ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/keyboard.C
Revision: 1.18
Committed: Mon Jan 2 21:17:01 2006 UTC (18 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.17: +3 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 #include "../config.h"
2 #include "rxvt.h"
3
4 #ifdef KEYSYM_RESOURCE
5
6 #include <cstring>
7
8 #include "rxvtperl.h"
9 #include "keyboard.h"
10 #include "command.h"
11
12 /* an intro to the data structure:
13 *
14 * vector keymap[] is grouped.
15 *
16 * inside each group, elements are sorted by the criteria given by compare_priority().
17 * the lookup of keysym is done in two steps:
18 * 1) locate the group corresponds to the keysym;
19 * 2) do a linear search inside the group.
20 *
21 * array hash[] effectively defines a map from a keysym to a group in keymap[].
22 *
23 * each group has its address(the index of first group element in keymap[]),
24 * which is computed and stored in hash[].
25 * hash[] stores the addresses in the form of:
26 * index: 0 I1 I2 I3 In
27 * value: 0...0, A1...A1, A2...A2, A3...A3, ..., An...An
28 * where
29 * A1 = 0;
30 * Ai+1 = N1 + N2 + ... + Ni.
31 * it is computed from hash_budget_size[]:
32 * index: 0 I1 I2 I3 In
33 * value: 0...0, N1, 0...0, N2, 0...0, N3, ..., Nn, 0...0
34 * 0...0, 0.......0, N1.....N1, N1+N2...N1+N2, ... (the compution of hash[])
35 * or we can say
36 * hash_budget_size[Ii] = Ni; hash_budget_size[elsewhere] = 0,
37 * where
38 * set {I1, I2, ..., In} = { hashkey of keymap[0]->keysym, ..., keymap[keymap.size-1]->keysym }
39 * where hashkey of keymap[i]->keysym = keymap[i]->keysym & KEYSYM_HASH_MASK
40 * n(the number of groups) = the number of non-zero member of hash_budget_size[];
41 * Ni(the size of group i) = hash_budget_size[Ii].
42 */
43
44 #if STOCK_KEYMAP
45 ////////////////////////////////////////////////////////////////////////////////
46 // default keycode translation map and keyevent handlers
47
48 keysym_t keyboard_manager::stock_keymap[] = {
49 /* examples */
50 /* keysym, state, range, handler, str */
51 //{XK_ISO_Left_Tab, 0, 1, keysym_t::NORMAL, "\033[Z"},
52 //{ 'a', 0, 26, keysym_t::RANGE_META8, "a" "%c"},
53 //{ 'a', ControlMask, 26, keysym_t::RANGE_META8, "" "%c"},
54 //{ XK_Left, 0, 4, keysym_t::LIST, ".\033[.DACB."},
55 //{ XK_Left, ShiftMask, 4, keysym_t::LIST, ".\033[.dacb."},
56 //{ XK_Left, ControlMask, 4, keysym_t::LIST, ".\033O.dacb."},
57 //{ XK_Tab, ControlMask, 1, keysym_t::NORMAL, "\033<C-Tab>"},
58 //{ XK_apostrophe, ControlMask, 1, keysym_t::NORMAL, "\033<C-'>"},
59 //{ XK_slash, ControlMask, 1, keysym_t::NORMAL, "\033<C-/>"},
60 //{ XK_semicolon, ControlMask, 1, keysym_t::NORMAL, "\033<C-;>"},
61 //{ XK_grave, ControlMask, 1, keysym_t::NORMAL, "\033<C-`>"},
62 //{ XK_comma, ControlMask, 1, keysym_t::NORMAL, "\033<C-\054>"},
63 //{ XK_Return, ControlMask, 1, keysym_t::NORMAL, "\033<C-Return>"},
64 //{ XK_Return, ShiftMask, 1, keysym_t::NORMAL, "\033<S-Return>"},
65 //{ ' ', ShiftMask, 1, keysym_t::NORMAL, "\033<S-Space>"},
66 //{ '.', ControlMask, 1, keysym_t::NORMAL, "\033<C-.>"},
67 //{ '0', ControlMask, 10, keysym_t::RANGE, "0" "\033<C-%c>"},
68 //{ '0', MetaMask|ControlMask, 10, keysym_t::RANGE, "0" "\033<M-C-%c>"},
