ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.47
Committed: Thu Aug 22 07:39:14 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.46: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.016; # numerous features need 5.14, __SUB__ needs 5.16
23
24 our $VERSION = '1.3';
25 our $JSON_VERSION = 3; # the version of the json objects generated by this program
26
27 our $CHANGELOG = <<EOF;
28
29 1.3 Sat Aug 17 07:04:15 CEST 2019
30 - output of pbcdedit elements --json has changed, as it didn't
31 take the reorganisation by classes fully into account.
32 - json schema bumped to 3.
33 - new "bcd-device" and "bcd-legacy-device" subcommands.
34 - implement --json option for lsblk.
35
36 1.2 Fri Aug 16 00:20:41 CEST 2019
37 - bcd element names now depend on the bcd object type they are in,
38 also affects "elements" output.
39 - json schema bumped to 2.
40 - new version command.
41 - numerous minor bugfixes.
42
43 EOF
44
45 =head1 NAME
46
47 pbcdedit - portable boot configuration data (BCD) store editor
48
49 =head1 SYNOPSIS
50
51 pbcdedit help # output manual page
52 pbcdedit version # output version and changelog
53
54 pbcdedit export path/to/BCD # output BCD hive as JSON
55 pbcdedit import path/to/BCD # convert standard input to BCD hive
56 pbcdedit edit path/to/BCD edit-instructions...
57
58 pbcdedit objects # list all supported object aliases and types
59 pbcdedit elements # list all supported bcd element aliases
60
61 =head1 DESCRIPTION
62
63 This program allows you to create, read and modify Boot Configuration Data
64 (BCD) stores used by Windows Vista and newer versions of Windows.
65
66 At this point, it is in relatively early stages of development and has
67 received little to no real-world testing.
68
69 Compared to other BCD editing programs it offers the following unique
70 features:
71
72 =over
73
74 =item Can create BCD hives from scratch
75
76 Practically all other BCD editing programs force you to copy existing BCD
77 stores, which might or might not be copyrighted by Microsoft.
78
79 =item Does not rely on Windows
80
81 As the "portable" in the name implies, this program does not rely on
82 C<bcdedit> or other windows programs or libraries, it works on any system
83 that supports at least perl version 5.16.
84
85 =item Decodes and encodes BCD device elements
86
87 PBCDEDIT can concisely decode and encode BCD device element contents. This
88 is pretty unique, and offers a lot of potential that can't be realised
89 with C<bcdedit> or any programs relying on it.
90
91 =item Minimal files
92
93 BCD files written by PBCDEDIT are always "minimal", that is, they don't
94 contain unused data areas and therefore don't contain old and potentially
95 sensitive data.
96
97 =back
98
99 The target audience for this program is professionals and tinkerers who
100 are ready to invest time into learning how it works. It is not an easy
101 program to use and requires patience and a good understanding of BCD
102 stores.
103
104
105 =head1 SUBCOMMANDS
106
107 PBCDEDIT expects a subcommand as first argument that tells it what to
108 do. The following subcommands exist:
109
110 =over
111
112 =item C<help>
113
114 Displays the whole manual page (this document).
115
116 =item C<version>
117
118 This outputs the PBCDEDIT version, the JSON schema version it uses and the
119 full log of changes.
120
121 =item C<export> F<path>
122
123 Reads a BCD data store and writes a JSON representation of it to standard
124 output.
125
126 The format of the data is explained later in this document.
127
128 Example: read a BCD store, modify it with an external program, write it
129 again.
130
131 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
132
133 =item C<import> F<path>
134
135 The reverse of C<export>: Reads a JSON representation of a BCD data store
136 from standard input, and creates or replaces the given BCD data store.
137
138 =item C<edit> F<path> I<instructions...>
139
140 Load a BCD data store, apply some instructions to it, and save it again.
141
142 See the section L<EDITING BCD STORES>, below, for more info.
143
144 =item C<parse> F<path> I<instructions...>
145
146 Same as C<edit>, above, except it doesn't save the data store again. Can
147 be useful to extract some data from it.
148
149 =item C<lsblk> [C<--json>]
150
151 On a GNU/Linux system, you can get a list of partition device descriptors
152 using this command - the external C<lsblk> command is required, as well as
153 a mounted C</sys> file system.
154
155 The output will be a list of all partitions in the system and C<partition>
156 descriptors for GPT and both C<legacypartition> and C<partition>
157 descriptors for MBR partitions.
158
159 With C<--json> it will print similar informationm as C<lsblk --json>, but
160 with extra C<bcd_device> and C<bcd_legacy_device> attributes.
161
162 =item C<bcd-device> F<path>
163
164 Tries to find the BCD device element for the given device, which currently
165 must be a a partition of some kind. Prints the C<partition=> descriptor as
166 a result, or nothing. Exit status will be true on success, and false on
167 failure.
168
169 Like C<lsblk>, above, this likely only works on GNU/Linux systems.
170
171 Example: print the partition descriptor of tghe partition with label DATA.
172
173 $ pbcdedit bcd-device /dev/disk/by-label/DATA
174 partition=<null>,harddisk,mbr,47cbc08a,213579202560
175
176 =item C<bcd-legacy-device> F<path>
177
178 Like above, but uses a C<legacypartition> descriptor instead.
179
180 =item C<objects> [C<--json>]
181
182 Outputs two tables: a table listing all type aliases with their hex BCD
183 element ID, and all object name aliases with their GUID and default type
184 (if any).
185
186 With C<--json> it prints similar information as a JSON object, for easier parsing.
187
188 =item C<elements> [C<--json>]
189
190 Outputs a table of known element aliases with their hex ID and the format
191 type.
192
193 With C<--json> it prints similar information as a JSON object, for easier parsing.
194
195 =item C<export-regf> F<path>
196
197 This has nothing to do with BCD stores, but simply exposes PCBEDIT's
198 internal registry hive reader - it takes a registry hive file as argument
199 and outputs a JSON representation of it to standard output.
200
201 Hive versions 1.2 till 1.6 are supported.
202
203 =item C<import-regf> F<path>
204
205 The reverse of C<export-regf>: reads a JSON representation of a registry
206 hive from standard input and creates or replaces the registry hive file
207 given as argument.
208
209 The written hive will always be in a slightly modified version 1.3
210 format. It's not the format windows would generate, but it should be
211 understood by any conformant hive reader.
212
213 Note that the representation chosen by PBCDEDIT currently throws away
214 classname data (often used for feeble attempts at hiding stuff by
215 Microsoft) and security descriptors, so if you write anything other than
216 a BCD hive you will most likely destroy it.
217
218 =back
219
220
221 =head1 BCD STORE REPRESENTATION FORMAT
222
223 A BCD data store is represented as a JSON object with one special key,
224 C<meta>, and one key per BCD object. That is, each BCD object becomes
225 one key-value pair in the object, and an additional key called C<meta>
226 contains meta information.
227
228 Here is an abridged example of a real BCD store:
229
230 {
231 "meta" : {
232 "version" : 1
233 },
234 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
235 "type" : "application::osloader",
236 "description" : "Windows 10",
237 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
238 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
239 "path" : "\\Windows\\system32\\winload.exe",
240 "systemroot" : "\\Windows"
241 },
242 "{bootloadersettings}" : {
243 "inherit" : "{globalsettings} {hypervisorsettings}"
244 },
245 "{bootmgr}" : {
246 "description" : "Windows Boot Manager",
247 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
248 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
249 "inherit" : "{globalsettings}",
250 "displaybootmenu" : 0,
251 "timeout" : 30
252 },
253 "{globalsettings}" : {
254 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
255 },
256 "{hypervisorsettings}" : {
257 "hypervisorbaudrate" : 115200,
258 "hypervisordebugport" : 1,
259 "hypervisordebugtype" : 0
260 },
261 # ...
262 }
263
264 =head2 Minimal BCD to boot windows
265
266 Experimentally I found the following BCD is the minimum required to
267 successfully boot any post-XP version of Windows (assuming suitable
268 C<device> and C<osdevice> values, of course, and assuming a BIOS boot -
269 for UEFI, you should use F<winload.efi> instead of F<winload.exe>):
270
271 {
272 "{bootmgr}" : {
273 "default" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
274 },
275
276 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
277 "type" : "application::osloader",
278 "description" : "Windows Boot",
279 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
280 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
281 "path" : "\\Windows\\system32\\winload.exe",
282 "systemroot" : "\\Windows"
283 },
284 }
285
286 Note that minimal doesn't mean recommended - Windows itself will add stuff
287 to this during or after boot, and you might or might not run into issues
288 when installing updates as it might not be able to find the F<bootmgr>.
289
290 =head2 The C<meta> key
291
292 The C<meta> key is not stored in the BCD data store but is used only
293 by PBCDEDIT. It is always generated when exporting, and importing will
294 be refused when it exists and the version stored inside doesn't store
295 the JSON schema version of PBCDEDIT. This ensures that different and
296 incompatible versions of PBCDEDIT will not read and misinterpret each
297 others data.
298
299 =head2 The object keys
300
301 Every other key is a BCD object. There is usually a BCD object for the
302 boot manager, one for every boot option and a few others that store common
303 settings inherited by these.
304
305 Each BCD object is represented by a GUID wrapped in curly braces. These
306 are usually random GUIDs used only to distinguish BCD objects from each
307 other. When adding a new boot option, you can simply generate a new GUID.
308
309 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
310 into human-readable strings such as C<{globalsettings}>, which is the same
311 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
312
313 Each BCD, object has an associated type. For example,
314 C<application::osloader> for objects loading Windows via F<winload.exe>,
315 C<application::bootsector> for real mode applications and so on.
316
317 The type of a object is stored in the pseudo BCD element C<type> (see next
318 section).
319
320 Some well-known objects have a default type. If an object type matches
321 its default type, then the C<type> element will be omitted. Similarly, if
322 the C<type> element is missing and the BCD object has a default type, the
323 default type will be used when writing a BCD store.
324
325 Running F<pbcdedit objects> will give you a list of object types,
326 well-known object aliases and their default types.
327
328 If different string keys in a JSON BCD store map to the same BCD object
329 then a random one will "win" and the others will be discarded. To avoid
330 this, you should always use the "canonical" name of a BCD object, which is
331 the human-readable form (if it exists).
332
333 =head2 The object values - BCD elements
334
335 The value of each BCD object entry consists of key-value pairs called BCD
336 elements.
