989 $kname = Encode::decode "UTF-16LE", $kname
990 unless $flags & KEY_COMP_NAME;
991
992 if ($vnum && $vofs != NO_OFS) {
993 for ($vofs += 4; $vnum--; $vofs += 4) {
994 my $kofs = unpack "\@$vofs L<", $bins;
995
996 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
997
998 $sig eq "vk"
999 or die "key values list contains invalid node (expected vk got '$sig')\n";
1000
1001 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
1002
1003 my $name = substr $bins, $kofs + 24, $nsze;
1004
1005 $name = Encode::decode "UTF-16LE", $name
1006 unless $flags & VALUE_COMP_NAME;
1007
1008 my $data;
1009 if ($dsze & 0x80000000) {
1010 $data = substr $bins, $kofs + 12, $dsze & 0x7;
1011 } elsif ($dsze > 16344 && $minor > 3) { # big data
1012 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
1013
1014 for ($bofs += 4; $bnum--; $bofs += 4) {
1015 my $dofs = unpack "\@$bofs L<", $bins;
1016 my $dsze = unpack "\@$dofs l<", $bins;
1017 $data .= substr $bins, $dofs + 4, -$dsze - 4;
1018 }
1019 $data = substr $data, 0, $dsze; # cells might be longer than data
1020 } else {
1021 $data = substr $bins, $dofs + 4, $dsze;
1022 }
1023
1024 $type = $regf_typename[$type] if $type < @regf_typename;
1025
1026 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1027 ->($data);
1028
1029 $res[0]{$name} = [$type, $data];
1030 }
1031 }
1032
1033 if ($sofs != NO_OFS) {
1034 my $decode_key = __SUB__;
1035
1036 my $decode_subkeylist = sub {
1037 my ($sofs) = @_;
1038
1039 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1040
1041 if ($sig eq "ri") { # index root
1042 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1043 __SUB__->(unpack "\@$lofs L<", $bins);
1044 }
1045 } else {
1046 my $inc;
1047
1048 if ($sig eq "li") { # subkey list
1049 $inc = 4;
1050 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1051 $inc = 8;
1052 } else {
1053 die "expected subkey list at $sofs, found '$sig'\n";
1054 }
1055
1056 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1057 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1058 $res[1]{$name} = $data;
1059 }
1060 }
1061 };
1062
1063 $decode_subkeylist->($sofs);
1064 }
1065
1066 ($kname, \@res);
1067 };
1068
1069 my ($rootcell) = unpack "\@36 L<", $hive;
1070
1071 my ($rname, $root) = $decode_key->($rootcell);
1072
1073 [$rname, $root]
1074 }
1075
1076 # return a binary windows fILETIME struct
1077 sub filetime_now {
1078 my ($s, $ms) = Time::HiRes::gettimeofday;
1079
1080 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1081 }
1082
1083 # encode a registry hive
1084 sub regf_encode($) {
1085 my ($hive) = @_;
1086
1087 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1088
1089 # the filetime is apparently used to verify log file validity,
1090 # so by generating a new timestamp the log files *should* automatically
1091 # become invalidated and windows would "self-heal" them.
1092 # (update: has been verified by reverse engineering)
1093 # possibly the fact that the two sequence numbes match might also
1094 # make windows think that the hive is not dirty and ignore logs.
1095 # (update: has been verified by reverse engineering)
1096
1097 my $now = filetime_now;
1098
1099 # we only create a single hbin
1100 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1101
1102 # append cell to $bind, return offset
1103 my $cell = sub {
1104 my ($cell) = @_;
1105
1106 my $res = length $bins;
1107
1108 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1109
1110 $bins .= pack "l<", -(4 + length $cell);
1111 $bins .= $cell;
1112
1113 $res
1114 };
1115
1116 my $sdofs = $cell->($sk); # add a dummy security descriptor
1117 my $sdref = 0; # refcount
1118 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1119 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1120
1121 my $encode_key = sub {
1122 my ($kname, $kdata, $flags) = @_;
1123 my ($values, $subkeys) = @$kdata;
1124
1125 if ($kname =~ /[^\x00-\xff]/) {
1126 $kname = Encode::encode "UTF-16LE", $kname;
1127 } else {
1128 $flags |= KEY_COMP_NAME;
1129 }
1130
1131 # encode subkeys
1132
1133 my @snames =
1134 map $_->[1],
1135 sort { $a->[0] cmp $b->[0] }
1136 map [(uc $_), $_],
1137 keys %$subkeys;
1138
1139 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1140 my $maxsname = 4 * List::Util::max map length, @snames;
1141
1142 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1143
1144 # encode values
1145 my $maxvname = 4 * List::Util::max map length, keys %$values;
1146 my @vofs;
1147 my $maxdsze = 0;
1148
1149 while (my ($vname, $v) = each %$values) {
1150 my $flags = 0;
1151
1152 if ($vname =~ /[^\x00-\xff]/) {
1153 $vname = Encode::encode "UTF-16LE", $kname;
1154 } else {
1155 $flags |= VALUE_COMP_NAME;
1156 }
1157
1158 my ($type, $data) = @$v;
1159
1160 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1161
1162 my $dsze;
1163 my $dofs;
1164
1165 if (length $data <= 4) {
1166 $dsze = 0x80000000 | length $data;
1167 $dofs = unpack "L<", pack "a4", $data;
1168 } else {
1169 $dsze = length $data;
1170 $dofs = $cell->($data);
1171 }
1172
1173 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1174
1175 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1176 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1177
1178 $maxdsze = $dsze if $maxdsze < $dsze;
1179 }
1180
1181 # encode key
1182
1183 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1184 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1185
1186 my $kdata = pack "
1187 a2 S< a8 x4 x4
1188 L< L< L< L< L< L<
1189 L< L< L< L< L< L<
1190 x4 S< S< a*
1191 ",
