ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/pbcdedit/pbcdedit
Revision: 1.9
Committed: Wed Aug 14 22:54:28 2019 UTC (4 years, 9 months ago) by root
Branch: MAIN
Changes since 1.8: +3 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #!/usr/bin/perl
2
3 #
4 # PBCDEDIT - Copyright 2019 Marc A. Lehmann <pbcbedit@schmorp.de>
5 #
6 # SPDX-License-Identifier: GPL-3.0-or-later
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #
21
22 use 5.014; # numerous features needed
23
24 our $VERSION = '1.0';
25 our $JSON_VERSION = 1; # the versiobn of the json objects generated by this program
26
27 =head1 NAME
28
29 pbcdedit - portable boot configuration data (BCD) store editor
30
31 =head1 SYNOPSIS
32
33 pbcdedit help # output manual page
34 pbcdedit export path/to/BCD # output BCD hive as JSON
35 pbcdedit import path/to/bcd # convert standard input to BCD hive
36 pbcdedit edit path/to/BCD edit-instructions...
37
38 pbcdedit objects # list all supported object aliases and types
39 pbcdedit elements # list all supported bcd element aliases
40
41 =head1 DESCRIPTION
42
43 This program allows you to create, read and modify Boot Configuration Data
44 (BCD) stores used by Windows Vista and newer versions of Windows.
45
46 At this point, it is in relatively early stages of development and has
47 received little to no real-world testing.
48
49 Compared to other BCD editing programs it offers the following unique
50 features:
51
52 =over
53
54 =item Can create BCD hives from scratch
55
56 Practically all other BCD editing programs force you to copy existing BCD
57 stores, which might or might not be copyrighted by Microsoft.
58
59 =item Does not rely on Windows
60
61 As the "portable" in the name implies, this program does not rely on
62 C<bcdedit> or other windows programs or libraries, it works on any system
63 that supports at least perl version 5.14.
64
65 =item Decodes and encodes BCD device elements
66
67 PBCDEDIT can concisely decode and encode BCD device element contents. This
68 is pretty unique, and offers a lot of potential that can't be realised
69 with C<bcdedit> or any programs relying on it.
70
71 =item Minimal files
72
73 BCD files written by PBCDEDIT are always "minimal", that is, they don't
74 contain unused data areas and therefore don't contain old and potentially
75 sensitive data.
76
77 =back
78
79 The target audience for this program is professionals and tinkerers who
80 are rewady to invest time into learning how it works. It is not an easy
81 program to use and requires patience and a good understanding of BCD data
82 stores.
83
84
85 =head1 SUBCOMMANDS
86
87 PCBEDIT expects a subcommand as first argument that tells it what to
88 do. The following subcommands exist:
89
90 =over
91
92 =item help
93
94 Displays the whole manuale page (this document).
95
96 =item export F<path>
97
98 Reads a BCD data store and writes a JSON representation of it to standard
99 output.
100
101 The format of the data is explained later in this document.
102
103 Example: read a BCD store, modify it wiht an extenral program, write it again.
104
105 pbcdedit export BCD | modify-json-somehow | pbcdedit import BCD
106
107 =item import F<path>
108
109 The reverse of C<export>: Reads a JSON representation of a BCD data store
110 from standard input, and creates or replaces the given BCD data store.
111
112 =item edit F<path> instructions...
113
114 Load a BCD data store, apply some instructions to it, and save it again.
115
116 See the section L<EDITING BCD DATA STORES>, below, for more info.
117
118 =item parse F<path> instructions...
119
120 Same as C<edit>, above, except it doesn't save the data store again. Can
121 be useful to extract some data from it.
122
123 =item lsblk
124
125 On a GNU/Linux system, you can get a list of partition device descriptors
126 using this command - the external C<lsblk> command is required, as well as
127 a mounted C</sys> file system.
128
129 The output will be a list of all partitions in the system and C<partition>
130 descriptors for GPT and both C<legacypartition> and C<partition>
131 descritpors for MBR partitions.
132
133 =item objects [--json]
134
135 Outputs two tables: a table listing all type aliases with their hex bcd
136 element ID, and all object name aliases with their GUID and default type
137 (if any).
138
139 With C<--json> it prints similar information as a JSON object, for easier parsing.
140
141 =item elements [--json]
142
143 Outputs a table of known element aliases with their hex ID and the format
144 type.
145
146 With C<--json> it prints similar information as a JSON object, for easier parsing.
147
148 =item export-regf F<path>
149
150 This has nothing to do with BCD data stores - it takes a registry hive
151 file as argument and outputs a JSON representation of it to standard
152 output.
153
154 Hive versions 1.2 till 1.6 are supported.
155
156 =item import-regf F<path>
157
158 The reverse of C<export-regf>: reads a JSON representation of a registry
159 hive from standard input and creates or replaces the registry hive file given as
160 argument.
161
162 The written hive will always be in a slightly modified version 1.3
163 format. It's not the format windows would generate, but it should be
164 understood by any conformant hive reader.
165
166 Note that the representation chosen by PBCDEDIT currently throws away
167 clasname data (often used for feeble attemtps at hiding stuff by
168 Microsoft) and security descriptors, so if you write anything other than
169 a BCD hive you will most likely destroy it.
170
171 =back
172
173
174 =head1 BCD DATA STORE REPRESENTATION FORMAT
175
176 A BCD data store is represented as a JSON object with one special key,
177 C<meta>, and one key per BCD object. That is, each BCD object becomes
178 one key-value pair in the object, and an additional key called C<meta>
179 contains meta information.
180
181 Here is an abridged example of a real BCD store:
182
183 {
184 "meta" : {
185 "version" : 1
186 },
187 "{7ae02178-821d-11e7-8813-1c872c5f5ab0}" : {
188 "type" : "application::osloader",
189 "description" : "Windows 10",
190 "device" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
191 "osdevice" : "partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,3ce6aceb-e90c-4fd2-9fba-47cab15f6faf",
192 "path" : "\\Windows\\system32\\winload.exe",
193 "systemroot" : "\\Windows"
194 },
195 "{bootloadersettings}" : {
196 "inherit" : "{globalsettings} {hypervisorsettings}"
197 },
198 "{bootmgr}" : {
199 "description" : "Windows Boot Manager",
200 "device" : "partition=<null>,harddisk,mbr,ff3ba63b,1048576",
201 "displayorder" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
202 "inherit" : "{globalsettings}",
203 "displaybootmenu" : 0,
204 "timeout" : 30
205 },
206 "{globalsettings}" : {
207 "inherit" : "{dbgsettings} {emssettings} {badmemory}"
208 },
209 "{hypervisorsettings}" : {
210 "hypervisorbaudrate" : 115200,
211 "hypervisordebugport" : 1,
212 "hypervisordebugtype" : 0
213 },
214 # ...
215 }
216
217 =head2 Minimal BCD to boot windows
218
219 Experimentally I found the following BCD is the minimum required to
220 successfully boot any post-XP version of Windows (suitable C<device> and
221 C<osdevice> values, of course):
222
223 {
224 "{bootmgr}" : {
225 "resumeobject" : "{45b547a7-8ca6-4417-9eb0-a257b61f35b4}"
226 },
227
228 "{45b547a7-8ca6-4417-9eb0-a257b61f35b1}" : {
229 "type" : "application::osloader",
230 "description" : "Windows Boot",
231 "device" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
232 "osdevice" : "legacypartition=<null>,harddisk,mbr,47cbc08a,1",
233 "path" : "\\Windows\\system32\\winload.exe",
234 "systemroot" : "\\Windows"
235 },
236 }
237
238 Note that minimal doesn't mean recommended - Windows itself will add stuff
239 to this during or after boot, and you might or might not run into issues
240 when installing updates as it might not be able to find the F<bootmgr>.
241
242 =head2 The C<meta> key
243
244 The C<meta> key is not stored in the BCD data store but is used only
245 by PBCDEDIT. It is always generated when exporting, and importing will
246 be refused when it exists and the version stored inside doesn't store
247 the JSON schema version of PBCDEDIT. This ensures that differemt and
248 incompatible versions of PBCDEDIT will not read and misinterĂ¼ret each
249 others data.
250
251 =head2 The object keys
252
253 Every other key is a BCD object. There is usually a BCD object for the
254 boot manager, one for every boot option and a few others that store common
255 settings inherited by these.
256
257 Each BCD object is represented by a GUID wrapped in curly braces. These
258 are usually random GUIDs used only to distinguish bCD objects from each
259 other. When adding a new boot option, you can simply generate a new GUID.
260
261 Some of these GUIDs are fixed well known GUIDs which PBCDEDIT will decode
262 into human-readable strings such as C<{globalsettings}>, which is the same
263 as C<{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}>.
264
265 Each BCD, object has an associated type. For example,
266 C<application::osloader> for objects loading Windows via F<winload.exe>,
267 C<application::bootsector> for real mode applications and so on.
268
269 The type of a object is stored in the pseudo BCD element C<type> (see next
270 section).
271
272 Some well-known objects have a default type. If an object type matches
273 its default type, then the C<type> element will be omitted. Similarly, if
274 the C<type> element is missing and the BCD object has a default type, the
275 default type will be used when writing a BCD store.
276
277 Running F<pbcdedit objects> will give you a list of object types,
278 well-known object aliases and their default types.
279
280 If different string keys in a JSON BCD store map to the same BCD object
281 then a random one will "win" and the others will be discarded. To avoid
282 this, you should always use the "canonical" name of a BCD object, which is
283 the human-readable form (if it exists).
284
285 =head2 The object values - BCD elements
286
287 The value of each BCD object entry consists of key-value pairs called BCD
288 elements.
289
290 BCD elements are identified by a 32 bit number, but to make things
291 simpler PBCDEDIT will replace these with well-known strings such as
292 C<description>, C<device> or C<path>.
293
294 When PBCDEDIT does not know the BCD element, it will use
295 C<custom:HHHHHHHH>, where C<HHHHHHHH> is the 8-digit hex number of the
296 BCD element. For example, C<device> would be C<custom::11000001>. You can
297 get a list of all BCD elements known to PBCDEDIT by running F<pbcdedit
298 elements>.
299
300 What was said about duplicate keys mapping to the same object is true for
301 elements as well, so, again, you should always use the canonical name,
302 whcih is the human radable alias, if known.
303
304 =head3 BCD element types
305
306 Each BCD element has a type such as I<string> or I<boolean>. This type
307 determines how the value is interpreted, and most of them are pretty easy
308 to explain:
309
310 =over
311
312 =item string
313
314 This is simply a unicode string. For example, the C<description> and
315 C<systemroot> elements both are of this type, one storing a human-readable
316 name for this boot option, the other a file path to the windows root
317 directory:
318
319 "description" : "Windows 10",
320 "systemroot" : "\\Windows",
321
322 =item boolean
323
324 Almost as simnple are booleans, which represent I<true>/I<false>,
325 I<on>/I<off> and similar values. In the JSON form, true is represented
326 by the number C<1>, and false is represented by the number C<0>. Other
327 values will be accepted, but PBCDEDIT doesn't guarantee how these are
328 interpreted.
329
330 For example, C<displaybootmenu> is a boolean that decides whether to
331 enable the C<F8> boot menu. In the example BCD store above, this is
332 disabled:
333
334 "displaybootmenu" : 0,
335
336 =item integer
337
338 Again, very simple, this is a 64 bit integer. IT can be either specified
339 as a decimal number, as a hex number (by prefixing it with C<0x>) or as a
340 binatry number (prefix C<0b>).
341
342 For example, the boot C<timeout> is an integer, specifying the automatic
343 boot delay in seconds:
344
345 "timeout" : 30,
346
347 =item integer list
348
349 This is a list of 64 bit integers separated by whitespace. It is not used
350 much, so here is a somewhat artificial an untested exanmple of using
351 C<customactions> to specify a certain custom, eh, action to be executed
352 when pressing C<F10> at boot:
353
354 "customactions" : "0x1000044000001 0x54000001",
355
356 =item guid
357
358 This represents a single GUID value wrqapped in curly braces. It is used a
359 lot to refer from one BCD object to other one.
