ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.54
Committed: Thu Aug 22 07:53:48 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.53: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.016; # numerous features need 5.14, __SUB__ needs 5.16
23
24 our $VERSION = '1.3';
25 our $JSON_VERSION = 3; # the version of the json objects generated by this program
26
27 our $CHANGELOG = <<EOF;
28
29 - editorial fixes to the documentation.
30
31 1.3 Sat Aug 17 07:04:15 CEST 2019
32 - output of pbcdedit elements --json has changed, as it didn't
33 take the reorganisation by classes fully into account.
34 - json schema bumped to 3.
35 - new "bcd-device" and "bcd-legacy-device" subcommands.
36 - implement --json option for lsblk.
37
38 1.2 Fri Aug 16 00:20:41 CEST 2019
39 - bcd element names now depend on the bcd object type they are in,
40 also affects "elements" output.
41 - json schema bumped to 2.
42 - new version command.
43 - numerous minor bugfixes.
44
45 EOF
46
47 =head1 NAME
48
49 pbcdedit - portable boot configuration data (BCD) store editor
50
51 =head1 SYNOPSIS
52
53 pbcdedit help # output manual page
54 pbcdedit version # output version and changelog
55
56 pbcdedit export path/to/BCD # output BCD hive as JSON
57 pbcdedit import path/to/BCD # convert standard input to BCD hive
58 pbcdedit edit path/to/BCD edit-instructions...
59
60 pbcdedit objects # list all supported object aliases and types
61 pbcdedit elements # list all supported bcd element aliases
62
63 # Example: enable text-based boot menu.
64 pbcdedit edit /my/BCD set '{default}' bootmenupolicy 1
65
66 # Example change system device to first partition containing winload.
67 pbcdedit edit /my/BCD \
68 set '{default}' device 'locate=<null>,element,path' \
69 set '{default}' osdevice 'locate=<null>,element,path'
70
71
72 =head1 DESCRIPTION
73
74 This program allows you to create, read and modify Boot Configuration Data
75 (BCD) stores used by Windows Vista and newer versions of Windows.
76
77 At this point, it is in relatively early stages of development and has
78 received little to no real-world testing.
79
80 Compared to other BCD editing programs it offers the following unique
81 features:
82
83 =over
84
85 =item Can create BCD hives from scratch
86
87 Practically all other BCD editing programs force you to copy existing BCD
88 stores, which might or might not be copyrighted by Microsoft.
89
90 =item Does not rely on Windows
91
92 As the "portable" in the name implies, this program does not rely on
93 C<bcdedit> or other windows programs or libraries, it works on any system
94 that supports at least perl version 5.16.
95
96 =item Decodes and encodes BCD device elements
97
98 PBCDEDIT can concisely decode and encode BCD device element contents. This
99 is pretty unique, and offers a lot of potential that can't be realised
100 with C<bcdedit> or any programs relying on it.
101
102 =item Minimal files
103
104 BCD files written by PBCDEDIT are always "minimal", that is, they don't
105 contain unused data areas and therefore don't contain old and potentially
106 sensitive data.
107
108 =back
109
110 The target audience for this program is professionals and tinkerers who
111 are ready to invest time into learning how it works. It is not an easy
112 program to use and requires patience and a good understanding of BCD
113 stores.
114
115
116 =head1 SUBCOMMANDS
117
118 PBCDEDIT expects a subcommand as first argument that tells it what to
119 do. The following subcommands exist:
120
121 =over
122
123 =item C<help>
124
125 Displays the whole manual page (this document).
126
127 =item C<version>
128
129 This outputs the PBCDEDIT version, the JSON schema version it uses and the
130 full log of changes.
131
132 =item C<export> F<path>
133
134 Reads a BCD data store and writes a JSON representation of it to standard
135 output.
136
137 The format of the data is explained later in this document.
138
139 Example: read a BCD store, modify it with an external program, write it
140 again.
141
142 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
143
144 =item C<import> F<path>
145
146 The reverse of C<export>: Reads a JSON representation of a BCD data store
147 from standard input, and creates or replaces the given BCD data store.
148
149 =item C<edit> F<path> I<instructions...>
150
151 Load a BCD data store, apply some instructions to it, and save it again.
152
153 See the section L<EDITING BCD STORES>, below, for more info.
154
155 =item C<parse> F<path> I<instructions...>
156
157 Same as C<edit>, above, except it doesn't save the data store again. Can
158 be useful to extract some data from it.
159
160 =item C<lsblk> [C<--json>]
161
162 On a GNU/Linux system, you can get a list of partition device descriptors
163 using this command - the external C<lsblk> command is required, as well as
164 a mounted C</sys> file system.
165
166 The output will be a list of all partitions in the system and C<partition>
167 descriptors for GPT and both C<legacypartition> and C<partition>
168 descriptors for MBR partitions.
169
170 With C<--json> it will print similar information as C<lsblk --json>, but
171 with extra C<bcd_device> and C<bcd_legacy_device> attributes.
172
173 =item C<bcd-device> F<path>
174
175 Tries to find the BCD device element for the given device, which currently
176 must be a a partition of some kind. Prints the C<partition=> descriptor as
177 a result, or nothing. Exit status will be true on success, and false on
178 failure.
179
180 Like C<lsblk>, above, this likely only works on GNU/Linux systems.
181
182 Example: print the partition descriptor of tghe partition with label DATA.
183
184 $ pbcdedit bcd-device /dev/disk/by-label/DATA
185 partition=<null>,harddisk,mbr,47cbc08a,213579202560
186
187 =item C<bcd-legacy-device> F<path>
188
189 Like above, but uses a C<legacypartition> descriptor instead.
190
191 =item C<objects> [C<--json>]
192
193 Outputs two tables: a table listing all type aliases with their hex BCD
194 element ID, and all object name aliases with their GUID and default type
195 (if any).
196
197 With C<--json> it prints similar information as a JSON object, for easier parsing.
198
199 =item C<elements> [C<--json>]
200
201 Outputs a table of known element aliases with their hex ID and the format
202 type.
203
204 With C<--json> it prints similar information as a JSON object, for easier parsing.
205
206 =item C<export-regf> F<path>
207
208 This has nothing to do with BCD stores, but simply exposes PCBEDIT's
209 internal registry hive reader - it takes a registry hive file as argument
210 and outputs a JSON representation of it to standard output.
211
212 Hive versions 1.2 till 1.6 are supported.
213
214 =item C<import-regf> F<path>
215
216 The reverse of C<export-regf>: reads a JSON representation of a registry
217 hive from standard input and creates or replaces the registry hive file
218 given as argument.
219
220 The written hive will always be in a slightly modified version 1.3
221 format. It's not the format windows would generate, but it should be
222 understood by any conformant hive reader.
223
224 Note that the representation chosen by PBCDEDIT currently throws away
225 classname data (often used for feeble attempts at hiding stuff by
226 Microsoft) and security descriptors, so if you write anything other than
227 a BCD hive you will most likely destroy it.
228
229 =back
230
231
232 =head1 BCD STORE REPRESENTATION FORMAT
233
234 A BCD data store is represented as a JSON object with one special key,
235 C<meta>, and one key per BCD object. That is, each BCD object becomes
236 one key-value pair in the object, and an additional key called C<meta>
237 contains meta information.
238
239 Here is an abridged example of a real BCD store:
240
241 {
242 "meta" : {
243 "version" : 1
244 },
245 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
246 "type" : "application::osloader",
247 "description" : "Windows 10",
248 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
249 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
250 "path" : "\\Windows\\system32\\winload.exe",
251 "systemroot" : "\\Windows"
252 },
253 "{bootloadersettings}" : {
254 "inherit" : "{globalsettings} {hypervisorsettings}"
255 },
256 "{bootmgr}" : {
257 "description" : "Windows Boot Manager",
258 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
259 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
260 "inherit" : "{globalsettings}",
261 "displaybootmenu" : 0,
262 "timeout" : 30
263 },
264 "{globalsettings}" : {
265 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
266 },
267 "{hypervisorsettings}" : {
268 "hypervisorbaudrate" : 115200,
269 "hypervisordebugport" : 1,
270 "hypervisordebugtype" : 0
271 },
272 # ...
273 }
274
275 =head2 Minimal BCD to boot windows
276
277 Experimentally I found the following BCD is the minimum required to
278 successfully boot any post-XP version of Windows (assuming suitable
279 C<device> and C<osdevice> values, of course, and assuming a BIOS boot -
280 for UEFI, you should use F<winload.efi> instead of F<winload.exe>):
281
282 {
283 "{bootmgr}" : {
284 "default" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
285 },
286
287 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
288 "type" : "application::osloader",
289 "description" : "Windows Boot",
290 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
291 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
292 "path" : "\\Windows\\system32\\winload.exe",
293 "systemroot" : "\\Windows"
294 },
295 }
296
297 Note that minimal doesn't mean recommended - Windows itself will add stuff
298 to this during or after boot, and you might or might not run into issues
299 when installing updates as it might not be able to find the F<bootmgr>.
300
301 =head2 The C<meta> key
302
303 The C<meta> key is not stored in the BCD data store but is used only
304 by PBCDEDIT. It is always generated when exporting, and importing will
305 be refused when it exists and the version stored inside doesn't store
306 the JSON schema version of PBCDEDIT. This ensures that different and
307 incompatible versions of PBCDEDIT will not read and misinterpret each
308 others data.
309
310 =head2 The object keys
311
312 Every other key is a BCD object. There is usually a BCD object for the
313 boot manager, one for every boot option and a few others that store common
314 settings inherited by these.
315
316 Each BCD object is represented by a GUID wrapped in curly braces. These
317 are usually random GUIDs used only to distinguish BCD objects from each
318 other. When adding a new boot option, you can simply generate a new GUID.
319
320 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
321 into human-readable strings such as C<{globalsettings}>, which is the same
322 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
323
324 Each BCD, object has an associated type. For example,
325 C<application::osloader> for objects loading Windows via F<winload.exe>,
326 C<application::bootsector> for real mode applications and so on.
327
328 The type of a object is stored in the pseudo BCD element C<type> (see next
329 section).
330
331 Some well-known objects have a default type. If an object type matches
332 its default type, then the C<type> element will be omitted. Similarly, if
333 the C<type> element is missing and the BCD object has a default type, the
334 default type will be used when writing a BCD store.
335
336 Running F<pbcdedit objects> will give you a list of object types,
337 well-known object aliases and their default types.
338
339 If different string keys in a JSON BCD store map to the same BCD object
340 then a random one will "win" and the others will be discarded. To avoid
341 this, you should always use the "canonical" name of a BCD object, which is
342 the human-readable form (if it exists).
343
344 =head2 The object values - BCD elements
345
346 The value of each BCD object entry consists of key-value pairs called BCD
347 elements.