1192 nk => $flags, $now,
1193 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1194 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1195 length $kname, 0, $kname;
1196 ++$sdref;
1197
1198 my $res = $cell->($kdata);
1199
1200 substr $bins, $_ + 16, 4, pack "L<", $res
1201 for @sofs;
1202
1203 $res
1204 };
1205
1206 my ($rname, $root) = @$hive;
1207
1208 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1209
1210 if (my $pad = -(length $bins) & 4095) {
1211 $pad -= 4;
1212 $bins .= pack "l< x$pad", $pad + 4;
1213 }
1214
1215 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1216 substr $bins, 8, 4, pack "L<", length $bins;
1217
1218 my $base = pack "
1219 a4 L< L< a8 L< L< L< L<
1220 L< L< L<
1221 a64
1222 x396
1223 ",
1224 regf => 1974, 1974, $now, 1, 3, 0, 1,
1225 $rofs, length $bins, 1,
1226 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1227
1228 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1229 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1230 $chksum = 1 if $chksum == 0;
1231
1232 $base .= pack "L<", $chksum;
1233
1234 $base = pack "a* \@4095 x1", $base;
1235
1236 $base . $bins
1237 }
1238
1239 # load and parse registry from file
1240 sub regf_load($) {
1241 my ($path) = @_;
1242
1243 regf_decode file_load $path
1244 }
1245
1246 # encode and save registry to file
1247 sub regf_save {
1248 my ($path, $hive) = @_;
1249
1250 $hive = regf_encode $hive;
1251
1252 open my $regf, ">:raw", "$path~"
1253 or die "$path~: $!\n";
1254 print $regf $hive
1255 or die "$path~: short write\n";
1256 $regf->sync;
1257 close $regf;
1258
1259 rename "$path~", $path;
1260 }
1261
1262 #############################################################################
1263 # bcd stuff
1264
1265 # human-readable alises for GUID object identifiers
1266 our %bcd_objects = (
1267 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1268 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1269 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1270 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1271 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1272 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1273 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1274 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1275 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1276 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1277 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1278 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1279 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1280 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1281 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1282 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1283 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1284 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1285 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1286 );
1287
1288 # default types
1289 our %bcd_object_types = (
1290 '{fwbootmgr}' => 0x10100001,
1291 '{bootmgr}' => 0x10100002,
1292 '{memdiag}' => 0x10200005,
1293 '{ntldr}' => 0x10300006,
1294 '{badmemory}' => 0x20100000,
1295 '{dbgsettings}' => 0x20100000,
1296 '{emssettings}' => 0x20100000,
1297 '{globalsettings}' => 0x20100000,
1298 '{bootloadersettings}' => 0x20200003,
1299 '{hypervisorsettings}' => 0x20200003,
1300 '{kerneldbgsettings}' => 0x20200003,
1301 '{resumeloadersettings}' => 0x20200004,
1302 '{ramdiskoptions}' => 0x30000000,
1303 );
1304
1305 # object types
1306 our %bcd_types = (
1307 0x10100001 => 'application::fwbootmgr',
1308 0x10100002 => 'application::bootmgr',
1309 0x10200003 => 'application::osloader',
1310 0x10200004 => 'application::resume',
1311 0x10100005 => 'application::memdiag',
1312 0x10100006 => 'application::ntldr',
1313 0x10100007 => 'application::setupldr',
1314 0x10400008 => 'application::bootsector',
1315 0x10400009 => 'application::startup',
1316 0x1020000a => 'application::bootapp',
1317 0x20100000 => 'settings',
1318 0x20200001 => 'inherit::fwbootmgr',
1319 0x20200002 => 'inherit::bootmgr',
1320 0x20200003 => 'inherit::osloader',
1321 0x20200004 => 'inherit::resume',
1322 0x20200005 => 'inherit::memdiag',
1323 0x20200006 => 'inherit::ntldr',
1324 0x20200007 => 'inherit::setupldr',
1325 0x20200008 => 'inherit::bootsector',
1326 0x20200009 => 'inherit::startup',
1327 0x20300000 => 'inherit::device',
1328 0x30000000 => 'device',
1329 );
1330
1331 our %rbcd_objects = reverse %bcd_objects;
1332
1333 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1334
1335 sub dec_guid($) {
1336 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1337 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1338 }
1339
1340 sub enc_guid($) {
1341 $_[0] =~ /^$RE_GUID\z/o
1342 or return;
1343
1344 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1345 }
1346
1347 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1348 sub dec_wguid($) {
1349 my $guid = "{" . (dec_guid shift) . "}";
1350
1351 $bcd_objects{$guid} // $guid
1352 }
1353
1354 sub enc_wguid($) {
1355 my ($guid) = @_;
1356
1357 if (my $alias = $rbcd_objects{$guid}) {
1358 $guid = $alias;
1359 }
1360
1361 $guid =~ /^\{($RE_GUID)\}\z/o
1362 or return;
1363
1364 enc_guid $1
1365 }
1366
1367 sub BCDE_CLASS () { 0xf0000000 }
1368 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1369 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1370 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1371 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1372