337
338 BCD elements are identified by a 32 bit number, but to make things
339 simpler PBCDEDIT will replace these with well-known strings such as
340 C<description>, C<device> or C<path>.
341
342 When PBCDEDIT does not know the BCD element, it will use
343 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
344 BCD element. For example, C<device> would be C<custom::11000001>. You can
345 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
346 elements>.
347
348 What was said about duplicate keys mapping to the same object is true for
349 elements as well, so, again, you should always use the canonical name,
350 which is the human readable alias, if known.
351
352 =head3 BCD element types
353
354 Each BCD element has a type such as I<string> or I<boolean>. This type
355 determines how the value is interpreted, and most of them are pretty easy
356 to explain:
357
358 =over
359
360 =item string
361
362 This is simply a unicode string. For example, the C<description> and
363 C<systemroot> elements both are of this type, one storing a human-readable
364 name for this boot option, the other a file path to the windows root
365 directory:
366
367 "description" : "Windows 10",
368 "systemroot" : "\\Windows",
369
370 =item boolean
371
372 Almost as simple are booleans, which represent I<true>/I<false>,
373 I<on>/I<off> and similar values. In the JSON form, true is represented
374 by the number C<1>, and false is represented by the number C<0>. Other
375 values will be accepted, but PBCDEDIT doesn't guarantee how these are
376 interpreted.
377
378 For example, C<displaybootmenu> is a boolean that decides whether to
379 enable the C<F8> boot menu. In the example BCD store above, this is
380 disabled:
381
382 "displaybootmenu" : 0,
383
384 =item integer
385
386 Again, very simple, this is a 64 bit integer. It can be either specified
387 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
388 binary number (prefix C<0b>).
389
390 For example, the boot C<timeout> is an integer, specifying the automatic
391 boot delay in seconds:
392
393 "timeout" : 30,
394
395 =item integer list
396
397 This is a list of 64 bit integers separated by whitespace. It is not used
398 much, so here is a somewhat artificial an untested example of using
399 C<customactions> to specify a certain custom, eh, action to be executed
400 when pressing C<F10> at boot:
401
402 "customactions" : "0x1000044000001 0x54000001",
403
404 =item guid
405
406 This represents a single GUID value wrapped in curly braces. It is used a
407 lot to refer from one BCD object to other one.
408
409 For example, The C<{bootmgr}> object might refer to a resume boot option
410 using C<default>:
411
412 "default" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
413
414 Human readable aliases are used and allowed.
415
416 =item guid list
417
418 Similar to the GUID type, this represents a list of such GUIDs, separated
419 by whitespace from each other.
420
421 For example, many BCD objects can I<inherit> elements from other BCD
422 objects by specifying the GUIDs of those other objects in a GUID list
423 called surprisingly called C<inherit>:
424
425 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
426
427 This example also shows how human readable aliases can be used.
428
429 =item device
430
431 This type is why I write I<most> are easy to explain earlier: This type
432 is the pinnacle of Microsoft-typical hacks layered on top of other
433 hacks. Understanding this type took more time than writing all the rest of
434 PBCDEDIT, and because it is so complex, this type has its own subsection
435 below.
436 =back
437
438 =head4 The BCD "device" element type
439
440 Device elements specify, well, devices. They are used for such diverse
441 purposes such as finding a TFTP network boot image, serial ports or VMBUS
442 devices, but most commonly they are used to specify the disk (harddisk,
443 cdrom, ramdisk, vhd...) to boot from.
444
445 The device element is kind of a mini-language in its own which is much
446 more versatile then the limited windows interface to it - BCDEDIT -
447 reveals.
448
449 While some information can be found on the BCD store and the windows
450 registry, there is pretty much no public information about the device
451 element, so almost everything known about it had to be researched first
452 in the process of writing this script, and consequently, support for BCD
453 device elements is partial only.
454
455 On the other hand, the expressive power of PBCDEDIT in specifying devices
456 is much bigger than BCDEDIT and therefore more can be done with it. The
457 downside is that BCD device elements are much more complicated than what
458 you might think from reading the BCDEDIT documentation.
459
460 In other words, simple things are complicated, and complicated things are
461 possible.
462
463 Anyway, the general syntax of device elements is an optional GUID,
464 followed by a device type, optionally followed by hexadecimal flags in
465 angle brackets, optionally followed by C<=> and a comma-separated list of
466 arguments, some of which can be (and often are) in turn devices again.
467
468 [{GUID}]type[<flags>][=arg,arg...]
469
470 Here are some examples:
471
472 boot
473 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
474 locate=<null>,element,systemroot
475 partition=<null>,harddisk,mbr,47cbc08a,1048576
476 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
477 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
478 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
479 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
480
481 I hope you are suitably impressed. I was, too, when I realized decoding
482 these binary blobs is not as easy as I had assumed.
483
484 The optional prefixed GUID seems to refer to a device BCD object, which
485 can be used to specify more device-specific BCD elements (for example
486 C<ramdisksdidevice> and C<ramdisksdpath>).
487
488 The flags after the type are omitted when they are C<0>. The only known
489 flag is C<1>, which seems to indicate that the parent device is invalid. I
490 don't claim to fully understand it, but it seems to indicate that the
491 boot manager has to search the device itself. Why the device is specified
492 in the first place escapes me, but a lot of this device stuff seems to be
493 badly hacked together...
494
495 The types understood and used by PBCDEDIT are as follows (keep in mind
496 that not of all the following is necessarily supported in PBCDEDIT):
497
498 =over
499
500 =item C<binary=>I<hex...>
501
502 This type isn't actually a real BCD element type, but a fallback for those
503 cases where PBCDEDIT can't perfectly decode a device element (except for
504 the leading GUID, which it can always decode). In such cases, it will
505 convert the device into this type with a hexdump of the element data.
506
507 =item C<null>
508
509 This is another special type - sometimes, a device is all zero-filled,
510 which is not valid. This can mark the absence of a device or something
511 PBCDEDIT does not understand, so it decodes it into this special "all
512 zero" type called C<null>.
513
514 It's most commonly found in devices that can use an optional parent
515 device, when no parent device is used.
516
517 =item C<boot>
518
519 Another type without parameters, this refers to the device that was booted
520 from (nowadays typically the EFI system partition).
521
522 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
523
524 This specifies a VMBUS device with the given interface type and interface
525 instance, both of which are "naked" (no curly braces) GUIDs.
526
527 Made-up example (couldn't find a single example on the web):
528
529 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
530
531 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
532
533 This designates a specific partition on a block device. I<parent> is an
534 optional parent device on which to search on, and is often C<null>. Note
535 that the angle brackets around I<parent> are part of the syntax.
536
537 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
538 C<file> or C<vhd>, where the first three should be self-explaining,
539 C<file> is usually used to locate a file to be used as a disk image,
540 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
541 F<vhdx> files.
542
543 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
544 used for devices without partitions, such as cdroms, where the "partition"
545 is usually the whole device.
546
547 The I<diskid> identifies the disk or device using a unique signature, and
548 the same is true for the I<partitionid>. How these are interpreted depends
549 on the I<partitiontype>:
550
551 =over
552
553 =item C<mbr>
554
555 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
556 MBR, interpreted as a 32 bit unsigned little endian integer and written as
557 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
558
559 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
560 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
561 display the I<diskid>.
562
563 The I<partitionid> is the byte offset(!) of the partition counting from
564 the beginning of the MBR.
565
566 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
567 starting at sector C<2048> (= 1048576 / 512).
568
569 partition=<null>,harddisk,mbr,47cbc08a,1048576
570
571 =item C<gpt>
572
573 The I<diskid> is the disk GUID/disk identifier GUID from the partition
574 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
575 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
576
577 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
578 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
579
580 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
581
582 =item C<raw>
583
584 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
585 disk number and signifies the whole disk. BCDEDIT cannot display the
586 resulting device, and I am doubtful whether it has a useful effect.
587
588 =back
589
590 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
591
592 This is exactly the same as the C<partition> type, except for a tiny
593 detail: instead of using the partition start offset, this type uses the
594 partition number for MBR disks. Behaviour other partition types should be
595 the same.
596
597 The partition number starts at C<1> and skips unused partition, so if
598 there are two primary partitions and another partition inside the extended
599 partition, the primary partitions are number C<1> and C<2> and the
600 partition inside the extended partition is number C<3>, regardless of any
601 gaps.
602
603 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
604
605 This device description will make the bootloader search for a partition
606 with a given path.
607
608 The I<parent> device is the device to search on (angle brackets are
609 still part of the syntax!) If it is C<null>, then C<locate> will
610 search all disks it can find.
611
612 I<locatetype> is either C<element> or C<path>, and merely distinguishes
613 between two different ways to specify the path to search for: C<element>
614 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
615 uses a relative path as I<locatearg>.
616
617 Example: find any partition which has the F<magicfile.xxx> path in the
618 root.
619
620 locate=<null>,path,\magicfile.xxx
621
622 Example: find any partition which has the path specified in the
623 C<systemroot> element (typically F<\Windows>).
624
625 locate=<null>,element,systemroot
626
627 =item C<block=>I<devicetype>,I<args...>
628
629 Last not least, the most complex type, C<block>, which... specifies block
630 devices (which could be inside a F<vhdx> file for example).
631
632 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
633 C<file> or C<vhd> - the same as for C<partition=>.
634
635 The remaining arguments change depending on the I<devicetype>:
636
637 =over
638
639 =item C<block=file>,<I<parent>>,I<path>
640
641 Interprets the I<parent> device (typically a partition) as a
642 filesystem and specifies a file path inside.
643
644 =item C<block=vhd>,<I<parent>>
645
646 Pretty much just changes the interpretation of I<parent>, which is
647 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
648
649 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
650
651 Interprets the I<parent> device as RAM disk, using the (decimal)
652 base address, byte size and byte offset inside a file specified by
653 I<path>. The numbers are usually all C<0> because they can be extracted
654 from the RAM disk image or other parameters.
655
656 This is most commonly used to boot C<wim> images.
657
658 =item C<block=floppy>,I<drivenum>
659
660 Refers to a removable drive identified by a number. BCDEDIT cannot display
661 the resulting device, and it is not clear what effect it will have.
662
663 =item C<block=cdrom>,I<drivenum>
664
665 Pretty much the same as C<floppy> but for CD-ROMs.
666
667 =item anything else
668
669 Probably not yet implemented. Tell me of your needs...
670
671 =back
672
673 =back5 Examples
674
675 This concludes the syntax overview for device elements, but probably
676 leaves many questions open. I can't help with most of them, as I also ave
677 many questions, but I can walk you through some actual examples using more
678 complex aspects.
