ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/perl/background
(Generate patch)

Comparing rxvt-unicode/src/perl/background (file contents):
Revision 1.35 by root, Fri Jun 8 08:06:38 2012 UTC vs.
Revision 1.41 by root, Fri Jun 8 22:21:48 2012 UTC

3#:META:X_RESOURCE:%.expr:string:background expression 3#:META:X_RESOURCE:%.expr:string:background expression
4#:META:X_RESOURCE:%.border.:boolean:respect the terminal border 4#:META:X_RESOURCE:%.border.:boolean:respect the terminal border
5 5
6#TODO: once, rootalign 6#TODO: once, rootalign
7 7
8=head1 NAME
9
8=head1 background - manage terminal background 10 background - manage terminal background
9 11
10=head2 SYNOPSIS 12=head1 SYNOPSIS
11 13
12 rxvt -background-expr 'background expression' 14 urxvt --background-expr 'background expression'
13 -background-border 15 --background-border
14 16
15=head2 DESCRIPTION 17=head1 DESCRIPTION
16 18
19This extension manages the terminal background by creating a picture that
20is behind the text, replacing the normal background colour.
21
22It does so by evaluating a Perl expression that I<calculates> the image on
23the fly, for example, by grabbing the root background or loading a file.
24
25While the full power of Perl is available, the operators have been design
26to be as simple as possible.
27
28For example, to load an image and scale it to the window size, you would
29use:
30
31 urxvt --background-expr 'scale load "/path/to/mybg.png"'
32
33Or specified as a X resource:
34
35 URxvt.background-expr: scale load "/path/to/mybg.png"
36
37=head1 THEORY OF OPERATION
38
39At startup, just before the window is mapped for the first time, the
40expression is evaluated and must yield an image. The image is then
41extended as necessary to cover the whole terminal window, and is set as a
42background pixmap.
43
44If the image contains an alpha channel, then it will be used as-is in
45visuals that support alpha channels (for example, for a compositing
46manager). In other visuals, the terminal background colour will be used to
47replace any transparency.
48
49When the expression relies, directly or indirectly, on the window size,
50position, the root pixmap, or a timer, then it will be remembered. If not,
51then it will be removed.
52
53If any of the parameters that the expression relies on changes (when the
54window is moved or resized, its position or size changes; when the root
55pixmap is replaced by another one the root background changes; or when the
56timer elapses), then the expression will be evaluated again.
57
58For example, an expression such as C<scale load "$HOME/mybg.png"> scales the
59image to the window size, so it relies on the window size and will
60be reevaluated each time it is changed, but not when it moves for
61example. That ensures that the picture always fills the terminal, even
62after it's size changes.
63
64=head2 EXPRESSIONS
65
66Expressions are normal Perl expressions, in fact, they are Perl blocks -
67which means you could use multiple lines and statements:
68
69 again 3600;
70 if (localtime now)[6]) {
71 return scale load "$HOME/weekday.png";
72 } else {
73 return scale load "$HOME/sunday.png";
74 }
75
76This expression gets evaluated once per hour. It will set F<sunday.png> as
77background on Sundays, and F<weekday.png> on all other days.
78
79Fortunately, we expect that most expressions will be much simpler, with
80little Perl knowledge needed.
81
82Basically, you always start with a function that "generates" an image
83object, such as C<load>, which loads an image from disk, or C<root>, which
84returns the root window background image:
85
86 load "$HOME/mypic.png"
87
88The path is usually specified as a quoted string (the exact rules can be
89found in the L<perlop> manpage). The F<$HOME> at the beginning of the
90string is expanded to the home directory.
91
92Then you prepend one or more modifiers or filtering expressions, such as
93C<scale>:
94
95 scale load "$HOME/mypic.png"
96
97Just like a mathematical expression with functions, you should read these
98expressions from right to left, as the C<load> is evaluated first, and
99its result becomes the argument to the C<scale> function.
100
101Many operators also allow some parameters preceding the input image
102that modify its behaviour. For example, C<scale> without any additional
103arguments scales the image to size of the terminal window. If you specify
104an additional argument, it uses it as a percentage:
105
106 scale 200, load "$HOME/mypic.png"
107
108This enlarges the image by a factor of 2 (200%). As you can see, C<scale>
109has now two arguments, the C<200> and the C<load> expression, while
110C<load> only has one argument. Arguments are separated from each other by
111commas.