1373 sub BCDE_FORMAT () { 0x0f000000 }
1374 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1375 sub BCDE_FORMAT_STRING () { 0x02000000 }
1376 sub BCDE_FORMAT_GUID () { 0x03000000 }
1377 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1378 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1379 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1380 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1381
1382 sub enc_integer($) {
1383 my $value = shift;
1384 $value = oct $value if $value =~ /^0[bBxX]/;
1385 unpack "H*", pack "Q<", $value
1386 }
1387
1388 sub enc_device($$);
1389 sub dec_device($$);
1390
1391 our %bcde_dec = (
1392 BCDE_FORMAT_DEVICE , \&dec_device,
1393 # # for round-trip verification
1394 # BCDE_FORMAT_DEVICE , sub {
1395 # my $dev = dec_device $_[0];
1396 # $_[0] eq enc_device $dev
1397 # or die "bcd device decoding does not round trip for $_[0]\n";
1398 # $dev
1399 # },
1400 BCDE_FORMAT_STRING , sub { shift },
1401 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1402 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1403 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1404 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1405 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1406 );
1407
1408 our %bcde_enc = (
1409 BCDE_FORMAT_DEVICE , sub { binary => enc_device $_[0], $_[1] },
1410 BCDE_FORMAT_STRING , sub { sz => shift },
1411 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1412 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1413 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1414 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1415 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1416 );
1417
1418 # BCD Elements
1419 our %bcde_byclass = (
1420 any => {
1421 0x11000001 => 'device',
1422 0x12000002 => 'path',
1423 0x12000004 => 'description',
1424 0x12000005 => 'locale',
1425 0x14000006 => 'inherit',
1426 0x15000007 => 'truncatememory',
1427 0x14000008 => 'recoverysequence',
1428 0x16000009 => 'recoveryenabled',
1429 0x1700000a => 'badmemorylist',
1430 0x1600000b => 'badmemoryaccess',
1431 0x1500000c => 'firstmegabytepolicy',
1432 0x1500000d => 'relocatephysical',
1433 0x1500000e => 'avoidlowmemory',
1434 0x1600000f => 'traditionalkseg',
1435 0x16000010 => 'bootdebug',
1436 0x15000011 => 'debugtype',
1437 0x15000012 => 'debugaddress',
1438 0x15000013 => 'debugport',
1439 0x15000014 => 'baudrate',
1440 0x15000015 => 'channel',
1441 0x12000016 => 'targetname',
1442 0x16000017 => 'noumex',
1443 0x15000018 => 'debugstart',
1444 0x12000019 => 'busparams',
1445 0x1500001a => 'hostip',
1446 0x1500001b => 'port',
1447 0x1600001c => 'dhcp',
1448 0x1200001d => 'key',
1449 0x1600001e => 'vm',
1450 0x16000020 => 'bootems',
1451 0x15000022 => 'emsport',
1452 0x15000023 => 'emsbaudrate',
1453 0x12000030 => 'loadoptions',
1454 0x16000040 => 'advancedoptions',
1455 0x16000041 => 'optionsedit',
1456 0x15000042 => 'keyringaddress',
1457 0x11000043 => 'bootstatdevice',
1458 0x12000044 => 'bootstatfilepath',
1459 0x16000045 => 'preservebootstat',
1460 0x16000046 => 'graphicsmodedisabled',
1461 0x15000047 => 'configaccesspolicy',
1462 0x16000048 => 'nointegritychecks',
1463 0x16000049 => 'testsigning',
1464 0x1200004a => 'fontpath',
1465 0x1500004b => 'integrityservices',
1466 0x1500004c => 'volumebandid',
1467 0x16000050 => 'extendedinput',
1468 0x15000051 => 'initialconsoleinput',
1469 0x15000052 => 'graphicsresolution',
1470 0x16000053 => 'restartonfailure',
1471 0x16000054 => 'highestmode',
1472 0x16000060 => 'isolatedcontext',
1473 0x15000065 => 'displaymessage',
1474 0x15000066 => 'displaymessageoverride',
1475 0x16000068 => 'nobootuxtext',
1476 0x16000069 => 'nobootuxprogress',
1477 0x1600006a => 'nobootuxfade',
1478 0x1600006b => 'bootuxreservepooldebug',
1479 0x1600006c => 'bootuxdisabled',
1480 0x1500006d => 'bootuxfadeframes',
1481 0x1600006e => 'bootuxdumpstats',
1482 0x1600006f => 'bootuxshowstats',
1483 0x16000071 => 'multibootsystem',
1484 0x16000072 => 'nokeyboard',
1485 0x15000073 => 'aliaswindowskey',
1486 0x16000074 => 'bootshutdowndisabled',
1487 0x15000075 => 'performancefrequency',
1488 0x15000076 => 'securebootrawpolicy',
1489 0x17000077 => 'allowedinmemorysettings',
1490 0x15000079 => 'bootuxtransitiontime',
1491 0x1600007a => 'mobilegraphics',
1492 0x1600007b => 'forcefipscrypto',
1493 0x1500007d => 'booterrorux',
1494 0x1600007e => 'flightsigning',
1495 0x1500007f => 'measuredbootlogformat',
1496 0x15000080 => 'displayrotation',
1497 0x15000081 => 'logcontrol',
1498 0x16000082 => 'nofirmwaresync',
1499 0x11000084 => 'windowssyspart',
1500 0x16000087 => 'numlock',
1501 0x26000202 => 'skipffumode',
1502 0x26000203 => 'forceffumode',
1503 0x25000510 => 'chargethreshold',
1504 0x26000512 => 'offmodecharging',
1505 0x25000aaa => 'bootflow',
1506 0x45000001 => 'devicetype',
1507 0x42000002 => 'applicationrelativepath',
1508 0x42000003 => 'ramdiskdevicerelativepath',
1509 0x46000004 => 'omitosloaderelements',
1510 0x47000006 => 'elementstomigrate',
1511 0x46000010 => 'recoveryos',
1512 },
1513 bootapp => {
1514 0x26000145 => 'enablebootdebugpolicy',
1515 0x26000146 => 'enablebootorderclean',
1516 0x26000147 => 'enabledeviceid',
1517 0x26000148 => 'enableffuloader',
1518 0x26000149 => 'enableiuloader',
1519 0x2600014a => 'enablemassstorage',
1520 0x2600014b => 'enablerpmbprovisioning',
1521 0x2600014c => 'enablesecurebootpolicy',
1522 0x2600014d => 'enablestartcharge',
1523 0x2600014e => 'enableresettpm',
1524 },
1525 bootmgr => {
1526 0x24000001 => 'displayorder',