360
361 For example, The C<{bootmgr}> object might refer to a resume boot option
362 using C<resumeobject>:
363
364 "resumeobject" : "{7ae02178-821d-11e7-8813-1c872c5f5ab0}",
365
366 Human readable aliases are used and allowed.
367
368 =item guid list
369
370 Similar to te guid type, this represents a list of such GUIDs, separated
371 by whitespace from each other.
372
373 For example, many BCD objects can I<inherit> elements from other BCD
374 objects by specifying the GUIDs of those other objects ina GUID list
375 called surprisingly called C<inherit>:
376
377 "inherit" : "{dbgsettings} {emssettings} {badmemory}",
378
379 This example also shows how human readable aliases can be used.
380
381 =item device
382
383 This type is why I write I<most> are easy to explain earlier: This type
384 is the pinnacle of Microsoft-typical hacks layered on top of other
385 hacks. Understanding this type took more time than writing all the rest of
386 PBCDEDIT, and because it is so complex, this type has its own subsection
387 below.
388 =back
389
390 =head4 The BCD "device" element type
391
392 Device elements specify, well, devices. They are used for such diverse
393 purposes such as finding a TFTP network boot imagem serial ports or VMBUS
394 devices, but most commonly they are used to specify the disk (harddisk,
395 cdrom ramdisk, vhd...) to boot from.
396
397 The device element is kind of a mini-language in its own which is much
398 more versatile then the limited windows interface to it - BCDEDIT -
399 reveals.
400
401 While some information can be found on the BCD store and the windows
402 registry, there is pretty much no public information about the device
403 element, so almost everything known about it had to be researched first
404 in the process of writing this script, and consequently, support for BCD
405 device elements is partial only.
406
407 On the other hand, the expressive power of PBCDEDIT in specifying devices
408 is much bigger than BCDEDIT and therefore more cna be don with it. The
409 downside is that BCD device elements are much more complicated than what
410 you might think from reading the BCDEDIT documentation.
411
412 In other words, simple things are complicated, and complicated things are
413 possible.
414
415 Anyway, the general syntax of device elements is an optional GUID,
416 followed by a device type, optionally followed by hexdecimal flags in
417 angle brackets, optionally followed by C<=> and a comma-separated list of
418 arguments, some of which can be (and often are) in turn devices again.
419
420 [{GUID}]type[<flags>][=arg,arg...]
421
422 Here are some examples:
423
424 boot
425 {b097d29f-bc00-11e9-8a9a-525400123456}block=file,<boot>,\\EFI"
426 locate=<null>,element,systemroot
427 partition=<null>,harddisk,mbr,47cbc08a,1048576
428 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
429 block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,68720525312>,0,0,0,\Recovery\b097d29e-bc00-11e9-8a9a-525400123456\Winre.wim
430 block=file,<partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,ee3a393a-f0de-4057-9946-88584245ed48>,\
431 binary=050000000000000048000000000000000000000000000000000000000000000000000000000000000
432
433 I hope you are suitably impressed. I was, too, when I realized decoding
434 these binary blobs is not as easy as I had assumed.
435
436 The optional prefixed GUID seems to refer to a device BCD object, which
437 can be used to specify more device-specific BCD elements (for example
438 C<ramdisksdidevice> and C<ramdisksdpath>).
439
440 The flags after the type are omitted when they are C<0>. The only known
441 flag is C<1>, which seems to indicate that the parent device is invalid. I
442 don't claim to fully understand it, but it seems to indicate that the
443 boot manager has to search the device itself. Why the device is specified
444 in the first place escapes me, but a lot of this device stuff seems to be
445 badly hacked together...
446
447 The types understood and used by PBCDEDIT are as follows (keep in mind
448 that not of all the following is necessarily supported in PBCDEDIT):
449
450 =over
451
452 =item binary=hex...
453
454 This type isn't actually a real BCD element type, but a fallback for those
455 cases where PBCDEDIT can't perfectly decode a device element (except for
456 the leading GUID, which it can always decode). In such cases, it will
457 convert the device into this type with a hexdump of the element data.
458
459 =item null
460
461 This is another special type - sometimes, a device all zero-filled, which
462 is not valid. This can mark the absence of a device or something PBCDEDIT
463 does not understand, so it decodes it into this special "all zero" type
464 called C<null>.
465
466 It's most commonly found in devices that can use an optional parent
467 device, when no parent device is used.
468
469 =item boot
470
471 Another type without parameters, this refers to the device that was booted
472 from (nowadays typically the EFI system partition).
473
474 =item vmbus=interfacetype,interfaceinstance
475
476 This specifies a VMBUS device with the given interface type and interface
477 instance, both of which are "naked" (no curly braces) GUIDs.
478
479 Made-up example (couldn't find a single example on the web):
480
481 vmbus=c376c1c3-d276-48d2-90a9-c04748072c60,12345678-a234-b234-c234-d2345678abcd
482
483 =item partition=<parent>,devicetype,partitiontype,diskid,partitionid
484
485 This designates a specific partition on a block device. C<< <parent>
486 >> is an optional parent device on which to search on, and is often
487 C<null>. Note that the anfgle brackets are part of the syntax.
488
489 C<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
490 C<file> or C<vhd>, where the first three should be self-explaining,
491 C<file> is usually used to locate a device by finding a magic file, and
492 C<vhd> is used for virtual harddisks - F<.vhd> and F<-vhdx> files.
493
494 The C<partitiontype> is either C<mbr>, C<gpt> or C<raw>, the latter being
495 used for devices without partitions, such as cdroms, where the "partition"
496 is usually the whole device.
497
498 The C<diskid> identifies the disk or device using a unique signature, and
499 the same is true for the C<partitionid>. How these are interpreted depends
500 on the C<partitiontype>:
501
502 =over
503
504 =item mbr
505
506 The C<diskid> is the 32 bit disk signature stored at offset 0x1b8 in the
507 MBR, interpreted as a 32 bit unsigned little endian integer and written as
508 hex number. That is, the bytes C<01 02 03 04> would become C<04030201>.
509
510 Diskpart (using the C<DETAIL> command) and the C<lsblk> comamnd typically
511 found on GNU/Linux systems (using e.g. C<lsblk -o NAME,PARTUUID>) can
512 display the disk id.
513
514 The C<partitionid> is the byte offset(!) of the partition counting from
515 the beginning of the MBR.
516
517 Example, use the partition on the harddisk with C<diskid> C<47cbc08a>
518 starting at sector C<2048> (= 1048576 / 512).
519
520 partition=<null>,harddisk,mbr,47cbc08a,1048576
521
522 =item gpt
523
524 The C<diskid> is the disk UUID/disk identifier GUID from the partition
525 table (as displayed e.g. by C<gdisk>), and the C<partitionid> is the
526 partition unique GUID (displayed using e.g. the C<gdisk> C<i> command).
527
528 Example: use the partition C<76d39e5f-ad1b-407e-9c05-c81eb83b57dd> on GPT
529 disk C<9742e468-9206-48a0-b4e4-c4e9745a356a>.
530
531 partition=<null>,harddisk,gpt,9742e468-9206-48a0-b4e4-c4e9745a356a,76d39e5f-ad1b-407e-9c05-c81eb83b57dd
532
533 =item raw
534
535 Instead of diskid and partitionid, this type only accepts a decimal disk
536 number and signifies the whole disk. BCDEDIT cannot display the resulting
537 device, and I am doubtful whether it has a useful effect.
538
539 =back
540
541 =item legacypartition=<parent>,devicetype,partitiontype,diskid,partitionid
542
543 This is exactly the same as the C<partition> type, except for a tiny
544 detail: instead of using the partition start offset, this type uses the
545 partition number for MBR disks. Behaviour other partition types should be
546 the same.
547
548 The partition number starts at C<1> and skips unused partition, so if
549 there are two primary partitions and another partition inside the extended
550 partition, the primary partitions are number C<1> and C<2> and the
551 partition inside the extended partition is number C<3>, rwegardless of any
552 gaps.
553
554 =item locate=<parent>,locatetype,locatearg
555
556 This device description will make the bootloader search for a partition
557 with a given path.
558
559 The C<< <parent> >> device is the device to search on (angle brackets are
560 still part of the syntax!) If it is C<< <null> >>, then C<locate> will
561 search all disks it can find.
562
563 C<locatetype> is either C<element> or C<path>, and merely distinguishes
564 between two different ways to specify the path to search for: C<element>
565 uses an element ID (either as hex or as name) as C<locatearg> and C<path>
566 uses a relative path as C<locatearg>.
567
568 Example: find any partition which has the C<magicfile.xxx> path in the
569 root.
570
571 locate=<null>,path,\magicfile.xxx
572
573 Example: find any partition which has the path specified in the
574 C<systemroot> element (typically C<\Windows>).
575
576 locate=<null>,element,systemroot
577
578 =item block=devicetype,args...
579
580 Last not least, the most complex type, C<block>, which... specifies block
581 devices (which could be inside a F<vhdx> file for example).
582
583 C<devicetypes> is one of C<harddisk>, C<floppy>, C<cdrom>, C<ramdisk>,
584 C<file> or C<vhd> - the same as for C<partiion=>.
585
586 The remaining arguments change depending on the C<devicetype>:
587
588 =over
589
590 =item block=file,<parent>,path
591
592 Interprets the C<< <parent> >> device (typically a partition) as a
593 filesystem and specifies a file path inside.
594
595 =item block=vhd,<parent>
596
597 Pretty much just changes the interpretation of C<< <parent> >>, which is
598 usually a disk image (C<block=file,...)>) to be a F<vhd> or F<vhdx> file.
599
600 =item block=ramdisk,<parent>,base,size,offset,path
601
602 Interprets the C<< <parent> >> device as RAM disk, using the (decimal)
603 base address, byte size and byte offset inside a file specified by
604 C<path>. The numbers are usually all C<0> because they cna be extracted
605 from the RAM disk image or other parameters.
606
607 This is most commonly used to boot C<wim> images.
608
609 =item block=floppy,drivenum
610
611 Refers to a removable drive identified by a number. BCDEDIT cannot display
612 the resultinfg device, and it is not clear what effect it will have.
613
614 =item block=cdrom,drivenum
615
616 Pretty much the same as C<floppy> but for CD-ROMs.
617
618 =item anything else
619
620 Probably not yet implemented. Tell me of your needs...
621
622 =back
623
624 =back5 Examples
625
626 This concludes the syntax overview for device elements, but probably
627 leaves many questions open. I can't help with most of them, as I also ave
628 many questions, but I can walk you through some actual examples using mroe
629 complex aspects.
630
631 =item locate=<block=vhd,<block=file,<locate=<null>,path,\disk.vhdx>,\disk.vhdx>>,element,path
632
633 Just like with C declarations, you best treat device descriptors as
634 instructions to find your device and work your way from the inside out:
635
636 locate=<null>,path,\disk.vhdx
637
638 First, the innermost device descriptor searches all partitions on the
639 system for a file called F<\disk.vhdx>:
640
641 block=file,<see above>,\disk.vhdx
642
643 Next, this takes the device locate has found and finds a file called
644 F<\disk.vhdx> on it. This is the same file locate was using, but that is
645 only because we find the device using the same path as finding the disk
646 image, so this is purely incidental, although quite common.