348
349 BCD elements are identified by a 32 bit number, but to make things
350 simpler PBCDEDIT will replace these with well-known strings such as
351 C<description>, C<device> or C<path>.
352
353 When PBCDEDIT does not know the BCD element, it will use
354 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
355 BCD element. For example, C<device> would be C<custom::11000001>. You can
356 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
357 elements>.
358
359 What was said about duplicate keys mapping to the same object is true for
360 elements as well, so, again, you should always use the canonical name,
361 which is the human readable alias, if known.
362
363 =head3 BCD element types
364
365 Each BCD element has a type such as I<string> or I<boolean>. This type
366 determines how the value is interpreted, and most of them are pretty easy
367 to explain:
368
369 =over
370
371 =item string
372
373 This is simply a unicode string. For example, the C<description> and
374 C<systemroot> elements both are of this type, one storing a human-readable
375 name for this boot option, the other a file path to the windows root
376 directory:
377
378 "description" : "Windows 10",
379 "systemroot" : "\\Windows",
380
381 =item boolean
382
383 Almost as simple are booleans, which represent I<true>/I<false>,
384 I<on>/I<off> and similar values. In the JSON form, true is represented
385 by the number C<1>, and false is represented by the number C<0>. Other
386 values will be accepted, but PBCDEDIT doesn't guarantee how these are
387 interpreted.
388
389 For example, C<displaybootmenu> is a boolean that decides whether to
390 enable the C<F8> boot menu. In the example BCD store above, this is
391 disabled:
392
393 "displaybootmenu" : 0,
394
395 =item integer
396
397 Again, very simple, this is a 64 bit integer. It can be either specified
398 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
399 binary number (prefix C<0b>).
400
401 For example, the boot C<timeout> is an integer, specifying the automatic
402 boot delay in seconds:
403
404 "timeout" : 30,
405
406 =item integer list
407
408 This is a list of 64 bit integers separated by whitespace. It is not used
409 much, so here is a somewhat artificial and untested example of using
410 C<customactions> to specify a certain custom, eh, action to be executed
411 when pressing C<F10> at boot:
412
413 "customactions" : "0x1000044000001 0x54000001",
414
415 =item guid
416
417 This represents a single GUID value wrapped in curly braces. It is used a
418 lot to refer from one BCD object to other one.
419
420 For example, The C<{bootmgr}> object might refer to a resume boot option
421 using C<default>:
422
423 "default" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
424
425 Human readable aliases are used and allowed.
426
427 =item guid list
428
429 Similar to the GUID type, this represents a list of such GUIDs, separated
430 by whitespace from each other.
431
432 For example, many BCD objects can I<inherit> elements from other BCD
433 objects by specifying the GUIDs of those other objects in a GUID list
434 called surprisingly called C<inherit>:
435
436 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
437
438 This example also shows how human readable aliases can be used.
439
440 =item device
441
442 This type is why I write I<most> are easy to explain earlier: This type
443 is the pinnacle of Microsoft-typical hacks layered on top of other
444 hacks. Understanding this type took more time than writing all the rest of
445 PBCDEDIT, and because it is so complex, this type has its own subsection
446 below.
447
448 =back
449
450 =head3 The BCD "device" element type
451
452 Device elements specify, well, devices. They are used for such diverse
453 purposes such as finding a TFTP network boot image, serial ports or VMBUS
454 devices, but most commonly they are used to specify the disk (harddisk,
455 cdrom, ramdisk, vhd...) to boot from.
456
457 The device element is kind of a mini-language in its own which is much
458 more versatile then the limited windows interface to it - BCDEDIT -
459 reveals.
460
461 While some information can be found on the BCD store and the windows
462 registry, there is pretty much no public information about the device
463 element, so almost everything known about it had to be researched first
464 in the process of writing this script, and consequently, support for BCD
465 device elements is partial only.
466
467 On the other hand, the expressive power of PBCDEDIT in specifying devices
468 is much bigger than BCDEDIT and therefore more can be done with it. The
469 downside is that BCD device elements are much more complicated than what
470 you might think from reading the BCDEDIT documentation.
471
472 In other words, simple things are complicated, and complicated things are
473 possible.
474
475 Anyway, the general syntax of device elements is an optional GUID,
476 followed by a device type, optionally followed by hexadecimal flags in
477 angle brackets, optionally followed by C<=> and a comma-separated list of
478 arguments, some of which can be (and often are) in turn devices again.
479
480 [{GUID}]type[<flags>][=arg,arg...]
481
482 Here are some examples:
483
484 boot
485 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
486 locate=<null>,element,systemroot
487 partition=<null>,harddisk,mbr,47cbc08a,1048576
488 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
489 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
490 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
491 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
492
493 I hope you are suitably impressed. I was, too, when I realized decoding
494 these binary blobs is not as easy as I had assumed.
495
496 The optional prefixed GUID seems to refer to a device BCD object, which
497 can be used to specify more device-specific BCD elements (for example
498 C<ramdisksdidevice> and C<ramdisksdpath>).
499
500 The flags after the type are omitted when they are C<0>. The only known
501 flag is C<1>, which seems to indicate that the parent device is invalid. I
502 don't claim to fully understand it, but it seems to indicate that the
503 boot manager has to search the device itself. Why the device is specified
504 in the first place escapes me, but a lot of this device stuff seems to be
505 badly hacked together...
506
507 The types understood and used by PBCDEDIT are as follows (keep in mind
508 that not of all the following is necessarily supported in PBCDEDIT):
509
510 =over
511
512 =item C<binary=>I<hex...>
513
514 This type isn't actually a real BCD element type, but a fallback for those
515 cases where PBCDEDIT can't perfectly decode a device element (except for
516 the leading GUID, which it can always decode). In such cases, it will
517 convert the device into this type with a hexdump of the element data.
518
519 =item C<null>
520
521 This is another special type - sometimes, a device is all zero-filled,
522 which is not valid. This can mark the absence of a device or something
523 PBCDEDIT does not understand, so it decodes it into this special "all
524 zero" type called C<null>.
525
526 It's most commonly found in devices that can use an optional parent
527 device, when no parent device is used.
528
529 =item C<boot>
530
531 Another type without parameters, this refers to the device that was booted
532 from (nowadays typically the EFI system partition).
533
534 =item C<vmbus=>I<interfacetype>,I<interfaceinstance>
535
536 This specifies a VMBUS device with the given interface type and interface
537 instance, both of which are "naked" (no curly braces) GUIDs.
538
539 Made-up example (couldn't find a single example on the web):
540
541 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
542
543 =item C<partition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
544
545 This designates a specific partition on a block device. I<parent> is an
546 optional parent device on which to search on, and is often C<null>. Note
547 that the angle brackets around I<parent> are part of the syntax.
548
549 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
550 C<file> or C<vhd>, where the first three should be self-explaining,
551 C<file> is usually used to locate a file to be used as a disk image,
552 and C<vhd> is used to treat files as virtual harddisks, i.e. F<vhd> and
553 F<vhdx> files.
554
555 The I<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
556 used for devices without partitions, such as cdroms, where the "partition"
557 is usually the whole device.
558
559 The I<diskid> identifies the disk or device using a unique signature, and
560 the same is true for the I<partitionid>. How these are interpreted depends
561 on the I<partitiontype>:
562
563 =over
564
565 =item C<mbr>
566
567 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
568 MBR, interpreted as a 32 bit unsigned little endian integer and written as
569 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
570
571 Diskpart (using the C<DETAIL> command) and the C<lsblk> command typically
572 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
573 display the I<diskid>.
574
575 The I<partitionid> is the byte offset(!) of the partition counting from
576 the beginning of the MBR.
577
578 Example, use the partition on the harddisk with I<diskid> C<47cbc08a>
579 starting at sector C<2048> (= 1048576 / 512).
580
581 partition=<null>,harddisk,mbr,47cbc08a,1048576
582
583 =item C<gpt>
584
585 The I<diskid> is the disk GUID/disk identifier GUID from the partition
586 table (as displayed e.g. by F<gdisk>), and the I<partitionid> is the
587 partition unique GUID (displayed using e.g. the F<gdisk> F<i> command).
588
589 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
590 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
591
592 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
593
594 =item C<raw>
595
596 Instead of I<diskid> and I<partitionid>, this type only accepts a decimal
597 disk number and signifies the whole disk. BCDEDIT cannot display the
598 resulting device, and I am doubtful whether it has a useful effect.
599
600 =back
601
602 =item C<legacypartition=><I<parent>>,I<devicetype>,I<partitiontype>,I<diskid>,I<partitionid>
603
604 This is exactly the same as the C<partition> type, except for a tiny
605 detail: instead of using the partition start offset, this type uses the
606 partition number for MBR disks. Behaviour other partition types should be
607 the same.
608
609 The partition number starts at C<1> and skips unused partition, so if
610 there are two primary partitions and another partition inside the extended
611 partition, the primary partitions are number C<1> and C<2> and the
612 partition inside the extended partition is number C<3>, regardless of any
613 gaps.
614
615 =item C<locate=><I<parent>>,I<locatetype>,I<locatearg>
616
617 This device description will make the bootloader search for a partition
618 with a given path.
619
620 The I<parent> device is the device to search on (angle brackets are
621 still part of the syntax!) If it is C<null>, then C<locate> will
622 search all disks it can find.
623
624 I<locatetype> is either C<element> or C<path>, and merely distinguishes
625 between two different ways to specify the path to search for: C<element>
626 uses an element ID (either as hex or as name) as I<locatearg> and C<path>
627 uses a relative path as I<locatearg>.
628
629 Example: find any partition which has the F<magicfile.xxx> path in the
630 root.
631
632 locate=<null>,path,\magicfile.xxx
633
634 Example: find any partition which has the path specified in the
635 C<systemroot> element (typically F<\Windows>).
636
637 locate=<null>,element,systemroot
638
639 =item C<block=>I<devicetype>,I<args...>
640
641 Last not least, the most complex type, C<block>, which... specifies block
642 devices (which could be inside a F<vhdx> file for example).
643
644 I<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
645 C<file> or C<vhd> - the same as for C<partition=>.
646
647 The remaining arguments change depending on the I<devicetype>:
648
649 =over
650
651 =item C<block=file>,<I<parent>>,I<path>
652
653 Interprets the I<parent> device (typically a partition) as a
654 filesystem and specifies a file path inside.
655
656 =item C<block=vhd>,<I<parent>>
657
658 Pretty much just changes the interpretation of I<parent>, which is
659 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
660
661 =item C<block=ramdisk>,<I<parent>>,I<base>,I<size>,I<offset>,I<path>
662
663 Interprets the I<parent> device as RAM disk, using the (decimal)
664 base address, byte size and byte offset inside a file specified by
665 I<path>. The numbers are usually all C<0> because they can be extracted
666 from the RAM disk image or other parameters.