1527 0x24000002 => 'bootsequence',
1528 0x23000003 => 'default',
1529 0x25000004 => 'timeout',
1530 0x26000005 => 'resume',
1531 0x23000006 => 'resumeobject',
1532 0x24000007 => 'startupsequence',
1533 0x24000010 => 'toolsdisplayorder',
1534 0x26000020 => 'displaybootmenu',
1535 0x26000021 => 'noerrordisplay',
1536 0x21000022 => 'bcddevice',
1537 0x22000023 => 'bcdfilepath',
1538 0x26000024 => 'hormenabled',
1539 0x26000025 => 'hiberboot',
1540 0x22000026 => 'passwordoverride',
1541 0x22000027 => 'pinpassphraseoverride',
1542 0x26000028 => 'processcustomactionsfirst',
1543 0x27000030 => 'customactions',
1544 0x26000031 => 'persistbootsequence',
1545 0x26000032 => 'skipstartupsequence',
1546 0x22000040 => 'fverecoveryurl',
1547 0x22000041 => 'fverecoverymessage',
1548 },
1549 device => {
1550 0x35000001 => 'ramdiskimageoffset',
1551 0x35000002 => 'ramdisktftpclientport',
1552 0x31000003 => 'ramdisksdidevice',
1553 0x32000004 => 'ramdisksdipath',
1554 0x35000005 => 'ramdiskimagelength',
1555 0x36000006 => 'exportascd',
1556 0x35000007 => 'ramdisktftpblocksize',
1557 0x35000008 => 'ramdisktftpwindowsize',
1558 0x36000009 => 'ramdiskmcenabled',
1559 0x3600000a => 'ramdiskmctftpfallback',
1560 0x3600000b => 'ramdisktftpvarwindow',
1561 },
1562 memdiag => {
1563 0x25000001 => 'passcount',
1564 0x25000002 => 'testmix',
1565 0x25000003 => 'failurecount',
1566 0x26000003 => 'cacheenable',
1567 0x25000004 => 'testtofail',
1568 0x26000004 => 'failuresenabled',
1569 0x25000005 => 'stridefailcount',
1570 0x26000005 => 'cacheenable',
1571 0x25000006 => 'invcfailcount',
1572 0x25000007 => 'matsfailcount',
1573 0x25000008 => 'randfailcount',
1574 0x25000009 => 'chckrfailcount',
1575 },
1576 ntldr => {
1577 0x22000001 => 'bpbstring',
1578 },
1579 osloader => {
1580 0x21000001 => 'osdevice',
1581 0x22000002 => 'systemroot',
1582 0x23000003 => 'resumeobject',
1583 0x26000004 => 'stampdisks',
1584 0x26000010 => 'detecthal',
1585 0x22000011 => 'kernel',
1586 0x22000012 => 'hal',
1587 0x22000013 => 'dbgtransport',
1588 0x25000020 => 'nx',
1589 0x25000021 => 'pae',
1590 0x26000022 => 'winpe',
1591 0x26000024 => 'nocrashautoreboot',
1592 0x26000025 => 'lastknowngood',
1593 0x26000026 => 'oslnointegritychecks',
1594 0x26000027 => 'osltestsigning',
1595 0x26000030 => 'nolowmem',
1596 0x25000031 => 'removememory',
1597 0x25000032 => 'increaseuserva',
1598 0x25000033 => 'perfmem',
1599 0x26000040 => 'vga',
1600 0x26000041 => 'quietboot',
1601 0x26000042 => 'novesa',
1602 0x26000043 => 'novga',
1603 0x25000050 => 'clustermodeaddressing',
1604 0x26000051 => 'usephysicaldestination',
1605 0x25000052 => 'restrictapiccluster',
1606 0x22000053 => 'evstore',
1607 0x26000054 => 'uselegacyapicmode',
1608 0x26000060 => 'onecpu',
1609 0x25000061 => 'numproc',
1610 0x26000062 => 'maxproc',
1611 0x25000063 => 'configflags',
1612 0x26000064 => 'maxgroup',
1613 0x26000065 => 'groupaware',
1614 0x25000066 => 'groupsize',
1615 0x26000070 => 'usefirmwarepcisettings',
1616 0x25000071 => 'msi',
1617 0x25000072 => 'pciexpress',
1618 0x25000080 => 'safeboot',
1619 0x26000081 => 'safebootalternateshell',
1620 0x26000090 => 'bootlog',
1621 0x26000091 => 'sos',
1622 0x260000a0 => 'debug',
1623 0x260000a1 => 'halbreakpoint',
1624 0x260000a2 => 'useplatformclock',
1625 0x260000a3 => 'forcelegacyplatform',
1626 0x260000a4 => 'useplatformtick',
1627 0x260000a5 => 'disabledynamictick',
1628 0x250000a6 => 'tscsyncpolicy',
1629 0x260000b0 => 'ems',
1630 0x250000c0 => 'forcefailure',
1631 0x250000c1 => 'driverloadfailurepolicy',
1632 0x250000c2 => 'bootmenupolicy',
1633 0x260000c3 => 'onetimeadvancedoptions',
1634 0x260000c4 => 'onetimeoptionsedit',
1635 0x250000e0 => 'bootstatuspolicy',
1636 0x260000e1 => 'disableelamdrivers',
1637 0x250000f0 => 'hypervisorlaunchtype',
1638 0x220000f1 => 'hypervisorpath',
1639 0x260000f2 => 'hypervisordebug',
1640 0x250000f3 => 'hypervisordebugtype',
1641 0x250000f4 => 'hypervisordebugport',
1642 0x250000f5 => 'hypervisorbaudrate',
1643 0x250000f6 => 'hypervisorchannel',
1644 0x250000f7 => 'bootux',
1645 0x260000f8 => 'hypervisordisableslat',
1646 0x220000f9 => 'hypervisorbusparams',
1647 0x250000fa => 'hypervisornumproc',
1648 0x250000fb => 'hypervisorrootprocpernode',
1649 0x260000fc => 'hypervisoruselargevtlb',
1650 0x250000fd => 'hypervisorhostip',
1651 0x250000fe => 'hypervisorhostport',
1652 0x250000ff => 'hypervisordebugpages',
1653 0x25000100 => 'tpmbootentropy',
1654 0x22000110 => 'hypervisorusekey',
1655 0x22000112 => 'hypervisorproductskutype',
1656 0x25000113 => 'hypervisorrootproc',
1657 0x26000114 => 'hypervisordhcp',
1658 0x25000115 => 'hypervisoriommupolicy',
1659 0x26000116 => 'hypervisorusevapic',
1660 0x22000117 => 'hypervisorloadoptions',
1661 0x25000118 => 'hypervisormsrfilterpolicy',
1662 0x25000119 => 'hypervisormmionxpolicy',
1663 0x2500011a => 'hypervisorschedulertype',
1664 0x25000120 => 'xsavepolicy',
1665 0x25000121 => 'xsaveaddfeature0',
1666 0x25000122 => 'xsaveaddfeature1',
1667 0x25000123 => 'xsaveaddfeature2',
1668 0x25000124 => 'xsaveaddfeature3',
1669 0x25000125 => 'xsaveaddfeature4',
1670 0x25000126 => 'xsaveaddfeature5',
1671 0x25000127 => 'xsaveaddfeature6',
1672 0x25000128 => 'xsaveaddfeature7',
1673 0x25000129 => 'xsaveremovefeature',
1674 0x2500012a => 'xsaveprocessorsmask',
1675 0x2500012b => 'xsavedisable',
1676 0x2500012c => 'kerneldebugtype',
1677 0x2200012d => 'kernelbusparams',
1678 0x2500012e => 'kerneldebugaddress',
1679 0x2500012f => 'kerneldebugport',