112
113Scale also accepts two arguments, which are then separate factors for both
114horizontal and vertical dimensions. For example, this halves the image
115width and doubles the image height:
116
117 scale 50, 200, load "$HOME/mypic.png"
118
119Other effects than scalign are also readily available, for exmaple, you can
120tile the image to fill the whole window, instead of resizing it:
121
122 tile load "$HOME/mypic.png"
123
124In fact, images returned by C<load> are in C<tile> mode by default, so the C<tile> operator
125is kind of superfluous.
126
127Another common effect is to mirror the image, so that the same edges touch:
128
129 mirror load "$HOME/mypic.png"
130
131This is also a typical background expression:
132
133 rootalign root
134
135It first takes a snapshot of the screen background image, and then
136moves it to the upper left corner of the screen - the result is
137pseudo-transparency, as the image seems to be static while the window is
138moved around.
139
140=head2 CYCLES AND CACHING
141
142As has been mentioned before, the expression might be evaluated multiple
143times. Each time the expression is reevaluated, a new cycle is said to
144have begun. Many operators cache their results till the next cycle.
145
146For example, the C<load> operator keeps a copy of the image. If it is
147asked to load the same image on the next cycle it will not load it again,
148but return the cached copy.
149
150This only works for one cycle though, so as long as you load the same
151image every time, it will always be cached, but when you load a different
152image, it will forget about the first one.
153
154This allows you to either speed things up by keeping multiple images in
155memory, or comserve memory by loading images more often.
156
157For example, you can keep two images in memory and use a random one like
158this:
159
160 my $img1 = load "img1.png";
161 my $img2 = load "img2.png";
162 (0.5 > rand) ? $img1 : $img2
163
164Since both images are "loaded" every time the expression is evaluated,
165they are always kept in memory. Contrast this version:
166
167 my $path1 = "img1.png";
168 my $path2 = "img2.png";
169 load ((0.5 > rand) ? $path1 : $path2)
170
171Here, a path is selected randomly, and load is only called for one image,
172so keeps only one image in memory. If, on the next evaluation, luck
173decides to use the other path, then it will have to load that image again.
174
17=head2 REFERENCE 175=head1 REFERENCE
18 176
19=cut 177=head2 COMMAND LINE SWITCHES
20 178
21our $EXPR; 179=over 4
22#$EXPR = 'move W * 0.1, -H * 0.1, resize W * 0.5, H * 0.5, repeat_none load "opensource.png"';
23$EXPR = 'move -TX, -TY, load "argb.png"';
24#$EXPR = '
25# rotate W, H, 50, 50, counter 1/59.95, repeat_mirror,
26# clip X, Y, W, H, repeat_mirror,
27# load "/root/pix/das_fette_schwein.jpg"
28#';
29#$EXPR = 'solid "red"';
30#$EXPR = 'blur root, 10, 10'
31#$EXPR = 'blur move (root, -x, -y), 5, 5'
32#resize load "/root/pix/das_fette_schwein.jpg", w, h
33 180
181=item --background-expr perl-expression
182
183Specifies the Perl expression to evaluate.
184
185=item --background-border
186
187By default, the expression creates an image that fills the full window,
188overwriting borders and any other areas, such as the scrollbar.
189
190Specifying this flag changes the behaviour, so that the image only
191replaces the background of the character area.
192
193=back
194
195=cut
196
197our $HOME;
34our ($self, $old, $new); 198our ($self, $old, $new);
35our ($x, $y, $w, $h); 199our ($x, $y, $w, $h);
36 200
37# enforce at least this interval between updates 201# enforce at least this interval between updates
38our $MIN_INTERVAL = 1/100; 202our $MIN_INTERVAL = 1/100;
83=item solid $width, $height, $colour 247=item solid $width, $height, $colour
84 248
85Creates a new image and completely fills it with the given colour. The 249Creates a new image and completely fills it with the given colour. The
86image is set to tiling mode. 250image is set to tiling mode.
87 251
88If <$width> and C<$height> are omitted, it creates a 1x1 image, which is 252If C<$width> and C<$height> are omitted, it creates a 1x1 image, which is
89useful for solid backgrounds or for use in filtering effects. 253useful for solid backgrounds or for use in filtering effects.