667
668 This is most commonly used to boot C<wim> images.
669
670 =item C<block=floppy>,I<drivenum>
671
672 Refers to a removable drive identified by a number. BCDEDIT cannot display
673 the resulting device, and it is not clear what effect it will have.
674
675 =item C<block=cdrom>,I<drivenum>
676
677 Pretty much the same as C<floppy> but for CD-ROMs.
678
679 =item anything else
680
681 Probably not yet implemented. Tell me of your needs...
682
683 =back
684
685 =head4 Examples
686
687 This concludes the syntax overview for device elements, but probably
688 leaves many questions open. I can't help with most of them, as I also have
689 many questions, but I can walk you through some actual examples using more
690 complex aspects.
691
692 =item C<< locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path >>
693
694 Just like with C declarations, you best treat device descriptors as
695 instructions to find your device and work your way from the inside out:
696
697 locate=<null>,path,\disk.vhdx
698
699 First, the innermost device descriptor searches all partitions on the
700 system for a file called F<\disk.vhdx>:
701
702 block=file,<see above>,\disk.vhdx
703
704 Next, this takes the device locate has found and finds a file called
705 F<\disk.vhdx> on it. This is the same file locate was using, but that is
706 only because we find the device using the same path as finding the disk
707 image, so this is purely incidental, although quite common.
708
709 Next, this file will be opened as a virtual disk:
710
711 block=vhd,<see above>
712
713 And finally, inside this disk, another C<locate> will look for a partition
714 with a path as specified in the C<path> element, which most likely will be
715 F<\Windows\system32\winload.exe>:
716
717 locate=<see above>,element,path
718
719 As a result, this will boot the first Windows it finds on the first
720 F<disk.vhdx> disk image it can find anywhere.
721
722 =item C<< locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path >>
723
724 Pretty much the same as the previous case, but with a bit of
725 variance. First, look for a specific partition on an MBR-partitioned disk:
726
727 partition=<null>,harddisk,mbr,47cbc08a,242643632128
728
729 Then open the file F<\win10.vhdx> on that partition:
730
731 block=file,<see above>,\win10.vhdx
732
733 Then, again, the file is opened as a virtual disk image:
734
735 block=vhd,<see above>
736
737 And again the windows loader (or whatever is in C<path>) will be searched:
738
739 locate=<see above>,element,path
740
741 =item C<< {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim >>
742
743 This is quite different. First, it starts with a GUID. This GUID belongs
744 to a BCD object of type C<device>, which has additional parameters:
745
746 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
747 "type" : "device",
748 "description" : "sdi file for ramdisk",
749 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
750 "ramdisksdipath" : "\boot.sdi"
751 },
752
753 I will not go into many details, but this specifies a (presumably empty)
754 template ramdisk image (F<\boot.sdi>) that is used to initialize the
755 ramdisk. The F<\boot.wim> file is then extracted into it. As you can also
756 see, this F<.sdi> file resides on a different C<partition>.
757
758 Continuing, as always, from the inside out, first this device descriptor
759 finds a specific partition:
760
761 partition=<null>,harddisk,mbr,47cbc08a,242643632128
762
763 And then specifies a C<ramdisk> image on this partition:
764
765 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
766
767 I don't know what the purpose of the C<< <1> >> flag value is, but it
768 seems to be always there on this kind of entry.
769
770 If you have some good examples to add here, feel free to mail me.
771
772
773 =head1 EDITING BCD STORES
774
775 The C<edit> and C<parse> subcommands allow you to read a BCD data store
776 and modify it or extract data from it. This is done by executing a series
777 of "editing instructions" which are explained here.
778
779 =over
780
781 =item C<get> I<object> I<element>
782
783 Reads the BCD element I<element> from the BCD object I<object> and writes
784 it to standard output, followed by a newline. The I<object> can be a GUID
785 or a human-readable alias, or the special string C<{default}>, which will
786 refer to the default BCD object.
787
788 Example: find description of the default BCD object.
789
790 pbcdedit parse BCD get "{default}" description
791
792 =item C<set> I<object> I<element> I<value>
793
794 Similar to C<get>, but sets the element to the given I<value> instead.
795
796 Example: change the bootmgr default too
797 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
798
799 pbcdedit edit BCD set "{bootmgr}" default "{b097d2ad-bc00-11e9-8a9a-525400123456}"
800
801 =item C<eval> I<perlcode>
802
803 This takes the next argument, interprets it as Perl code and
804 evaluates it. This allows you to do more complicated modifications or
805 extractions.
806
807 The following variables are predefined for your use:
808
809 =over
810
811 =item C<$PATH>
812
813 The path to the BCD data store, as given to C<edit> or C<parse>.
814
815 =item C<$BCD>
816
817 The decoded BCD data store.
818
819 =item C<$DEFAULT>
820
821 The default BCD object name.
822
823 =back
824
825 The example given for C<get>, above, could be expressed like this with
826 C<eval>:
827
828 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
829
830 The example given for C<set> could be expressed like this:
831
832 pbcdedit edit BCD eval '$BCD->{"{bootmgr}"{default} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
833
834 =item C<do> I<path>
835
836 Similar to C<eval>, above, but instead of using the argument as perl code,
837 it loads the perl code from the given file and executes it. This makes it
838 easier to write more complicated or larger programs.
839
840 =back
841
842
843 =head1 SEE ALSO
844
845 For ideas on what you can do with BCD stores in
846 general, and some introductory material, try
847 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
848
849 For good reference on which BCD objects and
850 elements exist, see Geoff Chappell's pages at
851 L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
852
853 =head1 AUTHOR
854
855 Written by Marc A. Lehmann L<pbcdedit@schmorp.de>.
856
857 =head1 REPORTING BUGS
858
859 Bugs can be reported directly the author at L<pcbedit@schmorp.de>.
860
861 =head1 BUGS AND SHORTCOMINGS
862
863 This should be a module. Of a series of modules, even.
864
865 Registry code should preserve classname and security descriptor data, and
866 whatever else is necessary to read and write any registry hive file.
867
868 I am also not happy with device descriptors being strings rather than a
869 data structure, but strings are probably better for command line usage. In
870 any case, device descriptors could be converted by simply "splitting" at
871 "=" and "," into an array reference, recursively.
872
873 =head1 HOMEPAGE
874
875 Original versions of this program can be found at
876 L<http://software.schmorp.de/pkg/pbcdedit>.
877
878 =head1 COPYRIGHT
879
880 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
881 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
882 free to change and redistribute it. There is NO WARRANTY, to the extent
883 permitted by law.
884
885 =cut
886
887 # common sense is optional, but recommended
888 BEGIN { eval { require "common/sense.pm"; } && common::sense->import }
889
890 no warnings 'portable'; # avoid 32 bit integer warnings
891
892 use Encode ();
893 use List::Util ();
894 use IO::Handle ();
895 use Time::HiRes ();
896
897 eval { unpack "Q", pack "Q", 1 }
898 or die "perl with 64 bit integer supported required.\n";
899
900 our $JSON = eval { require JSON::XS; JSON::XS:: }
901 // eval { require JSON::PP; JSON::PP:: }
902 // die "either JSON::XS or JSON::PP must be installed\n";
903
904 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
905
906 # hack used for debugging
907 sub xxd($$) {
908 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
909 syswrite $xxd, $_[1];
910 }
911
912 sub file_load($) {
913 my ($path) = @_;
914
915 open my $fh, "<:raw", $path
916 or die "$path: $!\n";
917 my $size = -s $fh;
918 $size = read $fh, my $buf, $size
919 or die "$path: short read\n";
920
921 $buf
922 }
923
924 # sources and resources used for writing pbcdedit
925 #
926 # registry:
927 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
928 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
929 # bcd:
930 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
931 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
932 # bcd devices:
933 # reactos' boot/environ/include/bl.h
934 # windows .mof files
935
936 #############################################################################
937 # registry stuff
938
939 # we use a hardcoded securitya descriptor - full access for everyone
940 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
941 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
942 my $sacl = "";
943 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
944 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
945 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
946 1, 0x8004,
947 20 + (length $sacl) + (length $dacl),
948 20 + (length $sacl) + (length $dacl) + (length $sid),
949 0, 20,
950 $sacl, $dacl, $sid, $sid;
951 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
952
953 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
954
955 sub KEY_HIVE_ENTRY() { 0x0004 }
956 sub KEY_NO_DELETE () { 0x0008 }
957 sub KEY_COMP_NAME () { 0x0020 }
958
959 sub VALUE_COMP_NAME() { 0x0001 }
960
961 my @regf_typename = qw(
962 none sz expand_sz binary dword dword_be link multi_sz
963 resource_list full_resource_descriptor resource_requirements_list
964 qword qword_be
965 );
966
967 my %regf_dec_type = (
968 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
969 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
970 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
971 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
972 dword => sub { unpack "L<", shift },
973 dword_be => sub { unpack "L>", shift },
974 qword => sub { unpack "Q<", shift },
975 qword_be => sub { unpack "Q>", shift },
976 );
977
978 my %regf_enc_type = (
979 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
980 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
981 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
982 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
983 dword => sub { pack "L<", shift },
984 dword_be => sub { pack "L>", shift },
985 qword => sub { pack "Q<", shift },
986 qword_be => sub { pack "Q>", shift },
987 );
988
989 # decode a registry hive
990 sub regf_decode($) {
991 my ($hive) = @_;
992
993 "regf" eq substr $hive, 0, 4
994 or die "not a registry hive\n";
995
996 my ($major, $minor) = unpack "\@20 L< L<", $hive;
997
998 $major == 1
999 or die "registry major version is not 1, but $major\n";
1000
1001 $minor >= 2 && $minor <= 6
1002 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
1003
1004 my $bins = substr $hive, 4096;
1005
1006 my $decode_key = sub {
1007 my ($ofs) = @_;
1008
1009 my @res;
1010
1011 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
1012
1013 $sze < 0
1014 or die "key node points to unallocated cell\n";
1015
1016 $sig eq "nk"
1017 or die "expected key node at $ofs, got '$sig'\n";
1018
1019 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
1020
1021 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
1022
1023 # classnames, security descriptors
1024 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
1025 #if ($cofs != NO_OFS && $clen) {
1026 # #warn "cofs $cofs+$clen\n";
1027 # xxd substr $bins, $cofs, 16;
1028 #}
1029
1030 $kname = Encode::decode "UTF-16LE", $kname
1031 unless $flags & KEY_COMP_NAME;
1032
1033 if ($vnum && $vofs != NO_OFS) {
1034 for ($vofs += 4; $vnum--; $vofs += 4) {
1035 my $kofs = unpack "\@$vofs L<", $bins;
1036
1037 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
1038
1039 $sig eq "vk"
1040 or die "key values list contains invalid node (expected vk got '$sig')\n";
1041
1042 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
1043
1044 my $name = substr $bins, $kofs + 24, $nsze;
1045
1046 $name = Encode::decode "UTF-16LE", $name
1047 unless $flags & VALUE_COMP_NAME;
1048
1049 my $data;
1050 if ($dsze & 0x80000000) {
1051 $data = substr $bins, $kofs + 12, $dsze & 0x7;
1052 } elsif ($dsze > 16344 && $minor > 3) { # big data
1053 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
1054
1055 for ($bofs += 4; $bnum--; $bofs += 4) {
1056 my $dofs = unpack "\@$bofs L<", $bins;
1057 my $dsze = unpack "\@$dofs l<", $bins;
1058 $data .= substr $bins, $dofs + 4, -$dsze - 4;
1059 }
1060 $data = substr $data, 0, $dsze; # cells might be longer than data
1061 } else {
1062 $data = substr $bins, $dofs + 4, $dsze;
1063 }
1064
1065 $type = $regf_typename[$type] if $type < @regf_typename;
1066
1067 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1068 ->($data);
1069
1070 $res[0]{$name} = [$type, $data];
1071 }
1072 }
1073
1074 if ($sofs != NO_OFS) {
1075 my $decode_key = __SUB__;
1076
1077 my $decode_subkeylist = sub {
1078 my ($sofs) = @_;
1079
1080 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1081
1082 if ($sig eq "ri") { # index root
1083 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1084 __SUB__->(unpack "\@$lofs L<", $bins);
1085 }
1086 } else {
1087 my $inc;
1088
1089 if ($sig eq "li") { # subkey list
1090 $inc = 4;
1091 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1092 $inc = 8;
1093 } else {
1094 die "expected subkey list at $sofs, found '$sig'\n";
1095 }
1096
1097 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1098 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1099 $res[1]{$name} = $data;
1100 }
1101 }
1102 };
1103
1104 $decode_subkeylist->($sofs);
1105 }
1106
1107 ($kname, \@res);
1108 };
1109
1110 my ($rootcell) = unpack "\@36 L<", $hive;
1111
1112 my ($rname, $root) = $decode_key->($rootcell);
1113
1114 [$rname, $root]
1115 }
1116
1117 # return a binary windows fILETIME struct
1118 sub filetime_now {
1119 my ($s, $ms) = Time::HiRes::gettimeofday;
1120
1121 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1122 }
1123
1124 # encode a registry hive
1125 sub regf_encode($) {
1126 my ($hive) = @_;
1127
1128 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1129
1130 # the filetime is apparently used to verify log file validity,
1131 # so by generating a new timestamp the log files *should* automatically
1132 # become invalidated and windows would "self-heal" them.