69 //{ 'a', MetaMask|ControlMask, 26, keysym_t::RANGE, "a" "\033<M-C-%c>"},
70 };
71 #endif
72
73 static void
74 output_string (rxvt_term *rt, const char *str)
75 {
76 if (strncmp (str, "command:", 8) == 0)
77 rt->cmd_write ((unsigned char *)str + 8, strlen (str) - 8);
78 else if (strncmp (str, "perl:", 5) == 0)
79 PERL_INVOKE((rt, HOOK_KEYBOARD_COMMAND, DT_STRING, str + 5, DT_END));
80 else
81 rt->tt_write ((unsigned char *)str, strlen (str));
82 }
83
84 static void
85 output_string_meta8 (rxvt_term *rt, unsigned int state, char *buf, int buflen)
86 {
87 if (state & rt->ModMetaMask)
88 {
89 #ifdef META8_OPTION
90 if (rt->meta_char == 0x80) /* set 8-bit on */
91 {
92 for (char *ch = buf; ch < buf + buflen; ch++)
93 *ch |= 0x80;
94 }
95 else if (rt->meta_char == C0_ESC) /* escape prefix */
96 #endif
97 {
98 const unsigned char ch = C0_ESC;
99 rt->tt_write (&ch, 1);
100 }
101 }
102
103 rt->tt_write ((unsigned char *) buf, buflen);
104 }
105
106 static int
107 format_keyrange_string (const char *str, int keysym_offset, char *buf, int bufsize)
108 {
109 size_t len = snprintf (buf, bufsize, str + 1, keysym_offset + str [0]);
110
111 if (len >= (size_t)bufsize)
112 {
113 rxvt_warn ("format_keyrange_string: formatting failed, ignoring key.\n");
114 *buf = 0;
115 }
116
117 return len;
118 }
119
120 ////////////////////////////////////////////////////////////////////////////////
121 // return: #bits of '1'
122 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)
123 # define bitcount(n) (__extension__ ({ uint32_t n__ = (n); __builtin_popcount (n__); }))
124 #else
125 static int
126 bitcount (uint16_t n)
127 {
128 int i;
129
130 for (i = 0; n; ++i, n &= n - 1)
131 ;
132
133 return i;
134 }
135 #endif
136
137 // return: priority_of_a - priority_of_b
138 static int
139 compare_priority (keysym_t *a, keysym_t *b)
140 {
141 // (the more '1's in state; the less range): the greater priority
142 int ca = bitcount (a->state /* & OtherModMask */);
143 int cb = bitcount (b->state /* & OtherModMask */);
144
145 if (ca != cb)
146 return ca - cb;
147 //else if (a->state != b->state) // this behavior is to be disscussed
148 // return b->state - a->state;
149 else
150 return b->range - a->range;
151 }
152
153 ////////////////////////////////////////////////////////////////////////////////
154 keyboard_manager::keyboard_manager ()
155 {
156 keymap.reserve (256);
157 hash [0] = 1; // hash[0] != 0 indicates uninitialized data
158 }
159
160 keyboard_manager::~keyboard_manager ()
161 {
162 clear ();
163 }
164
165 void
166 keyboard_manager::clear ()
167 {
168 keymap.clear ();
169 hash [0] = 2;
170
171 for (unsigned int i = 0; i < user_translations.size (); ++i)
172 {
173 free ((void *)user_translations [i]);
174 user_translations [i] = 0;
175 }
176
177 for (unsigned int i = 0; i < user_keymap.size (); ++i)
178 {
179 delete user_keymap [i];
180 user_keymap [i] = 0;
181 }
182
183 user_keymap.clear ();
184 user_translations.clear ();
185 }
186
187 // a wrapper for register_keymap,
188 // so that outside codes don't have to know so much details.
189 //
190 // the string 'trans' is copied to an internal managed buffer,
191 // so the caller can free memory of 'trans' at any time.