679
680 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
681
682 Just like with C declarations, you best treat device descriptors as
683 instructions to find your device and work your way from the inside out:
684
685 locate=<null>,path,\disk.vhdx
686
687 First, the innermost device descriptor searches all partitions on the
688 system for a file called F<\disk.vhdx>:
689
690 block=file,<see above>,\disk.vhdx
691
692 Next, this takes the device locate has found and finds a file called
693 F<\disk.vhdx> on it. This is the same file locate was using, but that is
694 only because we find the device using the same path as finding the disk
695 image, so this is purely incidental, although quite common.
696
697 Next, this file will be opened as a virtual disk:
698
699 block=vhd,<see above>
700
701 And finally, inside this disk, another C<locate> will look for a partition
702 with a path as specified in the C<path> element, which most likely will be
703 F<\Windows\system32\winload.exe>:
704
705 locate=<see above>,element,path
706
707 As a result, this will boot the first Windows it finds on the first
708 F<disk.vhdx> disk image it can find anywhere.
709
710 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
711
712 Pretty much the same as the previous case, but with a bit of
713 variance. First, look for a specific partition on an MBR-partitioned disk:
714
715 partition=<null>,harddisk,mbr,47cbc08a,242643632128
716
717 Then open the file F<\win10.vhdx> on that partition:
718
719 block=file,<see above>,\win10.vhdx
720
721 Then, again, the file is opened as a virtual disk image:
722
723 block=vhd,<see above>
724
725 And again the windows loader (or whatever is in C<path>) will be searched:
726
727 locate=<see above>,element,path
728
729 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
730
731 This is quite different. First, it starts with a GUID. This GUID belongs
732 to a BCD object of type C<device>, which has additional parameters:
733
734 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
735 "type" : "device",
736 "description" : "sdi file for ramdisk",
737 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
738 "ramdisksdipath" : "\boot.sdi"
739 },
740
741 I will not go into many details, but this specifies a (presumably empty)
742 template ramdisk image (F<\boot.sdi>) that is used to initialize the
743 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
744 see, this F<.sdi> file resides on a different C<partition>.
745
746 Continuing, as always, from the inside out, first this device descriptor
747 finds a specific partition:
748
749 partition=<null>,harddisk,mbr,47cbc08a,242643632128
750
751 And then specifies a C<ramdisk> image on this partition:
752
753 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
754
755 I don't know what the purpose of the C<< <1> >> flag value is, but it
756 seems to be always there on this kind of entry.
757
758 If you have some good examples to add here, feel free to mail me.
759
760
761 =head1 EDITING BCD STORES
762
763 The C<edit> and C<parse> subcommands allow you to read a BCD data store
764 and modify it or extract data from it. This is done by executing a series
765 of "editing instructions" which are explained here.
766
767 =over
768
769 =item C<get> I<object> I<element>
770
771 Reads the BCD element I<element> from the BCD object I<object> and writes
772 it to standard output, followed by a newline. The I<object> can be a GUID
773 or a human-readable alias, or the special string C<{default}>, which will
774 refer to the default BCD object.
775
776 Example: find description of the default BCD object.
777
778 pbcdedit parse BCD get "{default}" description
779
780 =item C<set> I<object> I<element> I<value>
781
782 Similar to C<get>, but sets the element to the given I<value> instead.
783
784 Example: change the bootmgr default too
785 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
786
787 pbcdedit edit BCD set "{bootmgr}" default "{b097d2ad-bc00-11e9-8a9a-525400123456}"
788
789 =item C<eval> I<perlcode>
790
791 This takes the next argument, interprets it as Perl code and
792 evaluates it. This allows you to do more complicated modifications or
793 extractions.
794
795 The following variables are predefined for your use:
796
797 =over
798
799 =item C<$PATH>
800
801 The path to the BCD data store, as given to C<edit> or C<parse>.
802
803 =item C<$BCD>
804
805 The decoded BCD data store.
806
807 =item C<$DEFAULT>
808
809 The default BCD object name.
810
811 =back
812
813 The example given for C<get>, above, could be expressed like this with
814 C<eval>:
815
816 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
817
818 The example given for C<set> could be expressed like this:
819
820 pbcdedit edit BCD eval '$BCD->{"{bootmgr}"{default} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
821
822 =item C<do> I<path>
823
824 Similar to C<eval>, above, but instead of using the argument as perl code,
825 it loads the perl code from the given file and executes it. This makes it
826 easier to write more complicated or larger programs.
827
828 =back
829
830
831 =head1 SEE ALSO
832
833 For ideas on what you can do with BCD stores in
834 general, and some introductory material, try
835 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
836
837 For good reference on which BCD objects and
838 elements exist, see Geoff Chappell's pages at
839 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
840
841 =head1 AUTHOR
842
843 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
844
845 =head1 REPORTING BUGS
846
847 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
848
849 =head1 BUGS AND SHORTCOMINGS
850
851 This should be a module. Of a series of modules, even.
852
853 Registry code should preserve classname and security descriptor data, and
854 whatever else is necessary to read and write any registry hive file.
855
856 I am also not happy with device descriptors being strings rather than a
857 data structure, but strings are probably better for command line usage. In
858 any case, device descriptors could be converted by simply "splitting" at
859 "=" and "," into an array reference, recursively.
860
861 =head1 HOMEPAGE
862
863 Original versions of this program can be found at
864 L<http://software.schmorp.de/pkg/pbcdedit>.
865
866 =head1 COPYRIGHT
867
868 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
869 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
870 free to change and redistribute it. There is NO WARRANTY, to the extent
871 permitted by law.
872
873 =cut
874
875 # common sense is optional, but recommended
876 BEGIN { eval { require "common/sense.pm"; } && common::sense->import }
877
878 no warnings 'portable'; # avoid 32 bit integer warnings
879
880 use Encode ();
881 use List::Util ();
882 use IO::Handle ();
883 use Time::HiRes ();
884
885 eval { unpack "Q", pack "Q", 1 }
886 or die "perl with 64 bit integer supported required.\n";
887
888 our $JSON = eval { require JSON::XS; JSON::XS:: }
889 // eval { require JSON::PP; JSON::PP:: }
890 // die "either JSON::XS or JSON::PP must be installed\n";
891
892 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
893
894 # hack used for debugging
895 sub xxd($$) {
896 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
897 syswrite $xxd, $_[1];
898 }
899
900 sub file_load($) {
901 my ($path) = @_;
902
903 open my $fh, "<:raw", $path
904 or die "$path: $!\n";
905 my $size = -s $fh;
906 $size = read $fh, my $buf, $size
907 or die "$path: short read\n";
908
909 $buf
910 }
911
912 # sources and resources used for writing pbcdedit
913 #
914 # registry:
915 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
916 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
917 # bcd:
918 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
919 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
920 # bcd devices:
921 # reactos' boot/environ/include/bl.h
922 # windows .mof files
923
924 #############################################################################
925 # registry stuff
926
927 # we use a hardcoded securitya descriptor - full access for everyone
928 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
929 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
930 my $sacl = "";
931 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
932 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
933 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
934 1, 0x8004,
935 20 + (length $sacl) + (length $dacl),
936 20 + (length $sacl) + (length $dacl) + (length $sid),
937 0, 20,
938 $sacl, $dacl, $sid, $sid;
939 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
940
941 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
942
943 sub KEY_HIVE_ENTRY() { 0x0004 }
944 sub KEY_NO_DELETE () { 0x0008 }
945 sub KEY_COMP_NAME () { 0x0020 }
946
947 sub VALUE_COMP_NAME() { 0x0001 }
948
949 my @regf_typename = qw(
950 none sz expand_sz binary dword dword_be link multi_sz
951 resource_list full_resource_descriptor resource_requirements_list
952 qword qword_be
953 );
954
955 my %regf_dec_type = (
956 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
957 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
958 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
959 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
960 dword => sub { unpack "L<", shift },
961 dword_be => sub { unpack "L>", shift },
962 qword => sub { unpack "Q<", shift },
963 qword_be => sub { unpack "Q>", shift },
964 );
965
966 my %regf_enc_type = (
967 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
968 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
969 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
970 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
971 dword => sub { pack "L<", shift },
972 dword_be => sub { pack "L>", shift },
973 qword => sub { pack "Q<", shift },
974 qword_be => sub { pack "Q>", shift },
975 );
976
977 # decode a registry hive
978 sub regf_decode($) {
979 my ($hive) = @_;
980
981 "regf" eq substr $hive, 0, 4
982 or die "not a registry hive\n";
983
984 my ($major, $minor) = unpack "\@20 L< L<", $hive;
985
986 $major == 1
987 or die "registry major version is not 1, but $major\n";
988
989 $minor >= 2 && $minor <= 6
990 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
991
992 my $bins = substr $hive, 4096;
993
994 my $decode_key = sub {
995 my ($ofs) = @_;
996
997 my @res;
998
999 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
1000
1001 $sze < 0
1002 or die "key node points to unallocated cell\n";
1003
1004 $sig eq "nk"
1005 or die "expected key node at $ofs, got '$sig'\n";
1006
1007 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
1008
1009 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
1010
1011 # classnames, security descriptors
1012 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
1013 #if ($cofs != NO_OFS && $clen) {
1014 # #warn "cofs $cofs+$clen\n";
1015 # xxd substr $bins, $cofs, 16;
1016 #}
1017
1018 $kname = Encode::decode "UTF-16LE", $kname
1019 unless $flags & KEY_COMP_NAME;
1020
1021 if ($vnum && $vofs != NO_OFS) {
1022 for ($vofs += 4; $vnum--; $vofs += 4) {
1023 my $kofs = unpack "\@$vofs L<", $bins;
1024
1025 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
1026
1027 $sig eq "vk"
1028 or die "key values list contains invalid node (expected vk got '$sig')\n";
1029
1030 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
1031
1032 my $name = substr $bins, $kofs + 24, $nsze;
1033
1034 $name = Encode::decode "UTF-16LE", $name
1035 unless $flags & VALUE_COMP_NAME;
1036
1037 my $data;
1038 if ($dsze & 0x80000000) {
1039 $data = substr $bins, $kofs + 12, $dsze & 0x7;
1040 } elsif ($dsze > 16344 && $minor > 3) { # big data
1041 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
1042
1043 for ($bofs += 4; $bnum--; $bofs += 4) {
1044 my $dofs = unpack "\@$bofs L<", $bins;
1045 my $dsze = unpack "\@$dofs l<", $bins;
1046 $data .= substr $bins, $dofs + 4, -$dsze - 4;
1047 }
1048 $data = substr $data, 0, $dsze; # cells might be longer than data
1049 } else {
1050 $data = substr $bins, $dofs + 4, $dsze;
1051 }
1052
1053 $type = $regf_typename[$type] if $type < @regf_typename;
1054
1055 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1056 ->($data);
1057
1058 $res[0]{$name} = [$type, $data];
1059 }
1060 }
1061
1062 if ($sofs != NO_OFS) {
1063 my $decode_key = __SUB__;
1064
1065 my $decode_subkeylist = sub {
1066 my ($sofs) = @_;
1067
1068 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1069
1070 if ($sig eq "ri") { # index root
1071 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1072 __SUB__->(unpack "\@$lofs L<", $bins);
1073 }
1074 } else {
1075 my $inc;
1076
1077 if ($sig eq "li") { # subkey list
1078 $inc = 4;
1079 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1080 $inc = 8;
1081 } else {
1082 die "expected subkey list at $sofs, found '$sig'\n";
1083 }
1084
1085 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1086 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1087 $res[1]{$name} = $data;
1088 }
1089 }
1090 };
1091
1092 $decode_subkeylist->($sofs);
1093 }
1094
1095 ($kname, \@res);
1096 };
1097
1098 my ($rootcell) = unpack "\@36 L<", $hive;
1099
1100 my ($rname, $root) = $decode_key->($rootcell);
1101
1102 [$rname, $root]
1103 }
1104
1105 # return a binary windows fILETIME struct
1106 sub filetime_now {
1107 my ($s, $ms) = Time::HiRes::gettimeofday;
1108
1109 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1110 }
1111
1112 # encode a registry hive
1113 sub regf_encode($) {
1114 my ($hive) = @_;
1115
1116 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1117
1118 # the filetime is apparently used to verify log file validity,
1119 # so by generating a new timestamp the log files *should* automatically
1120 # become invalidated and windows would "self-heal" them.
1121 # (update: has been verified by reverse engineering)
1122 # possibly the fact that the two sequence numbes match might also
1123 # make windows think that the hive is not dirty and ignore logs.
1124 # (update: has been verified by reverse engineering)
1125
1126 my $now = filetime_now;
1127
1128 # we only create a single hbin
1129 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1130
1131 # append cell to $bind, return offset
1132 my $cell = sub {
1133 my ($cell) = @_;
1134
1135 my $res = length $bins;
1136
1137 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1138
1139 $bins .= pack "l<", -(4 + length $cell);
1140 $bins .= $cell;
1141
1142 $res
1143 };
1144
1145 my $sdofs = $cell->($sk); # add a dummy security descriptor
1146 my $sdref = 0; # refcount
1147 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1148 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1149
1150 my $encode_key = sub {
1151 my ($kname, $kdata, $flags) = @_;
1152 my ($values, $subkeys) = @$kdata;
1153
1154 if ($kname =~ /[^\x00-\xff]/) {
1155 $kname = Encode::encode "UTF-16LE", $kname;
1156 } else {
1157 $flags |= KEY_COMP_NAME;
1158 }
1159
1160 # encode subkeys
1161
1162 my @snames =
1163 map $_->[1],
1164 sort { $a->[0] cmp $b->[0] }
1165 map [(uc $_), $_],
1166 keys %$subkeys;
1167
1168 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1169 my $maxsname = 4 * List::Util::max map length, @snames;
1170
1171 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1172
1173 # encode values
1174 my $maxvname = 4 * List::Util::max map length, keys %$values;
1175 my @vofs;
1176 my $maxdsze = 0;
1177
1178 while (my ($vname, $v) = each %$values) {
1179 my $flags = 0;
1180
1181 if ($vname =~ /[^\x00-\xff]/) {
1182 $vname = Encode::encode "UTF-16LE", $kname;
1183 } else {
1184 $flags |= VALUE_COMP_NAME;
1185 }
1186
1187 my ($type, $data) = @$v;
1188
1189 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1190
1191 my $dsze;
1192 my $dofs;
1193
1194 if (length $data <= 4) {
1195 $dsze = 0x80000000 | length $data;
1196 $dofs = unpack "L<", pack "a4", $data;
1197 } else {
1198 $dsze = length $data;
1199 $dofs = $cell->($data);
1200 }
1201
1202 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1203
1204 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1205 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1206
1207 $maxdsze = $dsze if $maxdsze < $dsze;
1208 }
1209
1210 # encode key
1211
1212 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1213 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1214
1215 my $kdata = pack "
1216 a2 S< a8 x4 x4
1217 L< L< L< L< L< L<
1218 L< L< L< L< L< L<
1219 x4 S< S< a*
1220 ",
1221 nk => $flags, $now,
1222 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1223 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1224 length $kname, 0, $kname;
1225 ++$sdref;
1226
1227 my $res = $cell->($kdata);
1228
1229 substr $bins, $_ + 16, 4, pack "L<", $res
1230 for @sofs;
1231
1232 $res
1233 };
1234
1235 my ($rname, $root) = @$hive;
1236
1237 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1238
1239 if (my $pad = -(length $bins) & 4095) {
1240 $pad -= 4;
1241 $bins .= pack "l< x$pad", $pad + 4;
1242 }
1243
1244 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1245 substr $bins, 8, 4, pack "L<", length $bins;
1246
1247 my $base = pack "
1248 a4 L< L< a8 L< L< L< L<
1249 L< L< L<
1250 a64
1251 x396
1252 ",
1253 regf => 1974, 1974, $now, 1, 3, 0, 1,
1254 $rofs, length $bins, 1,
1255 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1256
1257 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1258 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1259 $chksum = 1 if $chksum == 0;
1260
1261 $base .= pack "L<", $chksum;
1262
1263 $base = pack "a* \@4095 x1", $base;
1264
1265 $base . $bins
1266 }
1267
1268 # load and parse registry from file
1269 sub regf_load($) {
1270 my ($path) = @_;
1271
1272 regf_decode file_load $path
1273 }
1274
1275 # encode and save registry to file
1276 sub regf_save {
1277 my ($path, $hive) = @_;
1278
1279 $hive = regf_encode $hive;
1280
1281 open my $regf, ">:raw", "$path~"
1282 or die "$path~: $!\n";
1283 print $regf $hive
1284 or die "$path~: short write\n";
1285 $regf->sync;
1286 close $regf;
1287
1288 rename "$path~", $path;
1289 }
1290
1291 #############################################################################
1292 # bcd stuff
1293
1294 # human-readable alises for GUID object identifiers
1295 our %bcd_objects = (
1296 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1297 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1298 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1299 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1300 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1301 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1302 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1303 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1304 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1305 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1306 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1307 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1308 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1309 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1310 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1311 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1312 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1313 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1314 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1315 );
1316
1317 # default types
1318 our %bcd_object_types = (
1319 '{fwbootmgr}' => 0x10100001,
1320 '{bootmgr}' => 0x10100002,
1321 '{memdiag}' => 0x10200005,
1322 '{ntldr}' => 0x10300006,
1323 '{badmemory}' => 0x20100000,
1324 '{dbgsettings}' => 0x20100000,
1325 '{emssettings}' => 0x20100000,
1326 '{globalsettings}' => 0x20100000,
1327 '{bootloadersettings}' => 0x20200003,
1328 '{hypervisorsettings}' => 0x20200003,
1329 '{kerneldbgsettings}' => 0x20200003,
1330 '{resumeloadersettings}' => 0x20200004,
1331 '{ramdiskoptions}' => 0x30000000,
1332 );
1333
1334 # object types
1335 our %bcd_types = (
1336 0x10100001 => 'application::fwbootmgr',
1337 0x10100002 => 'application::bootmgr',
1338 0x10200003 => 'application::osloader',
1339 0x10200004 => 'application::resume',
1340 0x10100005 => 'application::memdiag',
1341 0x10100006 => 'application::ntldr',
1342 0x10100007 => 'application::setupldr',
1343 0x10400008 => 'application::bootsector',
1344 0x10400009 => 'application::startup',
1345 0x1020000a => 'application::bootapp',
1346 0x20100000 => 'settings',
1347 0x20200001 => 'inherit::fwbootmgr',
1348 0x20200002 => 'inherit::bootmgr',
1349 0x20200003 => 'inherit::osloader',
1350 0x20200004 => 'inherit::resume',
1351 0x20200005 => 'inherit::memdiag',
1352 0x20200006 => 'inherit::ntldr',
1353 0x20200007 => 'inherit::setupldr',
1354 0x20200008 => 'inherit::bootsector',
1355 0x20200009 => 'inherit::startup',
1356 0x20300000 => 'inherit::device',
1357 0x30000000 => 'device',
1358 );
1359
1360 our %rbcd_objects = reverse %bcd_objects;
1361
1362 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1363
1364 sub dec_guid($) {
1365 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1366 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1367 }
1368
1369 sub enc_guid($) {
1370 $_[0] =~ /^$RE_GUID\z/o
1371 or return;
1372
1373 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1374 }
1375
1376 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1377 sub dec_wguid($) {
1378 my $guid = "{" . (dec_guid shift) . "}";
1379
1380 $bcd_objects{$guid} // $guid
1381 }
1382
1383 sub enc_wguid($) {
1384 my ($guid) = @_;
1385
1386 if (my $alias = $rbcd_objects{$guid}) {
1387 $guid = $alias;
1388 }
1389
1390 $guid =~ /^\{($RE_GUID)\}\z/o
1391 or return;
1392
1393 enc_guid $1
1394 }
1395
1396 sub BCDE_CLASS () { 0xf0000000 }
1397 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1398 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1399 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1400 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1401
1402 sub BCDE_FORMAT () { 0x0f000000 }
1403 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1404 sub BCDE_FORMAT_STRING () { 0x02000000 }
1405 sub BCDE_FORMAT_GUID () { 0x03000000 }
1406 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1407 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1408 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1409 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1410
1411 sub enc_integer($) {
1412 my $value = shift;
1413 $value = oct $value if $value =~ /^0[bBxX]/;
1414 unpack "H*", pack "Q<", $value
1415 }
1416
1417 sub enc_device($$);
1418 sub dec_device($$);
1419
1420 our %bcde_dec = (
1421 BCDE_FORMAT_DEVICE , \&dec_device,
1422 # # for round-trip verification
1423 # BCDE_FORMAT_DEVICE , sub {
1424 # my $dev = dec_device $_[0];