1133 # (update: has been verified by reverse engineering)
1134 # possibly the fact that the two sequence numbes match might also
1135 # make windows think that the hive is not dirty and ignore logs.
1136 # (update: has been verified by reverse engineering)
1137
1138 my $now = filetime_now;
1139
1140 # we only create a single hbin
1141 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1142
1143 # append cell to $bind, return offset
1144 my $cell = sub {
1145 my ($cell) = @_;
1146
1147 my $res = length $bins;
1148
1149 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1150
1151 $bins .= pack "l<", -(4 + length $cell);
1152 $bins .= $cell;
1153
1154 $res
1155 };
1156
1157 my $sdofs = $cell->($sk); # add a dummy security descriptor
1158 my $sdref = 0; # refcount
1159 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1160 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1161
1162 my $encode_key = sub {
1163 my ($kname, $kdata, $flags) = @_;
1164 my ($values, $subkeys) = @$kdata;
1165
1166 if ($kname =~ /[^\x00-\xff]/) {
1167 $kname = Encode::encode "UTF-16LE", $kname;
1168 } else {
1169 $flags |= KEY_COMP_NAME;
1170 }
1171
1172 # encode subkeys
1173
1174 my @snames =
1175 map $_->[1],
1176 sort { $a->[0] cmp $b->[0] }
1177 map [(uc $_), $_],
1178 keys %$subkeys;
1179
1180 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1181 my $maxsname = 4 * List::Util::max map length, @snames;
1182
1183 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1184
1185 # encode values
1186 my $maxvname = 4 * List::Util::max map length, keys %$values;
1187 my @vofs;
1188 my $maxdsze = 0;
1189
1190 while (my ($vname, $v) = each %$values) {
1191 my $flags = 0;
1192
1193 if ($vname =~ /[^\x00-\xff]/) {
1194 $vname = Encode::encode "UTF-16LE", $kname;
1195 } else {
1196 $flags |= VALUE_COMP_NAME;
1197 }
1198
1199 my ($type, $data) = @$v;
1200
1201 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1202
1203 my $dsze;
1204 my $dofs;
1205
1206 if (length $data <= 4) {
1207 $dsze = 0x80000000 | length $data;
1208 $dofs = unpack "L<", pack "a4", $data;
1209 } else {
1210 $dsze = length $data;
1211 $dofs = $cell->($data);
1212 }
1213
1214 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1215
1216 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1217 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1218
1219 $maxdsze = $dsze if $maxdsze < $dsze;
1220 }
1221
1222 # encode key
1223
1224 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1225 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1226
1227 my $kdata = pack "
1228 a2 S< a8 x4 x4
1229 L< L< L< L< L< L<
1230 L< L< L< L< L< L<
1231 x4 S< S< a*
1232 ",
1233 nk => $flags, $now,
1234 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1235 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1236 length $kname, 0, $kname;
1237 ++$sdref;
1238
1239 my $res = $cell->($kdata);
1240
1241 substr $bins, $_ + 16, 4, pack "L<", $res
1242 for @sofs;
1243
1244 $res
1245 };
1246
1247 my ($rname, $root) = @$hive;
1248
1249 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1250
1251 if (my $pad = -(length $bins) & 4095) {
1252 $pad -= 4;
1253 $bins .= pack "l< x$pad", $pad + 4;
1254 }
1255
1256 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1257 substr $bins, 8, 4, pack "L<", length $bins;
1258
1259 my $base = pack "
1260 a4 L< L< a8 L< L< L< L<
1261 L< L< L<
1262 a64
1263 x396
1264 ",
1265 regf => 1974, 1974, $now, 1, 3, 0, 1,
1266 $rofs, length $bins, 1,
1267 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1268
1269 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1270 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1271 $chksum = 1 if $chksum == 0;
1272
1273 $base .= pack "L<", $chksum;
1274
1275 $base = pack "a* \@4095 x1", $base;
1276
1277 $base . $bins
1278 }
1279
1280 # load and parse registry from file
1281 sub regf_load($) {
1282 my ($path) = @_;
1283
1284 regf_decode file_load $path
1285 }
1286
1287 # encode and save registry to file
1288 sub regf_save {
1289 my ($path, $hive) = @_;
1290
1291 $hive = regf_encode $hive;
1292
1293 open my $regf, ">:raw", "$path~"
1294 or die "$path~: $!\n";
1295 print $regf $hive
1296 or die "$path~: short write\n";
1297 $regf->sync;
1298 close $regf;
1299
1300 rename "$path~", $path;
1301 }
1302
1303 #############################################################################
1304 # bcd stuff
1305
1306 # human-readable alises for GUID object identifiers
1307 our %bcd_objects = (
1308 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1309 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1310 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1311 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1312 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1313 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1314 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1315 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1316 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1317 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1318 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1319 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1320 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1321 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1322 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1323 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1324 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1325 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1326 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1327 );
1328
1329 # default types
1330 our %bcd_object_types = (
1331 '{fwbootmgr}' => 0x10100001,
1332 '{bootmgr}' => 0x10100002,
1333 '{memdiag}' => 0x10200005,
1334 '{ntldr}' => 0x10300006,
1335 '{badmemory}' => 0x20100000,
1336 '{dbgsettings}' => 0x20100000,
1337 '{emssettings}' => 0x20100000,
1338 '{globalsettings}' => 0x20100000,
1339 '{bootloadersettings}' => 0x20200003,
1340 '{hypervisorsettings}' => 0x20200003,
1341 '{kerneldbgsettings}' => 0x20200003,
1342 '{resumeloadersettings}' => 0x20200004,
1343 '{ramdiskoptions}' => 0x30000000,
1344 );
1345
1346 # object types
1347 our %bcd_types = (
1348 0x10100001 => 'application::fwbootmgr',
1349 0x10100002 => 'application::bootmgr',
1350 0x10200003 => 'application::osloader',
1351 0x10200004 => 'application::resume',
1352 0x10100005 => 'application::memdiag',
1353 0x10100006 => 'application::ntldr',
1354 0x10100007 => 'application::setupldr',
1355 0x10400008 => 'application::bootsector',
1356 0x10400009 => 'application::startup',
1357 0x1020000a => 'application::bootapp',
1358 0x20100000 => 'settings',
1359 0x20200001 => 'inherit::fwbootmgr',
1360 0x20200002 => 'inherit::bootmgr',
1361 0x20200003 => 'inherit::osloader',
1362 0x20200004 => 'inherit::resume',
1363 0x20200005 => 'inherit::memdiag',
1364 0x20200006 => 'inherit::ntldr',
1365 0x20200007 => 'inherit::setupldr',
1366 0x20200008 => 'inherit::bootsector',
1367 0x20200009 => 'inherit::startup',
1368 0x20300000 => 'inherit::device',
1369 0x30000000 => 'device',
1370 );
1371
1372 our %rbcd_objects = reverse %bcd_objects;
1373
1374 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1375
1376 sub dec_guid($) {
1377 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1378 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1379 }
1380
1381 sub enc_guid($) {
1382 $_[0] =~ /^$RE_GUID\z/o