1680 0x25000130 => 'claimedtpmcounter',
1681 0x25000131 => 'kernelchannel',
1682 0x22000132 => 'kerneltargetname',
1683 0x25000133 => 'kernelhostip',
1684 0x25000134 => 'kernelport',
1685 0x26000135 => 'kerneldhcp',
1686 0x22000136 => 'kernelkey',
1687 0x22000137 => 'imchivename',
1688 0x21000138 => 'imcdevice',
1689 0x25000139 => 'kernelbaudrate',
1690 0x22000140 => 'mfgmode',
1691 0x26000141 => 'event',
1692 0x25000142 => 'vsmlaunchtype',
1693 0x25000144 => 'hypervisorenforcedcodeintegrity',
1694 0x21000150 => 'systemdatadevice',
1695 0x21000151 => 'osarcdevice',
1696 0x21000153 => 'osdatadevice',
1697 0x21000154 => 'bspdevice',
1698 0x21000155 => 'bspfilepath',
1699 },
1700 resume => {
1701 0x21000001 => 'filedevice',
1702 0x22000002 => 'filepath',
1703 0x26000003 => 'customsettings',
1704 0x26000004 => 'pae',
1705 0x21000005 => 'associatedosdevice',
1706 0x26000006 => 'debugoptionenabled',
1707 0x25000007 => 'bootux',
1708 0x25000008 => 'bootmenupolicy',
1709 0x26000024 => 'hormenabled',
1710 },
1711 startup => {
1712 0x26000001 => 'pxesoftreboot',
1713 0x22000002 => 'applicationname',
1714 },
1715 );
1716
1717 # mask, value => class
1718 our @bcde_typeclass = (
1719 [0x00000000, 0x00000000, 'any'],
1720 [0xf00fffff, 0x1000000a, 'bootapp'],
1721 [0xf0ffffff, 0x2020000a, 'bootapp'],
1722 [0xf00fffff, 0x10000001, 'bootmgr'],
1723 [0xf00fffff, 0x10000002, 'bootmgr'],
1724 [0xf0ffffff, 0x20200001, 'bootmgr'],
1725 [0xf0ffffff, 0x20200002, 'bootmgr'],
1726 [0xf0f00000, 0x20300000, 'device'],
1727 [0xf0000000, 0x30000000, 'device'],
1728 [0xf00fffff, 0x10000005, 'memdiag'],
1729 [0xf0ffffff, 0x20200005, 'memdiag'],
1730 [0xf00fffff, 0x10000006, 'ntldr'],
1731 [0xf00fffff, 0x10000007, 'ntldr'],
1732 [0xf0ffffff, 0x20200006, 'ntldr'],
1733 [0xf0ffffff, 0x20200007, 'ntldr'],
1734 [0xf00fffff, 0x10000003, 'osloader'],
1735 [0xf0ffffff, 0x20200003, 'osloader'],
1736 [0xf00fffff, 0x10000004, 'resume'],
1737 [0xf0ffffff, 0x20200004, 'resume'],
1738 [0xf00fffff, 0x10000009, 'startup'],
1739 [0xf0ffffff, 0x20200009, 'startup'],
1740 );
1741
1742 our %rbcde_byclass;
1743
1744 while (my ($k, $v) = each %bcde_byclass) {
1745 $rbcde_byclass{$k} = { reverse %$v };
1746 }
1747
1748 # decodes (numerical elem, type) to name
1749 sub dec_bcde_id($$) {
1750 for my $class (@bcde_typeclass) {
1751 if (($_[1] & $class->[0]) == $class->[1]) {
1752 if (my $id = $bcde_byclass{$class->[2]}{$_[0]}) {
1753 return $id;
1754 }
1755 }
1756 }
1757
1758 sprintf "custom:%08x", $_[0]
1759 }
1760
1761 # encodes (elem as name, type)
1762 sub enc_bcde_id($$) {
1763 $_[0] =~ /^custom:(?:0x)?([0-9a-fA-F]{8}$)/
1764 and return hex $1;
1765
1766 for my $class (@bcde_typeclass) {
1767 if (($_[1] & $class->[0]) == $class->[1]) {
1768 if (my $value = $rbcde_byclass{$class->[2]}{$_[0]}) {
1769 return $value;
1770 }
1771 }
1772 }
1773
1774 undef
1775 }
1776
1777 # decode/encode bcd device element - the horror, no documentaion
1778 # whatsoever, supercomplex, superinconsistent.
1779
1780 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1781 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1782 our @part_type = qw(gpt mbr raw);
1783
1784 our $NULL_DEVICE = "\x00" x 16;
1785
1786 # biggest bitch to decode, ever
1787 # this decoded a device portion after the GUID
1788 sub dec_device_($$);
1789 sub dec_device_($$) {
1790 my ($device, $type) = @_;
1791
1792 my $res;
1793
1794 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1795
1796 $pad == 0
1797 or die "non-zero reserved field in device descriptor\n";
1798
1799 if ($length == 0 && $type == 0 && $flags == 0) {
1800 return ("null", $device);
1801 }
1802
1803 $length >= 16
1804 or die "device element size too small ($length)\n";
1805
1806 $type = $dev_type[$type] // die "$type: unknown device type\n";
1807 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1808
1809 $res .= $type;
1810 $res .= sprintf "<%x>", $flags if $flags;
1811
1812 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1813
1814 $length == 4 * 4 + length $device
1815 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1816
1817 my $dec_path = sub {
1818 my ($path, $error) = @_;
1819
1820 $path =~ /^((?:..)*)\x00\x00\z/s
1821 or die "$error\n";
1822
1823 $path = Encode::decode "UTF-16LE", $1;
1824
1825 $path
1826 };
1827
1828 if ($type eq "partition" or $type eq "legacypartition") {
1829 my $partdata = substr $device, 0, 16, "";
1830 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1831
1832 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1833 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1834
1835 my $diskid = substr $device, 0, 16, "";
1836
1837 $diskid = $parttype eq "gpt"
1838 ? dec_guid substr $diskid, 0, 16
1839 : sprintf "%08x", unpack "V", $diskid;
1840
1841 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1842 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1843 : unpack "L<", $partdata; # partition number, one-based
1844
1845 (my $parent, $device) = dec_device_ $device, $type;
1846
1847 $res .= "=";
1848 $res .= "<$parent>";
1849 $res .= ",$blocktype,$parttype,$diskid,$partid";
1850
1851 # PartitionType (gpt, mbr, raw)
1852 # guid | partsig | disknumber
1853
1854 } elsif ($type eq "boot") {
1855 $device =~ s/^\x00{56}\z//
1856 or die "boot device type with extra data not supported\n";
1857
1858 } elsif ($type eq "block") {
1859 my $blocktype = unpack "V", substr $device, 0, 4, "";
1860
1861 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1862
1863 # decode a "file path" structure
1864 my $dec_file = sub {
1865 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1866
1867 my $path = substr $device, 0, $flen - 12, "";
1868
1869 $fver == 1
1870 or die "unsupported file descriptor version '$fver'\n";
1871
1872 $ftype == 5
1873 or die "unsupported file descriptor path type '$type'\n";
1874
1875 (my $parent, $path) = dec_device_ $path, $type;
1876
1877 $path = $dec_path->($path, "file device without path");
1878
1879 ($parent, $path)
1880 };
1881
1882 if ($blocktype eq "file") {
1883 my ($parent, $path) = $dec_file->();
1884
1885 $res .= "=file,<$parent>,$path";
1886
1887 } elsif ($blocktype eq "vhd") {
1888 $device =~ s/^\x00{20}//s
1889 or die "virtualdisk has non-zero fields I don't understand\n";
1890
1891 (my $parent, $device) = dec_device_ $device, $type;
1892
1893 $res .= "=vhd,<$parent>";
1894
1895 } elsif ($blocktype eq "ramdisk") {
1896 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1897 my ($subdev, $path) = $dec_file->();
1898
1899 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1900
1901 } else {
1902 die "unsupported block type '$blocktype'\n";
1903 }
1904
1905 } elsif ($type eq "locate") {
1906 # mode, bcde_id, unknown, string
1907 # we assume locate has _either_ an element id _or_ a path, but not both
1908
1909 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1910
1911 if ($parent) {
1912 # not sure why this is an offset - it must come after the path
1913 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1914 ($parent, my $tail) = dec_device_ $parent, $type;
1915 0 == length $tail
1916 or die "trailing data after locate device parent\n";
1917 } else {
1918 $parent = "null";
1919 }
1920
1921 my $path = $device; $device = "";
1922 $path = $dec_path->($path, "device locate mode without path");
1923
1924 $res .= "=<$parent>,";
1925
1926 if ($mode == 0) { # "Element"
1927 !length $path
1928 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1929
1930 $elem = dec_bcde_id $elem, $type;
1931 $res .= "element,$elem";
1932
1933 } elsif ($mode == 1) { # "String"
1934 !$elem
1935 or die "device locate mode 1 having non-zero element\n";
1936
1937 $res .= "path,$path";
1938 } else {
1939 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1940 die "device locate mode '$mode' not supported\n";
1941 }
1942
1943 } elsif ($type eq "vmbus") {
1944 my $type = dec_guid substr $device, 0, 16, "";
1945 my $instance = dec_guid substr $device, 0, 16, "";
1946
1947 $device =~ s/^\x00{24}\z//
1948 or die "vmbus has non-zero fields I don't understand\n";
1949
1950 $res .= "=$type,$instance";
1951
1952 } else {
1953 die "unsupported device type '$type'\n";
1954 }
1955
1956 warn "unexpected trailing device data($res), " . unpack "H*",$device
1957 if length $device;
1958 #length $device
1959 # and die "unexpected trailing device data\n";
1960
1961 ($res, $tail)
1962 }
1963
1964 # decode a full binary BCD device descriptor
1965 sub dec_device($$) {
1966 my ($device, $type) = @_;
1967
1968 $device = pack "H*", $device;
1969
1970 my $guid = dec_guid substr $device, 0, 16, "";
1971 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1972 ? "" : "{$guid}";
1973
1974 eval {
1975 my ($dev, $tail) = dec_device_ $device, $type;
1976
1977 $tail eq ""
1978 or die "unsupported trailing data after device descriptor\n";
1979
1980 "$guid$dev"
1981 # } // scalar ((warn $@), "$guid$fallback")
1982 } // ($guid . "binary=" . unpack "H*", $device)
1983 }
1984
1985 sub indexof($@) {
1986 my $value = shift;
1987
1988 for (0 .. $#_) {
1989 $value eq $_[$_]
1990 and return $_;
1991 }
1992
1993 undef
1994 }
1995
1996 # encode the device portion after the GUID
1997 sub enc_device_($$);
1998 sub enc_device_($$) {
1999 my ($device, $type) = @_;
2000
2001 my $enc_path = sub {
2002 my $path = shift;
2003 $path =~ s/\//\\/g;
2004 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
2005 };
2006
2007 my $enc_file = sub {
2008 my ($parent, $path) = @_; # parent and path must already be encoded
2009
2010 $path = $parent . $path;
2011
2012 # fver 1, ftype 5
2013 pack "VVVa*", 1, 12 + length $path, 5, $path
2014 };
2015
2016 my $parse_path = sub {
2017 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
2018 or die "$_: invalid path\n";
2019
2020 $enc_path->($1)
2021 };
2022
2023 my $parse_parent = sub {
2024 my $parent;
2025
2026 if (s/^<//) {
2027 ($parent, $_) = enc_device_ $_, $type;
2028 s/^>//
2029 or die "$device: syntax error: parent device not followed by '>'\n";
2030 } else {
2031 $parent = $NULL_DEVICE;
2032 }
2033
2034 $parent
2035 };
2036
2037 for ($device) {
2038 s/^([a-z]+)//
2039 or die "$_: device does not start with type string\n";
2040
2041 my $type = $1;
2042 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
2043 my $payload;
2044
2045 if ($type eq "binary") {
2046 s/^=([0-9a-fA-F]+)//
2047 or die "binary type must have a hex string argument\n";
2048
2049 $payload = pack "H*", $1;
2050
2051 } elsif ($type eq "null") {
2052 return ($NULL_DEVICE, $_);
2053
2054 } elsif ($type eq "boot") {
2055 $payload = "\x00" x 56;
2056
2057 } elsif ($type eq "partition" or $type eq "legacypartition") {
2058 s/^=//
2059 or die "$_: missing '=' after $type\n";
2060
2061 my $parent = $parse_parent->();
2062
2063 s/^,//
2064 or die "$_: comma missing after partition parent device\n";
2065
2066 s/^([a-z]+),//
2067 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
2068 my $blocktype = $1;
2069
2070 s/^([a-z]+),//
2071 or die "$_: partition block type not followed by partiton type\n";
2072 my $parttype = $1;
2073
2074 my ($partdata, $diskdata);