192 void
193 keyboard_manager::register_user_translation (KeySym keysym, unsigned int state, const char *trans)
194 {
195 keysym_t *key = new keysym_t;
196 wchar_t *wc = rxvt_mbstowcs (trans);
197 const char *translation = rxvt_wcstoutf8 (wc);
198 free (wc);
199
200 if (key && translation)
201 {
202 key->keysym = keysym;
203 key->state = state;
204 key->range = 1;
205 key->str = translation;
206 key->type = keysym_t::NORMAL;
207
208 if (strncmp (translation, "list", 4) == 0 && translation [4])
209 {
210 char *middle = strchr (translation + 5, translation [4]);
211 char *suffix = strrchr (translation + 5, translation [4]);
212
213 if (suffix && middle && suffix > middle + 1)
214 {
215 key->type = keysym_t::LIST;
216 key->range = suffix - middle - 1;
217
218 strcpy (translation, translation + 4);
219 }
220 else
221 rxvt_warn ("cannot parse list-type keysym '%s', treating as normal keysym.\n", translation);
222 }
223 else if (strncmp (translation, "builtin:", 8) == 0)
224 key->type = keysym_t::BUILTIN;
225
226 user_keymap.push_back (key);
227 user_translations.push_back (translation);
228 register_keymap (key);
229 }
230 else
231 {
232 delete key;
233 free ((void *)translation);
234 rxvt_fatal ("out of memory, aborting.\n");
235 }
236 }
237
238 void
239 keyboard_manager::register_keymap (keysym_t *key)
240 {
241 if (keymap.size () == keymap.capacity ())
242 keymap.reserve (keymap.size () * 2);
243
244 keymap.push_back (key);
245 hash[0] = 3;
246 }
247
248 void
249 keyboard_manager::register_done ()
250 {
251 #if STOCK_KEYMAP
252 int n = sizeof (stock_keymap) / sizeof (keysym_t);
253
254 //TODO: shield against repeated calls and empty keymap
255 //if (keymap.back () != &stock_keymap[n - 1])
256 for (int i = 0; i < n; ++i)
257 register_keymap (&stock_keymap[i]);
258 #endif
259
260 purge_duplicate_keymap ();
261
262 setup_hash ();
263 }
264
265 bool
266 keyboard_manager::dispatch (rxvt_term *term, KeySym keysym, unsigned int state)
267 {
268 assert (hash[0] == 0 && "register_done() need to be called");
269
270 state &= OtherModMask; // mask out uninteresting modifiers
271
272 if (state & term->ModMetaMask) state |= MetaMask;
273 if (state & term->ModNumLockMask) state |= NumLockMask;
274 if (state & term->ModLevel3Mask) state |= Level3Mask;
275
276 if (!!(term->priv_modes & PrivMode_aplKP) != !!(state & ShiftMask))
277 state |= AppKeypadMask;
278
279 int index = find_keysym (keysym, state);
280
281 if (index >= 0)
282 {
283 const keysym_t &key = *keymap [index];
284
285 if (key.type != keysym_t::BUILTIN)
286 {
287 int keysym_offset = keysym - key.keysym;
288
289 wchar_t *wc = rxvt_utf8towcs (key.str);
290 char *str = rxvt_wcstombs (wc);
291 // TODO: do (some) translations, unescaping etc, here (allow \u escape etc.)
292 free (wc);
293
294 switch (key.type)
295 {
296 case keysym_t::NORMAL:
297 output_string (term, str);
298 break;
299
300 case keysym_t::RANGE:
301 {
302 char buf[STRING_MAX];
303
304 if (format_keyrange_string (str, keysym_offset, buf, sizeof (buf)) > 0)
305 output_string (term, buf);
306 }
307 break;
308
309 case keysym_t::RANGE_META8:
310 {
311 int len;
312 char buf[STRING_MAX];
313
314 len = format_keyrange_string (str, keysym_offset, buf, sizeof (buf));
315 if (len > 0)
316 output_string_meta8 (term, state, buf, len);
317 }
318 break;
319
320 case keysym_t::LIST:
321 {
322 char buf[STRING_MAX];
323
324 char *prefix, *middle, *suffix;
325
326 prefix = str;
327 middle = strchr (prefix + 1, *prefix);
328 suffix = strrchr (middle + 1, *prefix);
329
330 memcpy (buf, prefix + 1, middle - prefix - 1);
331 buf [middle - prefix - 1] = middle [keysym_offset + 1];
332 strcpy (buf + (middle - prefix), suffix + 1);
333
334 output_string (term, buf);
335 }
336 break;
337 }
338
339 free (str);
340
341 return true;
342 }
343 }
344
345 return false;
346 }
347
348 // purge duplicate keymap entries
349 void keyboard_manager::purge_duplicate_keymap ()
350 {
351 for (unsigned int i = 0; i < keymap.size (); ++i)
352 {
353 for (unsigned int j = 0; j < i; ++j)
354 {
355 if (keymap [i] == keymap [j])
356 {
357 while (keymap [i] == keymap.back ())
358 keymap.pop_back ();
359
360 if (i < keymap.size ())
361 {
362 keymap[i] = keymap.back ();
363 keymap.pop_back ();
364 }
365
366 break;
367 }
368 }
369 }
370 }
371
372 void
373 keyboard_manager::setup_hash ()
374 {
375 unsigned int i, index, hashkey;
376 vector <keysym_t *> sorted_keymap;
377 uint16_t hash_budget_size[KEYSYM_HASH_BUDGETS]; // size of each budget
378 uint16_t hash_budget_counter[KEYSYM_HASH_BUDGETS]; // #elements in each budget
379
380 memset (hash_budget_size, 0, sizeof (hash_budget_size));
381 memset (hash_budget_counter, 0, sizeof (hash_budget_counter));
382
383 // determine hash bucket size
384 for (i = 0; i < keymap.size (); ++i)
385 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
386 {
387 hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
388 ++hash_budget_size [hashkey];
389 }
390
391 // now we know the size of each budget
392 // compute the index of each budget
393 hash [0] = 0;
394 for (index = 0, i = 1; i < KEYSYM_HASH_BUDGETS; ++i)
395 {
396 index += hash_budget_size [i - 1];
397 hash [i] = index;
398 }
399
400 // and allocate just enough space
401 sorted_keymap.insert (sorted_keymap.begin (), index + hash_budget_size [i - 1], 0);
402
403 // fill in sorted_keymap
404 // it is sorted in each budget
405 for (i = 0; i < keymap.size (); ++i)
406 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
407 {
408 hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
409
410 index = hash [hashkey] + hash_budget_counter [hashkey];
411
412 while (index > hash [hashkey]
413 && compare_priority (keymap [i], sorted_keymap [index - 1]) > 0)
414 {
415 sorted_keymap [index] = sorted_keymap [index - 1];
416 --index;
417 }
418
419 sorted_keymap [index] = keymap [i];
420 ++hash_budget_counter [hashkey];
421 }
422
423 keymap.swap (sorted_keymap);
424
425 #if defined (DEBUG_STRICT) || defined (DEBUG_KEYBOARD)
426 // check for invariants
427 for (i = 0; i < KEYSYM_HASH_BUDGETS; ++i)
428 {
429 index = hash[i];
430 for (int j = 0; j < hash_budget_size [i]; ++j)
431 {
432 if (keymap [index + j]->range == 1)
433 assert (i == (keymap [index + j]->keysym & KEYSYM_HASH_MASK));
434
435 if (j)
436 assert (compare_priority (keymap [index + j - 1],
437 keymap [index + j]) >= 0);
438 }
439 }
440
441 // this should be able to detect most possible bugs
442 for (i = 0; i < sorted_keymap.size (); ++i)
443 {
444 keysym_t *a = sorted_keymap[i];
445 for (int j = 0; j < a->range; ++j)
446 {
447 int index = find_keysym (a->keysym + j, a->state);
448
449 assert (index >= 0);
450 keysym_t *b = keymap [index];
451 assert (i == (signed) index || // the normally expected result
452 (a->keysym + j) >= b->keysym && (a->keysym + j) <= (b->keysym + b->range) && compare_priority (a, b) <= 0); // is effectively the same or a closer match
453 }
454 }
455 #endif
456 }
457
458 int
459 keyboard_manager::find_keysym (KeySym keysym, unsigned int state)
460 {
461 int hashkey = keysym & KEYSYM_HASH_MASK;
462 unsigned int index = hash [hashkey];
463 unsigned int end = hashkey < KEYSYM_HASH_BUDGETS - 1
464 ? hash [hashkey + 1]
465 : keymap.size ();
466
467 for (; index < end; ++index)
468 {
469 keysym_t *key = keymap [index];
470
471 if (key->keysym <= keysym && keysym < key->keysym + key->range
472 // match only the specified bits in state and ignore others
473 && (key->state & state) == key->state)
474 return index;
475 }
476
477 return -1;
478 }
479
480 #endif /* KEYSYM_RESOURCE */
481 // vim:et:ts=2:sw=2