1383 or return;
1384
1385 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1386 }
1387
1388 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1389 sub dec_wguid($) {
1390 my $guid = "{" . (dec_guid shift) . "}";
1391
1392 $bcd_objects{$guid} // $guid
1393 }
1394
1395 sub enc_wguid($) {
1396 my ($guid) = @_;
1397
1398 if (my $alias = $rbcd_objects{$guid}) {
1399 $guid = $alias;
1400 }
1401
1402 $guid =~ /^\{($RE_GUID)\}\z/o
1403 or return;
1404
1405 enc_guid $1
1406 }
1407
1408 sub BCDE_CLASS () { 0xf0000000 }
1409 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1410 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1411 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1412 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1413
1414 sub BCDE_FORMAT () { 0x0f000000 }
1415 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1416 sub BCDE_FORMAT_STRING () { 0x02000000 }
1417 sub BCDE_FORMAT_GUID () { 0x03000000 }
1418 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1419 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1420 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1421 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1422
1423 sub enc_integer($) {
1424 my $value = shift;
1425 $value = oct $value if $value =~ /^0[bBxX]/;
1426 unpack "H*", pack "Q<", $value
1427 }
1428
1429 sub enc_device($$);
1430 sub dec_device($$);
1431
1432 our %bcde_dec = (
1433 BCDE_FORMAT_DEVICE , \&dec_device,
1434 # # for round-trip verification
1435 # BCDE_FORMAT_DEVICE , sub {
1436 # my $dev = dec_device $_[0];
1437 # $_[0] eq enc_device $dev
1438 # or die "bcd device decoding does not round trip for $_[0]\n";
1439 # $dev
1440 # },
1441 BCDE_FORMAT_STRING , sub { shift },
1442 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1443 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1444 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1445 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1446 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1447 );
1448
1449 our %bcde_enc = (
1450 BCDE_FORMAT_DEVICE , sub { binary => enc_device $_[0], $_[1] },
1451 BCDE_FORMAT_STRING , sub { sz => shift },
1452 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1453 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1454 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1455 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1456 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1457 );
1458
1459 # BCD Elements
1460 our %bcde_byclass = (
1461 any => {
1462 0x11000001 => 'device',
1463 0x12000002 => 'path',
1464 0x12000004 => 'description',
1465 0x12000005 => 'locale',
1466 0x14000006 => 'inherit',
1467 0x15000007 => 'truncatememory',
1468 0x14000008 => 'recoverysequence',
1469 0x16000009 => 'recoveryenabled',
1470 0x1700000a => 'badmemorylist',
1471 0x1600000b => 'badmemoryaccess',
1472 0x1500000c => 'firstmegabytepolicy',
1473 0x1500000d => 'relocatephysical',
1474 0x1500000e => 'avoidlowmemory',
1475 0x1600000f => 'traditionalkseg',
1476 0x16000010 => 'bootdebug',
1477 0x15000011 => 'debugtype',
1478 0x15000012 => 'debugaddress',
1479 0x15000013 => 'debugport',
1480 0x15000014 => 'baudrate',
1481 0x15000015 => 'channel',
1482 0x12000016 => 'targetname',
1483 0x16000017 => 'noumex',
1484 0x15000018 => 'debugstart',
1485 0x12000019 => 'busparams',
1486 0x1500001a => 'hostip',
1487 0x1500001b => 'port',
1488 0x1600001c => 'dhcp',
1489 0x1200001d => 'key',
1490 0x1600001e => 'vm',
1491 0x16000020 => 'bootems',
1492 0x15000022 => 'emsport',
1493 0x15000023 => 'emsbaudrate',
1494 0x12000030 => 'loadoptions',
1495 0x16000040 => 'advancedoptions',
1496 0x16000041 => 'optionsedit',
1497 0x15000042 => 'keyringaddress',
1498 0x11000043 => 'bootstatdevice',
1499 0x12000044 => 'bootstatfilepath',
1500 0x16000045 => 'preservebootstat',
1501 0x16000046 => 'graphicsmodedisabled',
1502 0x15000047 => 'configaccesspolicy',
1503 0x16000048 => 'nointegritychecks',
1504 0x16000049 => 'testsigning',
1505 0x1200004a => 'fontpath',
1506 0x1500004b => 'integrityservices',
1507 0x1500004c => 'volumebandid',
1508 0x16000050 => 'extendedinput',
1509 0x15000051 => 'initialconsoleinput',
1510 0x15000052 => 'graphicsresolution',
1511 0x16000053 => 'restartonfailure',
1512 0x16000054 => 'highestmode',
1513 0x16000060 => 'isolatedcontext',
1514 0x15000065 => 'displaymessage',
1515 0x15000066 => 'displaymessageoverride',
1516 0x16000068 => 'nobootuxtext',
1517 0x16000069 => 'nobootuxprogress',
1518 0x1600006a => 'nobootuxfade',
1519 0x1600006b => 'bootuxreservepooldebug',
1520 0x1600006c => 'bootuxdisabled',
1521 0x1500006d => 'bootuxfadeframes',
1522 0x1600006e => 'bootuxdumpstats',
1523 0x1600006f => 'bootuxshowstats',
1524 0x16000071 => 'multibootsystem',
1525 0x16000072 => 'nokeyboard',
1526 0x15000073 => 'aliaswindowskey',
1527 0x16000074 => 'bootshutdowndisabled',
1528 0x15000075 => 'performancefrequency',
1529 0x15000076 => 'securebootrawpolicy',
1530 0x17000077 => 'allowedinmemorysettings',
1531 0x15000079 => 'bootuxtransitiontime',
1532 0x1600007a => 'mobilegraphics',
1533 0x1600007b => 'forcefipscrypto',
1534 0x1500007d => 'booterrorux',
1535 0x1600007e => 'flightsigning',
1536 0x1500007f => 'measuredbootlogformat',
1537 0x15000080 => 'displayrotation',
1538 0x15000081 => 'logcontrol',
1539 0x16000082 => 'nofirmwaresync',
1540 0x11000084 => 'windowssyspart',
1541 0x16000087 => 'numlock',
1542 0x26000202 => 'skipffumode',
1543 0x26000203 => 'forceffumode',
1544 0x25000510 => 'chargethreshold',
1545 0x26000512 => 'offmodecharging',
1546 0x25000aaa => 'bootflow',
1547 0x45000001 => 'devicetype',
1548 0x42000002 => 'applicationrelativepath',
1549 0x42000003 => 'ramdiskdevicerelativepath',
1550 0x46000004 => 'omitosloaderelements',
1551 0x47000006 => 'elementstomigrate',
1552 0x46000010 => 'recoveryos',
1553 },
1554 bootapp => {
1555 0x26000145 => 'enablebootdebugpolicy',
1556 0x26000146 => 'enablebootorderclean',
1557 0x26000147 => 'enabledeviceid',
1558 0x26000148 => 'enableffuloader',
1559 0x26000149 => 'enableiuloader',
1560 0x2600014a => 'enablemassstorage',
1561 0x2600014b => 'enablerpmbprovisioning',
1562 0x2600014c => 'enablesecurebootpolicy',
1563 0x2600014d => 'enablestartcharge',
1564 0x2600014e => 'enableresettpm',
1565 },
1566 bootmgr => {
1567 0x24000001 => 'displayorder',
1568 0x24000002 => 'bootsequence',
1569 0x23000003 => 'default',
1570 0x25000004 => 'timeout',
1571 0x26000005 => 'resume',
1572 0x23000006 => 'resumeobject',
1573 0x24000007 => 'startupsequence',
1574 0x24000010 => 'toolsdisplayorder',
1575 0x26000020 => 'displaybootmenu',
1576 0x26000021 => 'noerrordisplay',
1577 0x21000022 => 'bcddevice',
1578 0x22000023 => 'bcdfilepath',
1579 0x26000024 => 'hormenabled',
1580 0x26000025 => 'hiberboot',
1581 0x22000026 => 'passwordoverride',
1582 0x22000027 => 'pinpassphraseoverride',
1583 0x26000028 => 'processcustomactionsfirst',
1584 0x27000030 => 'customactions',
1585 0x26000031 => 'persistbootsequence',
1586 0x26000032 => 'skipstartupsequence',
1587 0x22000040 => 'fverecoveryurl',
1588 0x22000041 => 'fverecoverymessage',
1589 },
1590 device => {
1591 0x35000001 => 'ramdiskimageoffset',
1592 0x35000002 => 'ramdisktftpclientport',
1593 0x31000003 => 'ramdisksdidevice',
1594 0x32000004 => 'ramdisksdipath',
1595 0x35000005 => 'ramdiskimagelength',
1596 0x36000006 => 'exportascd',
1597 0x35000007 => 'ramdisktftpblocksize',
1598 0x35000008 => 'ramdisktftpwindowsize',
1599 0x36000009 => 'ramdiskmcenabled',
1600 0x3600000a => 'ramdiskmctftpfallback',
1601 0x3600000b => 'ramdisktftpvarwindow',
1602 },
1603 memdiag => {
1604 0x25000001 => 'passcount',
1605 0x25000002 => 'testmix',
1606 0x25000003 => 'failurecount',
1607 0x26000003 => 'cacheenable',
1608 0x25000004 => 'testtofail',
1609 0x26000004 => 'failuresenabled',
1610 0x25000005 => 'stridefailcount',
1611 0x26000005 => 'cacheenable',
1612 0x25000006 => 'invcfailcount',
1613 0x25000007 => 'matsfailcount',
1614 0x25000008 => 'randfailcount',
1615 0x25000009 => 'chckrfailcount',
1616 },
1617 ntldr => {
1618 0x22000001 => 'bpbstring',
1619 },
1620 osloader => {
1621 0x21000001 => 'osdevice',
1622 0x22000002 => 'systemroot',
1623 0x23000003 => 'resumeobject',
1624 0x26000004 => 'stampdisks',
1625 0x26000010 => 'detecthal',
1626 0x22000011 => 'kernel',
1627 0x22000012 => 'hal',
1628 0x22000013 => 'dbgtransport',
1629 0x25000020 => 'nx',
1630 0x25000021 => 'pae',
1631 0x26000022 => 'winpe',
1632 0x26000024 => 'nocrashautoreboot',
1633 0x26000025 => 'lastknowngood',
1634 0x26000026 => 'oslnointegritychecks',
1635 0x26000027 => 'osltestsigning',
1636 0x26000030 => 'nolowmem',
1637 0x25000031 => 'removememory',
1638 0x25000032 => 'increaseuserva',
1639 0x25000033 => 'perfmem',
1640 0x26000040 => 'vga',
1641 0x26000041 => 'quietboot',
1642 0x26000042 => 'novesa',
1643 0x26000043 => 'novga',
1644 0x25000050 => 'clustermodeaddressing',
1645 0x26000051 => 'usephysicaldestination',
1646 0x25000052 => 'restrictapiccluster',
1647 0x22000053 => 'evstore',
1648 0x26000054 => 'uselegacyapicmode',
1649 0x26000060 => 'onecpu',
1650 0x25000061 => 'numproc',
1651 0x26000062 => 'maxproc',
1652 0x25000063 => 'configflags',
1653 0x26000064 => 'maxgroup',
1654 0x26000065 => 'groupaware',
1655 0x25000066 => 'groupsize',
1656 0x26000070 => 'usefirmwarepcisettings',
1657 0x25000071 => 'msi',
1658 0x25000072 => 'pciexpress',
1659 0x25000080 => 'safeboot',
1660 0x26000081 => 'safebootalternateshell',
1661 0x26000090 => 'bootlog',
1662 0x26000091 => 'sos',
1663 0x260000a0 => 'debug',
1664 0x260000a1 => 'halbreakpoint',
1665 0x260000a2 => 'useplatformclock',
1666 0x260000a3 => 'forcelegacyplatform',
1667 0x260000a4 => 'useplatformtick',
1668 0x260000a5 => 'disabledynamictick',
1669 0x250000a6 => 'tscsyncpolicy',
1670 0x260000b0 => 'ems',
1671 0x250000c0 => 'forcefailure',
1672 0x250000c1 => 'driverloadfailurepolicy',
1673 0x250000c2 => 'bootmenupolicy',
1674 0x260000c3 => 'onetimeadvancedoptions',
1675 0x260000c4 => 'onetimeoptionsedit',
1676 0x250000e0 => 'bootstatuspolicy',
1677 0x260000e1 => 'disableelamdrivers',
1678 0x250000f0 => 'hypervisorlaunchtype',
1679 0x220000f1 => 'hypervisorpath',
1680 0x260000f2 => 'hypervisordebug',
1681 0x250000f3 => 'hypervisordebugtype',
1682 0x250000f4 => 'hypervisordebugport',
1683 0x250000f5 => 'hypervisorbaudrate',
1684 0x250000f6 => 'hypervisorchannel',
1685 0x250000f7 => 'bootux',
1686 0x260000f8 => 'hypervisordisableslat',
1687 0x220000f9 => 'hypervisorbusparams',
1688 0x250000fa => 'hypervisornumproc',
1689 0x250000fb => 'hypervisorrootprocpernode',
1690 0x260000fc => 'hypervisoruselargevtlb',
1691 0x250000fd => 'hypervisorhostip',
1692 0x250000fe => 'hypervisorhostport',
1693 0x250000ff => 'hypervisordebugpages',
1694 0x25000100 => 'tpmbootentropy',
1695 0x22000110 => 'hypervisorusekey',
1696 0x22000112 => 'hypervisorproductskutype',
1697 0x25000113 => 'hypervisorrootproc',
1698 0x26000114 => 'hypervisordhcp',
1699 0x25000115 => 'hypervisoriommupolicy',
1700 0x26000116 => 'hypervisorusevapic',
1701 0x22000117 => 'hypervisorloadoptions',
1702 0x25000118 => 'hypervisormsrfilterpolicy',
1703 0x25000119 => 'hypervisormmionxpolicy',
1704 0x2500011a => 'hypervisorschedulertype',
1705 0x25000120 => 'xsavepolicy',
1706 0x25000121 => 'xsaveaddfeature0',
1707 0x25000122 => 'xsaveaddfeature1',
1708 0x25000123 => 'xsaveaddfeature2',
1709 0x25000124 => 'xsaveaddfeature3',
1710 0x25000125 => 'xsaveaddfeature4',
1711 0x25000126 => 'xsaveaddfeature5',
1712 0x25000127 => 'xsaveaddfeature6',
1713 0x25000128 => 'xsaveaddfeature7',
1714 0x25000129 => 'xsaveremovefeature',
1715 0x2500012a => 'xsaveprocessorsmask',
1716 0x2500012b => 'xsavedisable',
1717 0x2500012c => 'kerneldebugtype',
1718 0x2200012d => 'kernelbusparams',
1719 0x2500012e => 'kerneldebugaddress',
1720 0x2500012f => 'kerneldebugport',
1721 0x25000130 => 'claimedtpmcounter',
1722 0x25000131 => 'kernelchannel',
1723 0x22000132 => 'kerneltargetname',
1724 0x25000133 => 'kernelhostip',
1725 0x25000134 => 'kernelport',
1726 0x26000135 => 'kerneldhcp',
1727 0x22000136 => 'kernelkey',
1728 0x22000137 => 'imchivename',
1729 0x21000138 => 'imcdevice',
1730 0x25000139 => 'kernelbaudrate',
1731 0x22000140 => 'mfgmode',
1732 0x26000141 => 'event',
1733 0x25000142 => 'vsmlaunchtype',
1734 0x25000144 => 'hypervisorenforcedcodeintegrity',
1735 0x21000150 => 'systemdatadevice',
1736 0x21000151 => 'osarcdevice',
1737 0x21000153 => 'osdatadevice',
1738 0x21000154 => 'bspdevice',
1739 0x21000155 => 'bspfilepath',
1740 },
1741 resume => {
1742 0x21000001 => 'filedevice',
1743 0x22000002 => 'filepath',
1744 0x26000003 => 'customsettings',
1745 0x26000004 => 'pae',
1746 0x21000005 => 'associatedosdevice',
1747 0x26000006 => 'debugoptionenabled',
1748 0x25000007 => 'bootux',
1749 0x25000008 => 'bootmenupolicy',
1750 0x26000024 => 'hormenabled',
1751 },
1752 startup => {
1753 0x26000001 => 'pxesoftreboot',
1754 0x22000002 => 'applicationname',
1755 },
1756 );
1757
1758 # mask, value => class
1759 our @bcde_typeclass = (
1760 [0x00000000, 0x00000000, 'any'],
1761 [0xf00fffff, 0x1000000a, 'bootapp'],
1762 [0xf0ffffff, 0x2020000a, 'bootapp'],
1763 [0xf00fffff, 0x10000001, 'bootmgr'],
1764 [0xf00fffff, 0x10000002, 'bootmgr'],
1765 [0xf0ffffff, 0x20200001, 'bootmgr'],
1766 [0xf0ffffff, 0x20200002, 'bootmgr'],
1767 [0xf0f00000, 0x20300000, 'device'],
1768 [0xf0000000, 0x30000000, 'device'],
1769 [0xf00fffff, 0x10000005, 'memdiag'],
1770 [0xf0ffffff, 0x20200005, 'memdiag'],
1771 [0xf00fffff, 0x10000006, 'ntldr'],
1772 [0xf00fffff, 0x10000007, 'ntldr'],
1773 [0xf0ffffff, 0x20200006, 'ntldr'],
1774 [0xf0ffffff, 0x20200007, 'ntldr'],
1775 [0xf00fffff, 0x10000003, 'osloader'],
1776 [0xf0ffffff, 0x20200003, 'osloader'],
1777 [0xf00fffff, 0x10000004, 'resume'],
1778 [0xf0ffffff, 0x20200004, 'resume'],
1779 [0xf00fffff, 0x10000009, 'startup'],
1780 [0xf0ffffff, 0x20200009, 'startup'],
1781 );
1782
1783 our %rbcde_byclass;
1784
1785 while (my ($k, $v) = each %bcde_byclass) {
1786 $rbcde_byclass{$k} = { reverse %$v };
1787 }
1788
1789 # decodes (numerical elem, type) to name
1790 sub dec_bcde_id($$) {
1791 for my $class (@bcde_typeclass) {
1792 if (($_[1] & $class->[0]) == $class->[1]) {
1793 if (my $id = $bcde_byclass{$class->[2]}{$_[0]}) {
1794 return $id;
1795 }
1796 }
1797 }
1798
1799 sprintf "custom:%08x", $_[0]
1800 }
1801
1802 # encodes (elem as name, type)
1803 sub enc_bcde_id($$) {
1804 $_[0] =~ /^custom:(?:0x)?([0-9a-fA-F]{8}$)/
1805 and return hex $1;
1806
1807 for my $class (@bcde_typeclass) {
1808 if (($_[1] & $class->[0]) == $class->[1]) {
1809 if (my $value = $rbcde_byclass{$class->[2]}{$_[0]}) {
1810 return $value;
1811 }
1812 }
1813 }
1814
1815 undef
1816 }
1817
1818 # decode/encode bcd device element - the horror, no documentaion
1819 # whatsoever, supercomplex, superinconsistent.
1820
1821 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1822 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1823 our @part_type = qw(gpt mbr raw);
1824
1825 our $NULL_DEVICE = "\x00" x 16;
1826
1827 # biggest bitch to decode, ever
1828 # this decoded a device portion after the GUID
1829 sub dec_device_($$);
1830 sub dec_device_($$) {
1831 my ($device, $type) = @_;
1832
1833 my $res;
1834
1835 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1836
1837 $pad == 0
1838 or die "non-zero reserved field in device descriptor\n";
1839
1840 if ($length == 0 && $type == 0 && $flags == 0) {
1841 return ("null", $device);
1842 }
1843
1844 $length >= 16
1845 or die "device element size too small ($length)\n";
1846
1847 $type = $dev_type[$type] // die "$type: unknown device type\n";
1848 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1849
1850 $res .= $type;
1851 $res .= sprintf "<%x>", $flags if $flags;
1852
1853 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1854
1855 $length == 4 * 4 + length $device
1856 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1857
1858 my $dec_path = sub {
1859 my ($path, $error) = @_;
1860
1861 $path =~ /^((?:..)*)\x00\x00\z/s
1862 or die "$error\n";
1863
1864 $path = Encode::decode "UTF-16LE", $1;
1865
1866 $path
1867 };
1868
1869 if ($type eq "partition" or $type eq "legacypartition") {
1870 my $partdata = substr $device, 0, 16, "";
1871 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1872
1873 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1874 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1875
1876 my $diskid = substr $device, 0, 16, "";
1877
1878 $diskid = $parttype eq "gpt"
1879 ? dec_guid substr $diskid, 0, 16
1880 : sprintf "%08x", unpack "V", $diskid;
1881
1882 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1883 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1884 : unpack "L<", $partdata; # partition number, one-based
1885
1886 (my $parent, $device) = dec_device_ $device, $type;
1887
1888 $res .= "=";
1889 $res .= "<$parent>";
1890 $res .= ",$blocktype,$parttype,$diskid,$partid";
1891
1892 # PartitionType (gpt, mbr, raw)
1893 # guid | partsig | disknumber
1894
1895 } elsif ($type eq "boot") {
1896 $device =~ s/^\x00{56}\z//
1897 or die "boot device type with extra data not supported\n";
1898
1899 } elsif ($type eq "block") {
1900 my $blocktype = unpack "V", substr $device, 0, 4, "";
1901
1902 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1903
1904 # decode a "file path" structure
1905 my $dec_file = sub {
1906 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1907
1908 my $path = substr $device, 0, $flen - 12, "";
1909
1910 $fver == 1
1911 or die "unsupported file descriptor version '$fver'\n";
1912
1913 $ftype == 5
1914 or die "unsupported file descriptor path type '$type'\n";
1915
1916 (my $parent, $path) = dec_device_ $path, $type;
1917
1918 $path = $dec_path->($path, "file device without path");
1919
1920 ($parent, $path)
1921 };
1922
1923 if ($blocktype eq "file") {
1924 my ($parent, $path) = $dec_file->();
1925
1926 $res .= "=file,<$parent>,$path";
1927
1928 } elsif ($blocktype eq "vhd") {
1929 $device =~ s/^\x00{20}//s
1930 or die "virtualdisk has non-zero fields I don't understand\n";
1931
1932 (my $parent, $device) = dec_device_ $device, $type;
1933
1934 $res .= "=vhd,<$parent>";
1935
1936 } elsif ($blocktype eq "ramdisk") {
1937 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1938 my ($subdev, $path) = $dec_file->();
1939
1940 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1941
1942 } else {
1943 die "unsupported block type '$blocktype'\n";
1944 }
1945
1946 } elsif ($type eq "locate") {
1947 # mode, bcde_id, unknown, string
1948 # we assume locate has _either_ an element id _or_ a path, but not both
1949
1950 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1951
1952 if ($parent) {
1953 # not sure why this is an offset - it must come after the path
1954 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1955 ($parent, my $tail) = dec_device_ $parent, $type;
1956 0 == length $tail
1957 or die "trailing data after locate device parent\n";
1958 } else {
1959 $parent = "null";
1960 }
1961
1962 my $path = $device; $device = "";
1963 $path = $dec_path->($path, "device locate mode without path");
1964
1965 $res .= "=<$parent>,";
1966
1967 if ($mode == 0) { # "Element"
1968 !length $path
1969 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1970
1971 $elem = dec_bcde_id $elem, $type;
1972 $res .= "element,$elem";
1973
1974 } elsif ($mode == 1) { # "String"
1975 !$elem
1976 or die "device locate mode 1 having non-zero element\n";
1977
1978 $res .= "path,$path";
1979 } else {
1980 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1981 die "device locate mode '$mode' not supported\n";
1982 }
1983
1984 } elsif ($type eq "vmbus") {
1985 my $type = dec_guid substr $device, 0, 16, "";
1986 my $instance = dec_guid substr $device, 0, 16, "";
1987
1988 $device =~ s/^\x00{24}\z//
1989 or die "vmbus has non-zero fields I don't understand\n";
1990
1991 $res .= "=$type,$instance";
1992
1993 } else {
1994 die "unsupported device type '$type'\n";
1995 }
1996
1997 warn "unexpected trailing device data($res), " . unpack "H*",$device
1998 if length $device;
1999 #length $device
2000 # and die "unexpected trailing device data\n";
2001
2002 ($res, $tail)
2003 }
2004
2005 # decode a full binary BCD device descriptor
2006 sub dec_device($$) {
2007 my ($device, $type) = @_;
2008
2009 $device = pack "H*", $device;
2010
2011 my $guid = dec_guid substr $device, 0, 16, "";
2012 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
2013 ? "" : "{$guid}";
2014
2015 eval {
2016 my ($dev, $tail) = dec_device_ $device, $type;
2017
2018 $tail eq ""
2019 or die "unsupported trailing data after device descriptor\n";
2020
2021 "$guid$dev"
2022 # } // scalar ((warn $@), "$guid$fallback")
2023 } // ($guid . "binary=" . unpack "H*", $device)
2024 }
2025
2026 sub indexof($@) {
2027 my $value = shift;
2028
2029 for (0 .. $#_) {
2030 $value eq $_[$_]
2031 and return $_;
2032 }
2033
2034 undef
2035 }
2036
2037 # encode the device portion after the GUID
2038 sub enc_device_($$);
2039 sub enc_device_($$) {
2040 my ($device, $type) = @_;
2041
2042 my $enc_path = sub {
2043 my $path = shift;
2044 $path =~ s/\//\\/g;
2045 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
2046 };
2047
2048 my $enc_file = sub {
2049 my ($parent, $path) = @_; # parent and path must already be encoded
2050
2051 $path = $parent . $path;
2052
2053 # fver 1, ftype 5
2054 pack "VVVa*", 1, 12 + length $path, 5, $path
2055 };
2056
2057 my $parse_path = sub {
2058 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
2059 or die "$_: invalid path\n";
2060
2061 $enc_path->($1)
2062 };
2063
2064 my $parse_parent = sub {
2065 my $parent;
2066
2067 if (s/^<//) {
2068 ($parent, $_) = enc_device_ $_, $type;
2069 s/^>//
2070 or die "$device: syntax error: parent device not followed by '>'\n";
2071 } else {
2072 $parent = $NULL_DEVICE;
2073 }
2074
2075 $parent
2076 };
2077
2078 for ($device) {
2079 s/^([a-z]+)//
2080 or die "$_: device does not start with type string\n";
2081
2082 my $type = $1;
2083 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
2084 my $payload;
2085
2086 if ($type eq "binary") {
2087 s/^=([0-9a-fA-F]+)//
2088 or die "binary type must have a hex string argument\n";
2089
2090 $payload = pack "H*", $1;
2091
2092 } elsif ($type eq "null") {
2093 return ($NULL_DEVICE, $_);
2094
2095 } elsif ($type eq "boot") {
2096 $payload = "\x00" x 56;
2097
2098 } elsif ($type eq "partition" or $type eq "legacypartition") {
2099 s/^=//
2100 or die "$_: missing '=' after $type\n";
2101
2102 my $parent = $parse_parent->();
2103
2104 s/^,//
2105 or die "$_: comma missing after partition parent device\n";
2106
2107 s/^([a-z]+),//
2108 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
2109 my $blocktype = $1;
2110
2111 s/^([a-z]+),//
2112 or die "$_: partition block type not followed by partiton type\n";
2113 my $parttype = $1;
2114
2115 my ($partdata, $diskdata);
2116
2117 if ($parttype eq "mbr") {
2118 s/^([0-9a-f]{8}),//i
2119 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
2120 $diskdata = pack "Vx12", hex $1;
2121
2122 s/^([0-9]+)//
2123 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
2124
2125 # the following works for both 64 bit offset and 32 bit partno
2126 $partdata = pack "Q< x8", $1;
2127
2128 } elsif ($parttype eq "gpt") {
2129 s/^($RE_GUID),//
2130 or die "$_: partition disk guid missing or malformed\n";
2131 $diskdata = enc_guid $1;
2132
2133 s/^($RE_GUID)//
2134 or die "$_: partition guid missing or malformed\n";
2135 $partdata = enc_guid $1;
2136
2137 } elsif ($parttype eq "raw") {
2138 s/^([0-9]+)//
2139 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2140
2141 $partdata = pack "L< x12", $1;
2142
2143 } else {
2144 die "$parttype: partition type not supported\n";
2145 }
2146
2147 $payload = pack "a16 L< L< a16 a*",
2148 $partdata,
2149 (indexof $blocktype, @block_type),
2150 (indexof $parttype, @part_type),
2151 $diskdata,
2152 $parent;
2153
2154 } elsif ($type eq "locate") {
2155 s/^=//
2156 or die "$_: missing '=' after $type\n";
2157
2158 my ($mode, $elem, $path);
2159
2160 my $parent = $parse_parent->();
2161
2162 s/^,//
2163 or die "$_: missing comma after locate parent device\n";
2164
2165 if (s/^element,//) {
2166 s/^([0-9a-z:]+)//i
2167 or die "$_ locate element must be either name or 8-digit hex id\n";
2168 $elem = enc_bcde_id $1, $type;
2169 $mode = 0;
2170 $path = $enc_path->("");
2171
2172 } elsif (s/^path,//) {
2173 $mode = 1;
2174 $path = $parse_path->();
2175
2176 } else {
2177 die "$_ second locate argument must be subtype (either element or path)\n";
2178 }
2179
2180 if ($parent ne $NULL_DEVICE) {
2181 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2182 } else {
2183 $parent = 0;
2184 }
2185
2186 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2187
2188 } elsif ($type eq "block") {
2189 s/^=//
2190 or die "$_: missing '=' after $type\n";
2191
2192 s/^([a-z]+),//
2193 or die "$_: block device does not start with block type (e.g. disk)\n";
2194 my $blocktype = $1;
2195
2196 my $blockdata;
2197
2198 if ($blocktype eq "file") {
2199 my $parent = $parse_parent->();
2200 s/^,// or die "$_: comma missing after file block device parent\n";
2201 my $path = $parse_path->();
2202
2203 $blockdata = $enc_file->($parent, $path);
2204
2205 } elsif ($blocktype eq "vhd") {
2206 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2207 $blockdata .= $parse_parent->();
2208
2209 } elsif ($blocktype eq "ramdisk") {
2210 my $parent = $parse_parent->();
2211
2212 s/^,(\d+),(\d+),(\d+),//a
2213 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2214
2215 my ($base, $size, $offset) = ($1, $2, $3);
2216
2217 my $path = $parse_path->();
2218
2219 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2220
2221 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2222 # this is guesswork
2223 s/^(\d+)//a
2224 or die "$_: missing device number for cdrom\n";
2225 $blockdata = pack "V", $1;
2226
2227 } else {
2228 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2229 }
2230
2231 $payload = pack "Va*",
2232 (indexof $blocktype, @block_type),
2233 $blockdata;
2234
2235 } elsif ($type eq "vmbus") {
2236 s/^=($RE_GUID)//
2237 or die "$_: malformed or missing vmbus interface type guid\n";
2238 my $type = enc_guid $1;
2239 s/^,($RE_GUID)//
2240 or die "$_: malformed or missing vmbus interface instance guid\n";
2241 my $instance = enc_guid $1;
2242
2243 $payload = pack "a16a16x24", $type, $instance;
2244
2245 } else {
2246 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2247 }
2248
2249 return (
2250 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2251 $_
2252 );
2253 }
2254 }
2255
2256 # encode a full binary BCD device descriptor
2257 sub enc_device($$) {
2258 my ($device, $type) = @_;
2259
2260 my $guid = "\x00" x 16;
2261
2262 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2263 $guid = enc_guid $1
2264 or die "$device: does not start with valid guid\n";
2265 }
2266
2267 my ($descriptor, $tail) = enc_device_ $device, $type;
2268
2269 length $tail
2270 and die "$device: garbage after device descriptor\n";
2271
2272 unpack "H*", $guid . $descriptor
2273 }
2274
2275 # decode a registry hive into the BCD structure used by pbcdedit
2276 sub bcd_decode {
2277 my ($hive) = @_;
2278
2279 my %bcd;
2280
2281 my $objects = $hive->[1][1]{Objects}[1];
2282
2283 while (my ($k, $v) = each %$objects) {
2284 my %kv;
2285 $v = $v->[1];
2286
2287 $k = $bcd_objects{$k} // $k;
2288
2289 my $type = $v->{Description}[0]{Type}[1];
2290
2291 if ($type != $bcd_object_types{$k}) {
2292 $kv{type} = $bcd_types{$type} // sprintf "0x%08x", $type;
2293 }
2294
2295 my $elems = $v->{Elements}[1];
2296
2297 while (my ($k, $v) = each %$elems) {
2298 my $k = hex $k;
2299
2300 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1], $type);
2301 my $k = dec_bcde_id $k, $type;
2302
2303 $kv{$k} = $v;
2304 }
2305
2306 $bcd{$k} = \%kv;
2307 }
2308
2309 $bcd{meta} = { version => $JSON_VERSION };
2310
2311 \%bcd
2312 }
2313
2314 # encode a pbcdedit structure into a registry hive
2315 sub bcd_encode {
2316 my ($bcd) = @_;
2317
2318 if (my $meta = $bcd->{meta}) {
2319 $meta->{version} eq $JSON_VERSION
2320 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2321 }
2322
2323 my %objects;
2324 my %rbcd_types = reverse %bcd_types;
2325
2326 while (my ($k, $v) = each %$bcd) {
2327 my %kv;
2328
2329 next if $k eq "meta";
2330
2331 $k = lc $k; # I know you windows types!
2332
2333 my $type = $v->{type};
2334
2335 if ($type) {
2336 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2337 ? hex $type
2338 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2339 }
2340
2341 my $guid = enc_wguid $k
2342 or die "$k: invalid bcd object identifier\n";
2343
2344 # default type if not given
2345 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2346
2347 my %elem;
2348
2349 while (my ($k, $v) = each %$v) {
2350 next if $k eq "type";
2351
2352 $k = (enc_bcde_id $k, $type) // die "$k: invalid bcde element name or id\n";
2353 $elem{sprintf "%08x", $k} = [{
2354 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2355 }];
2356 }
2357
2358 $guid = dec_guid $guid;
2359
2360 $objects{"{$guid}"} = [undef, {
2361 Description => [{ Type => [dword => $type] }],
2362 Elements => [undef, \%elem],
2363 }];
2364 }
2365
2366 [NewStoreRoot => [undef, {
2367 Description => [{
2368 KeyName => [sz => "BCD00000001"],
2369 System => [dword => 1],
2370 pbcdedit => [sz => $VERSION],
2371 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2372 }],
2373 Objects => [undef, \%objects],
2374 }]]
2375 }
2376
2377 #############################################################################
2378 # edit instructions
2379
2380 sub bcd_edit_eval {
2381 package pbcdedit;
2382
2383 our ($PATH, $BCD, $DEFAULT);
2384
2385 eval shift;
2386 die "$@" if $@;
2387 }
2388
2389 sub bcd_edit {
2390 my ($path, $bcd, @insns) = @_;
2391
2392 my $default = $bcd->{"{bootmgr}"}{default};
2393
2394 # prepare "officially visible" variables
2395 local $pbcdedit::PATH = $path;
2396 local $pbcdedit::BCD = $bcd;
2397 local $pbcdedit::DEFAULT = $default;
2398
2399 while (@insns) {
2400 my $insn = shift @insns;
2401
2402 if ($insn eq "get") {
2403 my $object = shift @insns;
2404 my $elem = shift @insns;
2405
2406 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2407
2408 print $bcd->{$object}{$elem}, "\n";
2409
2410 } elsif ($insn eq "set") {
2411 my $object = shift @insns;
2412 my $elem = shift @insns;
2413 my $value = shift @insns;
2414
2415 $object = $object eq "{default}" ? $default : dec_wguid enc_wguid $object;
2416
2417 $bcd->{$object}{$elem} = $value;
2418
2419 } elsif ($insn eq "eval") {
2420 my $perl = shift @insns;
2421 bcd_edit_eval "#line 1 'eval'\n$perl";
2422
2423 } elsif ($insn eq "do") {
2424 my $path = shift @insns;
2425 my $file = file_load $path;
2426 bcd_edit_eval "#line 1 '$path'\n$file";
2427
2428 } else {
2429 die "$insn: not a recognized instruction for edit/parse\n";
2430 }
2431 }
2432
2433 }
2434
2435 #############################################################################
2436 # other utilities
2437
2438 # json to stdout
2439 sub prjson($) {
2440 print $json_coder->encode ($_[0]);
2441 }
2442
2443 # json from stdin
2444 sub rdjson() {
2445 my $json;
2446 1 while read STDIN, $json, 65536, length $json;
2447 $json_coder->decode ($json)
2448 }
2449
2450 sub lsblk() {
2451 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,MAJ:MIN,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2452
2453 for my $dev (@{ $lsblk->{blockdevices} }) {
2454 if ($dev->{type} eq "part") {
2455 if ($dev->{pttype} eq "gpt") {
2456 $dev->{bcd_device} = "partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}";
2457 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2458 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2459 my ($diskid, $partno) = ($1, hex $2);
2460 $dev->{bcd_legacy_device} = "legacypartition=<null>,harddisk,mbr,$diskid,$partno";
2461 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2462 my $start = 512 * readline $fh;
2463 $dev->{bcd_device} = "partition=<null>,harddisk,mbr,$diskid,$start";
2464 }
2465 }
2466 }
2467 }
2468 }
2469
2470 $lsblk->{blockdevices}
2471 }
2472
2473 sub prdev($$) {
2474 my ($path, $attribute) = @_;
2475
2476 # rather than stat'ing and guessing how devices are encoded, we use lsblk for this
2477 # unfortunately, there doesn't seem to be a way to restrict lsblk to just oned evice,
2478 # so we always assume the first one is it.
2479 my $mm = $json_coder->decode (scalar qx<lsblk -o MAJ:MIN -J \Q$path\E>)->{blockdevices}[0]{"maj:min"};
2480
2481 my $lsblk = lsblk;
2482
2483 for my $dev (@$lsblk) {
2484 if ($dev->{"maj:min"} eq $mm && $dev->{$attribute}) {
2485 say $dev->{$attribute};
2486 exit 0;
2487 }
2488 }
2489
2490 exit 1;
2491 }
2492
2493 #############################################################################
2494 # command line parser
2495
2496 our %CMD = (
2497 help => sub {
2498 require Pod::Usage;
2499 Pod::Usage::pod2usage (-verbose => 2);
2500 },
2501
2502 objects => sub {
2503 my %rbcd_types = reverse %bcd_types;
2504 $_ = sprintf "%08x", $_ for values %rbcd_types;
2505
2506 if ($_[0] eq "--json") {
2507 my %default_type = %bcd_object_types;
2508 $_ = sprintf "%08x", $_ for values %default_type;
2509
2510 prjson {
2511 version => $JSON_VERSION,
2512 object_alias => \%bcd_objects,
2513 object_type => \%rbcd_types,
2514 object_default_type => \%default_type,
2515 };
2516 } else {
2517 my %rbcd_objects = reverse %bcd_objects;
2518
2519 print "\n";
2520
2521 printf "%-9s %s\n", "Type", "Alias";
2522 for my $tname (sort keys %rbcd_types) {
2523 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2524 }
2525
2526 print "\n";
2527
2528 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2529 for my $name (sort keys %rbcd_objects) {
2530 my $guid = $rbcd_objects{$name};
2531 my $type = $bcd_object_types{$name};
2532 my $tname = $bcd_types{$type};
2533
2534 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2535
2536 printf "%-39s %-23s %s\n", $guid, $name, $type;
2537 }
2538
2539 print "\n";
2540 }
2541 },
2542
2543 elements => sub {
2544 my $json = $_[0] eq "--json";
2545
2546 my %format_name = (
2547 BCDE_FORMAT_DEVICE , "device",
2548 BCDE_FORMAT_STRING , "string",
2549 BCDE_FORMAT_GUID , "guid",
2550 BCDE_FORMAT_GUID_LIST , "guid list",
2551 BCDE_FORMAT_INTEGER , "integer",
2552 BCDE_FORMAT_BOOLEAN , "boolean",
2553 BCDE_FORMAT_INTEGER_LIST, "integer list",
2554 );
2555
2556 my @element;
2557
2558 for my $class (sort keys %rbcde_byclass) {
2559 my $rbcde = $rbcde_byclass{$class};
2560
2561 unless ($json) {
2562 print "\n";
2563 printf "Elements applicable to class(es): $class\n";
2564 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2565 }
2566 for my $name (sort keys %$rbcde) {
2567 my $id = $rbcde->{$name};
2568 my $format = $format_name{$id & BCDE_FORMAT};
2569
2570 if ($json) {
2571 push @element, [$class, $id * 1, $format, $name];
2572 } else {
2573 $id = sprintf "%08x", $id;
2574 printf "%-9s %-12s %s\n", $id, $format, $name;
2575 }
2576 }
2577 }
2578 print "\n" unless $json;
2579
2580 prjson {
2581 version => $JSON_VERSION,
2582 element => \@element,
2583 class => \@bcde_typeclass,
2584 } if $json;
2585
2586 },
2587
2588 export => sub {
2589 prjson bcd_decode regf_load shift;
2590 },
2591
2592 import => sub {
2593 regf_save shift, bcd_encode rdjson;
2594 },
2595
2596 edit => sub {
2597 my $path = shift;
2598 my $bcd = bcd_decode regf_load $path;
2599 bcd_edit $path, $bcd, @_;
2600 regf_save $path, bcd_encode $bcd;
2601 },
2602
2603 parse => sub {
2604 my $path = shift;
2605 my $bcd = bcd_decode regf_load $path;
2606 bcd_edit $path, $bcd, @_;
2607 },
2608
2609 "export-regf" => sub {
2610 prjson regf_load shift;
2611
2612 },
2613
2614 "import-regf" => sub {
2615 regf_save shift, rdjson;
2616 },
2617
2618 lsblk => sub {
2619 my $json = $_[0] eq "--json";
2620
2621 my $lsblk = lsblk;
2622
2623 if ($json) {
2624 prjson $lsblk;
2625 } else {
2626 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2627 for my $dev (@$lsblk) {
2628 for my $bcd ($dev->{bcd_device}, $dev->{bcd_legacy_device}) {
2629 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2630 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $bcd
2631 if $bcd;
2632 }
2633 }
2634 }
2635 },
2636
2637 "bcd-device" => sub {
2638 prdev shift, "bcd_device";
2639 },
2640
2641 "bcd-legacy-device" => sub {
2642 prdev shift, "bcd_legacy_device";
2643 },
2644
2645 version => sub {
2646 print "\n",
2647 "PBCDEDIT version $VERSION, copyright 2019 Marc A. Lehmann <pbcdedit\@schmorp.de>.\n",
2648 "JSON schema version: $JSON_VERSION\n",
2649 "Licensed under the GNU General Public License Version 3.0, or any later version.\n",
2650 "\n",
2651 $CHANGELOG,
2652 "\n";
2653 },
2654 );
2655
2656 my $cmd = shift;
2657
2658 unless (exists $CMD{$cmd}) {
2659 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2660 exit 126;
2661 }
2662
2663 $CMD{$cmd}->(@ARGV);
2664