647
648 Bext, this file will be opened as a virtual disk:
649
650 block=vhd,<see above>
651
652 And finally, inside this disk, another C<locate> will look for a partition
653 with a path as specified in the C<path> element, which most likely will be
654 F<\Windows\system32\winload.exe>:
655
656 locate=<see above>,element,path
657
658 As a result, this will boot the first Windows it finds on the first
659 F<disk.vhdx> disk image it can find anywhere.
660
661 =item locate=<block=vhd,<block=file,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,\win10.vhdx>>,element,path
662
663 Pretty much the same as the previous case, but witzh a bit of variance. First, look for a specific partition on
664 an MBR-partitioned disk:
665
666 partition=<null>,harddisk,mbr,47cbc08a,242643632128
667
668 Then open the file F<\win10.vhdx> on that partition:
669
670 block=file,<see above>,\win10.vhdx
671
672 Then, again, the file is opened as a virtual disk image:
673
674 block=vhd,<see above>
675
676 And again the windows loader (or whatever is in C<path>) will be searched:
677
678 locate=<see above>,element,path
679
680 =item {b097d2b2-bc00-11e9-8a9a-525400123456}block<1>=ramdisk,<partition=<null>,harddisk,mbr,47cbc08a,242643632128>,0,0,0,\boot.wim
681
682 This is quite different. First, it starts with a GUID. This GUID belongs
683 to a BCD object of type C<device>, which has additional parameters:
684
685 "{b097d2b2-bc00-11e9-8a9a-525400123456}" : {
686 "type" : "device",
687 "description" : "sdi file for ramdisk",
688 "ramdisksdidevice" : "partition=<null>,harddisk,mbr,47cbc08a,1048576",
689 "ramdisksdipath" : "\boot.sdi"
690 },
691
692 I will not go into many details, but this specifies a (presumably empty)
693 template ramdisk image (F<\boot.sdi>) that is used to initiaolize the
694 ramdisk. The F<\boot.wim> file is then extracted into it. As you cna also
695 see, this F<.sdi> file resides on a different C<partition>.
696
697 Continuitn, as always, form the inside out, first this device descriptor
698 finds a specific partition:
699
700 partition=<null>,harddisk,mbr,47cbc08a,242643632128
701
702 And then specifies a C<ramdisk> image on this partition:
703
704 block<1>=ramdisk,<see above>,0,0,0,\boot.wim
705
706 I don't know what the purpose of the C<< <1> >> flag value is, but it
707 seems to be always there on this kind of entry.
708
709 If you have some good examples to add here, feel free to mail me.
710
711
712 =head1 EDITING BCD DATA STORES
713
714 The C<edit> and C<parse> subcommands allow you to read a BCD data store
715 and modify it or extract data from it. This is done by exyecuting a series
716 of "editing instructions" which are explained here.
717
718 =over
719
720 =item get I<object> I<element>
721
722 Reads the BCD element I<element> from the BCD object I<object> and writes
723 it to standard output, followed by a newline. The I<object> can be a GUID
724 or a human-readable alias, or the special string C<{default}>, which will
725 refer to the default BCD object.
726
727 Example: find description of the default BCD object.
728
729 pbcdedit parse BCD get "{default}" description
730
731 =item set I<object> I<element> I<value>
732
733 Similar to C<get>, but sets the element to the given I<value> instead.
734
735 Example: change bootmgr default too
736 C<{b097d2ad-bc00-11e9-8a9a-525400123456}>:
737
738 pbcdedit edit BCD set "{bootmgr}" resumeobject "{b097d2ad-bc00-11e9-8a9a-525400123456}"
739
740 =item eval I<perlcode>
741
742 This takes the next argument, interprets it as Perl code and
743 evaluates it. This allows you to do more complicated modifications or
744 extractions.
745
746 The following variables are predefined for your use:
747
748 =over
749
750 =item C<$PATH>
751
752 The path to the BCD data store, as given to C<edit> or C<parse>.
753
754 =item C<$BCD>
755
756 The decoded BCD data store.
757
758 =item C<$DEFAULT>
759
760 The default BCD object name.
761
762 =back
763
764 The example given for C<get>, above, could be expressed like this with
765 C<eval>:
766
767 pbcdedit edit BCD eval 'say $BCD->{$DEFAULT}{description}'
768
769 The example given for C<set> could be expresed like this:
770
771 pbcdedit edit BCD eval '$BCD->{$DEFAULT}{resumeobject} = "{b097d2ad-bc00-11e9-8a9a-525400123456}"'
772
773 =item do I<path>
774
775 Similar to C<eval>, above, but instead of using the argument as perl code,
776 it loads the perl code from the given file and executes it. This makes it
777 easier to write more complicated or larger programs.
778
779 =back
780
781 =head1 SEE ALSO
782
783 For ideas on what you can do, and some introductory material, try
784 L<http://www.mistyprojects.co.uk/documents/BCDEdit/index.html>.
785
786 For good reference on BCD objects and elements, see Geoff Chappels pages
787 at L<http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm>.
788
789 =head1 AUTHOR
790
791 Written by Marc A. Lehmann <pbcdedit@schmorp.de>.
792
793 =head1 REPORTING BUGS
794
795 Bugs can be reported dorectly tt he author at L<pcbedit@schmorp.de>.
796
797 =head1 BUGS AND SHORTCOMINGS
798
799 This should be a module. Of a series of modules, even.
800
801 Registry code should preserve classname and security descriptor data, and
802 whatever else is necessary to read and write any registry hive file.
803
804 I am also not happy with device descriptors being strings rather than a
805 data structure, but strings are probably better for command line usage. In
806 any case,. device descriptors could be converted by simply "splitting" at
807 "=" and "," into an array reference, recursively.
808
809 =head1 HOMEPAGE
810
811 Original versions of this program can be found at
812 L<http://software.schmorp.de/pkg/pbcdedit>.
813
814 =head1 COPYRIGHT
815
816 Copyright 2019 Marc A. Lehmann, licensed under GNU GPL version 3 or later,
817 see L<https://gnu.org/licenses/gpl.html>. This is free software: you are
818 free to change and redistribute it. There is NO WARRANTY, to the extent
819 permitted by law.
820
821 =cut
822
823 BEGIN { require "common/sense.pm"; common::sense->import } # common sense is optional, but recommended
824
825 use Data::Dump;
826 use Encode ();
827 use List::Util ();
828 use IO::Handle ();
829 use Time::HiRes ();
830
831 eval { unpack "Q", pack "Q", 1 }
832 or die "perl with 64 bit integer supported required.\n";
833
834 our $JSON = eval { require JSON::XS; JSON::XS:: }
835 // eval { require JSON::PP; JSON::PP:: }
836 // die "either JSON::XS or JSON::PP must be installed\n";
837
838 our $json_coder = $JSON->new->utf8->pretty->canonical->relaxed;
839
840 # hack used for debugging
841 sub xxd($$) {
842 open my $xxd, "| xxd | sed -e 's/^/\Q$_[0]\E: /'";
843 syswrite $xxd, $_[1];
844 }
845
846 sub file_load($) {
847 my ($path) = @_;
848
849 open my $fh, "<:raw", $path
850 or die "$path: $!\n";
851 my $size = -s $fh;
852 $size = read $fh, my $buf, $size
853 or die "$path: short read\n";
854
855 $buf
856 }
857
858 # sources and resources used for this:
859 # registry:
860 # https://github.com/msuhanov/regf/blob/master/Windows%20registry%20file%20format%20specification.md
861 # http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/MSc/
862 # bcd:
863 # http://www.geoffchappell.com/notes/windows/boot/bcd/index.htm
864 # https://docs.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653287(v=vs.85)
865 # bcd devices:
866 # reactos' boot/environ/include/bl.h
867 # windows .mof files
868
869 #############################################################################
870 # registry stuff
871
872 # we use a hardcoded securitya descriptor - full access for everyone
873 my $sid = pack "H*", "010100000000000100000000"; # S-1-1-0 everyone
874 my $ace = pack "C C S< L< a*", 0, 2, 8 + (length $sid), 0x000f003f, $sid; # type flags size mask sid
875 my $sacl = "";
876 my $dacl = pack "C x S< S< x2 a*", 2, 8 + (length $ace), 1, $ace; # rev size count ace*
877 my $sd = pack "C x S< L< L< L< L< a* a* a* a*",
878 # rev flags(SE_DACL_PRESENT SE_SELF_RELATIVE) owner group sacl dacl
879 1, 0x8004,
880 20 + (length $sacl) + (length $dacl),
881 20 + (length $sacl) + (length $dacl) + (length $sid),
882 0, 20,
883 $sacl, $dacl, $sid, $sid;
884 my $sk = pack "a2 x2 x4 x4 x4 L< a*", sk => (length $sd), $sd;
885
886 sub NO_OFS() { 0xffffffff } # file pointer "NULL" value
887
888 sub KEY_HIVE_ENTRY() { 0x0004 }
889 sub KEY_NO_DELETE () { 0x0008 }
890 sub KEY_COMP_NAME () { 0x0020 }
891
892 sub VALUE_COMP_NAME() { 0x0001 }
893
894 my @regf_typename = qw(
895 none sz expand_sz binary dword dword_be link multi_sz
896 resource_list full_resource_descriptor resource_requirements_list
897 qword qword_be
898 );
899
900 my %regf_dec_type = (
901 sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
902 expand_sz => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
903 link => sub { $_[0] =~ s/\x00\x00$//; Encode::decode "UTF-16LE", $_[0] },
904 multi_sz => sub { $_[0] =~ s/(?:\x00\x00)?\x00\x00$//; [ split /\x00/, (Encode::decode "UTF-16LE", $_[0]), -1 ] },
905 dword => sub { unpack "L<", shift },
906 dword_be => sub { unpack "L>", shift },
907 qword => sub { unpack "Q<", shift },
908 qword_be => sub { unpack "Q>", shift },
909 );
910
911 my %regf_enc_type = (
912 sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
913 expand_sz => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
914 link => sub { (Encode::encode "UTF-16LE", $_[0]) . "\x00\x00" },
915 multi_sz => sub { (join "", map +(Encode::encode "UTF-16LE", $_) . "\x00\x00", @{ $_[0] }) . "\x00\x00" },
916 dword => sub { pack "L<", shift },
917 dword_be => sub { pack "L>", shift },
918 qword => sub { pack "Q<", shift },
919 qword_be => sub { pack "Q>", shift },
920 );
921
922 # decode a registry hive
923 sub regf_decode($) {
924 my ($hive) = @_;
925
926 "regf" eq substr $hive, 0, 4
927 or die "not a registry hive\n";
928
929 my ($major, $minor) = unpack "\@20 L< L<", $hive;
930
931 $major == 1
932 or die "registry major version is not 1, but $major\n";
933
934 $minor >= 2 && $minor <= 6
935 or die "registry minor version is $minor, only 2 .. 6 are supported\n";
936
937 my $bins = substr $hive, 4096;
938
939 my $decode_key = sub {
940 my ($ofs) = @_;
941
942 my @res;
943
944 my ($sze, $sig) = unpack "\@$ofs l< a2", $bins;
945
946 $sze < 0
947 or die "key node points to unallocated cell\n";
948
949 $sig eq "nk"
950 or die "expected key node at $ofs, got '$sig'\n";
951
952 my ($flags, $snum, $sofs, $vnum, $vofs, $knamesze) = unpack "\@$ofs ( \@6 S< \@24 L< x4 L< x4 L< L< \@76 S< )", $bins;
953
954 my $kname = unpack "\@$ofs x80 a$knamesze", $bins;
955
956 # classnames, security descriptors
957 #my ($cofs, $xofs, $clen) = unpack "\@$ofs ( \@44 L< L< \@72 S< )", $bins;
958 #if ($cofs != NO_OFS && $clen) {
959 # #warn "cofs $cofs+$clen\n";
960 # xxd substr $bins, $cofs, 16;
961 #}
962
963 $kname = Encode::decode "UTF-16LE", $kname
964 unless $flags & KEY_COMP_NAME;
965
966 if ($vnum && $vofs != NO_OFS) {
967 for ($vofs += 4; $vnum--; $vofs += 4) {
968 my $kofs = unpack "\@$vofs L<", $bins;
969
970 my ($sze, $sig) = unpack "\@$kofs l< a2", $bins;
971
972 $sig eq "vk"
973 or die "key values list contains invalid node (expected vk got '$sig')\n";
974
975 my ($nsze, $dsze, $dofs, $type, $flags) = unpack "\@$kofs x4 x2 S< L< L< L< L<", $bins;
976
977 my $name = substr $bins, $kofs + 24, $nsze;
978
979 $name = Encode::decode "UTF-16LE", $name
980 unless $flags & VALUE_COMP_NAME;
981
982 my $data;
983 if ($dsze & 0x80000000) {
984 $data = substr $bins, $kofs + 12, $dsze & 0x7;
985 } elsif ($dsze > 16344 && $minor > 3) { # big data
986 my ($bsze, $bsig, $bnum, $bofs) = unpack "\@$dofs l< a2 S< L<", $bins;
987
988 for ($bofs += 4; $bnum--; $bofs += 4) {
989 my $dofs = unpack "\@$bofs L<", $bins;
990 my $dsze = unpack "\@$dofs l<", $bins;
991 $data .= substr $bins, $dofs + 4, -$dsze - 4;
992 }
993 $data = substr $data, 0, $dsze; # cells might be longer than data
994 } else {
995 $data = substr $bins, $dofs + 4, $dsze;
996 }
997
998 $type = $regf_typename[$type] if $type < @regf_typename;
999
1000 $data = ($regf_dec_type{$type} || sub { unpack "H*", shift })
1001 ->($data);
1002
1003 $res[0]{$name} = [$type, $data];
1004 }
1005 }
1006
1007 if ($sofs != NO_OFS) {
1008 my $decode_key = __SUB__;
1009
1010 my $decode_subkeylist = sub {
1011 my ($sofs) = @_;
1012
1013 my ($sze, $sig, $snum) = unpack "\@$sofs l< a2 S<", $bins;
1014
1015 if ($sig eq "ri") { # index root
1016 for (my $lofs = $sofs + 8; $snum--; $lofs += 4) {
1017 __SUB__->(unpack "\@$lofs L<", $bins);
1018 }
1019 } else {
1020 my $inc;
1021
1022 if ($sig eq "li") { # subkey list
1023 $inc = 4;
1024 } elsif ($sig eq "lf" or $sig eq "lh") { # subkey list with name hints or hashes
1025 $inc = 8;
1026 } else {
1027 die "expected subkey list at $sofs, found '$sig'\n";
1028 }
1029
1030 for (my $lofs = $sofs + 8; $snum--; $lofs += $inc) {
1031 my ($name, $data) = $decode_key->(unpack "\@$lofs L<", $bins);
1032 $res[1]{$name} = $data;
1033 }
1034 }
1035 };
1036
1037 $decode_subkeylist->($sofs);
1038 }
1039
1040 ($kname, \@res);
1041 };
1042
1043 my ($rootcell) = unpack "\@36 L<", $hive;
1044
1045 my ($rname, $root) = $decode_key->($rootcell);
1046
1047 [$rname, $root]
1048 }
1049
1050 # return a binary windows fILETIME struct
1051 sub filetime_now {
1052 my ($s, $ms) = Time::HiRes::gettimeofday;
1053
1054 pack "Q<", $s = ($s * 1_000_000 + $ms) * 10 + 116_444_736_000_000_000
1055 }
1056
1057 # encode a registry hive
1058 sub regf_encode($) {
1059 my ($hive) = @_;
1060
1061 my %typeval = map +($regf_typename[$_] => $_), 0 .. $#regf_typename;
1062
1063 # the filetime is apparently used to verify log file validity,
1064 # so by generating a new timestamp the log files *should* automatically
1065 # become invalidated and windows would "self-heal" them.
1066 # (update: has been verified by reverse engineering)
1067 # possibly the fact that the two sequence numbes match might also
1068 # make windows think that the hive is not dirty and ignore logs.
1069 # (update: has been verified by reverse engineering)
1070
1071 my $now = filetime_now;
1072
1073 # we only create a single hbin
1074 my $bins = pack "a4 L< L< x8 a8 x4", "hbin", 0, 0, $now;
1075
1076 # append cell to $bind, return offset
1077 my $cell = sub {
1078 my ($cell) = @_;
1079
1080 my $res = length $bins;
1081
1082 $cell .= "\x00" while 4 != (7 & length $cell); # slow and ugly
1083
1084 $bins .= pack "l<", -(4 + length $cell);
1085 $bins .= $cell;
1086
1087 $res
1088 };
1089
1090 my $sdofs = $cell->($sk); # add a dummy security descriptor
1091 my $sdref = 0; # refcount
1092 substr $bins, $sdofs + 8, 4, pack "L<", $sdofs; # flink
1093 substr $bins, $sdofs + 12, 4, pack "L<", $sdofs; # blink
1094
1095 my $encode_key = sub {
1096 my ($kname, $kdata, $flags) = @_;
1097 my ($values, $subkeys) = @$kdata;
1098
1099 if ($kname =~ /[^\x00-\xff]/) {
1100 $kname = Encode::encode "UTF-16LE", $kname;
1101 } else {
1102 $flags |= KEY_COMP_NAME;
1103 }
1104
1105 # encode subkeys
1106
1107 my @snames =
1108 map $_->[1],
1109 sort { $a->[0] cmp $b->[0] }
1110 map [(uc $_), $_],
1111 keys %$subkeys;
1112
1113 # normally, we'd have to encode each name, but we assume one char is at most two utf-16 cp's
1114 my $maxsname = 4 * List::Util::max map length, @snames;
1115
1116 my @sofs = map __SUB__->($_, $subkeys->{$_}, 0), @snames;
1117
1118 # encode values
1119 my $maxvname = 4 * List::Util::max map length, keys %$values;
1120 my @vofs;
1121 my $maxdsze = 0;
1122
1123 while (my ($vname, $v) = each %$values) {
1124 my $flags = 0;
1125
1126 if ($vname =~ /[^\x00-\xff]/) {
1127 $vname = Encode::encode "UTF-16LE", $kname;
1128 } else {
1129 $flags |= VALUE_COMP_NAME;
1130 }
1131
1132 my ($type, $data) = @$v;
1133
1134 $data = ($regf_enc_type{$type} || sub { pack "H*", shift })->($data);
1135
1136 my $dsze;
1137 my $dofs;
1138
1139 if (length $data <= 4) {
1140 $dsze = 0x80000000 | length $data;
1141 $dofs = unpack "L<", pack "a4", $data;
1142 } else {
1143 $dsze = length $data;
1144 $dofs = $cell->($data);
1145 }
1146
1147 $type = $typeval{$type} // ($type =~ /^[0-9]+\z/ ? $type : die "cannot encode type '$type'");
1148
1149 push @vofs, $cell->(pack "a2 S< L< L< L< S< x2 a*",
1150 vk => (length $vname), $dsze, $dofs, $type, $flags, $vname);
1151
1152 $maxdsze = $dsze if $maxdsze < $dsze;
1153 }
1154
1155 # encode key
1156
1157 my $slist = @sofs ? $cell->(pack "a2 S< L<*", li => (scalar @sofs), @sofs) : NO_OFS;
1158 my $vlist = @vofs ? $cell->(pack "L<*", @vofs) : NO_OFS;
1159
1160 my $kdata = pack "
1161 a2 S< a8 x4 x4
1162 L< L< L< L< L< L<
1163 L< L< L< L< L< L<
1164 x4 S< S< a*
1165 ",
1166 nk => $flags, $now,
1167 (scalar @sofs), 0, $slist, NO_OFS, (scalar @vofs), $vlist,
1168 $sdofs, NO_OFS, $maxsname, 0, $maxvname, $maxdsze,
1169 length $kname, 0, $kname;
1170 ++$sdref;
1171
1172 my $res = $cell->($kdata);
1173
1174 substr $bins, $_ + 16, 4, pack "L<", $res
1175 for @sofs;
1176
1177 $res
1178 };
1179
1180 my ($rname, $root) = @$hive;
1181
1182 my $rofs = $encode_key->($rname, $root, KEY_HIVE_ENTRY | KEY_NO_DELETE); # 4 = root key
1183
1184 if (my $pad = -(length $bins) & 4095) {
1185 $pad -= 4;
1186 $bins .= pack "l< x$pad", $pad + 4;
1187 }
1188
1189 substr $bins, $sdofs + 16, 4, pack "L<", $sdref; # sd refcount
1190 substr $bins, 8, 4, pack "L<", length $bins;
1191
1192 my $base = pack "
1193 a4 L< L< a8 L< L< L< L<
1194 L< L< L<
1195 a64
1196 x396
1197 ",
1198 regf => 1974, 1974, $now, 1, 3, 0, 1,
1199 $rofs, length $bins, 1,
1200 (Encode::encode "UTF-16LE", "\\pbcdedit.reg");
1201
1202 my $chksum = List::Util::reduce { $a ^ $b } unpack "L<*", $base;
1203 $chksum = 0xfffffffe if $chksum == 0xffffffff;
1204 $chksum = 1 if $chksum == 0;
1205
1206 $base .= pack "L<", $chksum;
1207
1208 $base = pack "a* \@4095 x1", $base;
1209
1210 $base . $bins
1211 }
1212
1213 # load and parse registry from file
1214 sub regf_load($) {
1215 my ($path) = @_;
1216
1217 regf_decode file_load $path
1218 }
1219
1220 # encode and save registry to file
1221 sub regf_save {
1222 my ($path, $hive) = @_;
1223
1224 $hive = regf_encode $hive;
1225
1226 open my $regf, ">:raw", "$path~"
1227 or die "$path~: $!\n";
1228 print $regf $hive
1229 or die "$path~: short write\n";
1230 $regf->sync;
1231 close $regf;
1232
1233 rename "$path~", $path;
1234 }
1235
1236 #############################################################################
1237 # bcd stuff
1238
1239 # human-readable alises for GUID object identifiers
1240 our %bcd_objects = (
1241 '{0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}' => '{emssettings}',
1242 '{1afa9c49-16ab-4a5c-4a90-212802da9460}' => '{resumeloadersettings}',
1243 '{1cae1eb7-a0df-4d4d-9851-4860e34ef535}' => '{default}',
1244 '{313e8eed-7098-4586-a9bf-309c61f8d449}' => '{kerneldbgsettings}',
1245 '{4636856e-540f-4170-a130-a84776f4c654}' => '{dbgsettings}',
1246 '{466f5a88-0af2-4f76-9038-095b170dc21c}' => '{ntldr}',
1247 '{5189b25c-5558-4bf2-bca4-289b11bd29e2}' => '{badmemory}',
1248 '{6efb52bf-1766-41db-a6b3-0ee5eff72bd7}' => '{bootloadersettings}',
1249 '{7254a080-1510-4e85-ac0f-e7fb3d444736}' => '{ssetupefi}',
1250 '{7ea2e1ac-2e61-4728-aaa3-896d9d0a9f0e}' => '{globalsettings}',
1251 '{7ff607e0-4395-11db-b0de-0800200c9a66}' => '{hypervisorsettings}',
1252 '{9dea862c-5cdd-4e70-acc1-f32b344d4795}' => '{bootmgr}',
1253 '{a1943bbc-ea85-487c-97c7-c9ede908a38a}' => '{ostargettemplatepcat}',
1254 '{a5a30fa2-3d06-4e9f-b5f4-a01df9d1fcba}' => '{fwbootmgr}',
1255 '{ae5534e0-a924-466c-b836-758539a3ee3a}' => '{ramdiskoptions}',
1256 '{b012b84d-c47c-4ed5-b722-c0c42163e569}' => '{ostargettemplateefi}',
1257 '{b2721d73-1db4-4c62-bf78-c548a880142d}' => '{memdiag}',
1258 '{cbd971bf-b7b8-4885-951a-fa03044f5d71}' => '{setuppcat}',
1259 '{fa926493-6f1c-4193-a414-58f0b2456d1e}' => '{current}',
1260 );
1261
1262 # default types
1263 our %bcd_object_types = (
1264 '{fwbootmgr}' => 0x10100001,
1265 '{bootmgr}' => 0x10100002,
1266 '{memdiag}' => 0x10200005,
1267 '{ntldr}' => 0x10300006,
1268 '{badmemory}' => 0x20100000,
1269 '{dbgsettings}' => 0x20100000,
1270 '{emssettings}' => 0x20100000,
1271 '{globalsettings}' => 0x20100000,
1272 '{bootloadersettings}' => 0x20200003,
1273 '{hypervisorsettings}' => 0x20200003,
1274 '{kerneldbgsettings}' => 0x20200003,
1275 '{resumeloadersettings}' => 0x20200004,
1276 '{ramdiskoptions}' => 0x30000000,
1277 );
1278
1279 # object types
1280 our %bcd_types = (
1281 0x10100001 => 'application::fwbootmgr',
1282 0x10100002 => 'application::bootmgr',
1283 0x10200003 => 'application::osloader',
1284 0x10200004 => 'application::resume',
1285 0x10100005 => 'application::memdiag',
1286 0x10100006 => 'application::ntldr',
1287 0x10100007 => 'application::setupldr',
1288 0x10400008 => 'application::bootsector',
1289 0x10400009 => 'application::startup',
1290 0x1020000a => 'application::bootapp',
1291 0x20100000 => 'settings',
1292 0x20200001 => 'inherit::fwbootmgr',
1293 0x20200002 => 'inherit::bootmgr',
1294 0x20200003 => 'inherit::osloader',
1295 0x20200004 => 'inherit::resume',
1296 0x20200005 => 'inherit::memdiag',
1297 0x20200006 => 'inherit::ntldr',
1298 0x20200007 => 'inherit::setupldr',
1299 0x20200008 => 'inherit::bootsector',
1300 0x20200009 => 'inherit::startup',
1301 0x20300000 => 'inherit::device',
1302 0x30000000 => 'device',
1303 );
1304
1305 our %rbcd_objects = reverse %bcd_objects;
1306
1307 our $RE_GUID = qr<([0-9a-f]{8})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{4})-([0-9a-f]{12})>i;
1308
1309 sub dec_guid($) {
1310 my ($p1, $p2, $p3, $p4, $p5) = unpack "VvvH4H12", shift;
1311 sprintf "%08x-%04x-%04x-%s-%s", $p1, $p2, $p3, $p4, $p5;
1312 }
1313
1314 sub enc_guid($) {
1315 $_[0] =~ /^$RE_GUID\z/o
1316 or return;
1317
1318 pack "VvvH4H12", hex $1, hex $2, hex $3, $4, $5
1319 }
1320
1321 # "wguid" are guids wrapped in curly braces {...} also supporting aliases
1322 sub dec_wguid($) {
1323 my $guid = "{" . (dec_guid shift) . "}";
1324
1325 $bcd_objects{$guid} // $guid
1326 }
1327
1328 sub enc_wguid($) {
1329 my ($guid) = @_;
1330
1331 if (my $alias = $rbcd_objects{$guid}) {
1332 $guid = $alias;
1333 }
1334
1335 $guid =~ /^\{($RE_GUID)\}\z/o
1336 or return;
1337
1338 enc_guid $1
1339 }
1340
1341 sub BCDE_CLASS () { 0xf0000000 }
1342 sub BCDE_CLASS_LIBRARY () { 0x10000000 }
1343 sub BCDE_CLASS_APPLICATION () { 0x20000000 }
1344 sub BCDE_CLASS_DEVICE () { 0x30000000 }
1345 sub BCDE_CLASS_TEMPLATE () { 0x40000000 }
1346
1347 sub BCDE_FORMAT () { 0x0f000000 }
1348 sub BCDE_FORMAT_DEVICE () { 0x01000000 }
1349 sub BCDE_FORMAT_STRING () { 0x02000000 }
1350 sub BCDE_FORMAT_GUID () { 0x03000000 }
1351 sub BCDE_FORMAT_GUID_LIST () { 0x04000000 }
1352 sub BCDE_FORMAT_INTEGER () { 0x05000000 }
1353 sub BCDE_FORMAT_BOOLEAN () { 0x06000000 }
1354 sub BCDE_FORMAT_INTEGER_LIST () { 0x07000000 }
1355
1356 sub dec_device;
1357 sub enc_device;
1358
1359 sub enc_integer($) {
1360 no warnings 'portable'; # ugh
1361 my $value = shift;
1362 $value = oct $value if $value =~ /^0[bBxX]/;
1363 unpack "H*", pack "Q<", $value
1364 }
1365
1366 our %bcde_dec = (
1367 BCDE_FORMAT_DEVICE , \&dec_device,
1368 # # for round-trip verification
1369 # BCDE_FORMAT_DEVICE , sub {
1370 # my $dev = dec_device $_[0];
1371 # $_[0] eq enc_device $dev
1372 # or die "bcd device decoding does not round trip for $_[0]\n";
1373 # $dev
1374 # },
1375 BCDE_FORMAT_STRING , sub { shift },
1376 BCDE_FORMAT_GUID , sub { dec_wguid enc_wguid shift },
1377 BCDE_FORMAT_GUID_LIST , sub { join " ", map dec_wguid enc_wguid $_, @{+shift} },
1378 BCDE_FORMAT_INTEGER , sub { unpack "Q", pack "a8", pack "H*", shift }, # integer might be 4 or 8 bytes - caused by ms coding bugs
1379 BCDE_FORMAT_BOOLEAN , sub { shift eq "00" ? 0 : 1 },
1380 BCDE_FORMAT_INTEGER_LIST, sub { join " ", unpack "Q*", pack "H*", shift }, # not sure if this cna be 4 bytes
1381 );
1382
1383 our %bcde_enc = (
1384 BCDE_FORMAT_DEVICE , sub { binary => enc_device shift },
1385 BCDE_FORMAT_STRING , sub { sz => shift },
1386 BCDE_FORMAT_GUID , sub { sz => "{" . (dec_guid enc_wguid shift) . "}" },
1387 BCDE_FORMAT_GUID_LIST , sub { multi_sz => [map "{" . (dec_guid enc_wguid $_) . "}", split /\s+/, shift ] },
1388 BCDE_FORMAT_INTEGER , sub { binary => enc_integer shift },
1389 BCDE_FORMAT_BOOLEAN , sub { binary => shift ? "01" : "00" },
1390 BCDE_FORMAT_INTEGER_LIST, sub { binary => join "", map enc_integer $_, split /\s+/, shift },
1391 );
1392
1393 # BCD Elements
1394 our %bcde = (
1395 0x11000001 => 'device',
1396 0x12000002 => 'path',
1397 0x12000004 => 'description',
1398 0x12000005 => 'locale',
1399 0x14000006 => 'inherit',
1400 0x15000007 => 'truncatememory',
1401 0x14000008 => 'recoverysequence',
1402 0x16000009 => 'recoveryenabled',
1403 0x1700000a => 'badmemorylist',
1404 0x1600000b => 'badmemoryaccess',
1405 0x1500000c => 'firstmegabytepolicy',
1406 0x1500000d => 'relocatephysical',
1407 0x1500000e => 'avoidlowmemory',
1408 0x1600000f => 'traditionalkseg',
1409 0x16000010 => 'bootdebug',
1410 0x15000011 => 'debugtype',
1411 0x15000012 => 'debugaddress',
1412 0x15000013 => 'debugport',
1413 0x15000014 => 'baudrate',
1414 0x15000015 => 'channel',
1415 0x12000016 => 'targetname',
1416 0x16000017 => 'noumex',
1417 0x15000018 => 'debugstart',
1418 0x12000019 => 'busparams',
1419 0x1500001a => 'hostip',
1420 0x1500001b => 'port',
1421 0x1600001c => 'dhcp',
1422 0x1200001d => 'key',
1423 0x1600001e => 'vm',
1424 0x16000020 => 'bootems',
1425 0x15000022 => 'emsport',
1426 0x15000023 => 'emsbaudrate',
1427 0x12000030 => 'loadoptions',
1428 0x16000040 => 'advancedoptions',
1429 0x16000041 => 'optionsedit',
1430 0x15000042 => 'keyringaddress',
1431 0x11000043 => 'bootstatdevice',
1432 0x12000044 => 'bootstatfilepath',
1433 0x16000045 => 'preservebootstat',
1434 0x16000046 => 'graphicsmodedisabled',
1435 0x15000047 => 'configaccesspolicy',
1436 0x16000048 => 'nointegritychecks',
1437 0x16000049 => 'testsigning',
1438 0x1200004a => 'fontpath',
1439 0x1500004b => 'integrityservices',
1440 0x1500004c => 'volumebandid',
1441 0x16000050 => 'extendedinput',
1442 0x15000051 => 'initialconsoleinput',
1443 0x15000052 => 'graphicsresolution',
1444 0x16000053 => 'restartonfailure',
1445 0x16000054 => 'highestmode',
1446 0x16000060 => 'isolatedcontext',
1447 0x15000065 => 'displaymessage',
1448 0x15000066 => 'displaymessageoverride',
1449 0x16000068 => 'nobootuxtext',
1450 0x16000069 => 'nobootuxprogress',
1451 0x1600006a => 'nobootuxfade',
1452 0x1600006b => 'bootuxreservepooldebug',
1453 0x1600006c => 'bootuxdisabled',
1454 0x1500006d => 'bootuxfadeframes',
1455 0x1600006e => 'bootuxdumpstats',
1456 0x1600006f => 'bootuxshowstats',
1457 0x16000071 => 'multibootsystem',
1458 0x16000072 => 'nokeyboard',
1459 0x15000073 => 'aliaswindowskey',
1460 0x16000074 => 'bootshutdowndisabled',
1461 0x15000075 => 'performancefrequency',
1462 0x15000076 => 'securebootrawpolicy',
1463 0x17000077 => 'allowedinmemorysettings',
1464 0x15000079 => 'bootuxtransitiontime',
1465 0x1600007a => 'mobilegraphics',
1466 0x1600007b => 'forcefipscrypto',
1467 0x1500007d => 'booterrorux',
1468 0x1600007e => 'flightsigning',
1469 0x1500007f => 'measuredbootlogformat',
1470 0x15000080 => 'displayrotation',
1471 0x15000081 => 'logcontrol',
1472 0x16000082 => 'nofirmwaresync',
1473 0x11000084 => 'windowssyspart',
1474 0x16000087 => 'numlock',
1475 0x22000001 => 'bpbstring',
1476 0x24000001 => 'displayorder',
1477 0x21000001 => 'filedevice',
1478 0x21000001 => 'osdevice',
1479 0x25000001 => 'passcount',
1480 0x26000001 => 'pxesoftreboot',
1481 0x22000002 => 'applicationname',
1482 0x24000002 => 'bootsequence',
1483 0x22000002 => 'filepath',
1484 0x22000002 => 'systemroot',
1485 0x25000002 => 'testmix',
1486 0x26000003 => 'cacheenable',
1487 0x26000003 => 'customsettings',
1488 0x23000003 => 'default',
1489 0x25000003 => 'failurecount',
1490 0x23000003 => 'resumeobject',
1491 0x26000004 => 'failuresenabled',
1492 0x26000004 => 'pae',
1493 0x26000004 => 'stampdisks',
1494 0x25000004 => 'testtofail',
1495 0x25000004 => 'timeout',
1496 0x21000005 => 'associatedosdevice',
1497 0x26000005 => 'cacheenable',
1498 0x26000005 => 'resume',
1499 0x25000005 => 'stridefailcount',
1500 0x26000006 => 'debugoptionenabled',
1501 0x25000006 => 'invcfailcount',
1502 0x23000006 => 'resumeobject',
1503 0x25000007 => 'bootux',
1504 0x25000007 => 'matsfailcount',
1505 0x24000007 => 'startupsequence',
1506 0x25000008 => 'bootmenupolicy',
1507 0x25000008 => 'randfailcount',
1508 0x25000009 => 'chckrfailcount',
1509 0x26000010 => 'detecthal',
1510 0x24000010 => 'toolsdisplayorder',
1511 0x22000011 => 'kernel',
1512 0x22000012 => 'hal',
1513 0x22000013 => 'dbgtransport',
1514 0x26000020 => 'displaybootmenu',
1515 0x25000020 => 'nx',
1516 0x26000021 => 'noerrordisplay',
1517 0x25000021 => 'pae',
1518 0x21000022 => 'bcddevice',
1519 0x26000022 => 'winpe',
1520 0x22000023 => 'bcdfilepath',
1521 0x26000024 => 'hormenabled',
1522 0x26000024 => 'hormenabled',
1523 0x26000024 => 'nocrashautoreboot',
1524 0x26000025 => 'hiberboot',
1525 0x26000025 => 'lastknowngood',
1526 0x26000026 => 'oslnointegritychecks',
1527 0x22000026 => 'passwordoverride',
1528 0x26000027 => 'osltestsigning',
1529 0x22000027 => 'pinpassphraseoverride',
1530 0x26000028 => 'processcustomactionsfirst',
1531 0x27000030 => 'customactions',
1532 0x26000030 => 'nolowmem',
1533 0x26000031 => 'persistbootsequence',
1534 0x25000031 => 'removememory',
1535 0x25000032 => 'increaseuserva',
1536 0x26000032 => 'skipstartupsequence',
1537 0x25000033 => 'perfmem',
1538 0x22000040 => 'fverecoveryurl',
1539 0x26000040 => 'vga',
1540 0x22000041 => 'fverecoverymessage',
1541 0x26000041 => 'quietboot',
1542 0x26000042 => 'novesa',
1543 0x26000043 => 'novga',
1544 0x25000050 => 'clustermodeaddressing',
1545 0x26000051 => 'usephysicaldestination',
1546 0x25000052 => 'restrictapiccluster',
1547 0x22000053 => 'evstore',
1548 0x26000054 => 'uselegacyapicmode',
1549 0x26000060 => 'onecpu',
1550 0x25000061 => 'numproc',
1551 0x26000062 => 'maxproc',
1552 0x25000063 => 'configflags',
1553 0x26000064 => 'maxgroup',
1554 0x26000065 => 'groupaware',
1555 0x25000066 => 'groupsize',
1556 0x26000070 => 'usefirmwarepcisettings',
1557 0x25000071 => 'msi',
1558 0x25000072 => 'pciexpress',
1559 0x25000080 => 'safeboot',
1560 0x26000081 => 'safebootalternateshell',
1561 0x26000090 => 'bootlog',
1562 0x26000091 => 'sos',
1563 0x260000a0 => 'debug',
1564 0x260000a1 => 'halbreakpoint',
1565 0x260000a2 => 'useplatformclock',
1566 0x260000a3 => 'forcelegacyplatform',
1567 0x260000a4 => 'useplatformtick',
1568 0x260000a5 => 'disabledynamictick',
1569 0x250000a6 => 'tscsyncpolicy',
1570 0x260000b0 => 'ems',
1571 0x250000c0 => 'forcefailure',
1572 0x250000c1 => 'driverloadfailurepolicy',
1573 0x250000c2 => 'bootmenupolicy',
1574 0x260000c3 => 'onetimeadvancedoptions',
1575 0x260000c4 => 'onetimeoptionsedit',
1576 0x250000e0 => 'bootstatuspolicy',
1577 0x260000e1 => 'disableelamdrivers',
1578 0x250000f0 => 'hypervisorlaunchtype',
1579 0x220000f1 => 'hypervisorpath',
1580 0x260000f2 => 'hypervisordebug',
1581 0x250000f3 => 'hypervisordebugtype',
1582 0x250000f4 => 'hypervisordebugport',
1583 0x250000f5 => 'hypervisorbaudrate',
1584 0x250000f6 => 'hypervisorchannel',
1585 0x250000f7 => 'bootux',
1586 0x260000f8 => 'hypervisordisableslat',
1587 0x220000f9 => 'hypervisorbusparams',
1588 0x250000fa => 'hypervisornumproc',
1589 0x250000fb => 'hypervisorrootprocpernode',
1590 0x260000fc => 'hypervisoruselargevtlb',
1591 0x250000fd => 'hypervisorhostip',
1592 0x250000fe => 'hypervisorhostport',
1593 0x250000ff => 'hypervisordebugpages',
1594 0x25000100 => 'tpmbootentropy',
1595 0x22000110 => 'hypervisorusekey',
1596 0x22000112 => 'hypervisorproductskutype',
1597 0x25000113 => 'hypervisorrootproc',
1598 0x26000114 => 'hypervisordhcp',
1599 0x25000115 => 'hypervisoriommupolicy',
1600 0x26000116 => 'hypervisorusevapic',
1601 0x22000117 => 'hypervisorloadoptions',
1602 0x25000118 => 'hypervisormsrfilterpolicy',
1603 0x25000119 => 'hypervisormmionxpolicy',
1604 0x2500011a => 'hypervisorschedulertype',
1605 0x25000120 => 'xsavepolicy',
1606 0x25000121 => 'xsaveaddfeature0',
1607 0x25000122 => 'xsaveaddfeature1',
1608 0x25000123 => 'xsaveaddfeature2',
1609 0x25000124 => 'xsaveaddfeature3',
1610 0x25000125 => 'xsaveaddfeature4',
1611 0x25000126 => 'xsaveaddfeature5',
1612 0x25000127 => 'xsaveaddfeature6',
1613 0x25000128 => 'xsaveaddfeature7',
1614 0x25000129 => 'xsaveremovefeature',
1615 0x2500012a => 'xsaveprocessorsmask',
1616 0x2500012b => 'xsavedisable',
1617 0x2500012c => 'kerneldebugtype',
1618 0x2200012d => 'kernelbusparams',
1619 0x2500012e => 'kerneldebugaddress',
1620 0x2500012f => 'kerneldebugport',
1621 0x25000130 => 'claimedtpmcounter',
1622 0x25000131 => 'kernelchannel',
1623 0x22000132 => 'kerneltargetname',
1624 0x25000133 => 'kernelhostip',
1625 0x25000134 => 'kernelport',
1626 0x26000135 => 'kerneldhcp',
1627 0x22000136 => 'kernelkey',
1628 0x22000137 => 'imchivename',
1629 0x21000138 => 'imcdevice',
1630 0x25000139 => 'kernelbaudrate',
1631 0x22000140 => 'mfgmode',
1632 0x26000141 => 'event',
1633 0x25000142 => 'vsmlaunchtype',
1634 0x25000144 => 'hypervisorenforcedcodeintegrity',
1635 0x26000145 => 'enablebootdebugpolicy',
1636 0x26000146 => 'enablebootorderclean',
1637 0x26000147 => 'enabledeviceid',
1638 0x26000148 => 'enableffuloader',
1639 0x26000149 => 'enableiuloader',
1640 0x2600014a => 'enablemassstorage',
1641 0x2600014b => 'enablerpmbprovisioning',
1642 0x2600014c => 'enablesecurebootpolicy',
1643 0x2600014d => 'enablestartcharge',
1644 0x2600014e => 'enableresettpm',
1645 0x21000150 => 'systemdatadevice',
1646 0x21000151 => 'osarcdevice',
1647 0x21000153 => 'osdatadevice',
1648 0x21000154 => 'bspdevice',
1649 0x21000155 => 'bspfilepath',
1650 0x26000202 => 'skipffumode',
1651 0x26000203 => 'forceffumode',
1652 0x25000510 => 'chargethreshold',
1653 0x26000512 => 'offmodecharging',
1654 0x25000aaa => 'bootflow',
1655 0x35000001 => 'ramdiskimageoffset',
1656 0x35000002 => 'ramdisktftpclientport',
1657 0x31000003 => 'ramdisksdidevice',
1658 0x32000004 => 'ramdisksdipath',
1659 0x35000005 => 'ramdiskimagelength',
1660 0x36000006 => 'exportascd',
1661 0x35000007 => 'ramdisktftpblocksize',
1662 0x35000008 => 'ramdisktftpwindowsize',
1663 0x36000009 => 'ramdiskmcenabled',
1664 0x3600000a => 'ramdiskmctftpfallback',
1665 0x3600000b => 'ramdisktftpvarwindow',
1666 0x45000001 => 'devicetype',
1667 0x42000002 => 'applicationrelativepath',
1668 0x42000003 => 'ramdiskdevicerelativepath',
1669 0x46000004 => 'omitosloaderelements',
1670 0x47000006 => 'elementstomigrate',
1671 0x46000010 => 'recoveryos',
1672 );
1673
1674 our %rbcde = reverse %bcde;
1675
1676 sub dec_bcde_id($) {
1677 $bcde{$_[0]} // sprintf "custom:%08x", $_[0]
1678 }
1679
1680 sub enc_bcde_id($) {
1681 $_[0] =~ /^custom:([0-9a-fA-F]{8}$)/
1682 ? hex $1
1683 : $rbcde{$_[0]}
1684 }
1685
1686 # decode/encode bcd device element - the horror, no documentaion
1687 # whatsoever, supercomplex, superinconsistent.
1688
1689 our @dev_type = qw(block type1 legacypartition serial udp boot partition vmbus locate);
1690 our @block_type = qw(harddisk floppy cdrom ramdisk type4 file vhd);
1691 our @part_type = qw(gpt mbr raw);
1692
1693 our $NULL_DEVICE = "\x00" x 16;
1694
1695 # biggest bitch to decode, ever
1696 # this decoded a device portion after the GUID
1697 sub dec_device_($);
1698 sub dec_device_($) {
1699 my ($device) = @_;
1700
1701 my $res;
1702
1703 my ($type, $flags, $length, $pad) = unpack "VVVV", substr $device, 0, 4 * 4, "";
1704
1705 $pad == 0
1706 or die "non-zero reserved field in device descriptor\n";
1707
1708 if ($length == 0 && $type == 0 && $flags == 0) {
1709 return ("null", $device);
1710 }
1711
1712 $length >= 16
1713 or die "device element size too small ($length)\n";
1714
1715 $type = $dev_type[$type] // die "$type: unknown device type\n";
1716 #d# warn "t<$type,$flags,$length,$pad>\n";#d#
1717
1718 $res .= $type;
1719 $res .= sprintf "<%x>", $flags if $flags;
1720
1721 my $tail = substr $device, $length - 4 * 4, 1e9, "";
1722
1723 $length == 4 * 4 + length $device
1724 or die "device length mismatch ($length != " . (16 + length $device) . ")\n";
1725
1726 my $dec_path = sub {
1727 my ($path, $error) = @_;
1728
1729 $path =~ /^((?:..)*)\x00\x00\z/s
1730 or die "$error\n";
1731
1732 $path = Encode::decode "UTF-16LE", $1;
1733
1734 $path
1735 };
1736
1737 if ($type eq "partition" or $type eq "legacypartition") {
1738 my $partdata = substr $device, 0, 16, "";
1739 my ($blocktype, $parttype) = unpack "VV", substr $device, 0, 4 * 2, "";
1740
1741 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1742 $parttype = $part_type[$parttype] // die "unknown partition type\n";
1743
1744 my $diskid = substr $device, 0, 16, "";
1745
1746 $diskid = $parttype eq "gpt"
1747 ? dec_guid substr $diskid, 0, 16
1748 : sprintf "%08x", unpack "V", $diskid;
1749
1750 my $partid = $parttype eq "gpt" ? dec_guid $partdata
1751 : $type eq "partition" ? unpack "Q<", $partdata # byte offset to partition start
1752 : unpack "L<", $partdata; # partition number, one-based
1753
1754 (my $parent, $device) = dec_device_ $device;
1755
1756 $res .= "=";
1757 $res .= "<$parent>";
1758 $res .= ",$blocktype,$parttype,$diskid,$partid";
1759
1760 # PartitionType (gpt, mbr, raw)
1761 # guid | partsig | disknumber
1762
1763 } elsif ($type eq "boot") {
1764 $device =~ s/^\x00{56}\z//
1765 or die "boot device type with extra data not supported\n";
1766
1767 } elsif ($type eq "block") {
1768 my $blocktype = unpack "V", substr $device, 0, 4, "";
1769
1770 $blocktype = $block_type[$blocktype] // die "unknown block device type '$blocktype'\n";
1771
1772 # decode a "file path" structure
1773 my $dec_file = sub {
1774 my ($fver, $flen, $ftype) = unpack "VVV", substr $device, 0, 4 * 3, "";
1775
1776 my $path = substr $device, 0, $flen - 12, "";
1777
1778 $fver == 1
1779 or die "unsupported file descriptor version '$fver'\n";
1780
1781 $ftype == 5
1782 or die "unsupported file descriptor path type '$type'\n";
1783
1784 (my $parent, $path) = dec_device_ $path;
1785
1786 $path = $dec_path->($path, "file device without path");
1787
1788 ($parent, $path)
1789 };
1790
1791 if ($blocktype eq "file") {
1792 my ($parent, $path) = $dec_file->();
1793
1794 $res .= "=file,<$parent>,$path";
1795
1796 } elsif ($blocktype eq "vhd") {
1797 $device =~ s/^\x00{20}//s
1798 or die "virtualdisk has non-zero fields I don't understand\n";
1799
1800 (my $parent, $device) = dec_device_ $device;
1801
1802 $res .= "=vhd,<$parent>";
1803
1804 } elsif ($blocktype eq "ramdisk") {
1805 my ($base, $size, $offset) = unpack "Q< Q< L<", substr $device, 0, 8 + 8 + 4, "";
1806 my ($subdev, $path) = $dec_file->();
1807
1808 $res .= "=ramdisk,<$subdev>,$base,$size,$offset,$path";
1809
1810 } else {
1811 die "unsupported block type '$blocktype'\n";
1812 }
1813
1814 } elsif ($type eq "locate") {
1815 # mode, bcde_id, unknown, string
1816 # we assume locate has _either_ an element id _or_ a path, but not both
1817
1818 my ($mode, $elem, $parent) = unpack "VVV", substr $device, 0, 4 * 3, "";
1819
1820 if ($parent) {
1821 # not sure why this is an offset - it must come after the path
1822 $parent = substr $device, $parent - 4 * 3 - 4 * 4, 1e9, "";
1823 ($parent, my $tail) = dec_device_ $parent;
1824 0 == length $tail
1825 or die "trailing data after locate device parent\n";
1826 } else {
1827 $parent = "null";
1828 }
1829
1830 my $path = $device; $device = "";
1831 $path = $dec_path->($path, "device locate mode without path");
1832
1833 $res .= "=<$parent>,";
1834
1835 if ($mode == 0) { # "Element"
1836 !length $path
1837 or die "device locate mode 0 having non-empty path ($mode, $elem, $path)\n";
1838
1839 $elem = dec_bcde_id $elem;
1840 $res .= "element,$elem";
1841
1842 } elsif ($mode == 1) { # "String"
1843 !$elem
1844 or die "device locate mode 1 having non-zero element\n";
1845
1846 $res .= "path,$path";
1847 } else {
1848 # mode 2 maybe called "ElementChild" with element and parent device? example needed
1849 die "device locate mode '$mode' not supported\n";
1850 }
1851
1852 } elsif ($type eq "vmbus") {
1853 my $type = dec_guid substr $device, 0, 16, "";
1854 my $instance = dec_guid substr $device, 0, 16, "";
1855
1856 $device =~ s/^\x00{24}\z//
1857 or die "vmbus has non-zero fields I don't understand\n";
1858
1859 $res .= "=$type,$instance";
1860
1861 } else {
1862 die "unsupported device type '$type'\n";
1863 }
1864
1865 warn "unexpected trailing device data($res), " . unpack "H*",$device
1866 if length $device;
1867 #length $device
1868 # and die "unexpected trailing device data\n";
1869
1870 ($res, $tail)
1871 }
1872
1873 # decode a full binary BCD device descriptor
1874 sub dec_device($) {
1875 my ($device) = @_;
1876
1877 $device = pack "H*", $device;
1878
1879 my $guid = dec_guid substr $device, 0, 16, "";
1880 $guid = $guid eq "00000000-0000-0000-0000-000000000000"
1881 ? "" : "{$guid}";
1882
1883 eval {
1884 my ($dev, $tail) = dec_device_ $device;
1885
1886 $tail eq ""
1887 or die "unsupported trailing data after device descriptor\n";
1888
1889 "$guid$dev"
1890 # } // scalar ((warn $@), "$guid$fallback")
1891 } // ($guid . "binary=" . unpack "H*", $device)
1892 }
1893
1894 sub indexof($@) {
1895 my $value = shift;
1896
1897 for (0 .. $#_) {
1898 $value eq $_[$_]
1899 and return $_;
1900 }
1901
1902 undef
1903 }
1904
1905 # encode the device portion after the GUID
1906 sub enc_device_;
1907 sub enc_device_ {
1908 my ($device) = @_;
1909
1910 my $enc_path = sub {
1911 my $path = shift;
1912 $path =~ s/\//\\/g;
1913 (Encode::encode "UTF-16LE", $path) . "\x00\x00"
1914 };
1915
1916 my $enc_file = sub {
1917 my ($parent, $path) = @_; # parent and path must already be encoded
1918
1919 $path = $parent . $path;
1920
1921 # fver 1, ftype 5
1922 pack "VVVa*", 1, 12 + length $path, 5, $path
1923 };
1924
1925 my $parse_path = sub {
1926 s/^([\/\\][^<>"|?*\x00-\x1f]*)//
1927 or die "$_: invalid path\n";
1928
1929 $enc_path->($1)
1930 };
1931
1932 my $parse_parent = sub {
1933 my $parent;
1934
1935 if (s/^<//) {
1936 ($parent, $_) = enc_device_ $_;
1937 s/^>//
1938 or die "$device: syntax error: parent device not followed by '>'\n";
1939 } else {
1940 $parent = $NULL_DEVICE;
1941 }
1942
1943 $parent
1944 };
1945
1946 for ($device) {
1947 s/^([a-z]+)//
1948 or die "$_: device does not start with type string\n";
1949
1950 my $type = $1;
1951 my $flags = s/^<([0-9a-fA-F]+)>// ? hex $1 : 0;
1952 my $payload;
1953
1954 if ($type eq "binary") {
1955 s/^=([0-9a-fA-F]+)//
1956 or die "binary type must have a hex string argument\n";
1957
1958 $payload = pack "H*", $1;
1959
1960 } elsif ($type eq "null") {
1961 return ($NULL_DEVICE, $_);
1962
1963 } elsif ($type eq "boot") {
1964 $payload = "\x00" x 56;
1965
1966 } elsif ($type eq "partition" or $type eq "legacypartition") {
1967 s/^=//
1968 or die "$_: missing '=' after $type\n";
1969
1970 my $parent = $parse_parent->();
1971
1972 s/^,//
1973 or die "$_: comma missing after partition parent device\n";
1974
1975 s/^([a-z]+),//
1976 or die "$_: partition does not start with block type (e.g. hd or vhd)\n";
1977 my $blocktype = $1;
1978
1979 s/^([a-z]+),//
1980 or die "$_: partition block type not followed by partiton type\n";
1981 my $parttype = $1;
1982
1983 my ($partdata, $diskdata);
1984
1985 if ($parttype eq "mbr") {
1986 s/^([0-9a-f]{8}),//i
1987 or die "$_: partition mbr disk id malformed (must be e.g. 1234abcd)\n";
1988 $diskdata = pack "Vx12", hex $1;
1989
1990 s/^([0-9]+)//
1991 or die "$_: partition number or offset is missing or malformed (must be decimal)\n";
1992
1993 # the following works for both 64 bit offset and 32 bit partno
1994 $partdata = pack "Q< x8", $1;
1995
1996 } elsif ($parttype eq "gpt") {
1997 s/^($RE_GUID),//
1998 or die "$_: partition disk guid missing or malformed\n";
1999 $diskdata = enc_guid $1;
2000
2001 s/^($RE_GUID)//
2002 or die "$_: partition guid missing or malformed\n";
2003 $partdata = enc_guid $1;
2004
2005 } elsif ($parttype eq "raw") {
2006 s/^([0-9]+)//
2007 or die "$_: partition disk number missing or malformed (must be decimal)\n";
2008
2009 $partdata = pack "L< x12", $1;
2010
2011 } else {
2012 die "$parttype: partition type not supported\n";
2013 }
2014
2015 $payload = pack "a16 L< L< a16 a*",
2016 $partdata,
2017 (indexof $blocktype, @block_type),
2018 (indexof $parttype, @part_type),
2019 $diskdata,
2020 $parent;
2021
2022 } elsif ($type eq "locate") {
2023 s/^=//
2024 or die "$_: missing '=' after $type\n";
2025
2026 my ($mode, $elem, $path);
2027
2028 my $parent = $parse_parent->();
2029
2030 s/^,//
2031 or die "$_: missing comma after locate parent device\n";
2032
2033 if (s/^element,//) {
2034 s/^([0-9a-z]+)//i
2035 or die "$_ locate element must be either name or 8-digit hex id\n";
2036 $elem = enc_bcde_id $1;
2037 $mode = 0;
2038 $path = $enc_path->("");
2039
2040 } elsif (s/^path,//) {
2041 $mode = 1;
2042 $path = $parse_path->();
2043
2044 } else {
2045 die "$_ second locate argument must be subtype (either element or path)\n";
2046 }
2047
2048 if ($parent ne $NULL_DEVICE) {
2049 ($parent, $path) = (4 * 4 + 4 * 3 + length $path, "$path$parent");
2050 } else {
2051 $parent = 0;
2052 }
2053
2054 $payload = pack "VVVa*", $mode, $elem, $parent, $path;
2055
2056 } elsif ($type eq "block") {
2057 s/^=//
2058 or die "$_: missing '=' after $type\n";
2059
2060 s/^([a-z]+),//
2061 or die "$_: block device does not start with block type (e.g. disk)\n";
2062 my $blocktype = $1;
2063
2064 my $blockdata;
2065
2066 if ($blocktype eq "file") {
2067 my $parent = $parse_parent->();
2068 s/^,// or die "$_: comma missing after file block device parent\n";
2069 my $path = $parse_path->();
2070
2071 $blockdata = $enc_file->($parent, $path);
2072
2073 } elsif ($blocktype eq "vhd") {
2074 $blockdata = "\x00" x 20; # ENOTUNDERSTOOD
2075 $blockdata .= $parse_parent->();
2076
2077 } elsif ($blocktype eq "ramdisk") {
2078 my $parent = $parse_parent->();
2079
2080 s/^,(\d+),(\d+),(\d+),//a
2081 or die "$_: missing ramdisk base,size,offset after ramdisk parent device\n";
2082
2083 my ($base, $size, $offset) = ($1, $2, $3);
2084
2085 my $path = $parse_path->();
2086
2087 $blockdata = pack "Q< Q< L< a*", $base, $size, $offset, $enc_file->($parent, $path);
2088
2089 } elsif ($blocktype eq "cdrom" or $blocktype eq "floppy") {
2090 # this is guesswork
2091 s/^(\d+)//a
2092 or die "$_: missing device number for cdrom\n";
2093 $blockdata = pack "V", $1;
2094
2095 } else {
2096 die "$blocktype: unsupported block type (must be file, vhd, ramdisk, floppy, cdrom)\n";
2097 }
2098
2099 $payload = pack "Va*",
2100 (indexof $blocktype, @block_type),
2101 $blockdata;
2102
2103 } elsif ($type eq "vmbus") {
2104 s/^=($RE_GUID)//
2105 or die "$_: malformed or missing vmbus interface type guid\n";
2106 my $type = enc_guid $1;
2107 s/^,($RE_GUID)//
2108 or die "$_: malformed or missing vmbus interface instance guid\n";
2109 my $instance = enc_guid $1;
2110
2111 $payload = pack "a16a16x24", $type, $instance;
2112
2113 } else {
2114 die "$type: not a supported device type (binary, null, boot, legacypartition, partition, block, locate)\n";
2115 }
2116
2117 return (
2118 (pack "VVVVa*", (indexof $type, @dev_type), $flags, 16 + length $payload, 0, $payload),
2119 $_
2120 );
2121 }
2122 }
2123
2124 # encode a full binary BCD device descriptor
2125 sub enc_device {
2126 my ($device) = @_;
2127
2128 my $guid = "\x00" x 16;
2129
2130 if ($device =~ s/^\{([A-Za-z0-9\-]+)\}//) {
2131 $guid = enc_guid $1
2132 or die "$device: does not start with valid guid\n";
2133 }
2134
2135 my ($descriptor, $tail) = enc_device_ $device;
2136
2137 length $tail
2138 and die "$device: garbage after device descriptor\n";
2139
2140 unpack "H*", $guid . $descriptor
2141 }
2142
2143 # decode a registry hive into the BCD structure used by pbcdedit
2144 sub bcd_decode {
2145 my ($hive) = @_;
2146
2147 my %bcd;
2148
2149 my $objects = $hive->[1][1]{Objects}[1];
2150
2151 while (my ($k, $v) = each %$objects) {
2152 my %kv;
2153 $v = $v->[1];
2154
2155 $k = $bcd_objects{$k} // $k;
2156
2157 my $type = $v->{Description}[0]{Type}[1];
2158
2159 if ($type != $bcd_object_types{$k}) {
2160 $type = $bcd_types{$type} // sprintf "0x%08x", $type;
2161 $kv{type} = $type;
2162 }
2163
2164 my $elems = $v->{Elements}[1];
2165
2166 while (my ($k, $v) = each %$elems) {
2167 my $k = hex $k;
2168
2169 my $v = $bcde_dec{$k & BCDE_FORMAT}->($v->[0]{Element}[1]);
2170 my $k = dec_bcde_id $k;
2171
2172 $kv{$k} = $v;
2173 }
2174
2175 $bcd{$k} = \%kv;
2176 }
2177
2178 $bcd{meta} = { version => $JSON_VERSION };
2179
2180 \%bcd
2181 }
2182
2183 # encode a pbcdedit structure into a registry hive
2184 sub bcd_encode {
2185 my ($bcd) = @_;
2186
2187 if (my $meta = $bcd->{meta}) {
2188 $meta->{version} eq $JSON_VERSION
2189 or die "BCD meta version ($meta->{version}) does not match executable version ($JSON_VERSION)\n";
2190 }
2191
2192 my %objects;
2193 my %rbcd_types = reverse %bcd_types;
2194
2195 while (my ($k, $v) = each %$bcd) {
2196 my %kv;
2197
2198 next if $k eq "meta";
2199
2200 $k = lc $k; # I know you windows types!
2201
2202 my $type = $v->{type};
2203
2204 if ($type) {
2205 $type = $type =~ /^(?:0x)[0-9a-fA-F]+$/
2206 ? hex $type
2207 : $rbcd_types{$type} // die "$type: unable to parse bcd object type\n";
2208 }
2209
2210 my $guid = enc_wguid $k
2211 or die "$k: invalid bcd object identifier\n";
2212
2213 # default type if not given
2214 $type //= $bcd_object_types{dec_wguid $guid} // die "$k: unable to deduce bcd object type\n";
2215
2216 my %elem;
2217
2218 while (my ($k, $v) = each %$v) {
2219 next if $k eq "type";
2220
2221 $k = (enc_bcde_id $k) // die "$k: invalid bcde element name or id\n";
2222 $elem{sprintf "%08x", $k} = [{
2223 Element => [ ($bcde_enc{$k & BCDE_FORMAT} // die "$k: unable to encode unknown bcd element type}")->($v)]
2224 }];
2225 }
2226
2227 $guid = dec_guid $guid;
2228
2229 $objects{"{$guid}"} = [undef, {
2230 Description => [{ Type => [dword => $type] }],
2231 Elements => [undef, \%elem],
2232 }];
2233 }
2234
2235 [NewStoreRoot => [undef, {
2236 Description => [{
2237 KeyName => [sz => "BCD00000001"],
2238 System => [dword => 1],
2239 pbcdedit => [sz => $VERSION],
2240 # other values seen: GuidCache => ..., TreatAsSystem => 0x00000001
2241 }],
2242 Objects => [undef, \%objects],
2243 }]]
2244 }
2245
2246 #############################################################################
2247
2248 sub bcd_edit_eval {
2249 package pbcdedit;
2250
2251 our ($PATH, $BCD, $DEFAULT);
2252
2253 eval shift;
2254 die "$@" if $@;
2255 }
2256
2257 sub bcd_edit {
2258 my ($path, $bcd, @insns) = @_;
2259
2260 my $default = $bcd->{"{bootmgr}"}{resumeobject};
2261
2262 # prepare "officially visible" variables
2263 local $pbcdedit::PATH = $path;
2264 local $pbcdedit::BCD = $bcd;
2265 local $pbcdedit::DEFAULT = $default;
2266
2267 while (@insns) {
2268 my $insn = shift @insns;
2269
2270 if ($insn eq "get") {
2271 my $object = shift @insns;
2272 my $elem = shift @insns;
2273
2274 $object = $default if $object eq "{default}";
2275
2276 print $bcd->{$object}{$elem}, "\n";
2277
2278 } elsif ($insn eq "set") {
2279 my $object = shift @insns;
2280 my $elem = shift @insns;
2281 my $value = shift @insns;
2282
2283 $object = $default if $object eq "{default}";
2284
2285 $bcd->{$object}{$elem} = $value;
2286
2287 } elsif ($insn eq "eval") {
2288 bcd_edit_eval shift @insns;
2289
2290 } elsif ($insn eq "do") {
2291 my $path = shift @insns;
2292 my $file = file_load $path;
2293 bcd_edit_eval "#line 1 '$path'\n$file";
2294
2295 } else {
2296 die "$insn: not a recognized instruction for edit/parse\n";
2297 }
2298 }
2299
2300 }
2301
2302 #############################################################################
2303
2304 # json to stdout
2305 sub prjson($) {
2306 print $json_coder->encode ($_[0]);
2307 }
2308
2309 # json from stdin
2310 sub rdjson() {
2311 my $json;
2312 1 while read STDIN, $json, 65536, length $json;
2313 $json_coder->decode ($json)
2314 }
2315
2316 # all subcommands
2317 our %CMD = (
2318 help => sub {
2319 require Pod::Usage;
2320 Pod::Usage::pod2usage (-verbose => 2);
2321 },
2322
2323 objects => sub {
2324 my %rbcd_types = reverse %bcd_types;
2325 $_ = sprintf "%08x", $_ for values %rbcd_types;
2326
2327 if ($_[0] eq "--json") {
2328 my %default_type = %bcd_object_types;
2329 $_ = sprintf "%08x", $_ for values %default_type;
2330
2331 prjson {
2332 version => $JSON_VERSION,
2333 object_alias => \%bcd_objects,
2334 object_type => \%rbcd_types,
2335 object_default_type => \%default_type,
2336 };
2337 } else {
2338 my %rbcd_objects = reverse %bcd_objects;
2339
2340 print "\n";
2341
2342 printf "%-9s %s\n", "Type", "Alias";
2343 for my $tname (sort keys %rbcd_types) {
2344 printf "%-9s %s\n", $rbcd_types{$tname}, $tname;
2345 }
2346
2347 print "\n";
2348
2349 printf "%-39s %-23s %s\n", "Object GUID", "Alias", "(Hex) Default Type";
2350 for my $name (sort keys %rbcd_objects) {
2351 my $guid = $rbcd_objects{$name};
2352 my $type = $bcd_object_types{$name};
2353 my $tname = $bcd_types{$type};
2354
2355 $type = $type ? sprintf "(%08x) %s", $type, $tname : "-";
2356
2357 printf "%-39s %-23s %s\n", $guid, $name, $type;
2358 }
2359
2360 print "\n";
2361 }
2362 },
2363
2364 elements => sub {
2365 my $json = $_[0] eq "--json";
2366
2367 my %format_name = (
2368 BCDE_FORMAT_DEVICE , "device",
2369 BCDE_FORMAT_STRING , "string",
2370 BCDE_FORMAT_GUID , "guid",
2371 BCDE_FORMAT_GUID_LIST , "guid list",
2372 BCDE_FORMAT_INTEGER , "integer",
2373 BCDE_FORMAT_BOOLEAN , "boolean",
2374 BCDE_FORMAT_INTEGER_LIST, "integer list",
2375 );
2376 my %rbcde = reverse %bcde;
2377 $_ = sprintf "%08x", $_ for values %rbcde;
2378
2379 my %element;
2380
2381 unless ($json) {
2382 print "\n";
2383 printf "%-9s %-12s %s\n", "Element", "Format", "Name Alias";
2384 }
2385 for my $name (sort keys %rbcde) {
2386 my $id = $rbcde{$name};
2387 my $format = $format_name{(hex $id) & BCDE_FORMAT};
2388
2389 if ($json) {
2390 $element{$id} = [$format, $name];
2391 } else {
2392 printf "%-9s %-12s %s\n", $id, $format, $name;
2393 }
2394 }
2395 print "\n" unless $json;
2396
2397 prjson {
2398 version => $JSON_VERSION,
2399 element => \%element,
2400 } if $json;
2401
2402 },
2403
2404 export => sub {
2405 prjson bcd_decode regf_load shift;
2406 },
2407
2408 import => sub {
2409 regf_save shift, bcd_encode rdjson;
2410 },
2411
2412 edit => sub {
2413 my $path = shift;
2414 my $bcd = bcd_decode regf_load $path;
2415 bcd_edit $path, $bcd, @_;
2416 regf_save $path, bcd_encode $bcd;
2417 },
2418
2419 parse => sub {
2420 my $path = shift;
2421 my $bcd = bcd_decode regf_load $path;
2422 bcd_edit $path, $bcd, @_;
2423 },
2424
2425 "export-regf" => sub {
2426 prjson regf_load shift;
2427
2428 },
2429
2430 "import-regf" => sub {
2431 regf_save shift, rdjson;
2432 },
2433
2434 lsblk => sub {
2435 printf "%-10s %-8.8s %-6.6s %-3s %s\n", "DEVICE", "LABEL", "FSTYPE", "PT", "DEVICE DESCRIPTOR";
2436
2437 my $lsblk = $json_coder->decode (scalar qx<lsblk --json -o PATH,KNAME,TYPE,PTTYPE,PTUUID,PARTUUID,LABEL,FSTYPE>);
2438
2439 for my $dev (@{ $lsblk->{blockdevices} }) {
2440 my $pr = sub {
2441 printf "%-10s %-8.8s %-6.6s %-3s %s\n",
2442 $dev->{path}, $dev->{label}, $dev->{fstype}, $dev->{pttype}, $_[0];
2443 };
2444
2445 if ($dev->{type} eq "part") {
2446 if ($dev->{pttype} eq "gpt") {
2447 $pr->("partition=<null>,harddisk,gpt,$dev->{ptuuid},$dev->{partuuid}");
2448 } elsif ($dev->{pttype} eq "dos") { # why not "mbr" :(
2449 if ($dev->{partuuid} =~ /^([0-9a-f]{8})-([0-9a-f]{2})\z/i) {
2450 my ($diskid, $partno) = ($1, hex $2);
2451 $pr->("legacypartition=<null>,harddisk,mbr,$diskid,$partno");
2452 if (open my $fh, "/sys/class/block/$dev->{kname}/start") {
2453 my $start = 512 * readline $fh;
2454 $pr->("partition=<null>,harddisk,mbr,$diskid,$start");
2455 }
2456 }
2457 }
2458 }
2459 }
2460 },
2461 );
2462
2463 my $cmd = shift;
2464
2465 unless (exists $CMD{$cmd}) {
2466 warn "Usage: $0 subcommand args...\nTry $0 help\n";
2467 exit 126;
2468 }
2469
2470 $CMD{$cmd}->(@ARGV);
2471