/*----------------------------------------------------------------------* * File: background.C - former xpm.C *----------------------------------------------------------------------* * * All portions of code are copyright by their respective author/s. * Copyright (c) 2005-2008 Marc Lehmann * Copyright (c) 2007 Sasha Vasko * Copyright (c) 2010 Emanuele Giaquinta * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *---------------------------------------------------------------------*/ #include #include "../config.h" /* NECESSARY */ #include "rxvt.h" /* NECESSARY */ #if XRENDER # include #endif #ifndef FilterConvolution #define FilterConvolution "convolution" #endif #define DO_TIMING_TEST 0 #if DO_TIMING_TEST # include #define TIMING_TEST_START(id) \ struct timeval timing_test_##id##_stv; \ gettimeofday (&timing_test_##id##_stv, NULL); #define TIMING_TEST_PRINT_RESULT(id) \ do { \ struct timeval tv; \ gettimeofday (&tv, NULL); \ tv.tv_sec -= (timing_test_##id##_stv).tv_sec; \ fprintf (stderr, "%s: %s: %d: elapsed %ld usec\n", #id, __FILE__, __LINE__, \ tv.tv_sec * 1000000 + tv.tv_usec - (timing_test_##id##_stv).tv_usec); \ } while (0) #else #define TIMING_TEST_START(id) do {} while (0) #define TIMING_TEST_PRINT_RESULT(id) do {} while (0) #endif /* * Pixmap geometry string interpretation : * Each geometry string contains zero or one scale/position * adjustment and may optionally be followed by a colon and one or more * colon-delimited pixmap operations. * The following table shows the valid geometry strings and their * effects on the background image : * * WxH+X+Y Set scaling to W% by H%, and position to X% by Y%. * W and H are percentages of the terminal window size. * X and Y are also percentages; e.g., +50+50 centers * the image in the window. * * Pixmap Operations : (should be prepended by a colon) * tile Tile image. Scaling/position modifiers above will affect * the tile size and origin. * propscale When scaling, scale proportionally. That is, maintain the * proper aspect ratio for the image. Any portion of the * background not covered by the image is filled with the * current background color. * hscale Scale horizontally, tile vertically ? * vscale Tile horizontally, scale vertically ? * scale Scale both up and down * auto Same as 100x100+50+50 */ #ifdef HAVE_BG_PIXMAP bgPixmap_t::bgPixmap_t () { // this is basically redundant as bgPixmap_t is only used in // zero_initialised-derived structs #ifdef HAVE_AFTERIMAGE original_asim = NULL; #endif #ifdef HAVE_PIXBUF pixbuf = NULL; #endif #ifdef BG_IMAGE_FROM_FILE have_image = false; h_scale = v_scale = 0; h_align = v_align = 0; #endif #ifdef ENABLE_TRANSPARENCY shade = 100; #endif flags = 0; pixmap = None; valid_since = invalid_since = 0; target = 0; target_x = target_y = 0; } void bgPixmap_t::destroy () { #ifdef HAVE_AFTERIMAGE if (original_asim) safe_asimage_destroy (original_asim); #endif #ifdef HAVE_PIXBUF if (pixbuf) g_object_unref (pixbuf); #endif if (pixmap && target) XFreePixmap (target->dpy, pixmap); } bool bgPixmap_t::set_position (int x, int y) { if (target_x != x || target_y != y) { target_x = x; target_y = y; return true; } return false; } bool bgPixmap_t::window_size_sensitive () { # ifdef ENABLE_TRANSPARENCY if (flags & isTransparent) return true; # endif # ifdef BG_IMAGE_FROM_FILE if (have_image) { if (flags & sizeSensitive) return true; } # endif return false; } bool bgPixmap_t::window_position_sensitive () { # ifdef ENABLE_TRANSPARENCY if (flags & isTransparent) return true; # endif # ifdef BG_IMAGE_FROM_FILE if (have_image) { if (flags & rootAlign) return true; } # endif return false; } # ifdef BG_IMAGE_FROM_FILE static inline bool check_set_scale_value (int geom_flags, int flag, unsigned int &scale, unsigned int new_value) { if (geom_flags & flag) { if (new_value > 1000) new_value = 1000; if (new_value != scale) { scale = new_value; return true; } } return false; } static inline bool check_set_align_value (int geom_flags, int flag, int &align, int new_value) { if (geom_flags & flag) { if (new_value < -100) new_value = -100; else if (new_value > 200) new_value = 200; if (new_value != align) { align = new_value; return true; } } return false; } static inline int make_align_position (int align, int window_size, int image_size) { int diff = window_size - image_size; int smaller = min (image_size, window_size); if (align >= 0 && align <= 100) return diff * align / 100; else if (align > 100 && align <= 200) return ((align - 100) * smaller / 100) + window_size - smaller; else if (align >= -100 && align < 0) return ((align + 100) * smaller / 100) - image_size; return 0; } static inline int make_clip_rectangle (int pos, int size, int target_size, int &dst_pos, int &dst_size) { int src_pos = 0; dst_pos = pos; dst_size = size; if (pos < 0) { src_pos = -pos; dst_pos = 0; dst_size += pos; } if (dst_pos + dst_size > target_size) dst_size = target_size - dst_pos; return src_pos; } bool bgPixmap_t::set_geometry (const char *geom, bool update) { bool changed = false; int geom_flags = 0; int x = 0, y = 0; unsigned int w = 0, h = 0; unsigned int n; unsigned long new_flags = (flags & (~geometryFlags)); const char *ops; if (geom == NULL) return false; char str[256]; ops = strchr (geom, ':'); if (ops == NULL) n = strlen (geom); else n = ops - geom; if (n >= sizeof (str)) return false; memcpy (str, geom, n); str[n] = '\0'; rxvt_strtrim (str); if (str[0]) { /* we have geometry string - let's handle it prior to applying ops */ geom_flags = XParseGeometry (str, &x, &y, &w, &h); } /* done parsing geometry string */ if (!update) { if (!(geom_flags & XValue)) x = y = defaultAlign; else if (!(geom_flags & YValue)) y = x; if (!(geom_flags & (WidthValue|HeightValue))) w = h = defaultScale; else if (!(geom_flags & HeightValue)) h = w; else if (!(geom_flags & WidthValue)) w = h; geom_flags |= WidthValue|HeightValue|XValue|YValue; } if (ops) { char **arr = rxvt_strsplit (':', ops + 1); for (int i = 0; arr[i]; i++) { if (!strcasecmp (arr[i], "tile")) { w = h = noScale; geom_flags |= WidthValue|HeightValue; } else if (!strcasecmp (arr[i], "propscale")) { new_flags |= propScale; } else if (!strcasecmp (arr[i], "hscale")) { if (w == 0) w = windowScale; h = noScale; geom_flags |= WidthValue|HeightValue; } else if (!strcasecmp (arr[i], "vscale")) { if (h == 0) h = windowScale; w = noScale; geom_flags |= WidthValue|HeightValue; } else if (!strcasecmp (arr[i], "scale")) { if (h == 0) h = windowScale; if (w == 0) w = windowScale; geom_flags |= WidthValue|HeightValue; } else if (!strcasecmp (arr[i], "auto")) { w = h = windowScale; x = y = centerAlign; geom_flags |= WidthValue|HeightValue|XValue|YValue; } else if (!strcasecmp (arr[i], "root")) { new_flags |= rootAlign; w = h = noScale; geom_flags |= WidthValue|HeightValue; } } /* done parsing ops */ rxvt_free_strsplit (arr); } if (check_set_scale_value (geom_flags, WidthValue, h_scale, w)) changed = true; if (check_set_scale_value (geom_flags, HeightValue, v_scale, h)) changed = true; if (check_set_align_value (geom_flags, XValue, h_align, x)) changed = true; if (check_set_align_value (geom_flags, YValue, v_align, y)) changed = true; if (new_flags != flags) { flags = new_flags; changed = true; } return changed; } void bgPixmap_t::get_image_geometry (int image_width, int image_height, int &w, int &h, int &x, int &y) { int target_width = target->szHint.width; int target_height = target->szHint.height; if (flags & propScale) { float scale = (float)target_width / image_width; min_it (scale, (float)target_height / image_height); w = image_width * scale + 0.5; h = image_height * scale + 0.5; } else { w = h_scale * target_width / 100; h = v_scale * target_height / 100; } if (!w) w = image_width; if (!h) h = image_height; if (flags & rootAlign) { x = -target_x; y = -target_y; } else { x = make_align_position (h_align, target_width, w); y = make_align_position (v_align, target_height, h); } flags &= ~sizeSensitive; if ((flags & propScale) || h_scale || v_scale || (!(flags & rootAlign) && (h_align || v_align)) || w > target_width || h > target_height) flags |= sizeSensitive; } # ifdef HAVE_AFTERIMAGE bool bgPixmap_t::render_image (unsigned long background_flags) { if (target == NULL) return false; target->init_asv (); ASImage *background = NULL; ARGB32 background_tint = TINT_LEAVE_SAME; # ifdef ENABLE_TRANSPARENCY if (background_flags) background = pixmap2ximage (target->asv, pixmap, 0, 0, pmap_width, pmap_height, AllPlanes, 100); if (!(background_flags & transpPmapTinted) && (flags & tintNeeded)) { ShadingInfo as_shade; as_shade.shading = shade; rgba c (rgba::MAX_CC,rgba::MAX_CC,rgba::MAX_CC); if (flags & tintSet) tint.get (c); as_shade.tintColor.red = c.r; as_shade.tintColor.green = c.g; as_shade.tintColor.blue = c.b; background_tint = shading2tint32 (&as_shade); } if (!(background_flags & transpPmapBlurred) && (flags & blurNeeded) && background != NULL) { ASImage *tmp = blur_asimage_gauss (target->asv, background, h_blurRadius, v_blurRadius, 0xFFFFFFFF, (original_asim == NULL || tint == TINT_LEAVE_SAME) ? ASA_XImage : ASA_ASImage, 100, ASIMAGE_QUALITY_DEFAULT); if (tmp) { destroy_asimage (&background); background = tmp; } } # endif ASImage *result = 0; int target_width = target->szHint.width; int target_height = target->szHint.height; int new_pmap_width = target_width; int new_pmap_height = target_height; int x = 0; int y = 0; int w = 0; int h = 0; if (original_asim) get_image_geometry (original_asim->width, original_asim->height, w, h, x, y); if (!original_asim || (!(flags & rootAlign) && (x >= target_width || y >= target_height || (x + w <= 0) || (y + h <= 0)))) { if (background) { new_pmap_width = background->width; new_pmap_height = background->height; result = background; if (background_tint != TINT_LEAVE_SAME) { ASImage *tmp = tile_asimage (target->asv, background, 0, 0, target_width, target_height, background_tint, ASA_XImage, 100, ASIMAGE_QUALITY_DEFAULT); if (tmp) result = tmp; } } else new_pmap_width = new_pmap_height = 0; } else { result = original_asim; if ((w != original_asim->width) || (h != original_asim->height)) { result = scale_asimage (target->asv, original_asim, w, h, background ? ASA_ASImage : ASA_XImage, 100, ASIMAGE_QUALITY_DEFAULT); } if (background == NULL) { if (h_scale == 0 || v_scale == 0) { /* if tiling - pixmap has to be sized exactly as the image, but there is no need to make it bigger than the window! */ new_pmap_width = min (result->width, target_width); new_pmap_height = min (result->height, target_height); /* we also need to tile our image in both directions */ ASImage *tmp = tile_asimage (target->asv, result, (int)result->width - x, (int)result->height - y, new_pmap_width, new_pmap_height, TINT_LEAVE_SAME, ASA_XImage, 100, ASIMAGE_QUALITY_DEFAULT); if (tmp) { if (result != original_asim) destroy_asimage (&result); result = tmp; } } } else { /* if blending background and image - pixmap has to be sized same as target window */ ASImageLayer *layers = create_image_layers (2); layers[0].im = background; layers[0].clip_width = target_width; layers[0].clip_height = target_height; layers[0].tint = background_tint; layers[1].im = result; if (h_scale == 0 || v_scale == 0) { /* tile horizontally */ while (x > 0) x -= (int)result->width; layers[1].dst_x = x; layers[1].clip_width = result->width+target_width; } else { /* clip horizontally */ layers[1].dst_x = x; layers[1].clip_width = result->width; } if (h_scale == 0 || v_scale == 0) { while (y > 0) y -= (int)result->height; layers[1].dst_y = y; layers[1].clip_height = result->height + target_height; } else { layers[1].dst_y = y; layers[1].clip_height = result->height; } if (target->rs[Rs_blendtype]) { layers[1].merge_scanlines = blend_scanlines_name2func (target->rs[Rs_blendtype]); if (layers[1].merge_scanlines == NULL) layers[1].merge_scanlines = alphablend_scanlines; } ASImage *tmp = merge_layers (target->asv, layers, 2, target_width, target_height, ASA_XImage, 0, ASIMAGE_QUALITY_DEFAULT); if (tmp) { if (result != original_asim) destroy_asimage (&result); result = tmp; } free (layers); } } bool ret = false; if (result) { XGCValues gcv; GC gc; /* create Pixmap */ if (pixmap == None || pmap_width != new_pmap_width || pmap_height != new_pmap_height) { if (pixmap) XFreePixmap (target->dpy, pixmap); pixmap = XCreatePixmap (target->dpy, target->vt, new_pmap_width, new_pmap_height, target->depth); pmap_width = new_pmap_width; pmap_height = new_pmap_height; } /* fill with background color (if result's not completely overlapping it) */ gcv.foreground = target->pix_colors[Color_bg]; gc = XCreateGC (target->dpy, target->vt, GCForeground, &gcv); int src_x = 0, src_y = 0, dst_x = 0, dst_y = 0; int dst_width = result->width, dst_height = result->height; if (background == NULL) { if (!(h_scale == 0 || v_scale == 0)) { src_x = make_clip_rectangle (x, result->width , new_pmap_width , dst_x, dst_width ); src_y = make_clip_rectangle (y, result->height, new_pmap_height, dst_y, dst_height); } if (dst_x > 0 || dst_y > 0 || dst_x + dst_width < new_pmap_width || dst_y + dst_height < new_pmap_height) XFillRectangle (target->dpy, pixmap, gc, 0, 0, new_pmap_width, new_pmap_height); } /* put result on pixmap */ if (dst_x < new_pmap_width && dst_y < new_pmap_height) asimage2drawable (target->asv, pixmap, result, gc, src_x, src_y, dst_x, dst_y, dst_width, dst_height, True); if (result != background && result != original_asim) destroy_asimage (&result); XFreeGC (target->dpy, gc); ret = true; } if (background) destroy_asimage (&background); return ret; } # endif /* HAVE_AFTERIMAGE */ # ifdef HAVE_PIXBUF bool bgPixmap_t::pixbuf_to_pixmap (GdkPixbuf *pixbuf, Pixmap pixmap, GC gc, int src_x, int src_y, int dst_x, int dst_y, unsigned int width, unsigned int height) { XImage *ximage; char *data, *line; int bytes_per_pixel; int width_r, width_g, width_b; int sh_r, sh_g, sh_b; int rowstride; int channels; unsigned char *row; Visual *visual = target->visual; int depth = target->depth; if (visual->c_class != TrueColor) return false; if (depth == 24 || depth == 32) bytes_per_pixel = 4; else if (depth == 15 || depth == 16) bytes_per_pixel = 2; else return false; width_r = rxvt_popcount (visual->red_mask); width_g = rxvt_popcount (visual->green_mask); width_b = rxvt_popcount (visual->blue_mask); if (width_r > 8 || width_g > 8 || width_b > 8) return false; sh_r = rxvt_ctz (visual->red_mask); sh_g = rxvt_ctz (visual->green_mask); sh_b = rxvt_ctz (visual->blue_mask); if (width > INT_MAX / height / bytes_per_pixel) return false; data = (char *)malloc (width * height * bytes_per_pixel); if (!data) return false; ximage = XCreateImage (target->dpy, visual, depth, ZPixmap, 0, data, width, height, bytes_per_pixel * 8, 0); if (!ximage) { free (data); return false; } ximage->byte_order = byteorder::big_endian () ? MSBFirst : LSBFirst; rowstride = gdk_pixbuf_get_rowstride (pixbuf); channels = gdk_pixbuf_get_n_channels (pixbuf); row = gdk_pixbuf_get_pixels (pixbuf) + src_y * rowstride + src_x * channels; line = data; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { unsigned char *pixel = row + x * channels; uint32_t value; value = ((pixel[0] >> (8 - width_r)) << sh_r) | ((pixel[1] >> (8 - width_g)) << sh_g) | ((pixel[2] >> (8 - width_b)) << sh_b); if (bytes_per_pixel == 4) ((uint32_t *)line)[x] = value; else ((uint16_t *)line)[x] = value; } row += rowstride; line += ximage->bytes_per_line; } XPutImage (target->dpy, pixmap, gc, ximage, 0, 0, dst_x, dst_y, width, height); XDestroyImage (ximage); return true; } bool bgPixmap_t::render_image (unsigned long background_flags) { if (target == NULL) return false; if (!pixbuf) return false; if (background_flags && !(flags & HAS_RENDER)) return false; GdkPixbuf *result; int image_width = gdk_pixbuf_get_width (pixbuf); int image_height = gdk_pixbuf_get_height (pixbuf); int target_width = target->szHint.width; int target_height = target->szHint.height; int new_pmap_width = target_width; int new_pmap_height = target_height; int x = 0; int y = 0; int w = 0; int h = 0; get_image_geometry (image_width, image_height, w, h, x, y); if (!(flags & rootAlign) && (x >= target_width || y >= target_height || (x + w <= 0) || (y + h <= 0))) return false; result = pixbuf; if ((w != image_width) || (h != image_height)) { result = gdk_pixbuf_scale_simple (pixbuf, w, h, GDK_INTERP_BILINEAR); } bool ret = false; if (result) { XGCValues gcv; GC gc; Pixmap root_pmap; image_width = gdk_pixbuf_get_width (result); image_height = gdk_pixbuf_get_height (result); if (background_flags) { root_pmap = pixmap; pixmap = None; } else { if (h_scale == 0 || v_scale == 0) { new_pmap_width = min (image_width, target_width); new_pmap_height = min (image_height, target_height); } } if (pixmap == None || pmap_width != new_pmap_width || pmap_height != new_pmap_height) { if (pixmap) XFreePixmap (target->dpy, pixmap); pixmap = XCreatePixmap (target->dpy, target->vt, new_pmap_width, new_pmap_height, target->depth); pmap_width = new_pmap_width; pmap_height = new_pmap_height; } gcv.foreground = target->pix_colors[Color_bg]; gc = XCreateGC (target->dpy, target->vt, GCForeground, &gcv); if (h_scale == 0 || v_scale == 0) { Pixmap tile = XCreatePixmap (target->dpy, target->vt, image_width, image_height, target->depth); pixbuf_to_pixmap (result, tile, gc, 0, 0, 0, 0, image_width, image_height); gcv.tile = tile; gcv.fill_style = FillTiled; gcv.ts_x_origin = x; gcv.ts_y_origin = y; XChangeGC (target->dpy, gc, GCFillStyle | GCTile | GCTileStipXOrigin | GCTileStipYOrigin, &gcv); XFillRectangle (target->dpy, pixmap, gc, 0, 0, new_pmap_width, new_pmap_height); XFreePixmap (target->dpy, tile); } else { int src_x, src_y, dst_x, dst_y; int dst_width, dst_height; src_x = make_clip_rectangle (x, image_width , new_pmap_width , dst_x, dst_width ); src_y = make_clip_rectangle (y, image_height, new_pmap_height, dst_y, dst_height); if (dst_x > 0 || dst_y > 0 || dst_x + dst_width < new_pmap_width || dst_y + dst_height < new_pmap_height) XFillRectangle (target->dpy, pixmap, gc, 0, 0, new_pmap_width, new_pmap_height); if (dst_x < new_pmap_width && dst_y < new_pmap_height) pixbuf_to_pixmap (result, pixmap, gc, src_x, src_y, dst_x, dst_y, dst_width, dst_height); } #if XRENDER if (background_flags) { Display *dpy = target->dpy; XRenderPictureAttributes pa; XRenderPictFormat *src_format = XRenderFindVisualFormat (dpy, target->visual); Picture src = XRenderCreatePicture (dpy, root_pmap, src_format, 0, &pa); XRenderPictFormat *dst_format = XRenderFindVisualFormat (dpy, target->visual); Picture dst = XRenderCreatePicture (dpy, pixmap, dst_format, 0, &pa); pa.repeat = True; Pixmap mask_pmap = XCreatePixmap (dpy, target->vt, 1, 1, 8); XRenderPictFormat *mask_format = XRenderFindStandardFormat (dpy, PictStandardA8); Picture mask = XRenderCreatePicture (dpy, mask_pmap, mask_format, CPRepeat, &pa); XFreePixmap (dpy, mask_pmap); if (src && dst && mask) { XRenderColor mask_c; mask_c.alpha = 0x8000; mask_c.red = 0; mask_c.green = 0; mask_c.blue = 0; XRenderFillRectangle (dpy, PictOpSrc, mask, &mask_c, 0, 0, 1, 1); XRenderComposite (dpy, PictOpOver, src, mask, dst, 0, 0, 0, 0, 0, 0, target_width, target_height); } XRenderFreePicture (dpy, src); XRenderFreePicture (dpy, dst); XRenderFreePicture (dpy, mask); XFreePixmap (dpy, root_pmap); } #endif if (result != pixbuf) g_object_unref (result); XFreeGC (target->dpy, gc); ret = true; } return ret; } # endif /* HAVE_PIXBUF */ bool bgPixmap_t::set_file (const char *file) { if (!file || !*file) return false; if (const char *p = strchr (file, ';')) { size_t len = p - file; char *f = rxvt_temp_buf (len + 1); memcpy (f, file, len); f[len] = '\0'; file = f; } # ifdef HAVE_AFTERIMAGE if (!target->asimman) target->asimman = create_generic_imageman (target->rs[Rs_path]); ASImage *image = get_asimage (target->asimman, file, 0xFFFFFFFF, 100); if (image) { if (original_asim) safe_asimage_destroy (original_asim); original_asim = image; flags |= CLIENT_RENDER; have_image = true; return true; } # endif # ifdef HAVE_PIXBUF GdkPixbuf *image = gdk_pixbuf_new_from_file (file, NULL); if (image) { if (pixbuf) g_object_unref (pixbuf); pixbuf = image; have_image = true; return true; } # endif return false; } # endif /* BG_IMAGE_FROM_FILE */ # ifdef ENABLE_TRANSPARENCY bool bgPixmap_t::set_transparent () { if (!(flags & isTransparent)) { flags |= isTransparent; return true; } return false; } bool bgPixmap_t::set_blur_radius (const char *geom) { bool changed = false; unsigned int hr, vr; int junk; int geom_flags = XParseGeometry (geom, &junk, &junk, &hr, &vr); if (!(geom_flags & WidthValue)) hr = 1; if (!(geom_flags & HeightValue)) vr = hr; min_it (hr, 128); min_it (vr, 128); if (h_blurRadius != hr) { changed = true; h_blurRadius = hr; } if (v_blurRadius != vr) { changed = true; v_blurRadius = vr; } if (v_blurRadius == 0 && h_blurRadius == 0) flags &= ~blurNeeded; else flags |= blurNeeded; return changed; } static inline unsigned long compute_tint_shade_flags (rxvt_color *tint, int shade) { unsigned long flags = 0; rgba c (rgba::MAX_CC,rgba::MAX_CC,rgba::MAX_CC); bool has_shade = shade != 100; if (tint) { tint->get (c); if (!has_shade && (c.r <= 0x00ff || c.r >= 0xff00) && (c.g <= 0x00ff || c.g >= 0xff00) && (c.b <= 0x00ff || c.b >= 0xff00)) flags |= bgPixmap_t::tintWholesome; } if (has_shade || tint) flags |= bgPixmap_t::tintNeeded; return flags; } bool bgPixmap_t::set_tint (rxvt_color &new_tint) { if (!(flags & tintSet) || tint != new_tint) { unsigned long new_flags = compute_tint_shade_flags (&new_tint, shade); tint = new_tint; flags = (flags & ~tintFlags) | new_flags | tintSet; return true; } return false; } bool bgPixmap_t::set_shade (const char *shade_str) { int new_shade = (shade_str) ? atoi (shade_str) : 100; clamp_it (new_shade, -100, 200); if (new_shade < 0) new_shade = 200 - (100 + new_shade); if (new_shade != shade) { unsigned long new_flags = compute_tint_shade_flags ((flags & tintSet) ? &tint : NULL, new_shade); shade = new_shade; flags = (flags & (~tintFlags | tintSet)) | new_flags; return true; } return false; } #if XRENDER static void get_gaussian_kernel (int radius, int width, double *kernel, XFixed *params) { double sigma = radius / 2.0; double scale = sqrt (2.0 * M_PI) * sigma; double sum = 0.0; for (int i = 0; i < width; i++) { double x = i - width / 2; kernel[i] = exp (-(x * x) / (2.0 * sigma * sigma)) / scale; sum += kernel[i]; } params[0] = XDoubleToFixed (width); params[1] = XDoubleToFixed (1); for (int i = 0; i < width; i++) params[i+2] = XDoubleToFixed (kernel[i] / sum); } #endif bool bgPixmap_t::blur_pixmap (Pixmap pixmap, Visual *visual, int width, int height) { bool ret = false; #if XRENDER int size = max (h_blurRadius, v_blurRadius) * 2 + 1; double *kernel = (double *)malloc (size * sizeof (double)); XFixed *params = (XFixed *)malloc ((size + 2) * sizeof (XFixed)); Display *dpy = target->dpy; XRenderPictureAttributes pa; XRenderPictFormat *format = XRenderFindVisualFormat (dpy, visual); Picture src = XRenderCreatePicture (dpy, pixmap, format, 0, &pa); Picture dst = XRenderCreatePicture (dpy, pixmap, format, 0, &pa); if (kernel && params && src && dst) { if (h_blurRadius) { size = h_blurRadius * 2 + 1; get_gaussian_kernel (h_blurRadius, size, kernel, params); XRenderSetPictureFilter (dpy, src, FilterConvolution, params, size+2); XRenderComposite (dpy, PictOpSrc, src, None, dst, 0, 0, 0, 0, 0, 0, width, height); } if (v_blurRadius) { size = v_blurRadius * 2 + 1; get_gaussian_kernel (v_blurRadius, size, kernel, params); swap (params[0], params[1]); XRenderSetPictureFilter (dpy, src, FilterConvolution, params, size+2); XRenderComposite (dpy, PictOpSrc, src, None, dst, 0, 0, 0, 0, 0, 0, width, height); } ret = true; } free (kernel); free (params); XRenderFreePicture (dpy, src); XRenderFreePicture (dpy, dst); #endif return ret; } bool bgPixmap_t::tint_pixmap (Pixmap pixmap, Visual *visual, int width, int height) { Display *dpy = target->dpy; bool ret = false; if (flags & tintWholesome) { XGCValues gcv; GC gc; /* In this case we can tint image server-side getting significant * performance improvements, as we eliminate XImage transfer */ gcv.foreground = Pixel (tint); gcv.function = GXand; gcv.fill_style = FillSolid; gc = XCreateGC (dpy, pixmap, GCFillStyle | GCForeground | GCFunction, &gcv); if (gc) { XFillRectangle (dpy, pixmap, gc, 0, 0, width, height); ret = true; XFreeGC (dpy, gc); } } else { # if XRENDER rgba c (rgba::MAX_CC,rgba::MAX_CC,rgba::MAX_CC); if (flags & tintSet) tint.get (c); if (shade <= 100) { c.r = (c.r * shade) / 100; c.g = (c.g * shade) / 100; c.b = (c.b * shade) / 100; } else { c.r = (c.r * (200 - shade)) / 100; c.g = (c.g * (200 - shade)) / 100; c.b = (c.b * (200 - shade)) / 100; } XRenderPictFormat *solid_format = XRenderFindStandardFormat (dpy, PictStandardARGB32); XRenderPictFormat *format = XRenderFindVisualFormat (dpy, visual); XRenderPictureAttributes pa; Picture back_pic = XRenderCreatePicture (dpy, pixmap, format, 0, &pa); pa.repeat = True; Pixmap overlay_pmap = XCreatePixmap (dpy, pixmap, 1, 1, 32); Picture overlay_pic = XRenderCreatePicture (dpy, overlay_pmap, solid_format, CPRepeat, &pa); XFreePixmap (dpy, overlay_pmap); pa.component_alpha = True; Pixmap mask_pmap = XCreatePixmap (dpy, pixmap, 1, 1, 32); Picture mask_pic = XRenderCreatePicture (dpy, mask_pmap, solid_format, CPRepeat|CPComponentAlpha, &pa); XFreePixmap (dpy, mask_pmap); if (mask_pic && overlay_pic && back_pic) { XRenderColor mask_c; mask_c.red = mask_c.green = mask_c.blue = 0; mask_c.alpha = 0xffff; XRenderFillRectangle (dpy, PictOpSrc, overlay_pic, &mask_c, 0, 0, 1, 1); mask_c.alpha = 0; mask_c.red = 0xffff - c.r; mask_c.green = 0xffff - c.g; mask_c.blue = 0xffff - c.b; XRenderFillRectangle (dpy, PictOpSrc, mask_pic, &mask_c, 0, 0, 1, 1); XRenderComposite (dpy, PictOpOver, overlay_pic, mask_pic, back_pic, 0, 0, 0, 0, 0, 0, width, height); if (shade > 100) { mask_c.red = mask_c.green = mask_c.blue = 0xffff * (shade - 100) / 100; mask_c.alpha = 0; XRenderFillRectangle (dpy, PictOpSrc, overlay_pic, &mask_c, 0, 0, 1, 1); XRenderComposite (dpy, PictOpOver, overlay_pic, None, back_pic, 0, 0, 0, 0, 0, 0, width, height); } ret = true; } XRenderFreePicture (dpy, mask_pic); XRenderFreePicture (dpy, overlay_pic); XRenderFreePicture (dpy, back_pic); # endif } return ret; } /* make_transparency_pixmap() * Builds a pixmap of the same size as the terminal window that contains * the tiled portion of the root pixmap that is supposed to be covered by * our window. */ unsigned long bgPixmap_t::make_transparency_pixmap () { unsigned long result = 0; if (target == NULL) return 0; /* root dimensions may change from call to call - but Display structure should * be always up-to-date, so let's use it : */ int screen = target->display->screen; Display *dpy = target->dpy; int root_depth = DefaultDepth (dpy, screen); int root_width = DisplayWidth (dpy, screen); int root_height = DisplayHeight (dpy, screen); unsigned int root_pmap_width, root_pmap_height; int window_width = target->szHint.width; int window_height = target->szHint.height; int sx, sy; XGCValues gcv; GC gc; sx = target_x; sy = target_y; /* check if we are outside of the visible part of the virtual screen : */ if (sx + window_width <= 0 || sy + window_height <= 0 || sx >= root_width || sy >= root_height) return 0; // validate root pixmap and get its size if (root_pixmap != None) { Window wdummy; int idummy; unsigned int udummy; target->allowedxerror = -1; if (!XGetGeometry (dpy, root_pixmap, &wdummy, &idummy, &idummy, &root_pmap_width, &root_pmap_height, &udummy, &udummy)) root_pixmap = None; target->allowedxerror = 0; } Pixmap recoded_root_pmap = root_pixmap; if (root_pixmap != None && root_depth != target->depth) { #if XRENDER if (flags & HAS_RENDER) { XRenderPictureAttributes pa; XRenderPictFormat *src_format = XRenderFindVisualFormat (dpy, DefaultVisual (dpy, screen)); Picture src = XRenderCreatePicture (dpy, root_pixmap, src_format, 0, &pa); recoded_root_pmap = XCreatePixmap (dpy, target->vt, root_pmap_width, root_pmap_height, target->depth); XRenderPictFormat *dst_format = XRenderFindVisualFormat (dpy, target->visual); Picture dst = XRenderCreatePicture (dpy, recoded_root_pmap, dst_format, 0, &pa); if (src && dst) XRenderComposite (dpy, PictOpSrc, src, None, dst, 0, 0, 0, 0, 0, 0, root_pmap_width, root_pmap_height); else { XFreePixmap (dpy, recoded_root_pmap); root_pixmap = None; } XRenderFreePicture (dpy, src); XRenderFreePicture (dpy, dst); } else #endif root_pixmap = None; } if (root_pixmap == None) return 0; if (pixmap == None || pmap_width != window_width || pmap_height != window_height) { if (pixmap) XFreePixmap (target->dpy, pixmap); pixmap = XCreatePixmap (target->dpy, target->vt, window_width, window_height, target->depth); pmap_width = window_width; pmap_height = window_height; } if (pixmap == None) return 0; /* straightforward pixmap copy */ while (sx < 0) sx += (int)root_width; while (sy < 0) sy += (int)root_height; gcv.tile = recoded_root_pmap; gcv.fill_style = FillTiled; gcv.ts_x_origin = -sx; gcv.ts_y_origin = -sy; gc = XCreateGC (dpy, target->vt, GCFillStyle | GCTile | GCTileStipXOrigin | GCTileStipYOrigin, &gcv); if (gc) { XFillRectangle (dpy, pixmap, gc, 0, 0, window_width, window_height); result |= transpPmapTiled; XFreeGC (dpy, gc); if (!(flags & CLIENT_RENDER)) { if ((flags & blurNeeded) && (flags & HAS_RENDER_CONV)) { if (blur_pixmap (pixmap, target->visual, window_width, window_height)) result |= transpPmapBlurred; } if ((flags & tintNeeded) && (flags & (tintWholesome | HAS_RENDER))) { if (tint_pixmap (pixmap, target->visual, window_width, window_height)) result |= transpPmapTinted; } } /* server side rendering completed */ } if (recoded_root_pmap != root_pixmap) XFreePixmap (dpy, recoded_root_pmap); return result; } void bgPixmap_t::set_root_pixmap () { Pixmap new_root_pixmap = target->get_pixmap_property (target->xa[XA_XROOTPMAP_ID]); if (new_root_pixmap == None) new_root_pixmap = target->get_pixmap_property (target->xa[XA_ESETROOT_PMAP_ID]); root_pixmap = new_root_pixmap; } # endif /* ENABLE_TRANSPARENCY */ #if defined(ENABLE_TRANSPARENCY) && !defined(HAVE_AFTERIMAGE) static void shade_ximage (Visual *visual, XImage *ximage, int shade, const rgba &c); # endif bool bgPixmap_t::render () { unsigned long background_flags = 0; if (target == NULL) return false; invalidate (); # ifdef ENABLE_TRANSPARENCY if (flags & isTransparent) { /* we need to re-generate transparency pixmap in that case ! */ background_flags = make_transparency_pixmap (); if (background_flags == 0) return false; else if ((background_flags & transpTransformations) == (flags & transpTransformations)) flags &= ~isInvalid; } # endif # ifdef BG_IMAGE_FROM_FILE if (have_image || (background_flags & transpTransformations) != (flags & transpTransformations)) { if (render_image (background_flags)) flags &= ~isInvalid; } # endif # if defined(ENABLE_TRANSPARENCY) && !defined(HAVE_AFTERIMAGE) XImage *result = NULL; if (background_flags && (flags & isInvalid)) { result = XGetImage (target->dpy, pixmap, 0, 0, pmap_width, pmap_height, AllPlanes, ZPixmap); } if (result) { /* our own client-side tinting */ if (!(background_flags & transpPmapTinted) && (flags & tintNeeded)) { rgba c (rgba::MAX_CC,rgba::MAX_CC,rgba::MAX_CC); if (flags & tintSet) tint.get (c); shade_ximage (DefaultVisual (target->dpy, target->display->screen), result, shade, c); } GC gc = XCreateGC (target->dpy, target->vt, 0UL, NULL); if (gc) { XPutImage (target->dpy, pixmap, gc, result, 0, 0, 0, 0, result->width, result->height); XFreeGC (target->dpy, gc); flags &= ~isInvalid; } XDestroyImage (result); } # endif if (flags & isInvalid) { if (pixmap != None) { XFreePixmap (target->dpy, pixmap); pixmap = None; } } apply (); valid_since = ev::now (); return true; } void bgPixmap_t::set_target (rxvt_term *new_target) { target = new_target; flags &= ~(HAS_RENDER | HAS_RENDER_CONV); #if XRENDER int major, minor; if (XRenderQueryVersion (target->dpy, &major, &minor)) flags |= HAS_RENDER; XFilters *filters = XRenderQueryFilters (target->dpy, target->vt); if (filters) { for (int i = 0; i < filters->nfilter; i++) if (!strcmp (filters->filter[i], FilterConvolution)) flags |= HAS_RENDER_CONV; XFree (filters); } #endif } void bgPixmap_t::apply () { if (target == NULL) return; if (pixmap != None) { /* set target's background to pixmap */ # ifdef ENABLE_TRANSPARENCY if (flags & isTransparent) { XSetWindowBackgroundPixmap (target->dpy, target->parent[0], pixmap); XSetWindowBackgroundPixmap (target->dpy, target->vt, ParentRelative); if (target->scrollBar.win) XSetWindowBackgroundPixmap (target->dpy, target->scrollBar.win, ParentRelative); } else # endif { /* force old pixmap dereference in case it was transparent before :*/ XSetWindowBackground (target->dpy, target->parent[0], target->pix_colors[Color_border]); XSetWindowBackgroundPixmap (target->dpy, target->vt, pixmap); /* do we also need to set scrollbar's background here ? */ if (target->scrollBar.win) XSetWindowBackground (target->dpy, target->scrollBar.win, target->pix_colors[Color_border]); } } else { /* set target background to a pixel */ XSetWindowBackground (target->dpy, target->parent[0], target->pix_colors[Color_border]); XSetWindowBackground (target->dpy, target->vt, target->pix_colors[Color_bg]); /* do we also need to set scrollbar's background here ? */ if (target->scrollBar.win) XSetWindowBackground (target->dpy, target->scrollBar.win, target->pix_colors[Color_border]); } /* don't want Expose on the parent or vt. It is better to use scr_touch or we get a great deal of flicker otherwise: */ XClearWindow (target->dpy, target->parent[0]); if (target->scrollBar.state && target->scrollBar.win) { target->scrollBar.state = STATE_IDLE; target->scrollBar.show (0); } target->want_refresh = 1; flags |= hasChanged; } #endif /* HAVE_BG_PIXMAP */ #if defined(ENABLE_TRANSPARENCY) && !defined(HAVE_AFTERIMAGE) /* taken from aterm-0.4.2 */ static void shade_ximage (Visual *visual, XImage *ximage, int shade, const rgba &c) { int sh_r, sh_g, sh_b; uint32_t mask_r, mask_g, mask_b; uint32_t *lookup, *lookup_r, *lookup_g, *lookup_b; rgba low; rgba high; int i; int host_byte_order = byteorder::big_endian () ? MSBFirst : LSBFirst; if (visual->c_class != TrueColor || ximage->format != ZPixmap) return; /* for convenience */ mask_r = visual->red_mask; mask_g = visual->green_mask; mask_b = visual->blue_mask; /* boring lookup table pre-initialization */ switch (ximage->depth) { case 15: if ((mask_r != 0x7c00) || (mask_g != 0x03e0) || (mask_b != 0x001f)) return; lookup = (uint32_t *) malloc (sizeof (uint32_t)*(32+32+32)); lookup_r = lookup; lookup_g = lookup+32; lookup_b = lookup+32+32; sh_r = 10; sh_g = 5; sh_b = 0; break; case 16: if ((mask_r != 0xf800) || (mask_g != 0x07e0) || (mask_b != 0x001f)) return; lookup = (uint32_t *) malloc (sizeof (uint32_t)*(32+64+32)); lookup_r = lookup; lookup_g = lookup+32; lookup_b = lookup+32+64; sh_r = 11; sh_g = 5; sh_b = 0; break; case 24: if ((mask_r != 0xff0000) || (mask_g != 0x00ff00) || (mask_b != 0x0000ff)) return; lookup = (uint32_t *) malloc (sizeof (uint32_t)*(256+256+256)); lookup_r = lookup; lookup_g = lookup+256; lookup_b = lookup+256+256; sh_r = 16; sh_g = 8; sh_b = 0; break; case 32: if ((mask_r != 0xff0000) || (mask_g != 0x00ff00) || (mask_b != 0x0000ff)) return; lookup = (uint32_t *) malloc (sizeof (uint32_t)*(256+256+256)); lookup_r = lookup; lookup_g = lookup+256; lookup_b = lookup+256+256; sh_r = 16; sh_g = 8; sh_b = 0; break; default: return; /* we do not support this color depth */ } /* prepare limits for color transformation (each channel is handled separately) */ if (shade > 100) { shade = 200 - shade; high.r = c.r * shade / 100; high.g = c.g * shade / 100; high.b = c.b * shade / 100; low.r = 65535 * (100 - shade) / 100; low.g = 65535 * (100 - shade) / 100; low.b = 65535 * (100 - shade) / 100; } else { high.r = c.r * shade / 100; high.g = c.g * shade / 100; high.b = c.b * shade / 100; low.r = low.g = low.b = 0; } /* fill our lookup tables */ for (i = 0; i <= mask_r>>sh_r; i++) { uint32_t tmp; tmp = i * high.r; tmp += (mask_r>>sh_r) * low.r; lookup_r[i] = (tmp/65535)<>sh_g; i++) { uint32_t tmp; tmp = i * high.g; tmp += (mask_g>>sh_g) * low.g; lookup_g[i] = (tmp/65535)<>sh_b; i++) { uint32_t tmp; tmp = i * high.b; tmp += (mask_b>>sh_b) * low.b; lookup_b[i] = (tmp/65535)<bits_per_pixel == 32 && (ximage->depth == 24 || ximage->depth == 32) && ximage->byte_order == host_byte_order) { uint32_t *p1, *pf, *p, *pl; p1 = (uint32_t *) ximage->data; pf = (uint32_t *) (ximage->data + ximage->height * ximage->bytes_per_line); while (p1 < pf) { p = p1; pl = p1 + ximage->width; for (; p < pl; p++) { *p = lookup_r[(*p & 0xff0000) >> 16] | lookup_g[(*p & 0x00ff00) >> 8] | lookup_b[(*p & 0x0000ff)] | (*p & 0xff000000); } p1 = (uint32_t *) ((char *) p1 + ximage->bytes_per_line); } } else { for (int y = 0; y < ximage->height; y++) for (int x = 0; x < ximage->width; x++) { unsigned long pixel = XGetPixel (ximage, x, y); pixel = lookup_r[(pixel & mask_r) >> sh_r] | lookup_g[(pixel & mask_g) >> sh_g] | lookup_b[(pixel & mask_b) >> sh_b]; XPutPixel (ximage, x, y, pixel); } } free (lookup); } #endif /* defined(ENABLE_TRANSPARENCY) && !defined(HAVE_AFTERIMAGE) */