2075
2076 if ($parttype eq "mbr") {
2077 s/^([0-9a-f]{8}),//i
2078 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
2079 $diskdata = pack "Vx12", hex $1;
2080
2081 s/^([0-9]+)//
2082 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
2083
2084 # the following works for both 64 bit offset and 32 bit partno
2085 $partdata = pack "Q< x8", $1;
2086
2087 } elsif ($parttype eq "gpt") {
2088 s/^($RE_GUID),//
2089 or die "$_: partition disk guid missing or malformed\n";
2090 $diskdata = enc_guid $1;
2091
2092 s/^($RE_GUID)//
2093 or die "$_: partition guid missing or malformed\n";
2094 $partdata = enc_guid $1;
2095
2096 } elsif ($parttype eq "raw") {
2097 s/^([0-9]+)//
2098 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2099
2100 $partdata = pack "L< x12", $1;
2101
2102 } else {
2103 die "$parttype: partition type not supported\n";
2104 }
2105
2106 $payload = pack "a16 L< L< a16 a*",
2107 $partdata,
2108 (indexof $blocktype, @block_type),
2109 (indexof $parttype, @part_type),
2110 $diskdata,
2111 $parent;
2112
2113 } elsif ($type eq "locate") {
2114 s/^=//
2115 or die "$_: missing '=' after $type\n";
2116
2117 my ($mode, $elem, $path);
2118
2119 my $parent = $parse_parent->();
2120
2121 s/^,//
2122 or die "$_: missing comma after locate parent device\n";
2123
2124 if (s/^element,//) {
2125 s/^([0-9a-z:]+)//i
2126 or die "$_ locate element must be either name or 8-digit hex id\n";
2127 $elem = enc_bcde_id $1, $type;
2128 $mode = 0;
2129 $path = $enc_path->("");
2130
2131 } elsif (s/^path,//) {
2132 $mode = 1;
2133 $path = $parse_path->();
2134
2135 } else {
2136 die "$_ second locate argument must be subtype (either element or path)\n";
2137 }
2138
2139 if ($parent ne $NULL_DEVICE) {
2140 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2141 } else {
2142 $parent = 0;
2143 }
2144
2145 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2146
2147 } elsif ($type eq "block") {
2148 s/^=//
2149 or die "$_: missing '=' after $type\n";
2150
2151 s/^([a-z]+),//
2152 or die "$_: block device does not start with block type (e.g. disk)\n";
2153 my $blocktype = $1;
2154
2155 my $blockdata;
2156
2157 if ($blocktype eq "file") {
2158 my $parent = $parse_parent->();
2159 s/^,// or die "$_: comma missing after file block device parent\n";
2160 my $path = $parse_path->();
2161
2162 $blockdata = $enc_file->($parent, $path);
2163
2164 } elsif ($blocktype eq "vhd") {
2165 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2166 $blockdata .= $parse_parent->();
2167
2168 } elsif ($blocktype eq "ramdisk") {
2169 my $parent = $parse_parent->();
2170
2171 s/^,(\d+),(\d+),(\d+),//a
2172 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2173
2174 my ($base, $size, $offset) = ($1, $2, $3);
2175
2176 my $path = $parse_path->();
2177
2178 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2179
2180 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2181 # this is guesswork
2182 s/^(\d+)//a
2183 or die "$_: missing device number for cdrom\n";
2184 $blockdata = pack "V", $1;
2185
2186 } else {
2187 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2188 }
2189
2190 $payload = pack "Va*",
2191 (indexof $blocktype, @block_type),
2192 $blockdata;
2193
2194 } elsif ($type eq "vmbus") {
2195 s/^=($RE_GUID)//
2196 or die "$_: malformed or missing vmbus interface type guid\n";
2197 my $type = enc_guid $1;
2198 s/^,($RE_GUID)//
2199 or die "$_: malformed or missing vmbus interface instance guid\n";
2200 my $instance = enc_guid $1;
2201
2202 $payload = pack "a16a16x24", $type, $instance;
2203
2204 } else {
2205 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2206 }
2207
2208 return (
2209 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2210 $_
2211 );
2212 }
2213 }
2214
2215 # encode a full binary BCD device descriptor
2216 sub enc_device($$) {
2217 my ($device, $type) = @_;
2218
2219 my $guid = "\x00" x 16;
2220
2221 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2222 $guid = enc_guid $1
2223 or die "$device: does not start with valid guid\n";
2224 }
2225
2226 my ($descriptor, $tail) = enc_device_ $device, $type;
2227
2228 length $tail
2229 and die "$device: garbage after device descriptor\n";
2230
2231 unpack "H*", $guid . $descriptor
2232 }
2233
2234 # decode a registry hive into the BCD structure used by pbcdedit
2235 sub bcd_decode {
2236 my ($hive) = @_;
2237
2238 my %bcd;
2239
2240 my $objects = $hive->[1][1]{Objects}[1];
2241
2242 while (my ($k, $v) = each %$objects) {
2243 my %kv;
2244 $v = $v->[1];
2245
2246 $k = $bcd_objects{$k} // $k;
2247
2248 my $type = $v->{Description}[0]{Type}[1];
2249
2250 if ($type != $bcd_object_types{$k}) {
2251 $kv{type} = $bcd_types{$type} // sprintf "0x%08x", $type;
2252 }
2253
2254 my $elems = $v->{Elements}[1];
2255
2256 while (my ($k, $v) = each %$elems) {
2257 my $k = hex $k;
2258
2259 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1], $type);
2260 my $k = dec_bcde_id $k, $type;
2261
2262 $kv{$k} = $v;
2263 }
2264
2265 $bcd{$k} = \%kv;
2266 }
2267
2268 $bcd{meta} = { version => $JSON_VERSION };
2269
2270 \%bcd
2271 }
2272
2273 # encode a pbcdedit structure into a registry hive
2274 sub bcd_encode {
2275 my ($bcd) = @_;
2276
2277 if (my $meta = $bcd->{meta}) {
2278 $meta->{version} eq $JSON_VERSION
2279 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2280 }
2281
2282 my %objects;
2283 my %rbcd_types = reverse %bcd_types;
2284
2285 while (my ($k, $v) = each %$bcd) {
2286 my %kv;
2287
2288 next if $k eq "meta";
2289
2290 $k = lc $k; # I know you windows types!