90 254
91=cut 255=cut
92 256
93 sub solid($$;$) { 257 sub solid($$;$) {
100 264
101=back 265=back
102 266
103=head2 VARIABLES 267=head2 VARIABLES
104 268
105The following functions provide variable data such as the terminal 269The following functions provide variable data such as the terminal window
270dimensions. They are not (Perl-) variables, they jsut return stuff that
106window dimensions. Most of them make your expression sensitive to some 271varies. Most of them make your expression sensitive to some events, for
107events, for example using C<TW> (terminal width) means your expression is 272example using C<TW> (terminal width) means your expression is evaluated
108evaluated again when the terminal is resized. 273again when the terminal is resized.
109 274
110=over 4 275=over 4
111 276
112=item TX 277=item TX
113 278
160 325
161When this function is used the expression will be reevaluated again in 326When this function is used the expression will be reevaluated again in
162C<$seconds> seconds. 327C<$seconds> seconds.
163 328
164Example: load some image and rotate it according to the time of day (as if it were 329Example: load some image and rotate it according to the time of day (as if it were
165the hour pointer of a clock). update this image every minute. 330the hour pointer of a clock). Update this image every minute.
166 331
167 again 60; rotate TW, TH, 50, 50, (now % 86400) * -720 / 86400, scale load "myclock.png" 332 again 60; rotate TW, TH, 50, 50, (now % 86400) * -720 / 86400, scale load "myclock.png"
168 333
169=item counter $seconds 334=item counter $seconds
170 335
209Similar to tile, but reflects the image each time it uses a new copy, so 374Similar to tile, but reflects the image each time it uses a new copy, so
210that top edges always touch top edges, right edges always touch right 375that top edges always touch top edges, right edges always touch right
211edges and so on (with normal tiling, left edges always touch right edges 376edges and so on (with normal tiling, left edges always touch right edges
212and top always touch bottom edges). 377and top always touch bottom edges).
213 378
214Exmaple: load an image and mirror it over the background, avoiding sharp 379Example: load an image and mirror it over the background, avoiding sharp
215edges at the image borders at the expense of mirroring the image itself 380edges at the image borders at the expense of mirroring the image itself
216 381
217 mirror load "mybg.png" 382 mirror load "mybg.png"
218 383
219=item pad $img 384=item pad $img
221Takes an image and modifies it so that all pixels outside the image area 386Takes an image and modifies it so that all pixels outside the image area
222become transparent. This mode is most useful when you want to place an 387become transparent. This mode is most useful when you want to place an
223image over another image or the background colour while leaving all 388image over another image or the background colour while leaving all
224background pixels outside the image unchanged. 389background pixels outside the image unchanged.
225 390
226Example: load an image and display it in the upper left corner. The rets 391Example: load an image and display it in the upper left corner. The rest
227of the space is left "empty" (transparent or wahtever your compisotr does 392of the space is left "empty" (transparent or wahtever your compisotr does
228in alpha mode, else background colour). 393in alpha mode, else background colour).
229 394
230 pad load "mybg.png" 395 pad load "mybg.png"
231 396
347 sub resize($$$) { 512 sub resize($$$) {
348 my $img = pop; 513 my $img = pop;
349 $img->scale ($_[0], $_[1]) 514 $img->scale ($_[0], $_[1])
350 } 515 }
351 516
517=item move $dx, $dy, $img
518
519Moves the image by C<$dx> pixels in the horizontal, and C<$dy> pixels in
520the vertical.
521
522Example: move the image right by 20 pixels and down by 30.
523
524 move 20, 30, ...
525
526=item rootalign $img
527
528Moves the image so that it appears glued to the screen as opposed to the
529window. This gives the illusion of a larger area behind the window. It is
530exactly equivalent to C<move -TX, -TY>, that is, it moves the image to the
531top left of the screen.
532
533Example: load a background image, put it in mirror mode and root align it.
534
535 rootalign mirror load "mybg.png"
536
537Example: take the screen background and align it, giving the illusion of
538transparency as long as the window isn't in front of other windows.
