ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/keyboard.C
Revision: 1.15
Committed: Sun Apr 17 22:36:13 2005 UTC (19 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-5_4
Changes since 1.14: +6 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #include "../config.h"
2 #include "rxvt.h"
3
4 #ifdef KEYSYM_RESOURCE
5
6 #include <cstring>
7
8 #include "keyboard.h"
9 #include "command.h"
10
11 /* an intro to the data structure:
12 *
13 * vector keymap[] is grouped.
14 *
15 * inside each group, elements are sorted by the criteria given by compare_priority().
16 * the lookup of keysym is done in two steps:
17 * 1) locate the group corresponds to the keysym;
18 * 2) do a linear search inside the group.
19 *
20 * array hash[] effectively defines a map from a keysym to a group in keymap[].
21 *
22 * each group has its address(the index of first group element in keymap[]),
23 * which is computed and stored in hash[].
24 * hash[] stores the addresses in the form of:
25 * index: 0 I1 I2 I3 In
26 * value: 0...0, A1...A1, A2...A2, A3...A3, ..., An...An
27 * where
28 * A1 = 0;
29 * Ai+1 = N1 + N2 + ... + Ni.
30 * it is computed from hash_budget_size[]:
31 * index: 0 I1 I2 I3 In
32 * value: 0...0, N1, 0...0, N2, 0...0, N3, ..., Nn, 0...0
33 * 0...0, 0.......0, N1.....N1, N1+N2...N1+N2, ... (the compution of hash[])
34 * or we can say
35 * hash_budget_size[Ii] = Ni; hash_budget_size[elsewhere] = 0,
36 * where
37 * set {I1, I2, ..., In} = { hashkey of keymap[0]->keysym, ..., keymap[keymap.size-1]->keysym }
38 * where hashkey of keymap[i]->keysym = keymap[i]->keysym & KEYSYM_HASH_MASK
39 * n(the number of groups) = the number of non-zero member of hash_budget_size[];
40 * Ni(the size of group i) = hash_budget_size[Ii].
41 */
42
43 #if STOCK_KEYMAP
44 ////////////////////////////////////////////////////////////////////////////////
45 // default keycode translation map and keyevent handlers
46
47 keysym_t keyboard_manager::stock_keymap[] = {
48 /* examples */
49 /* keysym, state, range, handler, str */
50 //{XK_ISO_Left_Tab, 0, 1, keysym_t::NORMAL, "\033[Z"},
51 //{ 'a', 0, 26, keysym_t::RANGE_META8, "a" "%c"},
52 //{ 'a', ControlMask, 26, keysym_t::RANGE_META8, "" "%c"},
53 //{ XK_Left, 0, 4, keysym_t::LIST, ".\033[.DACB."},
54 //{ XK_Left, ShiftMask, 4, keysym_t::LIST, ".\033[.dacb."},
55 //{ XK_Left, ControlMask, 4, keysym_t::LIST, ".\033O.dacb."},
56 //{ XK_Tab, ControlMask, 1, keysym_t::NORMAL, "\033<C-Tab>"},
57 //{ XK_apostrophe, ControlMask, 1, keysym_t::NORMAL, "\033<C-'>"},
58 //{ XK_slash, ControlMask, 1, keysym_t::NORMAL, "\033<C-/>"},
59 //{ XK_semicolon, ControlMask, 1, keysym_t::NORMAL, "\033<C-;>"},
60 //{ XK_grave, ControlMask, 1, keysym_t::NORMAL, "\033<C-`>"},
61 //{ XK_comma, ControlMask, 1, keysym_t::NORMAL, "\033<C-\054>"},
62 //{ XK_Return, ControlMask, 1, keysym_t::NORMAL, "\033<C-Return>"},
63 //{ XK_Return, ShiftMask, 1, keysym_t::NORMAL, "\033<S-Return>"},
64 //{ ' ', ShiftMask, 1, keysym_t::NORMAL, "\033<S-Space>"},
65 //{ '.', ControlMask, 1, keysym_t::NORMAL, "\033<C-.>"},
66 //{ '0', ControlMask, 10, keysym_t::RANGE, "0" "\033<C-%c>"},
67 //{ '0', MetaMask|ControlMask, 10, keysym_t::RANGE, "0" "\033<M-C-%c>"},
68 //{ 'a', MetaMask|ControlMask, 26, keysym_t::RANGE, "a" "\033<M-C-%c>"},
69 };
70 #endif
71
72 static void
73 output_string (rxvt_term *rt, const char *str)
74 {
75 if (strncmp (str, "command:", 8) == 0)
76 rt->cmd_write ((unsigned char *)str + 8, strlen (str) - 8);
77 else
78 rt->tt_write ((unsigned char *)str, strlen (str));
79 }
80
81 static void
82 output_string_meta8 (rxvt_term *rt, unsigned int state, char *buf, int buflen)
83 {
84 if (state & rt->ModMetaMask)
85 {
86 #ifdef META8_OPTION
87 if (rt->meta_char == 0x80) /* set 8-bit on */
88 {
89 for (char *ch = buf; ch < buf + buflen; ch++)
90 *ch |= 0x80;
91 }
92 else if (rt->meta_char == C0_ESC) /* escape prefix */
93 #endif
94 {
95 const unsigned char ch = C0_ESC;
96 rt->tt_write (&ch, 1);
97 }
98 }
99
100 rt->tt_write ((unsigned char *) buf, buflen);
101 }
102
103 static int
104 format_keyrange_string (const char *str, int keysym_offset, char *buf, int bufsize)
105 {
106 size_t len = snprintf (buf, bufsize, str + 1, keysym_offset + str [0]);
107
108 if (len >= (size_t)bufsize)
109 {
110 rxvt_warn ("format_keyrange_string: formatting failed, ignoring key.\n");
111 *buf = 0;
112 }
113
114 return len;
115 }
116
117 ////////////////////////////////////////////////////////////////////////////////
118 // return: #bits of '1'
119 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)
120 # define bitcount(n) (__extension__ ({ uint32_t n__ = (n); __builtin_popcount (n); }))
121 #else
122 static int
123 bitcount (uint16_t n)
124 {
125 int i;
126
127 for (i = 0; n; ++i, n &= n - 1)
128 ;
129
130 return i;
131 }
132 #endif
133
134 // return: priority_of_a - priority_of_b
135 static int
136 compare_priority (keysym_t *a, keysym_t *b)
137 {
138 // (the more '1's in state; the less range): the greater priority
139 int ca = bitcount (a->state /* & OtherModMask */);
140 int cb = bitcount (b->state /* & OtherModMask */);
141
142 if (ca != cb)
143 return ca - cb;
144 //else if (a->state != b->state) // this behavior is to be disscussed
145 // return b->state - a->state;
146 else
147 return b->range - a->range;
148 }
149
150 ////////////////////////////////////////////////////////////////////////////////
151 keyboard_manager::keyboard_manager ()
152 {
153 keymap.reserve (256);
154 hash [0] = 1; // hash[0] != 0 indicates uninitialized data
155 }
156
157 keyboard_manager::~keyboard_manager ()
158 {
159 clear ();
160 }
161
162 void
163 keyboard_manager::clear ()
164 {
165 keymap.clear ();
166 hash [0] = 2;
167
168 for (unsigned int i = 0; i < user_translations.size (); ++i)
169 {
170 free ((void *)user_translations [i]);
171 user_translations [i] = 0;
172 }
173
174 for (unsigned int i = 0; i < user_keymap.size (); ++i)
175 {
176 delete user_keymap [i];
177 user_keymap [i] = 0;
178 }
179
180 user_keymap.clear ();
181 user_translations.clear ();
182 }
183
184 // a wrapper for register_keymap,
185 // so that outside codes don't have to know so much details.
186 //
187 // the string 'trans' is copied to an internal managed buffer,
188 // so the caller can free memory of 'trans' at any time.
189 void
190 keyboard_manager::register_user_translation (KeySym keysym, unsigned int state, const char *trans)
191 {
192 keysym_t *key = new keysym_t;
193 wchar_t *wc = rxvt_mbstowcs (trans);
194 const char *translation = rxvt_wcstoutf8 (wc);
195 free (wc);
196
197 if (key && translation)
198 {
199 key->keysym = keysym;
200 key->state = state;
201 key->range = 1;
202 key->str = translation;
203 key->type = keysym_t::NORMAL;
204
205 if (strncmp (translation, "list", 4) == 0 && translation [4])
206 {
207 char *middle = strchr (translation + 5, translation [4]);
208 char *suffix = strrchr (translation + 5, translation [4]);
209
210 if (suffix && middle && suffix > middle + 1)
211 {
212 key->type = keysym_t::LIST;
213 key->range = suffix - middle - 1;
214
215 strcpy (translation, translation + 4);
216 }
217 else
218 rxvt_warn ("cannot parse list-type keysym '%s', treating as normal keysym.\n", translation);
219 }
220
221 user_keymap.push_back (key);
222 user_translations.push_back (translation);
223 register_keymap (key);
224 }
225 else
226 {
227 delete key;
228 free ((void *)translation);
229 rxvt_fatal ("out of memory, aborting.\n");
230 }
231 }
232
233 void
234 keyboard_manager::register_keymap (keysym_t *key)
235 {
236 if (keymap.size () == keymap.capacity ())
237 keymap.reserve (keymap.size () * 2);
238
239 keymap.push_back (key);
240 hash[0] = 3;
241 }
242
243 void
244 keyboard_manager::register_done ()
245 {
246 #if STOCK_KEYMAP
247 int n = sizeof (stock_keymap) / sizeof (keysym_t);
248
249 //TODO: shield against repeated calls and empty keymap
250 //if (keymap.back () != &stock_keymap[n - 1])
251 for (int i = 0; i < n; ++i)
252 register_keymap (&stock_keymap[i]);
253 #endif
254
255 purge_duplicate_keymap ();
256
257 setup_hash ();
258 }
259
260 bool
261 keyboard_manager::dispatch (rxvt_term *term, KeySym keysym, unsigned int state)
262 {
263 assert (hash[0] == 0 && "register_done() need to be called");
264
265 state &= OtherModMask; // mask out uninteresting modifiers
266
267 if (state & term->ModMetaMask) state |= MetaMask;
268 if (state & term->ModNumLockMask) state |= NumLockMask;
269 if (state & term->ModLevel3Mask) state |= Level3Mask;
270
271 if (!!(term->priv_modes & PrivMode_aplKP) != !!(state & ShiftMask))
272 state |= AppKeypadMask;
273
274 int index = find_keysym (keysym, state);
275
276 if (index >= 0)
277 {
278 const keysym_t &key = *keymap [index];
279
280 int keysym_offset = keysym - key.keysym;
281
282 wchar_t *wc = rxvt_utf8towcs (key.str);
283 char *str = rxvt_wcstombs (wc);
284 // TODO: do (some) translations, unescaping etc, here (allow \u escape etc.)
285 free (wc);
286
287 switch (key.type)
288 {
289 case keysym_t::NORMAL:
290 output_string (term, str);
291 break;
292
293 case keysym_t::RANGE:
294 {
295 char buf[STRING_MAX];
296
297 if (format_keyrange_string (str, keysym_offset, buf, sizeof (buf)) > 0)
298 output_string (term, buf);
299 }
300 break;
301
302 case keysym_t::RANGE_META8:
303 {
304 int len;
305 char buf[STRING_MAX];
306
307 len = format_keyrange_string (str, keysym_offset, buf, sizeof (buf));
308 if (len > 0)
309 output_string_meta8 (term, state, buf, len);
310 }
311 break;
312
313 case keysym_t::LIST:
314 {
315 char buf[STRING_MAX];
316
317 char *prefix, *middle, *suffix;
318
319 prefix = str;
320 middle = strchr (prefix + 1, *prefix);
321 suffix = strrchr (middle + 1, *prefix);
322
323 memcpy (buf, prefix + 1, middle - prefix - 1);
324 buf [middle - prefix - 1] = middle [keysym_offset + 1];
325 strcpy (buf + (middle - prefix), suffix + 1);
326
327 output_string (term, buf);
328 }
329 break;
330 }
331
332 free (str);
333
334 return true;
335 }
336 else
337 return false;
338 }
339
340 // purge duplicate keymap entries
341 void keyboard_manager::purge_duplicate_keymap ()
342 {
343 for (unsigned int i = 0; i < keymap.size (); ++i)
344 {
345 for (unsigned int j = 0; j < i; ++j)
346 {
347 if (keymap [i] == keymap [j])
348 {
349 while (keymap [i] == keymap.back ())
350 keymap.pop_back ();
351
352 if (i < keymap.size ())
353 {
354 keymap[i] = keymap.back ();
355 keymap.pop_back ();
356 }
357
358 break;
359 }
360 }
361 }
362 }
363
364 void
365 keyboard_manager::setup_hash ()
366 {
367 unsigned int i, index, hashkey;
368 vector <keysym_t *> sorted_keymap;
369 uint16_t hash_budget_size[KEYSYM_HASH_BUDGETS]; // size of each budget
370 uint16_t hash_budget_counter[KEYSYM_HASH_BUDGETS]; // #elements in each budget
371
372 memset (hash_budget_size, 0, sizeof (hash_budget_size));
373 memset (hash_budget_counter, 0, sizeof (hash_budget_counter));
374
375 // determine hash bucket size
376 for (i = 0; i < keymap.size (); ++i)
377 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
378 {
379 hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
380 ++hash_budget_size [hashkey];
381 }
382
383 // now we know the size of each budget
384 // compute the index of each budget
385 hash [0] = 0;
386 for (index = 0, i = 1; i < KEYSYM_HASH_BUDGETS; ++i)
387 {
388 index += hash_budget_size [i - 1];
389 hash [i] = index;
390 }
391
392 // and allocate just enough space
393 sorted_keymap.insert (sorted_keymap.begin (), index + hash_budget_size [i - 1], 0);
394
395 // fill in sorted_keymap
396 // it is sorted in each budget
397 for (i = 0; i < keymap.size (); ++i)
398 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
399 {
400 hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
401
402 index = hash [hashkey] + hash_budget_counter [hashkey];
403
404 while (index > hash [hashkey]
405 && compare_priority (keymap [i], sorted_keymap [index - 1]) > 0)
406 {
407 sorted_keymap [index] = sorted_keymap [index - 1];
408 --index;
409 }
410
411 sorted_keymap [index] = keymap [i];
412 ++hash_budget_counter [hashkey];
413 }
414
415 keymap.swap (sorted_keymap);
416
417 #if defined (DEBUG_STRICT) || defined (DEBUG_KEYBOARD)
418 // check for invariants
419 for (i = 0; i < KEYSYM_HASH_BUDGETS; ++i)
420 {
421 index = hash[i];
422 for (int j = 0; j < hash_budget_size [i]; ++j)
423 {
424 if (keymap [index + j]->range == 1)
425 assert (i == (keymap [index + j]->keysym & KEYSYM_HASH_MASK));
426
427 if (j)
428 assert (compare_priority (keymap [index + j - 1],
429 keymap [index + j]) >= 0);
430 }
431 }
432
433 // this should be able to detect most possible bugs
434 for (i = 0; i < sorted_keymap.size (); ++i)
435 {
436 keysym_t *a = sorted_keymap[i];
437 for (int j = 0; j < a->range; ++j)
438 {
439 int index = find_keysym (a->keysym + j, a->state);
440
441 assert (index >= 0);
442 keysym_t *b = keymap [index];
443 assert (i == (signed) index || // the normally expected result
444 (a->keysym + j) >= b->keysym && (a->keysym + j) <= (b->keysym + b->range) && compare_priority (a, b) <= 0); // is effectively the same or a closer match
445 }
446 }
447 #endif
448 }
449
450 int
451 keyboard_manager::find_keysym (KeySym keysym, unsigned int state)
452 {
453 int hashkey = keysym & KEYSYM_HASH_MASK;
454 unsigned int index = hash [hashkey];
455 unsigned int end = hashkey < KEYSYM_HASH_BUDGETS - 1
456 ? hash [hashkey + 1]
457 : keymap.size ();
458
459 for (; index < end; ++index)
460 {
461 keysym_t *key = keymap [index];
462
463 if (key->keysym <= keysym && keysym < key->keysym + key->range
464 #if 0 // disabled because the custom ekymap does not know the builtin keymap
465 // match only the specified bits in state and ignore others
466 && (key->state & state) == key->state
467 #else // re-enable this part once the builtin keymap is handled here, too
468 && key->state == state
469 #endif
470 )
471 return index;
472 }
473
474 return -1;
475 }
476
477 #endif /* KEYSYM_RESOURCE */
478 // vim:et:ts=2:sw=2