1425 # $_[0] eq enc_device $dev
1426 # or die "bcd device decoding does not round trip for $_[0]\n";
1427 # $dev
1428 # },
1429 BCDE_FORMAT_STRING , sub { shift },
1430 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1431 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1432 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1433 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1434 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1435 );
1436
1437 our %bcde_enc = (
1438 BCDE_FORMAT_DEVICE , sub { binary => enc_device $_[0], $_[1] },
1439 BCDE_FORMAT_STRING , sub { sz => shift },
1440 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1441 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1442 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1443 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1444 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1445 );
1446
1447 # BCD Elements
1448 our %bcde_byclass = (
1449 any => {
1450 0x11000001 => 'device',
1451 0x12000002 => 'path',
1452 0x12000004 => 'description',
1453 0x12000005 => 'locale',
1454 0x14000006 => 'inherit',
1455 0x15000007 => 'truncatememory',
1456 0x14000008 => 'recoverysequence',
1457 0x16000009 => 'recoveryenabled',
1458 0x1700000a => 'badmemorylist',
1459 0x1600000b => 'badmemoryaccess',
1460 0x1500000c => 'firstmegabytepolicy',
1461 0x1500000d => 'relocatephysical',
1462 0x1500000e => 'avoidlowmemory',
1463 0x1600000f => 'traditionalkseg',
1464 0x16000010 => 'bootdebug',
1465 0x15000011 => 'debugtype',
1466 0x15000012 => 'debugaddress',
1467 0x15000013 => 'debugport',
1468 0x15000014 => 'baudrate',
1469 0x15000015 => 'channel',
1470 0x12000016 => 'targetname',
1471 0x16000017 => 'noumex',
1472 0x15000018 => 'debugstart',
1473 0x12000019 => 'busparams',
1474 0x1500001a => 'hostip',
1475 0x1500001b => 'port',
1476 0x1600001c => 'dhcp',
1477 0x1200001d => 'key',
1478 0x1600001e => 'vm',
1479 0x16000020 => 'bootems',
1480 0x15000022 => 'emsport',
1481 0x15000023 => 'emsbaudrate',
1482 0x12000030 => 'loadoptions',
1483 0x16000040 => 'advancedoptions',
1484 0x16000041 => 'optionsedit',
1485 0x15000042 => 'keyringaddress',
1486 0x11000043 => 'bootstatdevice',
1487 0x12000044 => 'bootstatfilepath',
1488 0x16000045 => 'preservebootstat',
1489 0x16000046 => 'graphicsmodedisabled',
1490 0x15000047 => 'configaccesspolicy',
1491 0x16000048 => 'nointegritychecks',
1492 0x16000049 => 'testsigning',
1493 0x1200004a => 'fontpath',
1494 0x1500004b => 'integrityservices',
1495 0x1500004c => 'volumebandid',
1496 0x16000050 => 'extendedinput',
1497 0x15000051 => 'initialconsoleinput',
1498 0x15000052 => 'graphicsresolution',
1499 0x16000053 => 'restartonfailure',
1500 0x16000054 => 'highestmode',
1501 0x16000060 => 'isolatedcontext',
1502 0x15000065 => 'displaymessage',
1503 0x15000066 => 'displaymessageoverride',
1504 0x16000068 => 'nobootuxtext',
1505 0x16000069 => 'nobootuxprogress',
1506 0x1600006a => 'nobootuxfade',
1507 0x1600006b => 'bootuxreservepooldebug',
1508 0x1600006c => 'bootuxdisabled',
1509 0x1500006d => 'bootuxfadeframes',
1510 0x1600006e => 'bootuxdumpstats',
1511 0x1600006f => 'bootuxshowstats',
1512 0x16000071 => 'multibootsystem',
1513 0x16000072 => 'nokeyboard',
1514 0x15000073 => 'aliaswindowskey',
1515 0x16000074 => 'bootshutdowndisabled',
1516 0x15000075 => 'performancefrequency',
1517 0x15000076 => 'securebootrawpolicy',
1518 0x17000077 => 'allowedinmemorysettings',
1519 0x15000079 => 'bootuxtransitiontime',
1520 0x1600007a => 'mobilegraphics',
1521 0x1600007b => 'forcefipscrypto',
1522 0x1500007d => 'booterrorux',
1523 0x1600007e => 'flightsigning',
1524 0x1500007f => 'measuredbootlogformat',
1525 0x15000080 => 'displayrotation',
1526 0x15000081 => 'logcontrol',
1527 0x16000082 => 'nofirmwaresync',
1528 0x11000084 => 'windowssyspart',
1529 0x16000087 => 'numlock',
1530 0x26000202 => 'skipffumode',
1531 0x26000203 => 'forceffumode',
1532 0x25000510 => 'chargethreshold',
1533 0x26000512 => 'offmodecharging',
1534 0x25000aaa => 'bootflow',
1535 0x45000001 => 'devicetype',
1536 0x42000002 => 'applicationrelativepath',
1537 0x42000003 => 'ramdiskdevicerelativepath',
1538 0x46000004 => 'omitosloaderelements',
1539 0x47000006 => 'elementstomigrate',
1540 0x46000010 => 'recoveryos',
1541 },
1542 bootapp => {
1543 0x26000145 => 'enablebootdebugpolicy',
1544 0x26000146 => 'enablebootorderclean',
1545 0x26000147 => 'enabledeviceid',
1546 0x26000148 => 'enableffuloader',
1547 0x26000149 => 'enableiuloader',
1548 0x2600014a => 'enablemassstorage',
1549 0x2600014b => 'enablerpmbprovisioning',
1550 0x2600014c => 'enablesecurebootpolicy',
1551 0x2600014d => 'enablestartcharge',
1552 0x2600014e => 'enableresettpm',
1553 },
1554 bootmgr => {
1555 0x24000001 => 'displayorder',
1556 0x24000002 => 'bootsequence',
1557 0x23000003 => 'default',
1558 0x25000004 => 'timeout',
1559 0x26000005 => 'resume',
1560 0x23000006 => 'resumeobject',
1561 0x24000007 => 'startupsequence',
1562 0x24000010 => 'toolsdisplayorder',
1563 0x26000020 => 'displaybootmenu',
1564 0x26000021 => 'noerrordisplay',
1565 0x21000022 => 'bcddevice',
1566 0x22000023 => 'bcdfilepath',
1567 0x26000024 => 'hormenabled',
1568 0x26000025 => 'hiberboot',
1569 0x22000026 => 'passwordoverride',
1570 0x22000027 => 'pinpassphraseoverride',
1571 0x26000028 => 'processcustomactionsfirst',
1572 0x27000030 => 'customactions',
1573 0x26000031 => 'persistbootsequence',
1574 0x26000032 => 'skipstartupsequence',
1575 0x22000040 => 'fverecoveryurl',
1576 0x22000041 => 'fverecoverymessage',
1577 },
1578 device => {
1579 0x35000001 => 'ramdiskimageoffset',
1580 0x35000002 => 'ramdisktftpclientport',
1581 0x31000003 => 'ramdisksdidevice',
1582 0x32000004 => 'ramdisksdipath',
1583 0x35000005 => 'ramdiskimagelength',
1584 0x36000006 => 'exportascd',
1585 0x35000007 => 'ramdisktftpblocksize',
1586 0x35000008 => 'ramdisktftpwindowsize',
1587 0x36000009 => 'ramdiskmcenabled',
1588 0x3600000a => 'ramdiskmctftpfallback',
1589 0x3600000b => 'ramdisktftpvarwindow',
1590 },
1591 memdiag => {
1592 0x25000001 => 'passcount',
1593 0x25000002 => 'testmix',
1594 0x25000003 => 'failurecount',
1595 0x26000003 => 'cacheenable',
1596 0x25000004 => 'testtofail',
1597 0x26000004 => 'failuresenabled',
1598 0x25000005 => 'stridefailcount',
1599 0x26000005 => 'cacheenable',
1600 0x25000006 => 'invcfailcount',
1601 0x25000007 => 'matsfailcount',
1602 0x25000008 => 'randfailcount',
1603 0x25000009 => 'chckrfailcount',
1604 },
1605 ntldr => {
1606 0x22000001 => 'bpbstring',
1607 },
1608 osloader => {
1609 0x21000001 => 'osdevice',
1610 0x22000002 => 'systemroot',
1611 0x23000003 => 'resumeobject',
1612 0x26000004 => 'stampdisks',
1613 0x26000010 => 'detecthal',
1614 0x22000011 => 'kernel',
1615 0x22000012 => 'hal',
1616 0x22000013 => 'dbgtransport',
1617 0x25000020 => 'nx',
1618 0x25000021 => 'pae',
1619 0x26000022 => 'winpe',
1620 0x26000024 => 'nocrashautoreboot',
1621 0x26000025 => 'lastknowngood',
1622 0x26000026 => 'oslnointegritychecks',
1623 0x26000027 => 'osltestsigning',
1624 0x26000030 => 'nolowmem',
1625 0x25000031 => 'removememory',
1626 0x25000032 => 'increaseuserva',
1627 0x25000033 => 'perfmem',
1628 0x26000040 => 'vga',
1629 0x26000041 => 'quietboot',
1630 0x26000042 => 'novesa',
1631 0x26000043 => 'novga',
1632 0x25000050 => 'clustermodeaddressing',
1633 0x26000051 => 'usephysicaldestination',
1634 0x25000052 => 'restrictapiccluster',
1635 0x22000053 => 'evstore',
1636 0x26000054 => 'uselegacyapicmode',
1637 0x26000060 => 'onecpu',
1638 0x25000061 => 'numproc',
1639 0x26000062 => 'maxproc',
1640 0x25000063 => 'configflags',
1641 0x26000064 => 'maxgroup',
1642 0x26000065 => 'groupaware',
1643 0x25000066 => 'groupsize',
1644 0x26000070 => 'usefirmwarepcisettings',
1645 0x25000071 => 'msi',
1646 0x25000072 => 'pciexpress',
1647 0x25000080 => 'safeboot',
1648 0x26000081 => 'safebootalternateshell',
1649 0x26000090 => 'bootlog',
1650 0x26000091 => 'sos',
1651 0x260000a0 => 'debug',
1652 0x260000a1 => 'halbreakpoint',
1653 0x260000a2 => 'useplatformclock',
1654 0x260000a3 => 'forcelegacyplatform',
1655 0x260000a4 => 'useplatformtick',
1656 0x260000a5 => 'disabledynamictick',
1657 0x250000a6 => 'tscsyncpolicy',
1658 0x260000b0 => 'ems',
1659 0x250000c0 => 'forcefailure',
1660 0x250000c1 => 'driverloadfailurepolicy',
1661 0x250000c2 => 'bootmenupolicy',
1662 0x260000c3 => 'onetimeadvancedoptions',
1663 0x260000c4 => 'onetimeoptionsedit',
1664 0x250000e0 => 'bootstatuspolicy',
1665 0x260000e1 => 'disableelamdrivers',
1666 0x250000f0 => 'hypervisorlaunchtype',
1667 0x220000f1 => 'hypervisorpath',
1668 0x260000f2 => 'hypervisordebug',
1669 0x250000f3 => 'hypervisordebugtype',
1670 0x250000f4 => 'hypervisordebugport',
1671 0x250000f5 => 'hypervisorbaudrate',
1672 0x250000f6 => 'hypervisorchannel',
1673 0x250000f7 => 'bootux',
1674 0x260000f8 => 'hypervisordisableslat',
1675 0x220000f9 => 'hypervisorbusparams',
1676 0x250000fa => 'hypervisornumproc',
1677 0x250000fb => 'hypervisorrootprocpernode',
1678 0x260000fc => 'hypervisoruselargevtlb',
1679 0x250000fd => 'hypervisorhostip',
1680 0x250000fe => 'hypervisorhostport',
1681 0x250000ff => 'hypervisordebugpages',
1682 0x25000100 => 'tpmbootentropy',
1683 0x22000110 => 'hypervisorusekey',
1684 0x22000112 => 'hypervisorproductskutype',
1685 0x25000113 => 'hypervisorrootproc',
1686 0x26000114 => 'hypervisordhcp',
1687 0x25000115 => 'hypervisoriommupolicy',
1688 0x26000116 => 'hypervisorusevapic',
1689 0x22000117 => 'hypervisorloadoptions',
1690 0x25000118 => 'hypervisormsrfilterpolicy',
1691 0x25000119 => 'hypervisormmionxpolicy',
1692 0x2500011a => 'hypervisorschedulertype',
1693 0x25000120 => 'xsavepolicy',
1694 0x25000121 => 'xsaveaddfeature0',
1695 0x25000122 => 'xsaveaddfeature1',
1696 0x25000123 => 'xsaveaddfeature2',
1697 0x25000124 => 'xsaveaddfeature3',
1698 0x25000125 => 'xsaveaddfeature4',
1699 0x25000126 => 'xsaveaddfeature5',
1700 0x25000127 => 'xsaveaddfeature6',
1701 0x25000128 => 'xsaveaddfeature7',
1702 0x25000129 => 'xsaveremovefeature',
1703 0x2500012a => 'xsaveprocessorsmask',
1704 0x2500012b => 'xsavedisable',
1705 0x2500012c => 'kerneldebugtype',
1706 0x2200012d => 'kernelbusparams',
1707 0x2500012e => 'kerneldebugaddress',
1708 0x2500012f => 'kerneldebugport',
1709 0x25000130 => 'claimedtpmcounter',
1710 0x25000131 => 'kernelchannel',
1711 0x22000132 => 'kerneltargetname',
1712 0x25000133 => 'kernelhostip',
1713 0x25000134 => 'kernelport',
1714 0x26000135 => 'kerneldhcp',
1715 0x22000136 => 'kernelkey',
1716 0x22000137 => 'imchivename',
1717 0x21000138 => 'imcdevice',
1718 0x25000139 => 'kernelbaudrate',
1719 0x22000140 => 'mfgmode',
1720 0x26000141 => 'event',
1721 0x25000142 => 'vsmlaunchtype',
1722 0x25000144 => 'hypervisorenforcedcodeintegrity',
1723 0x21000150 => 'systemdatadevice',
1724 0x21000151 => 'osarcdevice',
1725 0x21000153 => 'osdatadevice',
1726 0x21000154 => 'bspdevice',
1727 0x21000155 => 'bspfilepath',
1728 },
1729 resume => {
1730 0x21000001 => 'filedevice',
1731 0x22000002 => 'filepath',
1732 0x26000003 => 'customsettings',
1733 0x26000004 => 'pae',
1734 0x21000005 => 'associatedosdevice',
1735 0x26000006 => 'debugoptionenabled',
1736 0x25000007 => 'bootux',
1737 0x25000008 => 'bootmenupolicy',
1738 0x26000024 => 'hormenabled',
1739 },
1740 startup => {
1741 0x26000001 => 'pxesoftreboot',
1742 0x22000002 => 'applicationname',
1743 },
1744 );
1745
1746 # mask, value => class
1747 our @bcde_typeclass = (
1748 [0x00000000, 0x00000000, 'any'],
1749 [0xf00fffff, 0x1000000a, 'bootapp'],
1750 [0xf0ffffff, 0x2020000a, 'bootapp'],
1751 [0xf00fffff, 0x10000001, 'bootmgr'],
1752 [0xf00fffff, 0x10000002, 'bootmgr'],
1753 [0xf0ffffff, 0x20200001, 'bootmgr'],
1754 [0xf0ffffff, 0x20200002, 'bootmgr'],
1755 [0xf0f00000, 0x20300000, 'device'],
1756 [0xf0000000, 0x30000000, 'device'],
1757 [0xf00fffff, 0x10000005, 'memdiag'],
1758 [0xf0ffffff, 0x20200005, 'memdiag'],
1759 [0xf00fffff, 0x10000006, 'ntldr'],
1760 [0xf00fffff, 0x10000007, 'ntldr'],
1761 [0xf0ffffff, 0x20200006, 'ntldr'],
1762 [0xf0ffffff, 0x20200007, 'ntldr'],
1763 [0xf00fffff, 0x10000003, 'osloader'],
1764 [0xf0ffffff, 0x20200003, 'osloader'],
1765 [0xf00fffff, 0x10000004, 'resume'],
1766 [0xf0ffffff, 0x20200004, 'resume'],
1767 [0xf00fffff, 0x10000009, 'startup'],
1768 [0xf0ffffff, 0x20200009, 'startup'],
1769 );
1770
1771 our %rbcde_byclass;
1772
1773 while (my ($k, $v) = each %bcde_byclass) {
1774 $rbcde_byclass{$k} = { reverse %$v };
1775 }
1776
1777 # decodes (numerical elem, type) to name
1778 sub dec_bcde_id($$) {
1779 for my $class (@bcde_typeclass) {
1780 if (($_[1] & $class->[0]) == $class->[1]) {
1781 if (my $id = $bcde_byclass{$class->[2]}{$_[0]}) {
1782 return $id;
1783 }
1784 }
1785 }
1786
1787 sprintf "custom:%08x", $_[0]
1788 }
1789
1790 # encodes (elem as name, type)
1791 sub enc_bcde_id($$) {
1792 $_[0] =~ /^custom:(?:0x)?([0-9a-fA-F]{8}$)/
1793 and return hex $1;
1794
1795 for my $class (@bcde_typeclass) {
1796 if (($_[1] & $class->[0]) == $class->[1]) {
1797 if (my $value = $rbcde_byclass{$class->[2]}{$_[0]}) {
1798 return $value;
1799 }
1800 }
1801 }
1802
1803 undef
1804 }
1805
1806 # decode/encode bcd device element - the horror, no documentaion
1807 # whatsoever, supercomplex, superinconsistent.
1808
1809 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1810 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1811 our @part_type = qw(gpt mbr raw);
1812
1813 our $NULL_DEVICE = "\x00" x 16;
1814
1815 # biggest bitch to decode, ever
1816 # this decoded a device portion after the GUID
1817 sub dec_device_($$);
1818 sub dec_device_($$) {
1819 my ($device, $type) = @_;
1820
1821 my $res;
1822
1823 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1824
1825 $pad == 0
1826 or die "non-zero reserved field in device descriptor\n";
1827
1828 if ($length == 0 && $type == 0 && $flags == 0) {
1829 return ("null", $device);
1830 }
1831
1832 $length >= 16
1833 or die "device element size too small ($length)\n";
1834
1835 $type = $dev_type[$type] // die "$type: unknown device type\n";
1836 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1837
1838 $res .= $type;
1839 $res .= sprintf "<%x>", $flags if $flags;
1840
1841 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1842
1843 $length == 4 * 4 + length $device
1844 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1845
1846 my $dec_path = sub {
1847 my ($path, $error) = @_;
1848
1849 $path =~ /^((?:..)*)\x00\x00\z/s
1850 or die "$error\n";
1851
1852 $path = Encode::decode "UTF-16LE", $1;
1853
1854 $path
1855 };
1856
1857 if ($type eq "partition" or $type eq "legacypartition") {
1858 my $partdata = substr $device, 0, 16, "";
1859 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1860
1861 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1862 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1863
1864 my $diskid = substr $device, 0, 16, "";
1865
1866 $diskid = $parttype eq "gpt"
1867 ? dec_guid substr $diskid, 0, 16
1868 : sprintf "%08x", unpack "V", $diskid;
1869
1870 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1871 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1872 : unpack "L<", $partdata; # partition number, one-based
1873
1874 (my $parent, $device) = dec_device_ $device, $type;
1875
1876 $res .= "=";
1877 $res .= "<$parent>";
1878 $res .= ",$blocktype,$parttype,$diskid,$partid";
1879
1880 # PartitionType (gpt, mbr, raw)
1881 # guid | partsig | disknumber
1882
1883 } elsif ($type eq "boot") {
1884 $device =~ s/^\x00{56}\z//
1885 or die "boot device type with extra data not supported\n";
1886
1887 } elsif ($type eq "block") {
1888 my $blocktype = unpack "V", substr $device, 0, 4, "";
1889
1890 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1891
1892 # decode a "file path" structure
1893 my $dec_file = sub {
1894 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1895
1896 my $path = substr $device, 0, $flen - 12, "";
1897
1898 $fver == 1
1899 or die "unsupported file descriptor version '$fver'\n";
1900
1901 $ftype == 5
1902 or die "unsupported file descriptor path type '$type'\n";
1903
1904 (my $parent, $path) = dec_device_ $path, $type;
1905
1906 $path = $dec_path->($path, "file device without path");
1907
1908 ($parent, $path)
1909 };
1910
1911 if ($blocktype eq "file") {
1912 my ($parent, $path) = $dec_file->();
1913
1914 $res .= "=file,<$parent>,$path";
1915
1916 } elsif ($blocktype eq "vhd") {
1917 $device =~ s/^\x00{20}//s
1918 or die "virtualdisk has non-zero fields I don't understand\n";
1919
1920 (my $parent, $device) = dec_device_ $device, $type;
1921
1922 $res .= "=vhd,<$parent>";
1923
1924 } elsif ($blocktype eq "ramdisk") {
1925 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1926 my ($subdev, $path) = $dec_file->();
1927
1928 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1929
1930 } else {
1931 die "unsupported block type '$blocktype'\n";
1932 }
1933
1934 } elsif ($type eq "locate") {
1935 # mode, bcde_id, unknown, string
1936 # we assume locate has _either_ an element id _or_ a path, but not both
1937
1938 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1939
1940 if ($parent) {
1941 # not sure why this is an offset - it must come after the path
1942 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1943 ($parent, my $tail) = dec_device_ $parent, $type;
1944 0 == length $tail
1945 or die "trailing data after locate device parent\n";
1946 } else {
1947 $parent = "null";
1948 }
1949
1950 my $path = $device; $device = "";
1951 $path = $dec_path->($path, "device locate mode without path");
1952
1953 $res .= "=<$parent>,";
1954
1955 if ($mode == 0) { # "Element"
1956 !length $path
1957 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1958
1959 $elem = dec_bcde_id $elem, $type;
1960 $res .= "element,$elem";
1961
1962 } elsif ($mode == 1) { # "String"
1963 !$elem
1964 or die "device locate mode 1 having non-zero element\n";
1965