539
540 rootalign root
541
542=cut
543
352 sub move($$;$) { 544 sub move($$;$) {
353 my $img = pop->clone; 545 my $img = pop->clone;
354 $img->move ($_[0], $_[1]); 546 $img->move ($_[0], $_[1]);
355 $img 547 $img
356 } 548 }
549
550 sub rootalign($) {
551 move -TX, -TY, $_[0]
552 }
553
554=item contrast $factor, $img
555
556=item contrast $r, $g, $b, $img
557
558=item contrast $r, $g, $b, $a, $img
559
560Adjusts the I<contrast> of an image.
561
562#TODO#
563
564=item brightness $factor, $img
565
566=item brightness $r, $g, $b, $img
567
568=item brightness $r, $g, $b, $a, $img
569
570Adjusts the brightness of an image.
571
572=cut
573
574 sub contrast($$;$$;$) {
575 my $img = pop;
576 my ($r, $g, $b, $a) = @_;
577
578 ($g, $b) = ($r, $r) if @_ < 4;
579 $a = 1 if @_ < 5;
580
581 $img = $img->clone;
582 $img->contrast ($r, $g, $b, $a);
583 $img
584 }
585
586 sub brightness($$;$$;$) {
587 my $img = pop;
588 my ($r, $g, $b, $a) = @_;
589
590 ($g, $b) = ($r, $r) if @_ < 4;
591 $a = 1 if @_ < 5;
592
593 $img = $img->clone;
594 $img->brightness ($r, $g, $b, $a);
595 $img
596 }
597
598=item blur $radius, $img
599
600=item blur $radius_horz, $radius_vert, $img
601
602Gaussian-blurs the image with (roughly) C<$radius> pixel radius. The radii
603can also be specified separately.
604
605Blurring is often I<very> slow, at least compared or other
606operators. Larger blur radii are slower than smaller ones, too, so if you
607don't want to freeze your screen for long times, start experimenting with
608low values for radius (<5).
609
610=cut
611
612 sub blur($$;$) {
613 my $img = pop;
614 $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0])
615 }
616
617=item rotate $new_width, $new_height, $center_x, $center_y, $degrees
618
619Rotates the image by C<$degrees> degrees, counter-clockwise, around the
620pointer at C<$center_x> and C<$center_y> (specified as percentage of image
621width/height), generating a new image with width C<$new_width> and height
622C<$new_height>.
623
624#TODO# new width, height, maybe more operators?
625
626Example: rotate the image by 90 degrees
627
628=cut
357 629
358 sub rotate($$$$$$) { 630 sub rotate($$$$$$) {
359 my $img = pop; 631 my $img = pop;
360 $img->rotate ( 632 $img->rotate (
361 $_[0], 633 $_[0],
364 $_[3] * $img->h * .01, 636 $_[3] * $img->h * .01,
365 $_[4] * (3.14159265 / 180), 637 $_[4] * (3.14159265 / 180),
366 ) 638 )
367 } 639 }
368 640
369 sub blur($$;$) {
370 my $img = pop;
371 $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0])
372 }
373
374 sub contrast($$;$$;$) {
375 my $img = pop;
376 my ($r, $g, $b, $a) = @_;
377
378 ($g, $b) = ($r, $r) if @_ < 4;
379 $a = 1 if @_ < 5;
380
381 $img = $img->clone;
382 $img->contrast ($r, $g, $b, $a);
383 $img
384 }
385
386 sub brightness($$;$$;$) {
387 my $img = pop;
388 my ($r, $g, $b, $a) = @_;
389
390 ($g, $b) = ($r, $r) if @_ < 4;
391 $a = 1 if @_ < 5;
392
393 $img = $img->clone;
394 $img->brightness ($r, $g, $b, $a);
395 $img
396 }
397
398=back 641=back
399 642
400=cut 643=cut
401 644
402} 645}
432 675
433 # set environment to evaluate user expression 676 # set environment to evaluate user expression
434 677
435 local $self = $arg_self; 678 local $self = $arg_self;
436 679
680 local $HOME = $ENV{HOME};
437 local $old = $self->{state}; 681 local $old = $self->{state};
438 local $new = my $state = $self->{state} = {}; 682 local $new = my $state = $self->{state} = {};
439 683
440 ($x, $y, $w, $h) = 684 ($x, $y, $w, $h) =
441 $self->background_geometry ($self->{border}); 685 $self->background_geometry ($self->{border});

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines