ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.52
Committed: Thu Aug 22 07:50:04 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.51: +9 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.016; # numerous features need 5.14, __SUB__ needs 5.16
23
24 our $VERSION = '1.3';
25 our $JSON_VERSION = 3; # the version of the json objects generated by this program
26
27 our $CHANGELOG = <<EOF;
28
29 - editorial fixes to the documentation.
30
31 1.3 Sat Aug 17 07:04:15 CEST 2019
32 - output of pbcdedit elements --json has changed, as it didn't
33 take the reorganisation by classes fully into account.
34 - json schema bumped to 3.
35 - new "bcd-device" and "bcd-legacy-device" subcommands.
36 - implement --json option for lsblk.
37
38 1.2 Fri Aug 16 00:20:41 CEST 2019
39 - bcd element names now depend on the bcd object type they are in,
40 also affects "elements" output.
41 - json schema bumped to 2.
42 - new version command.
43 - numerous minor bugfixes.
44
45 EOF
46
47 =head1 NAME
48
49 pbcdedit - portable boot configuration data (BCD) store editor
50
51 =head1 SYNOPSIS
52
53 pbcdedit help # output manual page
54 pbcdedit version # output version and changelog
55
56 pbcdedit export path/to/BCD # output BCD hive as JSON
57 pbcdedit import path/to/BCD # convert standard input to BCD hive
58 pbcdedit edit path/to/BCD edit-instructions...
59
60 pbcdedit objects # list all supported object aliases and types
61 pbcdedit elements # list all supported bcd element aliases
62
63 # Example: enable text-based boot menu.
64 pbcdedit edit /my/BCD set '{default}' bootmenupolicy 1
65
66 # Example change system device to first partition containing winload.
67 pbcdedit edit /my/BCD \
68 set '{default}' device 'locate=<null>,element,path' \
69 set '{default}' osdevice 'locate=<null>,element,path'
70
71
72 =head1 DESCRIPTION
73
74 This program allows you to create, read and modify Boot Configuration Data
75 (BCD) stores used by Windows Vista and newer versions of Windows.
76
77 At this point, it is in relatively early stages of development and has
78 received little to no real-world testing.
79
80 Compared to other BCD editing programs it offers the following unique
81 features:
82
83 =over
84
85 =item Can create BCD hives from scratch
86
87 Practically all other BCD editing programs force you to copy existing BCD
88 stores, which might or might not be copyrighted by Microsoft.
89
90 =item Does not rely on Windows
91
92 As the "portable" in the name implies, this program does not rely on
93 C<bcdedit> or other windows programs or libraries, it works on any system
94 that supports at least perl version 5.16.
95
96 =item Decodes and encodes BCD device elements
97
98 PBCDEDIT can concisely decode and encode BCD device element contents. This
99 is pretty unique, and offers a lot of potential that can't be realised
100 with C<bcdedit> or any programs relying on it.
101
102 =item Minimal files
103
104 BCD files written by PBCDEDIT are always "minimal", that is, they don't
105 contain unused data areas and therefore don't contain old and potentially
106 sensitive data.
107
108 =back
109
110 The target audience for this program is professionals and tinkerers who
111 are ready to invest time into learning how it works. It is not an easy
112 program to use and requires patience and a good understanding of BCD
113 stores.
114
115
116 =head1 SUBCOMMANDS
117
118 PBCDEDIT expects a subcommand as first argument that tells it what to
119 do. The following subcommands exist:
120
121 =over
122
123 =item C<help>
124
125 Displays the whole manual page (this document).
126
127 =item C<version>
128
129 This outputs the PBCDEDIT version, the JSON schema version it uses and the
130 full log of changes.
131
132 =item C<export> F<path>
133
134 Reads a BCD data store and writes a JSON representation of it to standard
135 output.
136
137 The format of the data is explained later in this document.
138
139 Example: read a BCD store, modify it with an external program, write it
140 again.
141
142 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
143
144 =item C<import> F<path>
145
146 The reverse of C<export>: Reads a JSON representation of a BCD data store
147 from standard input, and creates or replaces the given BCD data store.
148
149 =item C<edit> F<path> I<instructions...>
150
151 Load a BCD data store, apply some instructions to it, and save it again.
152
153 See the section L<EDITING BCD STORES>, below, for more info.
154
155 =item C<parse> F<path> I<instructions...>
156
157 Same as C<edit>, above, except it doesn't save the data store again. Can
158 be useful to extract some data from it.
159
160 =item C<lsblk> [C<--json>]
161
162 On a GNU/Linux system, you can get a list of partition device descriptors
163 using this command - the external C<lsblk> command is required, as well as
164 a mounted C</sys> file system.
165
166 The output will be a list of all partitions in the system and C<partition>
167 descriptors for GPT and both C<legacypartition> and C<partition>
168 descriptors for MBR partitions.
169
170 With C<--json> it will print similar informationm as C<lsblk --json>, but
171 with extra C<bcd_device> and C<bcd_legacy_device> attributes.
172
173 =item C<bcd-device> F<path>
174
175 Tries to find the BCD device element for the given device, which currently
176 must be a a partition of some kind. Prints the C<partition=> descriptor as
177 a result, or nothing. Exit status will be true on success, and false on
178 failure.
179
180 Like C<lsblk>, above, this likely only works on GNU/Linux systems.
181
182 Example: print the partition descriptor of tghe partition with label DATA.
183
184 $ pbcdedit bcd-device /dev/disk/by-label/DATA
185 partition=<null>,harddisk,mbr,47cbc08a,213579202560
186
187 =item C<bcd-legacy-device> F<path>
188
189 Like above, but uses a C<legacypartition> descriptor instead.
190
191 =item C<objects> [C<--json>]
192
193 Outputs two tables: a table listing all type aliases with their hex BCD
194 element ID, and all object name aliases with their GUID and default type
195 (if any).
196
197 With C<--json> it prints similar information as a JSON object, for easier parsing.
198
199 =item C<elements> [C<--json>]
200
201 Outputs a table of known element aliases with their hex ID and the format
202 type.
203
204 With C<--json> it prints similar information as a JSON object, for easier parsing.
205
206 =item C<export-regf> F<path>
207
208 This has nothing to do with BCD stores, but simply exposes PCBEDIT's
209 internal registry hive reader - it takes a registry hive file as argument
210 and outputs a JSON representation of it to standard output.
211
212 Hive versions 1.2 till 1.6 are supported.
213
214 =item C<import-regf> F<path>
215
216 The reverse of C<export-regf>: reads a JSON representation of a registry
217 hive from standard input and creates or replaces the registry hive file
218 given as argument.
219
220 The written hive will always be in a slightly modified version 1.3
221 format. It's not the format windows would generate, but it should be
222 understood by any conformant hive reader.
223
224 Note that the representation chosen by PBCDEDIT currently throws away
225 classname data (often used for feeble attempts at hiding stuff by
226 Microsoft) and security descriptors, so if you write anything other than
227 a BCD hive you will most likely destroy it.
228
229 =back
230
231
232 =head1 BCD STORE REPRESENTATION FORMAT
233
234 A BCD data store is represented as a JSON object with one special key,
235 C<meta>, and one key per BCD object. That is, each BCD object becomes
236 one key-value pair in the object, and an additional key called C<meta>
237 contains meta information.
238
239 Here is an abridged example of a real BCD store:
240
241 {
242 "meta" : {
243 "version" : 1
244 },
245 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
246 "type" : "application::osloader",
247 "description" : "Windows 10",
248 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
249 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
250 "path" : "\\Windows\\system32\\winload.exe",
251 "systemroot" : "\\Windows"
252 },
253 "{bootloadersettings}" : {
254 "inherit" : "{globalsettings} {hypervisorsettings}"
255 },
256 "{bootmgr}" : {
257 "description" : "Windows Boot Manager",
258 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
259 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
260 "inherit" : "{globalsettings}",
261 "displaybootmenu" : 0,
262 "timeout" : 30
263 },
264 "{globalsettings}" : {
265 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
266 },
267 "{hypervisorsettings}" : {
268 "hypervisorbaudrate" : 115200,
269 "hypervisordebugport" : 1,
270 "hypervisordebugtype" : 0
271 },
272 # ...
273 }
274
275 =head2 Minimal BCD to boot windows
276
277 Experimentally I found the following BCD is the minimum required to
278 successfully boot any post-XP version of Windows (assuming suitable
279 C<device> and C<osdevice> values, of course, and assuming a BIOS boot -
280 for UEFI, you should use F<winload.efi> instead of F<winload.exe>):
281
282 {
283 "{bootmgr}" : {
284 "default" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
285 },
286
287 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
288 "type" : "application::osloader",
289 "description" : "Windows Boot",
290 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
291 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
292 "path" : "\\Windows\\system32\\winload.exe",
293 "systemroot" : "\\Windows"
294 },
295 }
296
297 Note that minimal doesn't mean recommended - Windows itself will add stuff
298 to this during or after boot, and you might or might not run into issues
299 when installing updates as it might not be able to find the F<bootmgr>.
300
301 =head2 The C<meta> key
302
303 The C<meta> key is not stored in the BCD data store but is used only
304 by PBCDEDIT. It is always generated when exporting, and importing will
305 be refused when it exists and the version stored inside doesn't store
306 the JSON schema version of PBCDEDIT. This ensures that different and
307 incompatible versions of PBCDEDIT will not read and misinterpret each
308 others data.
309
310 =head2 The object keys
311
312 Every other key is a BCD object. There is usually a BCD object for the
313 boot manager, one for every boot option and a few others that store common
314 settings inherited by these.
315
316 Each BCD object is represented by a GUID wrapped in curly braces. These
317 are usually random GUIDs used only to distinguish BCD objects from each
318 other. When adding a new boot option, you can simply generate a new GUID.
319
320 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
321 into human-readable strings such as C<{globalsettings}>, which is the same
322 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
323
324 Each BCD, object has an associated type. For example,
325 C<application::osloader> for objects loading Windows via F<winload.exe>,
326 C<application::bootsector> for real mode applications and so on.
327
328 The type of a object is stored in the pseudo BCD element C<type> (see next
329 section).
330
331 Some well-known objects have a default type. If an object type matches
332 its default type, then the C<type> element will be omitted. Similarly, if
333 the C<type> element is missing and the BCD object has a default type, the
334 default type will be used when writing a BCD store.
335
336 Running F<pbcdedit objects> will give you a list of object types,
337 well-known object aliases and their default types.
338
339 If different string keys in a JSON BCD store map to the same BCD object
340 then a random one will "win" and the others will be discarded. To avoid
341 this, you should always use the "canonical" name of a BCD object, which is
342 the human-readable form (if it exists).
343
344 =head2 The object values - BCD elements
345
346 The value of each BCD object entry consists of key-value pairs called BCD
347 elements.
348
349 BCD elements are identified by a 32 bit number, but to make things
350 simpler PBCDEDIT will replace these with well-known strings such as
351 C<description>, C<device> or C<path>.
352
353 When PBCDEDIT does not know the BCD element, it will use
354 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
355 BCD element. For example, C<device> would be C<custom::11000001>. You can
356 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
357 elements>.
358
359 What was said about duplicate keys mapping to the same object is true for
360 elements as well, so, again, you should always use the canonical name,
361 which is the human readable alias, if known.
362
363 =head3 BCD element types
364
365 Each BCD element has a type such as I<string> or I<boolean>. This type
366 determines how the value is interpreted, and most of them are pretty easy
367 to explain:
368
369 =over
370
371 =item string
372
373 This is simply a unicode string. For example, the C<description> and
374 C<systemroot> elements both are of this type, one storing a human-readable
375 name for this boot option, the other a file path to the windows root
376 directory:
377
378 "description" : "Windows 10",
379 "systemroot" : "\\Windows",
380
381 =item boolean
382
383 Almost as simple are booleans, which represent I<true>/I<false>,
384 I<on>/I<off> and similar values. In the JSON form, true is represented
385 by the number C<1>, and false is represented by the number C<0>. Other
386 values will be accepted, but PBCDEDIT doesn't guarantee how these are
387 interpreted.
388
389 For example, C<displaybootmenu> is a boolean that decides whether to
390 enable the C<F8> boot menu. In the example BCD store above, this is
391 disabled:
392
393 "displaybootmenu" : 0,
394
395 =item integer
396
397 Again, very simple, this is a 64 bit integer. It can be either specified
398 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
399 binary number (prefix C<0b>).
400
401 For example, the boot C<timeout> is an integer, specifying the automatic
402 boot delay in seconds:
403
404 "timeout" : 30,
405
406 =item integer list
407
408 This is a list of 64 bit integers separated by whitespace. It is not used
409 much, so here is a somewhat artificial an untested example of using
410 C<customactions> to specify a certain custom, eh, action to be executed
411 when pressing C<F10> at boot:
412
413 "customactions" : "0x1000044000001 0x54000001",
414
415 =item guid
416
417 This represents a single GUID value wrapped in curly braces. It is used a
418 lot to refer from one BCD object to other one.
419
420 For example, The C<{bootmgr}> object might refer to a resume boot option
421 using C<default>:
422
423 "default" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
424
425 Human readable aliases are used and allowed.
426
427 =item guid list
428
429 Similar to the GUID type, this represents a list of such GUIDs, separated
430 by whitespace from each other.
431
432 For example, many BCD objects can I<inherit> elements from other BCD
433 objects by specifying the GUIDs of those other objects in a GUID list
434 called surprisingly called C<inherit>:
435
436 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
437
438 This example also shows how human readable aliases can be used.
439
440 =item device
441
442 This type is why I write I<most> are easy to explain earlier: This type
443 is the pinnacle of Microsoft-typical hacks layered on top of other
444 hacks. Understanding this type took more time than writing all the rest of
445 PBCDEDIT, and because it is so complex, this type has its own subsection
446 below.
447 =back
448
449 =head3 The BCD "device" element type
450
451 Device elements specify, well, devices. They are used for such diverse
452 purposes such as finding a TFTP network boot image, serial ports or VMBUS
453 devices, but most commonly they are used to specify the disk (harddisk,
454 cdrom, ramdisk, vhd...) to boot from.
455
456 The device element is kind of a mini-language in its own which is much
457 more versatile then the limited windows interface to it - BCDEDIT -
458 reveals.
459
460 While some information can be found on the BCD store and the windows
461 registry, there is pretty much no public information about the device
462 element, so almost everything known about it had to be researched first
463 in the process of writing this script, and consequently, support for BCD
464 device elements is partial only.
465
466 On the other hand, the expressive power of PBCDEDIT in specifying devices
467 is much bigger than BCDEDIT and therefore more can be done with it. The
468 downside is that BCD device elements are much more complicated than what
469 you might think from reading the BCDEDIT documentation.
470
471 In other words, simple things are complicated, and complicated things are
472 possible.
473
474 Anyway, the general syntax of device elements is an optional GUID,
475 followed by a device type, optionally followed by hexadecimal flags in
476 angle brackets, optionally followed by C<=> and a comma-separated list of
477 arguments, some of which can be (and often are) in turn devices again.
478
479 [{GUID}]type[<flags>][=arg,arg...]
480
481 Here are some examples:
482
483 boot
484 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
485 locate=<null>,element,systemroot
486 partition=<null>,harddisk,mbr,47cbc08a,1048576
487 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
488 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
489 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
490 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
491
492 I hope you are suitably impressed. I was, too, when I realized decoding
493 these binary blobs is not as easy as I had assumed.
494
495 The optional prefixed GUID seems to refer to a device BCD object, which
496 can be used to specify more device-specific BCD elements (for example
497 C<ramdisksdidevice> and C<ramdisksdpath>).
498
499 The flags after the type are omitted when they are C<0>. The only known
500 flag is C<1>, which seems to indicate that the parent device is invalid. I
501 don't claim to fully understand it, but it seems to indicate that the
502 boot manager has to search the device itself. Why the device is specified
503 in the first place escapes me, but a lot of this device stuff seems to be
504 badly hacked together...
505
506 The types understood and used by PBCDEDIT are as follows (keep in mind
507 that not of all the following is necessarily supported in PBCDEDIT):
508
509 =over
510
511 =item C<binary=>I<hex...>
512
513 This type isn't actually a real BCD element type, but a fallback for those
514 cases where PBCDEDIT can't perfectly decode a device element (except for
515 the leading GUID, which it can always decode). In such cases, it will
516 convert the device into this type with a hexdump of the element data.
517
518 =item C<null>
519
520 This is another special type - sometimes, a device is all zero-filled,
521 which is not valid. This can mark the absence of a device or something
522 PBCDEDIT does not understand, so it decodes it into this special "all
523 zero" type called C<null>.
524
525 It's most commonly found in devices that can use an optional parent
526 device, when no parent device is used.
527
528 =item C<boot>
529
530 Another type without parameters, this refers to the device that was booted
531 from (nowadays typically the EFI system partition).
532
533 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
534
535 This specifies a VMBUS device with the given interface type and interface
536 instance, both of which are "naked" (no curly braces) GUIDs.
537
538 Made-up example (couldn't find a single example on the web):
539
540 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
541
542 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
543
544 This designates a specific partition on a block device. I<parent> is an
545 optional parent device on which to search on, and is often C<null>. Note
546 that the angle brackets around I<parent> are part of the syntax.
547
548 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
549 C<file> or C<vhd>, where the first three should be self-explaining,
550 C<file> is usually used to locate a file to be used as a disk image,
551 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
552 F<vhdx> files.
553
554 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
555 used for devices without partitions, such as cdroms, where the "partition"
556 is usually the whole device.
557
558 The I<diskid> identifies the disk or device using a unique signature, and
559 the same is true for the I<partitionid>. How these are interpreted depends
560 on the I<partitiontype>:
561
562 =over
563
564 =item C<mbr>
565
566 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
567 MBR, interpreted as a 32 bit unsigned little endian integer and written as
568 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
569
570 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
571 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
572 display the I<diskid>.
573
574 The I<partitionid> is the byte offset(!) of the partition counting from
575 the beginning of the MBR.
576
577 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
578 starting at sector C<2048> (= 1048576 / 512).
579
580 partition=<null>,harddisk,mbr,47cbc08a,1048576
581
582 =item C<gpt>
583
584 The I<diskid> is the disk GUID/disk identifier GUID from the partition
585 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
586 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
587
588 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
589 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
590
591 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
592
593 =item C<raw>
594
595 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
596 disk number and signifies the whole disk. BCDEDIT cannot display the
597 resulting device, and I am doubtful whether it has a useful effect.
598
599 =back
600
601 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
602
603 This is exactly the same as the C<partition> type, except for a tiny
604 detail: instead of using the partition start offset, this type uses the
605 partition number for MBR disks. Behaviour other partition types should be
606 the same.
607
608 The partition number starts at C<1> and skips unused partition, so if
609 there are two primary partitions and another partition inside the extended
610 partition, the primary partitions are number C<1> and C<2> and the
611 partition inside the extended partition is number C<3>, regardless of any
612 gaps.
613
614 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
615
616 This device description will make the bootloader search for a partition
617 with a given path.
618
619 The I<parent> device is the device to search on (angle brackets are
620 still part of the syntax!) If it is C<null>, then C<locate> will
621 search all disks it can find.
622
623 I<locatetype> is either C<element> or C<path>, and merely distinguishes
624 between two different ways to specify the path to search for: C<element>
625 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
626 uses a relative path as I<locatearg>.
627
628 Example: find any partition which has the F<magicfile.xxx> path in the
629 root.
630
631 locate=<null>,path,\magicfile.xxx
632
633 Example: find any partition which has the path specified in the
634 C<systemroot> element (typically F<\Windows>).
635
636 locate=<null>,element,systemroot
637
638 =item C<block=>I<devicetype>,I<args...>
639
640 Last not least, the most complex type, C<block>, which... specifies block
641 devices (which could be inside a F<vhdx> file for example).
642
643 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
644 C<file> or C<vhd> - the same as for C<partition=>.
645
646 The remaining arguments change depending on the I<devicetype>:
647
648 =over
649
650 =item C<block=file>,<I<parent>>,I<path>
651
652 Interprets the I<parent> device (typically a partition) as a
653 filesystem and specifies a file path inside.
654
655 =item C<block=vhd>,<I<parent>>
656
657 Pretty much just changes the interpretation of I<parent>, which is
658 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
659
660 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
661
662 Interprets the I<parent> device as RAM disk, using the (decimal)
663 base address, byte size and byte offset inside a file specified by
664 I<path>. The numbers are usually all C<0> because they can be extracted
665 from the RAM disk image or other parameters.
666
667 This is most commonly used to boot C<wim> images.
668
669 =item C<block=floppy>,I<drivenum>
670
671 Refers to a removable drive identified by a number. BCDEDIT cannot display
672 the resulting device, and it is not clear what effect it will have.