1966 $res .= "path,$path";
1967 } else {
1968 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1969 die "device locate mode '$mode' not supported\n";
1970 }
1971
1972 } elsif ($type eq "vmbus") {
1973 my $type = dec_guid substr $device, 0, 16, "";
1974 my $instance = dec_guid substr $device, 0, 16, "";
1975
1976 $device =~ s/^\x00{24}\z//
1977 or die "vmbus has non-zero fields I don't understand\n";
1978
1979 $res .= "=$type,$instance";
1980
1981 } else {
1982 die "unsupported device type '$type'\n";
1983 }
1984
1985 warn "unexpected trailing device data($res), " . unpack "H*",$device
1986 if length $device;
1987 #length $device
1988 # and die "unexpected trailing device data\n";
1989
1990 ($res, $tail)
1991 }
1992
1993 # decode a full binary BCD device descriptor
1994 sub dec_device($$) {
1995 my ($device, $type) = @_;
1996
1997 $device = pack "H*", $device;
1998
1999 my $guid = dec_guid substr $device, 0, 16, "";
2000 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
2001 ? "" : "{$guid}";
2002
2003 eval {
2004 my ($dev, $tail) = dec_device_ $device, $type;
2005
2006 $tail eq ""
2007 or die "unsupported trailing data after device descriptor\n";
2008
2009 "$guid$dev"
2010 # } // scalar ((warn $@), "$guid$fallback")
2011 } // ($guid . "binary=" . unpack "H*", $device)
2012 }
2013
2014 sub indexof($@) {
2015 my $value = shift;
2016
2017 for (0 .. $#_) {
2018 $value eq $_[$_]
2019 and return $_;
2020 }
2021
2022 undef
2023 }
2024
2025 # encode the device portion after the GUID
2026 sub enc_device_($$);
2027 sub enc_device_($$) {
2028 my ($device, $type) = @_;
2029
2030 my $enc_path = sub {
2031 my $path = shift;
2032 $path =~ s/\//\\/g;
2033 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
2034 };
2035
2036 my $enc_file = sub {
2037 my ($parent, $path) = @_; # parent and path must already be encoded
2038
2039 $path = $parent . $path;
2040
2041 # fver 1, ftype 5
2042 pack "VVVa*", 1, 12 + length $path, 5, $path
2043 };
2044
2045 my $parse_path = sub {
2046 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
2047 or die "$_: invalid path\n";
2048
2049 $enc_path->($1)
2050 };
2051
2052 my $parse_parent = sub {
2053 my $parent;
2054
2055 if (s/^<//) {
2056 ($parent, $_) = enc_device_ $_, $type;
2057 s/^>//
2058 or die "$device: syntax error: parent device not followed by '>'\n";
2059 } else {
2060 $parent = $NULL_DEVICE;
2061 }
2062
2063 $parent
2064 };
2065
2066 for ($device) {
2067 s/^([a-z]+)//
2068 or die "$_: device does not start with type string\n";
2069
2070 my $type = $1;
2071 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
2072 my $payload;
2073
2074 if ($type eq "binary") {
2075 s/^=([0-9a-fA-F]+)//
2076 or die "binary type must have a hex string argument\n";
2077
2078 $payload = pack "H*", $1;
2079
2080 } elsif ($type eq "null") {
2081 return ($NULL_DEVICE, $_);
2082
2083 } elsif ($type eq "boot") {
2084 $payload = "\x00" x 56;
2085
2086 } elsif ($type eq "partition" or $type eq "legacypartition") {
2087 s/^=//
2088 or die "$_: missing '=' after $type\n";
2089
2090 my $parent = $parse_parent->();
2091
2092 s/^,//
2093 or die "$_: comma missing after partition parent device\n";
2094
2095 s/^([a-z]+),//
2096 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
2097 my $blocktype = $1;
2098
2099 s/^([a-z]+),//
2100 or die "$_: partition block type not followed by partiton type\n";
2101 my $parttype = $1;
2102
2103 my ($partdata, $diskdata);
2104
2105 if ($parttype eq "mbr") {
2106 s/^([0-9a-f]{8}),//i
2107 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
2108 $diskdata = pack "Vx12", hex $1;
2109
2110 s/^([0-9]+)//
2111 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
2112
2113 # the following works for both 64 bit offset and 32 bit partno
2114 $partdata = pack "Q< x8", $1;
2115
2116 } elsif ($parttype eq "gpt") {
2117 s/^($RE_GUID),//
2118 or die "$_: partition disk guid missing or malformed\n";
2119 $diskdata = enc_guid $1;
2120
2121 s/^($RE_GUID)//
2122 or die "$_: partition guid missing or malformed\n";
2123 $partdata = enc_guid $1;
2124
2125 } elsif ($parttype eq "raw") {
2126 s/^([0-9]+)//
2127 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2128
2129 $partdata = pack "L< x12", $1;
2130
2131 } else {
2132 die "$parttype: partition type not supported\n";
2133 }
2134
2135 $payload = pack "a16 L< L< a16 a*",
2136 $partdata,
2137 (indexof $blocktype, @block_type),
2138 (indexof $parttype, @part_type),
2139 $diskdata,
2140 $parent;
2141
2142 } elsif ($type eq "locate") {
2143 s/^=//
2144 or die "$_: missing '=' after $type\n";
2145
2146 my ($mode, $elem, $path);
2147
2148 my $parent = $parse_parent->();
2149
2150 s/^,//
2151 or die "$_: missing comma after locate parent device\n";
2152
2153 if (s/^element,//) {
2154 s/^([0-9a-z:]+)//i
2155 or die "$_ locate element must be either name or 8-digit hex id\n";
2156 $elem = enc_bcde_id $1, $type;
2157 $mode = 0;
2158 $path = $enc_path->("");
2159
2160 } elsif (s/^path,//) {
2161 $mode = 1;
2162 $path = $parse_path->();
2163
2164 } else {
2165 die "$_ second locate argument must be subtype (either element or path)\n";
2166 }
2167
2168 if ($parent ne $NULL_DEVICE) {
2169 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2170 } else {
2171 $parent = 0;
2172 }
2173
2174 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2175
2176 } elsif ($type eq "block") {
2177 s/^=//
2178 or die "$_: missing '=' after $type\n";
2179
2180 s/^([a-z]+),//
2181 or die "$_: block device does not start with block type (e.g. disk)\n";
2182 my $blocktype = $1;
2183
2184 my $blockdata;
2185
2186 if ($blocktype eq "file") {
2187 my $parent = $parse_parent->();
2188 s/^,// or die "$_: comma missing after file block device parent\n";
2189 my $path = $parse_path->();
2190
2191 $blockdata = $enc_file->($parent, $path);
2192
2193 } elsif ($blocktype eq "vhd") {
2194 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2195 $blockdata .= $parse_parent->();
2196
2197 } elsif ($blocktype eq "ramdisk") {
2198 my $parent = $parse_parent->();
2199
2200 s/^,(\d+),(\d+),(\d+),//a
2201 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2202
2203 my ($base, $size, $offset) = ($1, $2, $3);
2204
2205 my $path = $parse_path->();
2206
2207 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2208
2209 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2210 # this is guesswork
2211 s/^(\d+)//a
2212 or die "$_: missing device number for cdrom\n";
2213 $blockdata = pack "V", $1;
2214
2215 } else {
2216 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2217 }
2218
2219 $payload = pack "Va*",
2220 (indexof $blocktype, @block_type),
2221 $blockdata;
2222
2223 } elsif ($type eq "vmbus") {
2224 s/^=($RE_GUID)//
2225 or die "$_: malformed or missing vmbus interface type guid\n";
2226 my $type = enc_guid $1;
2227 s/^,($RE_GUID)//
2228 or die "$_: malformed or missing vmbus interface instance guid\n";
2229 my $instance = enc_guid $1;
2230
2231 $payload = pack "a16a16x24", $type, $instance;
2232
2233 } else {
2234 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2235 }
2236
2237 return (
2238 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2239 $_
2240 );
2241 }
2242 }
2243
2244 # encode a full binary BCD device descriptor
2245 sub enc_device($$) {
2246 my ($device, $type) = @_;
2247
2248 my $guid = "\x00" x 16;
2249
2250 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2251 $guid = enc_guid $1
2252 or die "$device: does not start with valid guid\n";
2253 }
2254
2255 my ($descriptor, $tail) = enc_device_ $device, $type;
2256
2257 length $tail
2258 and die "$device: garbage after device descriptor\n";
2259
2260 unpack "H*", $guid . $descriptor
2261 }
2262
2263 # decode a registry hive into the BCD structure used by pbcdedit
2264 sub bcd_decode {
2265 my ($hive) = @_;
2266
2267 my %bcd;
2268
2269 my $objects = $hive->[1][1]{Objects}[1];
2270
2271 while (my ($k, $v) = each %$objects) {
2272 my %kv;
2273 $v = $v->[1];
2274
2275 $k = $bcd_objects{$k} // $k;
2276
2277 my $type = $v->{Description}[0]{Type}[1];
2278
2279 if ($type != $bcd_object_types{$k}) {
2280 $kv{type} = $bcd_types{$type} // sprintf "0x%08x", $type;
2281 }
2282
2283 my $elems = $v->{Elements}[1];
2284
2285 while (my ($k, $v) = each %$elems) {
2286 my $k = hex $k;
2287
2288 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1], $type);
2289 my $k = dec_bcde_id $k, $type;
2290
2291 $kv{$k} = $v;
2292 }
2293
2294 $bcd{$k} = \%kv;
2295 }
2296
2297 $bcd{meta} = { version => $JSON_VERSION };
2298
2299 \%bcd
2300 }
2301
2302 # encode a pbcdedit structure into a registry hive
2303 sub bcd_encode {
2304 my ($bcd) = @_;
2305
2306 if (my $meta = $bcd->{meta}) {
2307 $meta->{version} eq $JSON_VERSION
2308 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2309 }
2310
2311 my %objects;
2312 my %rbcd_types = reverse %bcd_types;
2313
2314 while (my ($k, $v) = each %$bcd) {
2315 my %kv;
2316
2317 next if $k eq "meta";
2318
2319 $k = lc $k; # I know you windows types!