2291
2292 my $type = $v->{type};
2293
2294 if ($type) {
2295 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2296 ? hex $type
2297 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2298 }
2299
2300 my $guid = enc_wguid $k
2301 or die "$k: invalid bcd object identifier\n";
2302
2303 # default type if not given
2304 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2305
2306 my %elem;
2307
2308 while (my ($k, $v) = each %$v) {
2309 next if $k eq "type";
2310
2311 $k = (enc_bcde_id $k, $type) // die "$k: invalid bcde element name or id\n";
2312 $elem{sprintf "%08x", $k} = [{
2313 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2314 }];
2315 }
2316
2317 $guid = dec_guid $guid;
2318
2319 $objects{"{$guid}"} = [undef, {
2320 Description => [{ Type => [dword => $type] }],
2321 Elements => [undef, \%elem],
2322 }];
2323 }
2324
2325 [NewStoreRoot => [undef, {
2326 Description => [{
2327 KeyName => [sz => "BCD00000001"],
2328 System => [dword => 1],
2329 pbcdedit => [sz => $VERSION],
2330 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2331 }],
2332 Objects => [undef, \%objects],
2333 }]]
2334 }
2335
2336 #############################################################################
2337 # edit instructions
2338
2339 sub bcd_edit_eval {
2340 package pbcdedit;
2341
2342 our ($PATH, $BCD, $DEFAULT);
2343
2344 eval shift;
2345 die "$@" if $@;
2346 }
2347
2348 sub bcd_edit {
2349 my ($path, $bcd, @insns) = @_;
2350
2351 my $default = $bcd->{"{bootmgr}"}{default};
2352
2353 # prepare "officially visible" variables
2354 local $pbcdedit::PATH = $path;
2355 local $pbcdedit::BCD = $bcd;
2356 local $pbcdedit::DEFAULT = $default;
2357
2358 while (@insns) {
2359 my $insn = shift @insns;
2360
2361 if ($insn eq "get") {
2362 my $object = shift @insns;
2363 my $elem = shift @insns;
2364
2365 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2366
2367 print $bcd->{$object}{$elem}, "\n";
2368
2369 } elsif ($insn eq "set") {
2370 my $object = shift @insns;
2371 my $elem = shift @insns;
2372 my $value = shift @insns;
2373
2374 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2375
2376 $bcd->{$object}{$elem} = $value;
2377
2378 } elsif ($insn eq "eval") {
2379 my $perl = shift @insns;
2380 bcd_edit_eval "#line 1 'eval'\n$perl";
2381
2382 } elsif ($insn eq "do") {
2383 my $path = shift @insns;
2384 my $file = file_load $path;
2385 bcd_edit_eval "#line 1 '$path'\n$file";
2386
2387 } else {
2388 die "$insn: not a recognized instruction for edit/parse\n";
2389 }
2390 }
2391
2392 }
2393
2394 #############################################################################
2395 # command line parser
2396
2397 # json to stdout
2398 sub prjson($) {
2399 print $json_coder->encode ($_[0]);
2400 }
2401
2402 # json from stdin
2403 sub rdjson() {
2404 my $json;
2405 1 while read STDIN, $json, 65536, length $json;
2406 $json_coder->decode ($json)
2407 }
2408
2409 # all subcommands
2410 our %CMD = (
2411 help => sub {
2412 require Pod::Usage;
2413 Pod::Usage::pod2usage (-verbose => 2);
2414 },
2415
2416 objects => sub {
2417 my %rbcd_types = reverse %bcd_types;
2418 $_ = sprintf "%08x", $_ for values %rbcd_types;
2419
2420 if ($_[0] eq "--json") {
2421 my %default_type = %bcd_object_types;
2422 $_ = sprintf "%08x", $_ for values %default_type;
2423
2424 prjson {
2425 version => $JSON_VERSION,
2426 object_alias => \%bcd_objects,
2427 object_type => \%rbcd_types,
2428 object_default_type => \%default_type,
2429 };
2430 } else {
2431 my %rbcd_objects = reverse %bcd_objects;
2432
2433 print "\n";
2434
2435 printf "%-9s %s\n", "Type", "Alias";
2436 for my $tname (sort keys %rbcd_types) {
2437 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2438 }
2439
2440 print "\n";
2441
2442 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2443 for my $name (sort keys %rbcd_objects) {
2444 my $guid = $rbcd_objects{$name};
2445 my $type = $bcd_object_types{$name};
2446 my $tname = $bcd_types{$type};
2447
2448 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2449
2450 printf "%-39s %-23s %s\n", $guid, $name, $type;
2451 }
2452
2453 print "\n";
2454 }
2455 },
2456
2457 elements => sub {
2458 my $json = $_[0] eq "--json";
2459
2460 my %format_name = (
2461 BCDE_FORMAT_DEVICE , "device",
2462 BCDE_FORMAT_STRING , "string",
2463 BCDE_FORMAT_GUID , "guid",
2464 BCDE_FORMAT_GUID_LIST , "guid list",
2465 BCDE_FORMAT_INTEGER , "integer",
2466 BCDE_FORMAT_BOOLEAN , "boolean",
2467 BCDE_FORMAT_INTEGER_LIST, "integer list",
2468 );
2469
2470 my %element;
2471
2472 for my $class (sort keys %rbcde_byclass) {
2473 my $rbcde = $rbcde_byclass{$class};
2474
2475 unless ($json) {
2476 print "\n";
2477 printf "Elements applicable to class(es): $class\n";
2478 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2479 }
2480 for my $name (sort keys %$rbcde) {
2481 my $id = $rbcde->{$name};
2482 my $format = $format_name{$id & BCDE_FORMAT};
2483 $id = sprintf "%08x", $id;
2484
2485 if ($json) {
2486 $element{$id} = [$class, $format, $name];
2487 } else {
2488 printf "%-9s %-12s %s\n", $id, $format, $name;
2489 }
2490 }
2491 }
2492 print "\n" unless $json;
2493
2494 prjson {
2495 version => $JSON_VERSION,
2496 element => \%element,
2497 class => \@bcde_typeclass,
2498 } if $json;
2499
2500 },
2501
2502 export => sub {
2503 prjson bcd_decode regf_load shift;
2504 },
2505
2506 import => sub {
2507 regf_save shift, bcd_encode rdjson;
2508 },
2509
2510 edit => sub {
2511 my $path = shift;
2512 my $bcd = bcd_decode regf_load $path;
2513 bcd_edit $path, $bcd, @_;
2514 regf_save $path, bcd_encode $bcd;
2515 },
2516
2517 parse => sub {
2518 my $path = shift;
2519 my $bcd = bcd_decode regf_load $path;
2520 bcd_edit $path, $bcd, @_;
2521 },
2522
2523 "export-regf" => sub {
2524 prjson regf_load shift;
2525
2526 },
2527
2528 "import-regf" => sub {
2529 regf_save shift, rdjson;
2530 },
2531
2532 lsblk => sub {
2533 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2534
2535 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2536
2537 for my $dev (@{ $lsblk->{blockdevices} }) {
2538 my $pr = sub {
2539 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2540 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2541 };
2542
2543 if ($dev->{type} eq "part") {
2544 if ($dev->{pttype} eq "gpt") {
2545 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2546 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2547 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2548 my ($diskid, $partno) = ($1, hex $2);
2549 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2550 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2551 my $start = 512 * readline $fh;
2552 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2553 }
2554 }
2555 }
2556 }
2557 }
2558 },
2559
2560 version => sub {
2561 print "\n",
2562 "PBCDEDIT version $VERSION, copyright 2019 Marc A. Lehmann <pbcdedit\@schmorp.de>.\n",
2563 "JSON schema version: $JSON_VERSION\n",
2564 "Licensed under the GNU General Public License Version 3.0, or any later version.\n",
2565 "\n",
2566 $CHANGELOG,
2567 "\n";
2568 },
2569 );
2570
2571 my $cmd = shift;
2572
2573 unless (exists $CMD{$cmd}) {
2574 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2575 exit 126;
2576 }
2577
2578 $CMD{$cmd}->(@ARGV);
2579