673
674 =item C<block=cdrom>,I<drivenum>
675
676 Pretty much the same as C<floppy> but for CD-ROMs.
677
678 =item anything else
679
680 Probably not yet implemented. Tell me of your needs...
681
682 =back
683
684 =head4 Examples
685
686 This concludes the syntax overview for device elements, but probably
687 leaves many questions open. I can't help with most of them, as I also have
688 many questions, but I can walk you through some actual examples using more
689 complex aspects.
690
691 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
692
693 Just like with C declarations, you best treat device descriptors as
694 instructions to find your device and work your way from the inside out:
695
696 locate=<null>,path,\disk.vhdx
697
698 First, the innermost device descriptor searches all partitions on the
699 system for a file called F<\disk.vhdx>:
700
701 block=file,<see above>,\disk.vhdx
702
703 Next, this takes the device locate has found and finds a file called
704 F<\disk.vhdx> on it. This is the same file locate was using, but that is
705 only because we find the device using the same path as finding the disk
706 image, so this is purely incidental, although quite common.
707
708 Next, this file will be opened as a virtual disk:
709
710 block=vhd,<see above>
711
712 And finally, inside this disk, another C<locate> will look for a partition
713 with a path as specified in the C<path> element, which most likely will be
714 F<\Windows\system32\winload.exe>:
715
716 locate=<see above>,element,path
717
718 As a result, this will boot the first Windows it finds on the first
719 F<disk.vhdx> disk image it can find anywhere.
720
721 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
722
723 Pretty much the same as the previous case, but with a bit of
724 variance. First, look for a specific partition on an MBR-partitioned disk:
725
726 partition=<null>,harddisk,mbr,47cbc08a,242643632128
727
728 Then open the file F<\win10.vhdx> on that partition:
729
730 block=file,<see above>,\win10.vhdx
731
732 Then, again, the file is opened as a virtual disk image:
733
734 block=vhd,<see above>
735
736 And again the windows loader (or whatever is in C<path>) will be searched:
737
738 locate=<see above>,element,path
739
740 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
741
742 This is quite different. First, it starts with a GUID. This GUID belongs
743 to a BCD object of type C<device>, which has additional parameters:
744
745 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
746 "type" : "device",
747 "description" : "sdi file for ramdisk",
748 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
749 "ramdisksdipath" : "\boot.sdi"
750 },
751
752 I will not go into many details, but this specifies a (presumably empty)
753 template ramdisk image (F<\boot.sdi>) that is used to initialize the
754 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
755 see, this F<.sdi> file resides on a different C<partition>.
756
757 Continuing, as always, from the inside out, first this device descriptor
758 finds a specific partition:
759
760 partition=<null>,harddisk,mbr,47cbc08a,242643632128
761
762 And then specifies a C<ramdisk> image on this partition:
763
764 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
765
766 I don't know what the purpose of the C<< <1> >> flag value is, but it
767 seems to be always there on this kind of entry.
768
769 If you have some good examples to add here, feel free to mail me.
770
771
772 =head1 EDITING BCD STORES
773
774 The C<edit> and C<parse> subcommands allow you to read a BCD data store
775 and modify it or extract data from it. This is done by executing a series
776 of "editing instructions" which are explained here.
777
778 =over
779
780 =item C<get> I<object> I<element>
781
782 Reads the BCD element I<element> from the BCD object I<object> and writes
783 it to standard output, followed by a newline. The I<object> can be a GUID
784 or a human-readable alias, or the special string C<{default}>, which will
785 refer to the default BCD object.
786
787 Example: find description of the default BCD object.
788
789 pbcdedit parse BCD get "{default}" description
790
791 =item C<set> I<object> I<element> I<value>
792
793 Similar to C<get>, but sets the element to the given I<value> instead.
794
795 Example: change the bootmgr default too
796 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
797
798 pbcdedit edit BCD set "{bootmgr}" default "{b097d2ad-bc00-11e9-8a9a-525400123456}"
799
800 =item C<eval> I<perlcode>
801
802 This takes the next argument, interprets it as Perl code and
803 evaluates it. This allows you to do more complicated modifications or
804 extractions.
805
806 The following variables are predefined for your use:
807
808 =over
809
810 =item C<$PATH>
811
812 The path to the BCD data store, as given to C<edit> or C<parse>.
813
814 =item C<$BCD>
815
816 The decoded BCD data store.
817
818 =item C<$DEFAULT>
819
820 The default BCD object name.
821
822 =back
823
824 The example given for C<get>, above, could be expressed like this with
825 C<eval>:
826
827 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
828
829 The example given for C<set> could be expressed like this:
830
831 pbcdedit edit BCD eval '$BCD->{"{bootmgr}"{default} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
832
833 =item C<do> I<path>
834
835 Similar to C<eval>, above, but instead of using the argument as perl code,
836 it loads the perl code from the given file and executes it. This makes it
837 easier to write more complicated or larger programs.
838
839 =back
840
841
842 =head1 SEE ALSO
843
844 For ideas on what you can do with BCD stores in
845 general, and some introductory material, try
846 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
847
848 For good reference on which BCD objects and
849 elements exist, see Geoff Chappell's pages at
850 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
851
852 =head1 AUTHOR
853
854 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
855
856 =head1 REPORTING BUGS
857
858 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
859
860 =head1 BUGS AND SHORTCOMINGS
861
862 This should be a module. Of a series of modules, even.
863
864 Registry code should preserve classname and security descriptor data, and
865 whatever else is necessary to read and write any registry hive file.
866
867 I am also not happy with device descriptors being strings rather than a
868 data structure, but strings are probably better for command line usage. In
869 any case, device descriptors could be converted by simply "splitting" at
870 "=" and "," into an array reference, recursively.
871
872 =head1 HOMEPAGE
873
874 Original versions of this program can be found at
875 L<http://software.schmorp.de/pkg/pbcdedit>.
876
877 =head1 COPYRIGHT
878
879 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
880 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
881 free to change and redistribute it. There is NO WARRANTY, to the extent
882 permitted by law.
883
884 =cut
885
886 # common sense is optional, but recommended
887 BEGIN { eval { require "common/sense.pm"; } && common::sense->import }
888
889 no warnings 'portable'; # avoid 32 bit integer warnings
890
891 use Encode ();
892 use List::Util ();
893 use IO::Handle ();
894 use Time::HiRes ();
895
896 eval { unpack "Q", pack "Q", 1 }
897 or die "perl with 64 bit integer supported required.\n";
898
899 our $JSON = eval { require JSON::XS; JSON::XS:: }
900 // eval { require JSON::PP; JSON::PP:: }
901 // die "either JSON::XS or JSON::PP must be installed\n";
902
903 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
904
905 # hack used for debugging
906 sub xxd($$) {
907 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
908 syswrite $xxd, $_[1];
909 }
910
911 sub file_load($) {
912 my ($path) = @_;
913
914 open my $fh, "<:raw", $path
915 or die "$path: $!\n";
916 my $size = -s $fh;
917 $size = read $fh, my $buf, $size
918 or die "$path: short read\n";
919
920 $buf
921 }
922
923 # sources and resources used for writing pbcdedit
924 #
925 # registry:
926 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
927 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
928 # bcd:
929 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
930 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
931 # bcd devices:
932 # reactos' boot/environ/include/bl.h
933 # windows .mof files
934
935 #############################################################################
936 # registry stuff
937
938 # we use a hardcoded securitya descriptor - full access for everyone
939 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
940 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
941 my $sacl = "";
942 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
943 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
944 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
945 1, 0x8004,
946 20 + (length $sacl) + (length $dacl),
947 20 + (length $sacl) + (length $dacl) + (length $sid),
948 0, 20,
949 $sacl, $dacl, $sid, $sid;
950 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
951
952 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
953
954 sub KEY_HIVE_ENTRY() { 0x0004 }
955 sub KEY_NO_DELETE () { 0x0008 }
956 sub KEY_COMP_NAME () { 0x0020 }
957
958 sub VALUE_COMP_NAME() { 0x0001 }
959
960 my @regf_typename = qw(
961 none sz expand_sz binary dword dword_be link multi_sz
962 resource_list full_resource_descriptor resource_requirements_list
963 qword qword_be
964 );
965
966 my %regf_dec_type = (
967 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
968 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
969 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
970 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
971 dword => sub { unpack "L<", shift },
972 dword_be => sub { unpack "L>", shift },
973 qword => sub { unpack "Q<", shift },
974 qword_be => sub { unpack "Q>", shift },
975 );
976
977 my %regf_enc_type = (
978 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
979 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
980 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
981 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
982 dword => sub { pack "L<", shift },
983 dword_be => sub { pack "L>", shift },
984 qword => sub { pack "Q<", shift },
985 qword_be => sub { pack "Q>", shift },
986 );
987
988 # decode a registry hive
989 sub regf_decode($) {
990 my ($hive) = @_;
991
992 "regf" eq substr $hive, 0, 4
993 or die "not a registry hive\n";
994
995 my ($major, $minor) = unpack "\@20 L< L<", $hive;
996
997 $major == 1
998 or die "registry major version is not 1, but $major\n";
999
1000 $minor >= 2 && $minor <= 6
1001 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
1002
1003 my $bins = substr $hive, 4096;
1004
1005 my $decode_key = sub {
1006 my ($ofs) = @_;
1007
1008 my @res;
1009
1010 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
1011
1012 $sze < 0
1013 or die "key node points to unallocated cell\n";
1014
1015 $sig eq "nk"
1016 or die "expected key node at $ofs, got '$sig'\n";
1017
1018 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
1019
1020 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
1021
1022 # classnames, security descriptors
1023 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
1024 #if ($cofs != NO_OFS && $clen) {
1025 # #warn "cofs $cofs+$clen\n";
1026 # xxd substr $bins, $cofs, 16;
1027 #}
1028
1029 $kname = Encode::decode "UTF-16LE", $kname
1030 unless $flags & KEY_COMP_NAME;
1031
1032 if ($vnum && $vofs != NO_OFS) {
1033 for ($vofs += 4; $vnum--; $vofs += 4) {
1034 my $kofs = unpack "\@$vofs L<", $bins;
1035
1036 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
1037
1038 $sig eq "vk"
1039 or die "key values list contains invalid node (expected vk got '$sig')\n";
1040
1041 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
1042
1043 my $name = substr $bins, $kofs + 24, $nsze;
1044
1045 $name = Encode::decode "UTF-16LE", $name
1046 unless $flags & VALUE_COMP_NAME;
1047
1048 my $data;
1049 if ($dsze & 0x80000000) {
1050 $data = substr $bins, $kofs + 12, $dsze & 0x7;
1051 } elsif ($dsze > 16344 && $minor > 3) { # big data
1052 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
1053
1054 for ($bofs += 4; $bnum--; $bofs += 4) {
1055 my $dofs = unpack "\@$bofs L<", $bins;
1056 my $dsze = unpack "\@$dofs l<", $bins;
1057 $data .= substr $bins, $dofs + 4, -$dsze - 4;
1058 }
1059 $data = substr $data, 0, $dsze; # cells might be longer than data
1060 } else {
1061 $data = substr $bins, $dofs + 4, $dsze;
1062 }
1063
1064 $type = $regf_typename[$type] if $type < @regf_typename;
1065
1066 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1067 ->($data);
1068
1069 $res[0]{$name} = [$type, $data];
1070 }
1071 }
1072
1073 if ($sofs != NO_OFS) {
1074 my $decode_key = __SUB__;
1075
1076 my $decode_subkeylist = sub {
1077 my ($sofs) = @_;
1078
1079 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1080
1081 if ($sig eq "ri") { # index root
1082 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1083 __SUB__->(unpack "\@$lofs L<", $bins);
1084 }
1085 } else {
1086 my $inc;
1087
1088 if ($sig eq "li") { # subkey list
1089 $inc = 4;
1090 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1091 $inc = 8;
1092 } else {
1093 die "expected subkey list at $sofs, found '$sig'\n";
1094 }
1095
1096 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1097 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1098 $res[1]{$name} = $data;
1099 }
1100 }
1101 };
1102
1103 $decode_subkeylist->($sofs);
1104 }
1105
1106 ($kname, \@res);
1107 };
1108
1109 my ($rootcell) = unpack "\@36 L<", $hive;
1110
1111 my ($rname, $root) = $decode_key->($rootcell);
1112
1113 [$rname, $root]
1114 }
1115
1116 # return a binary windows fILETIME struct
1117 sub filetime_now {
1118 my ($s, $ms) = Time::HiRes::gettimeofday;
1119
1120 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1121 }
1122
1123 # encode a registry hive
1124 sub regf_encode($) {
1125 my ($hive) = @_;
1126
1127 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1128
1129 # the filetime is apparently used to verify log file validity,
1130 # so by generating a new timestamp the log files *should* automatically
1131 # become invalidated and windows would "self-heal" them.