2320
2321 my $type = $v->{type};
2322
2323 if ($type) {
2324 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2325 ? hex $type
2326 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2327 }
2328
2329 my $guid = enc_wguid $k
2330 or die "$k: invalid bcd object identifier\n";
2331
2332 # default type if not given
2333 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2334
2335 my %elem;
2336
2337 while (my ($k, $v) = each %$v) {
2338 next if $k eq "type";
2339
2340 $k = (enc_bcde_id $k, $type) // die "$k: invalid bcde element name or id\n";
2341 $elem{sprintf "%08x", $k} = [{
2342 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2343 }];
2344 }
2345
2346 $guid = dec_guid $guid;
2347
2348 $objects{"{$guid}"} = [undef, {
2349 Description => [{ Type => [dword => $type] }],
2350 Elements => [undef, \%elem],
2351 }];
2352 }
2353
2354 [NewStoreRoot => [undef, {
2355 Description => [{
2356 KeyName => [sz => "BCD00000001"],
2357 System => [dword => 1],
2358 pbcdedit => [sz => $VERSION],
2359 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2360 }],
2361 Objects => [undef, \%objects],
2362 }]]
2363 }
2364
2365 #############################################################################
2366 # edit instructions
2367
2368 sub bcd_edit_eval {
2369 package pbcdedit;
2370
2371 our ($PATH, $BCD, $DEFAULT);
2372
2373 eval shift;
2374 die "$@" if $@;
2375 }
2376
2377 sub bcd_edit {
2378 my ($path, $bcd, @insns) = @_;
2379
2380 my $default = $bcd->{"{bootmgr}"}{default};
2381
2382 # prepare "officially visible" variables
2383 local $pbcdedit::PATH = $path;
2384 local $pbcdedit::BCD = $bcd;
2385 local $pbcdedit::DEFAULT = $default;
2386
2387 while (@insns) {
2388 my $insn = shift @insns;
2389
2390 if ($insn eq "get") {
2391 my $object = shift @insns;
2392 my $elem = shift @insns;
2393
2394 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2395
2396 print $bcd->{$object}{$elem}, "\n";
2397
2398 } elsif ($insn eq "set") {
2399 my $object = shift @insns;
2400 my $elem = shift @insns;
2401 my $value = shift @insns;
2402
2403 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2404
2405 $bcd->{$object}{$elem} = $value;
2406
2407 } elsif ($insn eq "eval") {
2408 my $perl = shift @insns;
2409 bcd_edit_eval "#line 1 'eval'\n$perl";
2410
2411 } elsif ($insn eq "do") {
2412 my $path = shift @insns;
2413 my $file = file_load $path;
2414 bcd_edit_eval "#line 1 '$path'\n$file";
2415
2416 } else {
2417 die "$insn: not a recognized instruction for edit/parse\n";
2418 }
2419 }
2420
2421 }
2422
2423 #############################################################################
2424 # other utilities
2425
2426 # json to stdout
2427 sub prjson($) {
2428 print $json_coder->encode ($_[0]);
2429 }
2430
2431 # json from stdin
2432 sub rdjson() {
2433 my $json;
2434 1 while read STDIN, $json, 65536, length $json;
2435 $json_coder->decode ($json)
2436 }
2437
2438 sub lsblk() {
2439 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,MAJ:MIN,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2440
2441 for my $dev (@{ $lsblk->{blockdevices} }) {
2442 if ($dev->{type} eq "part") {
2443 if ($dev->{pttype} eq "gpt") {
2444 $dev->{bcd_device} = "partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}";
2445 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2446 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2447 my ($diskid, $partno) = ($1, hex $2);
2448 $dev->{bcd_legacy_device} = "legacypartition=<null>,harddisk,mbr,$diskid,$partno";
2449 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2450 my $start = 512 * readline $fh;
2451 $dev->{bcd_device} = "partition=<null>,harddisk,mbr,$diskid,$start";
2452 }
2453 }
2454 }
2455 }
2456 }
2457
2458 $lsblk->{blockdevices}
2459 }
2460
2461 sub prdev($$) {
2462 my ($path, $attribute) = @_;
2463
2464 # rather than stat'ing and guessing how devices are encoded, we use lsblk for this
2465 # unfortunately, there doesn't seem to be a way to restrict lsblk to just oned evice,
2466 # so we always assume the first one is it.
2467 my $mm = $json_coder->decode (scalar qx<lsblk -o MAJ:MIN -J \Q$path\E>)->{blockdevices}[0]{"maj:min"};
2468
2469 my $lsblk = lsblk;
2470
2471 for my $dev (@$lsblk) {
2472 if ($dev->{"maj:min"} eq $mm && $dev->{$attribute}) {
2473 say $dev->{$attribute};
2474 exit 0;
2475 }
2476 }
2477
2478 exit 1;
2479 }
2480
2481 #############################################################################
2482 # command line parser
2483
2484 our %CMD = (
2485 help => sub {
2486 require Pod::Usage;
2487 Pod::Usage::pod2usage (-verbose => 2);
2488 },
2489
2490 objects => sub {
2491 my %rbcd_types = reverse %bcd_types;
2492 $_ = sprintf "%08x", $_ for values %rbcd_types;
2493
2494 if ($_[0] eq "--json") {
2495 my %default_type = %bcd_object_types;
2496 $_ = sprintf "%08x", $_ for values %default_type;
2497
2498 prjson {
2499 version => $JSON_VERSION,
2500 object_alias => \%bcd_objects,
2501 object_type => \%rbcd_types,
2502 object_default_type => \%default_type,
2503 };
2504 } else {
2505 my %rbcd_objects = reverse %bcd_objects;
2506
2507 print "\n";
2508
2509 printf "%-9s %s\n", "Type", "Alias";
2510 for my $tname (sort keys %rbcd_types) {
2511 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2512 }
2513
2514 print "\n";
2515
2516 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2517 for my $name (sort keys %rbcd_objects) {
2518 my $guid = $rbcd_objects{$name};
2519 my $type = $bcd_object_types{$name};
2520 my $tname = $bcd_types{$type};
2521
2522 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2523
2524 printf "%-39s %-23s %s\n", $guid, $name, $type;
2525 }
2526
2527 print "\n";
2528 }
2529 },
2530
2531 elements => sub {
2532 my $json = $_[0] eq "--json";
2533
2534 my %format_name = (
2535 BCDE_FORMAT_DEVICE , "device",
2536 BCDE_FORMAT_STRING , "string",
2537 BCDE_FORMAT_GUID , "guid",
2538 BCDE_FORMAT_GUID_LIST , "guid list",
2539 BCDE_FORMAT_INTEGER , "integer",
2540 BCDE_FORMAT_BOOLEAN , "boolean",
2541 BCDE_FORMAT_INTEGER_LIST, "integer list",
2542 );
2543
2544 my @element;
2545
2546 for my $class (sort keys %rbcde_byclass) {
2547 my $rbcde = $rbcde_byclass{$class};
2548
2549 unless ($json) {
2550 print "\n";
2551 printf "Elements applicable to class(es): $class\n";
2552 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2553 }
2554 for my $name (sort keys %$rbcde) {
2555 my $id = $rbcde->{$name};
2556 my $format = $format_name{$id & BCDE_FORMAT};
2557
2558 if ($json) {
2559 push @element, [$class, $id * 1, $format, $name];
2560 } else {
2561 $id = sprintf "%08x", $id;
2562 printf "%-9s %-12s %s\n", $id, $format, $name;
2563 }
2564 }
2565 }
2566 print "\n" unless $json;
2567
2568 prjson {
2569 version => $JSON_VERSION,
2570 element => \@element,
2571 class => \@bcde_typeclass,
2572 } if $json;
2573
2574 },
2575
2576 export => sub {
2577 prjson bcd_decode regf_load shift;
2578 },
2579
2580 import => sub {
2581 regf_save shift, bcd_encode rdjson;
2582 },
2583
2584 edit => sub {
2585 my $path = shift;
2586 my $bcd = bcd_decode regf_load $path;
2587 bcd_edit $path, $bcd, @_;
2588 regf_save $path, bcd_encode $bcd;
2589 },
2590
2591 parse => sub {
2592 my $path = shift;
2593 my $bcd = bcd_decode regf_load $path;
2594 bcd_edit $path, $bcd, @_;
2595 },
2596
2597 "export-regf" => sub {
2598 prjson regf_load shift;
2599
2600 },
2601
2602 "import-regf" => sub {
2603 regf_save shift, rdjson;
2604 },
2605
2606 lsblk => sub {
2607 my $json = $_[0] eq "--json";
2608
2609 my $lsblk = lsblk;
2610
2611 if ($json) {
2612 prjson $lsblk;
2613 } else {
2614 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2615 for my $dev (@$lsblk) {
2616 for my $bcd ($dev->{bcd_device}, $dev->{bcd_legacy_device}) {
2617 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2618 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $bcd
2619 if $bcd;
2620 }
2621 }
2622 }
2623 },
2624
2625 "bcd-device" => sub {
2626 prdev shift, "bcd_device";
2627 },
2628
2629 "bcd-legacy-device" => sub {
2630 prdev shift, "bcd_legacy_device";
2631 },
2632
2633 version => sub {
2634 print "\n",
2635 "PBCDEDIT version $VERSION, copyright 2019 Marc A. Lehmann <pbcdedit\@schmorp.de>.\n",
2636 "JSON schema version: $JSON_VERSION\n",
2637 "Licensed under the GNU General Public License Version 3.0, or any later version.\n",
2638 "\n",
2639 $CHANGELOG,
2640 "\n";
2641 },
2642 );
2643
2644 my $cmd = shift;
2645
2646 unless (exists $CMD{$cmd}) {
2647 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2648 exit 126;
2649 }
2650
2651 $CMD{$cmd}->(@ARGV);
2652