1132 # (update: has been verified by reverse engineering)
1133 # possibly the fact that the two sequence numbes match might also
1134 # make windows think that the hive is not dirty and ignore logs.
1135 # (update: has been verified by reverse engineering)
1136
1137 my $now = filetime_now;
1138
1139 # we only create a single hbin
1140 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1141
1142 # append cell to $bind, return offset
1143 my $cell = sub {
1144 my ($cell) = @_;
1145
1146 my $res = length $bins;
1147
1148 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1149
1150 $bins .= pack "l<", -(4 + length $cell);
1151 $bins .= $cell;
1152
1153 $res
1154 };
1155
1156 my $sdofs = $cell->($sk); # add a dummy security descriptor
1157 my $sdref = 0; # refcount
1158 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1159 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1160
1161 my $encode_key = sub {
1162 my ($kname, $kdata, $flags) = @_;
1163 my ($values, $subkeys) = @$kdata;
1164
1165 if ($kname =~ /[^\x00-\xff]/) {
1166 $kname = Encode::encode "UTF-16LE", $kname;
1167 } else {
1168 $flags |= KEY_COMP_NAME;
1169 }
1170
1171 # encode subkeys
1172
1173 my @snames =
1174 map $_->[1],
1175 sort { $a->[0] cmp $b->[0] }
1176 map [(uc $_), $_],
1177 keys %$subkeys;
1178
1179 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1180 my $maxsname = 4 * List::Util::max map length, @snames;
1181
1182 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1183
1184 # encode values
1185 my $maxvname = 4 * List::Util::max map length, keys %$values;
1186 my @vofs;
1187 my $maxdsze = 0;
1188
1189 while (my ($vname, $v) = each %$values) {
1190 my $flags = 0;
1191
1192 if ($vname =~ /[^\x00-\xff]/) {
1193 $vname = Encode::encode "UTF-16LE", $kname;
1194 } else {
1195 $flags |= VALUE_COMP_NAME;
1196 }
1197
1198 my ($type, $data) = @$v;
1199
1200 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1201
1202 my $dsze;
1203 my $dofs;
1204
1205 if (length $data <= 4) {
1206 $dsze = 0x80000000 | length $data;
1207 $dofs = unpack "L<", pack "a4", $data;
1208 } else {
1209 $dsze = length $data;
1210 $dofs = $cell->($data);
1211 }
1212
1213 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1214
1215 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1216 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1217
1218 $maxdsze = $dsze if $maxdsze < $dsze;
1219 }
1220
1221 # encode key
1222
1223 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1224 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1225
1226 my $kdata = pack "
1227 a2 S< a8 x4 x4
1228 L< L< L< L< L< L<
1229 L< L< L< L< L< L<
1230 x4 S< S< a*
1231 ",
1232 nk => $flags, $now,
1233 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1234 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1235 length $kname, 0, $kname;
1236 ++$sdref;
1237
1238 my $res = $cell->($kdata);
1239
1240 substr $bins, $_ + 16, 4, pack "L<", $res
1241 for @sofs;
1242
1243 $res
1244 };
1245
1246 my ($rname, $root) = @$hive;
1247
1248 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1249
1250 if (my $pad = -(length $bins) & 4095) {
1251 $pad -= 4;
1252 $bins .= pack "l< x$pad", $pad + 4;
1253 }
1254
1255 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1256 substr $bins, 8, 4, pack "L<", length $bins;
1257
1258 my $base = pack "
1259 a4 L< L< a8 L< L< L< L<
1260 L< L< L<
1261 a64
1262 x396
1263 ",
1264 regf => 1974, 1974, $now, 1, 3, 0, 1,
1265 $rofs, length $bins, 1,
1266 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1267
1268 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1269 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1270 $chksum = 1 if $chksum == 0;
1271
1272 $base .= pack "L<", $chksum;
1273
1274 $base = pack "a* \@4095 x1", $base;
1275
1276 $base . $bins
1277 }
1278
1279 # load and parse registry from file
1280 sub regf_load($) {
1281 my ($path) = @_;
1282
1283 regf_decode file_load $path
1284 }
1285
1286 # encode and save registry to file
1287 sub regf_save {
1288 my ($path, $hive) = @_;
1289
1290 $hive = regf_encode $hive;
1291
1292 open my $regf, ">:raw", "$path~"
1293 or die "$path~: $!\n";
1294 print $regf $hive
1295 or die "$path~: short write\n";
1296 $regf->sync;
1297 close $regf;
1298
1299 rename "$path~", $path;
1300 }
1301
1302 #############################################################################
1303 # bcd stuff
1304
1305 # human-readable alises for GUID object identifiers
1306 our %bcd_objects = (
1307 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1308 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1309 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1310 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1311 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1312 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1313 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1314 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1315 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1316 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1317 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1318 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1319 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1320 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1321 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1322 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1323 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1324 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1325 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1326 );
1327
1328 # default types
1329 our %bcd_object_types = (
1330 '{fwbootmgr}' => 0x10100001,
1331 '{bootmgr}' => 0x10100002,
1332 '{memdiag}' => 0x10200005,
1333 '{ntldr}' => 0x10300006,
1334 '{badmemory}' => 0x20100000,
1335 '{dbgsettings}' => 0x20100000,
1336 '{emssettings}' => 0x20100000,
1337 '{globalsettings}' => 0x20100000,
1338 '{bootloadersettings}' => 0x20200003,
1339 '{hypervisorsettings}' => 0x20200003,
1340 '{kerneldbgsettings}' => 0x20200003,
1341 '{resumeloadersettings}' => 0x20200004,
1342 '{ramdiskoptions}' => 0x30000000,
1343 );
1344
1345 # object types
1346 our %bcd_types = (
1347 0x10100001 => 'application::fwbootmgr',
1348 0x10100002 => 'application::bootmgr',
1349 0x10200003 => 'application::osloader',
1350 0x10200004 => 'application::resume',
1351 0x10100005 => 'application::memdiag',
1352 0x10100006 => 'application::ntldr',
1353 0x10100007 => 'application::setupldr',
1354 0x10400008 => 'application::bootsector',
1355 0x10400009 => 'application::startup',
1356 0x1020000a => 'application::bootapp',
1357 0x20100000 => 'settings',
1358 0x20200001 => 'inherit::fwbootmgr',
1359 0x20200002 => 'inherit::bootmgr',
1360 0x20200003 => 'inherit::osloader',
1361 0x20200004 => 'inherit::resume',
1362 0x20200005 => 'inherit::memdiag',
1363 0x20200006 => 'inherit::ntldr',
1364 0x20200007 => 'inherit::setupldr',
1365 0x20200008 => 'inherit::bootsector',
1366 0x20200009 => 'inherit::startup',
1367 0x20300000 => 'inherit::device',
1368 0x30000000 => 'device',
1369 );
1370
1371 our %rbcd_objects = reverse %bcd_objects;
1372
1373 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1374
1375 sub dec_guid($) {
1376 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1377 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1378 }
1379
1380 sub enc_guid($) {
1381 $_[0] =~ /^$RE_GUID\z/o
1382 or return;
1383
1384 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1385 }
1386
1387 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1388 sub dec_wguid($) {
1389 my $guid = "{" . (dec_guid shift) . "}";
1390
1391 $bcd_objects{$guid} // $guid
1392 }
1393
1394 sub enc_wguid($) {
1395 my ($guid) = @_;
1396
1397 if (my $alias = $rbcd_objects{$guid}) {
1398 $guid = $alias;
1399 }
1400
1401 $guid =~ /^\{($RE_GUID)\}\z/o
1402 or return;
1403
1404 enc_guid $1
1405 }
1406
1407 sub BCDE_CLASS () { 0xf0000000 }
1408 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1409 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1410 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1411 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1412
1413 sub BCDE_FORMAT () { 0x0f000000 }
1414 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1415 sub BCDE_FORMAT_STRING () { 0x02000000 }
1416 sub BCDE_FORMAT_GUID () { 0x03000000 }
1417 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1418 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1419 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1420 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1421
1422 sub enc_integer($) {
1423 my $value = shift;
1424 $value = oct $value if $value =~ /^0[bBxX]/;
1425 unpack "H*", pack "Q<", $value
1426 }
1427
1428 sub enc_device($$);
1429 sub dec_device($$);
1430
1431 our %bcde_dec = (
1432 BCDE_FORMAT_DEVICE , \&dec_device,
1433 # # for round-trip verification
1434 # BCDE_FORMAT_DEVICE , sub {
1435 # my $dev = dec_device $_[0];
1436 # $_[0] eq enc_device $dev
1437 # or die "bcd device decoding does not round trip for $_[0]\n";
1438 # $dev
1439 # },
1440 BCDE_FORMAT_STRING , sub { shift },
1441 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1442 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1443 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1444 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1445 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1446 );
1447
1448 our %bcde_enc = (
1449 BCDE_FORMAT_DEVICE , sub { binary => enc_device $_[0], $_[1] },
1450 BCDE_FORMAT_STRING , sub { sz => shift },
1451 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1452 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1453 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1454 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1455 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1456 );
1457
1458 # BCD Elements
1459 our %bcde_byclass = (
1460 any => {
1461 0x11000001 => 'device',
1462 0x12000002 => 'path',
1463 0x12000004 => 'description',
1464 0x12000005 => 'locale',
1465 0x14000006 => 'inherit',
1466 0x15000007 => 'truncatememory',
1467 0x14000008 => 'recoverysequence',
1468 0x16000009 => 'recoveryenabled',
1469 0x1700000a => 'badmemorylist',
1470 0x1600000b => 'badmemoryaccess',
1471 0x1500000c => 'firstmegabytepolicy',
1472 0x1500000d => 'relocatephysical',
1473 0x1500000e => 'avoidlowmemory',
1474 0x1600000f => 'traditionalkseg',
1475 0x16000010 => 'bootdebug',
1476 0x15000011 => 'debugtype',
1477 0x15000012 => 'debugaddress',
1478 0x15000013 => 'debugport',
1479 0x15000014 => 'baudrate',
1480 0x15000015 => 'channel',
1481 0x12000016 => 'targetname',
1482 0x16000017 => 'noumex',
1483 0x15000018 => 'debugstart',
1484 0x12000019 => 'busparams',
1485 0x1500001a => 'hostip',
1486 0x1500001b => 'port',
1487 0x1600001c => 'dhcp',
1488 0x1200001d => 'key',
1489 0x1600001e => 'vm',
1490 0x16000020 => 'bootems',
1491 0x15000022 => 'emsport',
1492 0x15000023 => 'emsbaudrate',
1493 0x12000030 => 'loadoptions',
1494 0x16000040 => 'advancedoptions',
1495 0x16000041 => 'optionsedit',
1496 0x15000042 => 'keyringaddress',
1497 0x11000043 => 'bootstatdevice',
1498 0x12000044 => 'bootstatfilepath',
1499 0x16000045 => 'preservebootstat',
1500 0x16000046 => 'graphicsmodedisabled',
1501 0x15000047 => 'configaccesspolicy',
1502 0x16000048 => 'nointegritychecks',
1503 0x16000049 => 'testsigning',
1504 0x1200004a => 'fontpath',
1505 0x1500004b => 'integrityservices',
1506 0x1500004c => 'volumebandid',
1507 0x16000050 => 'extendedinput',
1508 0x15000051 => 'initialconsoleinput',
1509 0x15000052 => 'graphicsresolution',
1510 0x16000053 => 'restartonfailure',
1511 0x16000054 => 'highestmode',
1512 0x16000060 => 'isolatedcontext',
1513 0x15000065 => 'displaymessage',
1514 0x15000066 => 'displaymessageoverride',
1515 0x16000068 => 'nobootuxtext',
1516 0x16000069 => 'nobootuxprogress',
1517 0x1600006a => 'nobootuxfade',
1518 0x1600006b => 'bootuxreservepooldebug',
1519 0x1600006c => 'bootuxdisabled',
1520 0x1500006d => 'bootuxfadeframes',
1521 0x1600006e => 'bootuxdumpstats',
1522 0x1600006f => 'bootuxshowstats',
1523 0x16000071 => 'multibootsystem',
1524 0x16000072 => 'nokeyboard',
1525 0x15000073 => 'aliaswindowskey',
1526 0x16000074 => 'bootshutdowndisabled',
1527 0x15000075 => 'performancefrequency',
1528 0x15000076 => 'securebootrawpolicy',
1529 0x17000077 => 'allowedinmemorysettings',
1530 0x15000079 => 'bootuxtransitiontime',
1531 0x1600007a => 'mobilegraphics',
1532 0x1600007b => 'forcefipscrypto',
1533 0x1500007d => 'booterrorux',
1534 0x1600007e => 'flightsigning',
1535 0x1500007f => 'measuredbootlogformat',
1536 0x15000080 => 'displayrotation',
1537 0x15000081 => 'logcontrol',
1538 0x16000082 => 'nofirmwaresync',
1539 0x11000084 => 'windowssyspart',
1540 0x16000087 => 'numlock',
1541 0x26000202 => 'skipffumode',
1542 0x26000203 => 'forceffumode',
1543 0x25000510 => 'chargethreshold',
1544 0x26000512 => 'offmodecharging',
1545 0x25000aaa => 'bootflow',
1546 0x45000001 => 'devicetype',
1547 0x42000002 => 'applicationrelativepath',
1548 0x42000003 => 'ramdiskdevicerelativepath',
1549 0x46000004 => 'omitosloaderelements',
1550 0x47000006 => 'elementstomigrate',
1551 0x46000010 => 'recoveryos',
1552 },
1553 bootapp => {
1554 0x26000145 => 'enablebootdebugpolicy',
1555 0x26000146 => 'enablebootorderclean',
1556 0x26000147 => 'enabledeviceid',
1557 0x26000148 => 'enableffuloader',
1558 0x26000149 => 'enableiuloader',
1559 0x2600014a => 'enablemassstorage',
1560 0x2600014b => 'enablerpmbprovisioning',
1561 0x2600014c => 'enablesecurebootpolicy',
1562 0x2600014d => 'enablestartcharge',
1563 0x2600014e => 'enableresettpm',
1564 },
1565 bootmgr => {
1566 0x24000001 => 'displayorder',
1567 0x24000002 => 'bootsequence',
1568 0x23000003 => 'default',
1569 0x25000004 => 'timeout',
1570 0x26000005 => 'resume',
1571 0x23000006 => 'resumeobject',
1572 0x24000007 => 'startupsequence',
1573 0x24000010 => 'toolsdisplayorder',
1574 0x26000020 => 'displaybootmenu',
1575 0x26000021 => 'noerrordisplay',
1576 0x21000022 => 'bcddevice',
1577 0x22000023 => 'bcdfilepath',
1578 0x26000024 => 'hormenabled',
1579 0x26000025 => 'hiberboot',
1580 0x22000026 => 'passwordoverride',
1581 0x22000027 => 'pinpassphraseoverride',
1582 0x26000028 => 'processcustomactionsfirst',
1583 0x27000030 => 'customactions',
1584 0x26000031 => 'persistbootsequence',
1585 0x26000032 => 'skipstartupsequence',
1586 0x22000040 => 'fverecoveryurl',
1587 0x22000041 => 'fverecoverymessage',
1588 },
1589 device => {
1590 0x35000001 => 'ramdiskimageoffset',
1591 0x35000002 => 'ramdisktftpclientport',
1592 0x31000003 => 'ramdisksdidevice',
1593 0x32000004 => 'ramdisksdipath',
1594 0x35000005 => 'ramdiskimagelength',
1595 0x36000006 => 'exportascd',
1596 0x35000007 => 'ramdisktftpblocksize',
1597 0x35000008 => 'ramdisktftpwindowsize',
1598 0x36000009 => 'ramdiskmcenabled',
1599 0x3600000a => 'ramdiskmctftpfallback',
1600 0x3600000b => 'ramdisktftpvarwindow',
1601 },
1602 memdiag => {
1603 0x25000001 => 'passcount',
1604 0x25000002 => 'testmix',
1605 0x25000003 => 'failurecount',
1606 0x26000003 => 'cacheenable',
1607 0x25000004 => 'testtofail',
1608 0x26000004 => 'failuresenabled',
1609 0x25000005 => 'stridefailcount',
1610 0x26000005 => 'cacheenable',
1611 0x25000006 => 'invcfailcount',
1612 0x25000007 => 'matsfailcount',
1613 0x25000008 => 'randfailcount',
1614 0x25000009 => 'chckrfailcount',
1615 },
1616 ntldr => {
1617 0x22000001 => 'bpbstring',
1618 },
1619 osloader => {
1620 0x21000001 => 'osdevice',
1621 0x22000002 => 'systemroot',
1622 0x23000003 => 'resumeobject',
1623 0x26000004 => 'stampdisks',
1624 0x26000010 => 'detecthal',
1625 0x22000011 => 'kernel',
1626 0x22000012 => 'hal',
1627 0x22000013 => 'dbgtransport',
1628 0x25000020 => 'nx',
1629 0x25000021 => 'pae',
1630 0x26000022 => 'winpe',
1631 0x26000024 => 'nocrashautoreboot',
1632 0x26000025 => 'lastknowngood',
1633 0x26000026 => 'oslnointegritychecks',
1634 0x26000027 => 'osltestsigning',
1635 0x26000030 => 'nolowmem',
1636 0x25000031 => 'removememory',
1637 0x25000032 => 'increaseuserva',
1638 0x25000033 => 'perfmem',
1639 0x26000040 => 'vga',
1640 0x26000041 => 'quietboot',
1641 0x26000042 => 'novesa',
1642 0x26000043 => 'novga',
1643 0x25000050 => 'clustermodeaddressing',
1644 0x26000051 => 'usephysicaldestination',
1645 0x25000052 => 'restrictapiccluster',
1646 0x22000053 => 'evstore',
1647 0x26000054 => 'uselegacyapicmode',
1648 0x26000060 => 'onecpu',
1649 0x25000061 => 'numproc',
1650 0x26000062 => 'maxproc',
1651 0x25000063 => 'configflags',
1652 0x26000064 => 'maxgroup',
1653 0x26000065 => 'groupaware',
1654 0x25000066 => 'groupsize',
1655 0x26000070 => 'usefirmwarepcisettings',
1656 0x25000071 => 'msi',
1657 0x25000072 => 'pciexpress',
1658 0x25000080 => 'safeboot',
1659 0x26000081 => 'safebootalternateshell',
1660 0x26000090 => 'bootlog',
1661 0x26000091 => 'sos',
1662 0x260000a0 => 'debug',
1663 0x260000a1 => 'halbreakpoint',
1664 0x260000a2 => 'useplatformclock',
1665 0x260000a3 => 'forcelegacyplatform',
1666 0x260000a4 => 'useplatformtick',
1667 0x260000a5 => 'disabledynamictick',
1668 0x250000a6 => 'tscsyncpolicy',
1669 0x260000b0 => 'ems',
1670 0x250000c0 => 'forcefailure',
1671 0x250000c1 => 'driverloadfailurepolicy',
1672 0x250000c2 => 'bootmenupolicy',
1673 0x260000c3 => 'onetimeadvancedoptions',
1674 0x260000c4 => 'onetimeoptionsedit',
1675 0x250000e0 => 'bootstatuspolicy',
1676 0x260000e1 => 'disableelamdrivers',
1677 0x250000f0 => 'hypervisorlaunchtype',
1678 0x220000f1 => 'hypervisorpath',
1679 0x260000f2 => 'hypervisordebug',
1680 0x250000f3 => 'hypervisordebugtype',
1681 0x250000f4 => 'hypervisordebugport',
1682 0x250000f5 => 'hypervisorbaudrate',
1683 0x250000f6 => 'hypervisorchannel',
1684 0x250000f7 => 'bootux',
1685 0x260000f8 => 'hypervisordisableslat',
1686 0x220000f9 => 'hypervisorbusparams',
1687 0x250000fa => 'hypervisornumproc',
1688 0x250000fb => 'hypervisorrootprocpernode',
1689 0x260000fc => 'hypervisoruselargevtlb',
1690 0x250000fd => 'hypervisorhostip',
1691 0x250000fe => 'hypervisorhostport',
1692 0x250000ff => 'hypervisordebugpages',
1693 0x25000100 => 'tpmbootentropy',
1694 0x22000110 => 'hypervisorusekey',
1695 0x22000112 => 'hypervisorproductskutype',
1696 0x25000113 => 'hypervisorrootproc',
1697 0x26000114 => 'hypervisordhcp',
1698 0x25000115 => 'hypervisoriommupolicy',
1699 0x26000116 => 'hypervisorusevapic',
1700 0x22000117 => 'hypervisorloadoptions',
1701 0x25000118 => 'hypervisormsrfilterpolicy',
1702 0x25000119 => 'hypervisormmionxpolicy',
1703 0x2500011a => 'hypervisorschedulertype',
1704 0x25000120 => 'xsavepolicy',
1705 0x25000121 => 'xsaveaddfeature0',
1706 0x25000122 => 'xsaveaddfeature1',
1707 0x25000123 => 'xsaveaddfeature2',
1708 0x25000124 => 'xsaveaddfeature3',
1709 0x25000125 => 'xsaveaddfeature4',
1710 0x25000126 => 'xsaveaddfeature5',
1711 0x25000127 => 'xsaveaddfeature6',
1712 0x25000128 => 'xsaveaddfeature7',
1713 0x25000129 => 'xsaveremovefeature',
1714 0x2500012a => 'xsaveprocessorsmask',
1715 0x2500012b => 'xsavedisable',
1716 0x2500012c => 'kerneldebugtype',
1717 0x2200012d => 'kernelbusparams',
1718 0x2500012e => 'kerneldebugaddress',
1719 0x2500012f => 'kerneldebugport',
1720 0x25000130 => 'claimedtpmcounter',
1721 0x25000131 => 'kernelchannel',
1722 0x22000132 => 'kerneltargetname',
1723 0x25000133 => 'kernelhostip',
1724 0x25000134 => 'kernelport',
1725 0x26000135 => 'kerneldhcp',
1726 0x22000136 => 'kernelkey',
1727 0x22000137 => 'imchivename',
1728 0x21000138 => 'imcdevice',
1729 0x25000139 => 'kernelbaudrate',
1730 0x22000140 => 'mfgmode',
1731 0x26000141 => 'event',
1732 0x25000142 => 'vsmlaunchtype',
1733 0x25000144 => 'hypervisorenforcedcodeintegrity',
1734 0x21000150 => 'systemdatadevice',
1735 0x21000151 => 'osarcdevice',
1736 0x21000153 => 'osdatadevice',
1737 0x21000154 => 'bspdevice',
1738 0x21000155 => 'bspfilepath',
1739 },
1740 resume => {
1741 0x21000001 => 'filedevice',
1742 0x22000002 => 'filepath',
1743 0x26000003 => 'customsettings',
1744 0x26000004 => 'pae',
1745 0x21000005 => 'associatedosdevice',
1746 0x26000006 => 'debugoptionenabled',
1747 0x25000007 => 'bootux',
1748 0x25000008 => 'bootmenupolicy',
1749 0x26000024 => 'hormenabled',
1750 },
1751 startup => {
1752 0x26000001 => 'pxesoftreboot',
1753 0x22000002 => 'applicationname',
1754 },
1755 );
1756
1757 # mask, value => class
1758 our @bcde_typeclass = (
1759 [0x00000000, 0x00000000, 'any'],
1760 [0xf00fffff, 0x1000000a, 'bootapp'],
1761 [0xf0ffffff, 0x2020000a, 'bootapp'],
1762 [0xf00fffff, 0x10000001, 'bootmgr'],
1763 [0xf00fffff, 0x10000002, 'bootmgr'],
1764 [0xf0ffffff, 0x20200001, 'bootmgr'],
1765 [0xf0ffffff, 0x20200002, 'bootmgr'],
1766 [0xf0f00000, 0x20300000, 'device'],
1767 [0xf0000000, 0x30000000, 'device'],
1768 [0xf00fffff, 0x10000005, 'memdiag'],
1769 [0xf0ffffff, 0x20200005, 'memdiag'],
1770 [0xf00fffff, 0x10000006, 'ntldr'],
1771 [0xf00fffff, 0x10000007, 'ntldr'],
1772 [0xf0ffffff, 0x20200006, 'ntldr'],
1773 [0xf0ffffff, 0x20200007, 'ntldr'],
1774 [0xf00fffff, 0x10000003, 'osloader'],
1775 [0xf0ffffff, 0x20200003, 'osloader'],
1776 [0xf00fffff, 0x10000004, 'resume'],
1777 [0xf0ffffff, 0x20200004, 'resume'],
1778 [0xf00fffff, 0x10000009, 'startup'],
1779 [0xf0ffffff, 0x20200009, 'startup'],
1780 );
1781
1782 our %rbcde_byclass;
1783
1784 while (my ($k, $v) = each %bcde_byclass) {
1785 $rbcde_byclass{$k} = { reverse %$v };
1786 }
1787
1788 # decodes (numerical elem, type) to name
1789 sub dec_bcde_id($$) {
1790 for my $class (@bcde_typeclass) {
1791 if (($_[1] & $class->[0]) == $class->[1]) {
1792 if (my $id = $bcde_byclass{$class->[2]}{$_[0]}) {
1793 return $id;
1794 }
1795 }
1796 }
1797
1798 sprintf "custom:%08x", $_[0]
1799 }
1800
1801 # encodes (elem as name, type)
1802 sub enc_bcde_id($$) {
1803 $_[0] =~ /^custom:(?:0x)?([0-9a-fA-F]{8}$)/
1804 and return hex $1;
1805
1806 for my $class (@bcde_typeclass) {
1807 if (($_[1] & $class->[0]) == $class->[1]) {
1808 if (my $value = $rbcde_byclass{$class->[2]}{$_[0]}) {
1809 return $value;
1810 }
1811 }
1812 }
1813
1814 undef
1815 }
1816
1817 # decode/encode bcd device element - the horror, no documentaion
1818 # whatsoever, supercomplex, superinconsistent.
1819
1820 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1821 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1822 our @part_type = qw(gpt mbr raw);
1823
1824 our $NULL_DEVICE = "\x00" x 16;
1825
1826 # biggest bitch to decode, ever
1827 # this decoded a device portion after the GUID
1828 sub dec_device_($$);
1829 sub dec_device_($$) {
1830 my ($device, $type) = @_;
1831
1832 my $res;
1833
1834 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1835
1836 $pad == 0
1837 or die "non-zero reserved field in device descriptor\n";
1838
1839 if ($length == 0 && $type == 0 && $flags == 0) {
1840 return ("null", $device);
1841 }
1842
1843 $length >= 16
1844 or die "device element size too small ($length)\n";
1845
1846 $type = $dev_type[$type] // die "$type: unknown device type\n";
1847 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1848
1849 $res .= $type;
1850 $res .= sprintf "<%x>", $flags if $flags;
1851
1852 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1853
1854 $length == 4 * 4 + length $device
1855 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1856
1857 my $dec_path = sub {
1858 my ($path, $error) = @_;
1859
1860 $path =~ /^((?:..)*)\x00\x00\z/s
1861 or die "$error\n";
1862
1863 $path = Encode::decode "UTF-16LE", $1;
1864
1865 $path
1866 };
1867
1868 if ($type eq "partition" or $type eq "legacypartition") {
1869 my $partdata = substr $device, 0, 16, "";
1870 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1871
1872 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1873 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1874
1875 my $diskid = substr $device, 0, 16, "";
1876
1877 $diskid = $parttype eq "gpt"
1878 ? dec_guid substr $diskid, 0, 16
1879 : sprintf "%08x", unpack "V", $diskid;
1880
1881 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1882 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1883 : unpack "L<", $partdata; # partition number, one-based
1884
1885 (my $parent, $device) = dec_device_ $device, $type;
1886
1887 $res .= "=";
1888 $res .= "<$parent>";
1889 $res .= ",$blocktype,$parttype,$diskid,$partid";
1890
1891 # PartitionType (gpt, mbr, raw)
1892 # guid | partsig | disknumber
1893
1894 } elsif ($type eq "boot") {
1895 $device =~ s/^\x00{56}\z//
1896 or die "boot device type with extra data not supported\n";
1897
1898 } elsif ($type eq "block") {
1899 my $blocktype = unpack "V", substr $device, 0, 4, "";
1900
1901 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1902
1903 # decode a "file path" structure
1904 my $dec_file = sub {
1905 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1906
1907 my $path = substr $device, 0, $flen - 12, "";
1908
1909 $fver == 1
1910 or die "unsupported file descriptor version '$fver'\n";
1911
1912 $ftype == 5
1913 or die "unsupported file descriptor path type '$type'\n";
1914
1915 (my $parent, $path) = dec_device_ $path, $type;
1916
1917 $path = $dec_path->($path, "file device without path");
1918
1919 ($parent, $path)
1920 };
1921
1922 if ($blocktype eq "file") {
1923 my ($parent, $path) = $dec_file->();
1924
1925 $res .= "=file,<$parent>,$path";
1926
1927 } elsif ($blocktype eq "vhd") {
1928 $device =~ s/^\x00{20}//s
1929 or die "virtualdisk has non-zero fields I don't understand\n";
1930
1931 (my $parent, $device) = dec_device_ $device, $type;
1932
1933 $res .= "=vhd,<$parent>";
1934
1935 } elsif ($blocktype eq "ramdisk") {
1936 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1937 my ($subdev, $path) = $dec_file->();
1938
1939 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1940
1941 } else {
1942 die "unsupported block type '$blocktype'\n";
1943 }
1944
1945 } elsif ($type eq "locate") {
1946 # mode, bcde_id, unknown, string
1947 # we assume locate has _either_ an element id _or_ a path, but not both
1948
1949 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1950
1951 if ($parent) {
1952 # not sure why this is an offset - it must come after the path
1953 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1954 ($parent, my $tail) = dec_device_ $parent, $type;
1955 0 == length $tail
1956 or die "trailing data after locate device parent\n";
1957 } else {
1958 $parent = "null";
1959 }
1960
1961 my $path = $device; $device = "";
1962 $path = $dec_path->($path, "device locate mode without path");
1963
1964 $res .= "=<$parent>,";
1965
1966 if ($mode == 0) { # "Element"
1967 !length $path
1968 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1969
1970 $elem = dec_bcde_id $elem, $type;
1971 $res .= "element,$elem";
1972
1973 } elsif ($mode == 1) { # "String"
1974 !$elem
1975 or die "device locate mode 1 having non-zero element\n";
1976
1977 $res .= "path,$path";
1978 } else {
1979 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1980 die "device locate mode '$mode' not supported\n";
1981 }
1982
1983 } elsif ($type eq "vmbus") {
1984 my $type = dec_guid substr $device, 0, 16, "";
1985 my $instance = dec_guid substr $device, 0, 16, "";
1986
1987 $device =~ s/^\x00{24}\z//
1988 or die "vmbus has non-zero fields I don't understand\n";
1989
1990 $res .= "=$type,$instance";
1991
1992 } else {
1993 die "unsupported device type '$type'\n";
1994 }
1995
1996 warn "unexpected trailing device data($res), " . unpack "H*",$device
1997 if length $device;
1998 #length $device
1999 # and die "unexpected trailing device data\n";
2000
2001 ($res, $tail)
2002 }
2003
2004 # decode a full binary BCD device descriptor
2005 sub dec_device($$) {
2006 my ($device, $type) = @_;
2007
2008 $device = pack "H*", $device;
2009
2010 my $guid = dec_guid substr $device, 0, 16, "";
2011 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
2012 ? "" : "{$guid}";
2013
2014 eval {
2015 my ($dev, $tail) = dec_device_ $device, $type;
2016
2017 $tail eq ""
2018 or die "unsupported trailing data after device descriptor\n";
2019
2020 "$guid$dev"
2021 # } // scalar ((warn $@), "$guid$fallback")
2022 } // ($guid . "binary=" . unpack "H*", $device)
2023 }
2024
2025 sub indexof($@) {
2026 my $value = shift;
2027
2028 for (0 .. $#_) {
2029 $value eq $_[$_]
2030 and return $_;
2031 }
2032
2033 undef
2034 }
2035
2036 # encode the device portion after the GUID
2037 sub enc_device_($$);
2038 sub enc_device_($$) {
2039 my ($device, $type) = @_;
2040
2041 my $enc_path = sub {
2042 my $path = shift;
2043 $path =~ s/\//\\/g;
2044 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
2045 };
2046
2047 my $enc_file = sub {
2048 my ($parent, $path) = @_; # parent and path must already be encoded
2049
2050 $path = $parent . $path;
2051
2052 # fver 1, ftype 5
2053 pack "VVVa*", 1, 12 + length $path, 5, $path
2054 };
2055
2056 my $parse_path = sub {
2057 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
2058 or die "$_: invalid path\n";
2059
2060 $enc_path->($1)
2061 };
2062
2063 my $parse_parent = sub {
2064 my $parent;
2065
2066 if (s/^<//) {
2067 ($parent, $_) = enc_device_ $_, $type;
2068 s/^>//
2069 or die "$device: syntax error: parent device not followed by '>'\n";
2070 } else {
2071 $parent = $NULL_DEVICE;
2072 }
2073
2074 $parent
2075 };
2076
2077 for ($device) {
2078 s/^([a-z]+)//
2079 or die "$_: device does not start with type string\n";
2080
2081 my $type = $1;
2082 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
2083 my $payload;
2084
2085 if ($type eq "binary") {
2086 s/^=([0-9a-fA-F]+)//
2087 or die "binary type must have a hex string argument\n";
2088
2089 $payload = pack "H*", $1;
2090
2091 } elsif ($type eq "null") {
2092 return ($NULL_DEVICE, $_);
2093
2094 } elsif ($type eq "boot") {
2095 $payload = "\x00" x 56;
2096
2097 } elsif ($type eq "partition" or $type eq "legacypartition") {
2098 s/^=//
2099 or die "$_: missing '=' after $type\n";
2100
2101 my $parent = $parse_parent->();
2102
2103 s/^,//
2104 or die "$_: comma missing after partition parent device\n";
2105
2106 s/^([a-z]+),//
2107 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
2108 my $blocktype = $1;
2109
2110 s/^([a-z]+),//
2111 or die "$_: partition block type not followed by partiton type\n";
2112 my $parttype = $1;
2113
2114 my ($partdata, $diskdata);
2115
2116 if ($parttype eq "mbr") {
2117 s/^([0-9a-f]{8}),//i
2118 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
2119 $diskdata = pack "Vx12", hex $1;
2120
2121 s/^([0-9]+)//
2122 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
2123
2124 # the following works for both 64 bit offset and 32 bit partno
2125 $partdata = pack "Q< x8", $1;
2126
2127 } elsif ($parttype eq "gpt") {
2128 s/^($RE_GUID),//
2129 or die "$_: partition disk guid missing or malformed\n";
2130 $diskdata = enc_guid $1;
2131
2132 s/^($RE_GUID)//
2133 or die "$_: partition guid missing or malformed\n";
2134 $partdata = enc_guid $1;
2135
2136 } elsif ($parttype eq "raw") {
2137 s/^([0-9]+)//
2138 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2139
2140 $partdata = pack "L< x12", $1;
2141
2142 } else {
2143 die "$parttype: partition type not supported\n";
2144 }
2145
2146 $payload = pack "a16 L< L< a16 a*",
2147 $partdata,
2148 (indexof $blocktype, @block_type),
2149 (indexof $parttype, @part_type),
2150 $diskdata,
2151 $parent;
2152
2153 } elsif ($type eq "locate") {
2154 s/^=//
2155 or die "$_: missing '=' after $type\n";
2156
2157 my ($mode, $elem, $path);
2158
2159 my $parent = $parse_parent->();
2160
2161 s/^,//
2162 or die "$_: missing comma after locate parent device\n";
2163
2164 if (s/^element,//) {
2165 s/^([0-9a-z:]+)//i
2166 or die "$_ locate element must be either name or 8-digit hex id\n";
2167 $elem = enc_bcde_id $1, $type;
2168 $mode = 0;
2169 $path = $enc_path->("");
2170
2171 } elsif (s/^path,//) {
2172 $mode = 1;
2173 $path = $parse_path->();
2174
2175 } else {
2176 die "$_ second locate argument must be subtype (either element or path)\n";
2177 }
2178
2179 if ($parent ne $NULL_DEVICE) {
2180 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2181 } else {
2182 $parent = 0;
2183 }
2184
2185 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2186
2187 } elsif ($type eq "block") {
2188 s/^=//
2189 or die "$_: missing '=' after $type\n";
2190
2191 s/^([a-z]+),//
2192 or die "$_: block device does not start with block type (e.g. disk)\n";
2193 my $blocktype = $1;
2194
2195 my $blockdata;
2196
2197 if ($blocktype eq "file") {
2198 my $parent = $parse_parent->();
2199 s/^,// or die "$_: comma missing after file block device parent\n";
2200 my $path = $parse_path->();
2201
2202 $blockdata = $enc_file->($parent, $path);
2203
2204 } elsif ($blocktype eq "vhd") {
2205 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2206 $blockdata .= $parse_parent->();
2207
2208 } elsif ($blocktype eq "ramdisk") {
2209 my $parent = $parse_parent->();
2210
2211 s/^,(\d+),(\d+),(\d+),//a
2212 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2213
2214 my ($base, $size, $offset) = ($1, $2, $3);
2215
2216 my $path = $parse_path->();
2217
2218 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2219
2220 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2221 # this is guesswork
2222 s/^(\d+)//a
2223 or die "$_: missing device number for cdrom\n";
2224 $blockdata = pack "V", $1;
2225
2226 } else {
2227 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2228 }
2229
2230 $payload = pack "Va*",
2231 (indexof $blocktype, @block_type),
2232 $blockdata;
2233
2234 } elsif ($type eq "vmbus") {
2235 s/^=($RE_GUID)//
2236 or die "$_: malformed or missing vmbus interface type guid\n";
2237 my $type = enc_guid $1;
2238 s/^,($RE_GUID)//
2239 or die "$_: malformed or missing vmbus interface instance guid\n";
2240 my $instance = enc_guid $1;
2241
2242 $payload = pack "a16a16x24", $type, $instance;
2243
2244 } else {
2245 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2246 }
2247
2248 return (
2249 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2250 $_
2251 );
2252 }
2253 }
2254
2255 # encode a full binary BCD device descriptor
2256 sub enc_device($$) {
2257 my ($device, $type) = @_;
2258
2259 my $guid = "\x00" x 16;
2260
2261 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2262 $guid = enc_guid $1
2263 or die "$device: does not start with valid guid\n";
2264 }
2265
2266 my ($descriptor, $tail) = enc_device_ $device, $type;
2267
2268 length $tail
2269 and die "$device: garbage after device descriptor\n";
2270
2271 unpack "H*", $guid . $descriptor
2272 }
2273
2274 # decode a registry hive into the BCD structure used by pbcdedit
2275 sub bcd_decode {
2276 my ($hive) = @_;
2277
2278 my %bcd;
2279
2280 my $objects = $hive->[1][1]{Objects}[1];
2281
2282 while (my ($k, $v) = each %$objects) {
2283 my %kv;
2284 $v = $v->[1];
2285
2286 $k = $bcd_objects{$k} // $k;
2287
2288 my $type = $v->{Description}[0]{Type}[1];
2289
2290 if ($type != $bcd_object_types{$k}) {
2291 $kv{type} = $bcd_types{$type} // sprintf "0x%08x", $type;
2292 }
2293
2294 my $elems = $v->{Elements}[1];
2295
2296 while (my ($k, $v) = each %$elems) {
2297 my $k = hex $k;
2298
2299 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1], $type);
2300 my $k = dec_bcde_id $k, $type;
2301
2302 $kv{$k} = $v;
2303 }
2304
2305 $bcd{$k} = \%kv;
2306 }
2307
2308 $bcd{meta} = { version => $JSON_VERSION };
2309
2310 \%bcd
2311 }
2312
2313 # encode a pbcdedit structure into a registry hive
2314 sub bcd_encode {
2315 my ($bcd) = @_;
2316
2317 if (my $meta = $bcd->{meta}) {
2318 $meta->{version} eq $JSON_VERSION
2319 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2320 }
2321
2322 my %objects;
2323 my %rbcd_types = reverse %bcd_types;
2324
2325 while (my ($k, $v) = each %$bcd) {
2326 my %kv;
2327
2328 next if $k eq "meta";
2329
2330 $k = lc $k; # I know you windows types!
2331
2332 my $type = $v->{type};
2333
2334 if ($type) {
2335 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2336 ? hex $type
2337 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2338 }
2339
2340 my $guid = enc_wguid $k
2341 or die "$k: invalid bcd object identifier\n";
2342
2343 # default type if not given
2344 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2345
2346 my %elem;
2347
2348 while (my ($k, $v) = each %$v) {
2349 next if $k eq "type";
2350
2351 $k = (enc_bcde_id $k, $type) // die "$k: invalid bcde element name or id\n";
2352 $elem{sprintf "%08x", $k} = [{
2353 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2354 }];
2355 }
2356
2357 $guid = dec_guid $guid;
2358
2359 $objects{"{$guid}"} = [undef, {
2360 Description => [{ Type => [dword => $type] }],
2361 Elements => [undef, \%elem],
2362 }];
2363 }
2364
2365 [NewStoreRoot => [undef, {
2366 Description => [{
2367 KeyName => [sz => "BCD00000001"],
2368 System => [dword => 1],
2369 pbcdedit => [sz => $VERSION],
2370 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2371 }],
2372 Objects => [undef, \%objects],
2373 }]]
2374 }
2375
2376 #############################################################################
2377 # edit instructions
2378
2379 sub bcd_edit_eval {
2380 package pbcdedit;
2381
2382 our ($PATH, $BCD, $DEFAULT);
2383
2384 eval shift;
2385 die "$@" if $@;
2386 }
2387
2388 sub bcd_edit {
2389 my ($path, $bcd, @insns) = @_;
2390
2391 my $default = $bcd->{"{bootmgr}"}{default};
2392
2393 # prepare "officially visible" variables
2394 local $pbcdedit::PATH = $path;
2395 local $pbcdedit::BCD = $bcd;
2396 local $pbcdedit::DEFAULT = $default;
2397
2398 while (@insns) {
2399 my $insn = shift @insns;
2400
2401 if ($insn eq "get") {
2402 my $object = shift @insns;
2403 my $elem = shift @insns;
2404
2405 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2406
2407 print $bcd->{$object}{$elem}, "\n";
2408
2409 } elsif ($insn eq "set") {
2410 my $object = shift @insns;
2411 my $elem = shift @insns;
2412 my $value = shift @insns;
2413
2414 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2415
2416 $bcd->{$object}{$elem} = $value;
2417
2418 } elsif ($insn eq "eval") {
2419 my $perl = shift @insns;
2420 bcd_edit_eval "#line 1 'eval'\n$perl";
2421
2422 } elsif ($insn eq "do") {
2423 my $path = shift @insns;
2424 my $file = file_load $path;
2425 bcd_edit_eval "#line 1 '$path'\n$file";
2426
2427 } else {
2428 die "$insn: not a recognized instruction for edit/parse\n";
2429 }
2430 }
2431
2432 }
2433
2434 #############################################################################
2435 # other utilities
2436
2437 # json to stdout
2438 sub prjson($) {
2439 print $json_coder->encode ($_[0]);
2440 }
2441
2442 # json from stdin
2443 sub rdjson() {
2444 my $json;
2445 1 while read STDIN, $json, 65536, length $json;
2446 $json_coder->decode ($json)
2447 }
2448
2449 sub lsblk() {
2450 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,MAJ:MIN,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2451
2452 for my $dev (@{ $lsblk->{blockdevices} }) {
2453 if ($dev->{type} eq "part") {
2454 if ($dev->{pttype} eq "gpt") {
2455 $dev->{bcd_device} = "partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}";
2456 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2457 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2458 my ($diskid, $partno) = ($1, hex $2);
2459 $dev->{bcd_legacy_device} = "legacypartition=<null>,harddisk,mbr,$diskid,$partno";
2460 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2461 my $start = 512 * readline $fh;
2462 $dev->{bcd_device} = "partition=<null>,harddisk,mbr,$diskid,$start";
2463 }
2464 }
2465 }
2466 }
2467 }
2468
2469 $lsblk->{blockdevices}
2470 }
2471
2472 sub prdev($$) {
2473 my ($path, $attribute) = @_;
2474
2475 # rather than stat'ing and guessing how devices are encoded, we use lsblk for this
2476 # unfortunately, there doesn't seem to be a way to restrict lsblk to just oned evice,
2477 # so we always assume the first one is it.
2478 my $mm = $json_coder->decode (scalar qx<lsblk -o MAJ:MIN -J \Q$path\E>)->{blockdevices}[0]{"maj:min"};
2479
2480 my $lsblk = lsblk;
2481
2482 for my $dev (@$lsblk) {
2483 if ($dev->{"maj:min"} eq $mm && $dev->{$attribute}) {
2484 say $dev->{$attribute};
2485 exit 0;
2486 }
2487 }
2488
2489 exit 1;
2490 }
2491
2492 #############################################################################
2493 # command line parser
2494
2495 our %CMD = (
2496 help => sub {
2497 require Pod::Usage;
2498 Pod::Usage::pod2usage (-verbose => 2);
2499 },
2500
2501 objects => sub {
2502 my %rbcd_types = reverse %bcd_types;
2503 $_ = sprintf "%08x", $_ for values %rbcd_types;
2504
2505 if ($_[0] eq "--json") {
2506 my %default_type = %bcd_object_types;
2507 $_ = sprintf "%08x", $_ for values %default_type;
2508
2509 prjson {
2510 version => $JSON_VERSION,
2511 object_alias => \%bcd_objects,
2512 object_type => \%rbcd_types,
2513 object_default_type => \%default_type,
2514 };
2515 } else {
2516 my %rbcd_objects = reverse %bcd_objects;
2517
2518 print "\n";
2519
2520 printf "%-9s %s\n", "Type", "Alias";
2521 for my $tname (sort keys %rbcd_types) {
2522 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2523 }
2524
2525 print "\n";
2526
2527 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2528 for my $name (sort keys %rbcd_objects) {
2529 my $guid = $rbcd_objects{$name};
2530 my $type = $bcd_object_types{$name};
2531 my $tname = $bcd_types{$type};
2532
2533 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2534
2535 printf "%-39s %-23s %s\n", $guid, $name, $type;
2536 }
2537
2538 print "\n";
2539 }
2540 },
2541
2542 elements => sub {
2543 my $json = $_[0] eq "--json";
2544
2545 my %format_name = (
2546 BCDE_FORMAT_DEVICE , "device",
2547 BCDE_FORMAT_STRING , "string",
2548 BCDE_FORMAT_GUID , "guid",
2549 BCDE_FORMAT_GUID_LIST , "guid list",
2550 BCDE_FORMAT_INTEGER , "integer",
2551 BCDE_FORMAT_BOOLEAN , "boolean",
2552 BCDE_FORMAT_INTEGER_LIST, "integer list",
2553 );
2554
2555 my @element;
2556
2557 for my $class (sort keys %rbcde_byclass) {
2558 my $rbcde = $rbcde_byclass{$class};
2559
2560 unless ($json) {
2561 print "\n";
2562 printf "Elements applicable to class(es): $class\n";
2563 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2564 }
2565 for my $name (sort keys %$rbcde) {
2566 my $id = $rbcde->{$name};
2567 my $format = $format_name{$id & BCDE_FORMAT};
2568
2569 if ($json) {
2570 push @element, [$class, $id * 1, $format, $name];
2571 } else {
2572 $id = sprintf "%08x", $id;
2573 printf "%-9s %-12s %s\n", $id, $format, $name;
2574 }
2575 }
2576 }
2577 print "\n" unless $json;
2578
2579 prjson {
2580 version => $JSON_VERSION,
2581 element => \@element,
2582 class => \@bcde_typeclass,
2583 } if $json;
2584
2585 },
2586
2587 export => sub {
2588 prjson bcd_decode regf_load shift;
2589 },
2590
2591 import => sub {
2592 regf_save shift, bcd_encode rdjson;
2593 },
2594
2595 edit => sub {
2596 my $path = shift;
2597 my $bcd = bcd_decode regf_load $path;
2598 bcd_edit $path, $bcd, @_;
2599 regf_save $path, bcd_encode $bcd;
2600 },
2601
2602 parse => sub {
2603 my $path = shift;
2604 my $bcd = bcd_decode regf_load $path;
2605 bcd_edit $path, $bcd, @_;
2606 },
2607
2608 "export-regf" => sub {
2609 prjson regf_load shift;
2610
2611 },
2612
2613 "import-regf" => sub {
2614 regf_save shift, rdjson;
2615 },
2616
2617 lsblk => sub {
2618 my $json = $_[0] eq "--json";
2619
2620 my $lsblk = lsblk;
2621
2622 if ($json) {
2623 prjson $lsblk;
2624 } else {
2625 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2626 for my $dev (@$lsblk) {
2627 for my $bcd ($dev->{bcd_device}, $dev->{bcd_legacy_device}) {
2628 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2629 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $bcd
2630 if $bcd;
2631 }
2632 }
2633 }
2634 },
2635
2636 "bcd-device" => sub {
2637 prdev shift, "bcd_device";
2638 },
2639
2640 "bcd-legacy-device" => sub {
2641 prdev shift, "bcd_legacy_device";
2642 },
2643
2644 version => sub {
2645 print "\n",
2646 "PBCDEDIT version $VERSION, copyright 2019 Marc A. Lehmann <pbcdedit\@schmorp.de>.\n",
2647 "JSON schema version: $JSON_VERSION\n",
2648 "Licensed under the GNU General Public License Version 3.0, or any later version.\n",
2649 "\n",
2650 $CHANGELOG,
2651 "\n";
2652 },
2653 );
2654
2655 my $cmd = shift;
2656
2657 unless (exists $CMD{$cmd}) {
2658 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2659 exit 126;
2660 }
2661
2662 $CMD{$cmd}->(@ARGV);
2663