ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/perl/background
(Generate patch)

Comparing rxvt-unicode/src/perl/background (file contents):
Revision 1.2 by root, Tue Jun 5 11:00:40 2012 UTC vs.
Revision 1.70 by root, Mon Jul 2 01:35:37 2012 UTC

1#! perl 1#! perl
2 2
3our $EXPR = 'move load "/root/pix/das_fette_schwein.jpg", &x, &y'; 3#:META:X_RESOURCE:%.expr:string:background expression
4#$EXPR = 'blur root, 10, 10' 4#:META:X_RESOURCE:%.border:boolean:respect the terminal border
5#$EXPR = 'blur move (root, -x, -y), 5, 5' 5#:META:X_RESOURCE:%.interval:seconds:minimum time between updates
6#resize load "/root/pix/das_fette_schwein.jpg", w, h
7 6
8use Safe; 7=head1 NAME
8
9 background - manage terminal background
10
11=head1 SYNOPSIS
12
13 urxvt --background-expr 'background expression'
14 --background-border
15 --background-interval seconds
16
17=head1 DESCRIPTION
18
19This extension manages the terminal background by creating a picture that
20is behind the text, replacing the normal background colour.
21
22It does so by evaluating a Perl expression that I<calculates> the image on
23the fly, for example, by grabbing the root background or loading a file.
24
25While the full power of Perl is available, the operators have been design
26to be as simple as possible.
27
28For example, to load an image and scale it to the window size, you would
29use:
30
31 urxvt --background-expr 'scale keep { load "/path/to/mybg.png" }'
32
33Or specified as a X resource:
34
35 URxvt.background-expr: scale keep { load "/path/to/mybg.png" }
36
37=head1 THEORY OF OPERATION
38
39At startup, just before the window is mapped for the first time, the
40expression is evaluated and must yield an image. The image is then
41extended as necessary to cover the whole terminal window, and is set as a
42background pixmap.
43
44If the image contains an alpha channel, then it will be used as-is in
45visuals that support alpha channels (for example, for a compositing
46manager). In other visuals, the terminal background colour will be used to
47replace any transparency.
48
49When the expression relies, directly or indirectly, on the window size,
50position, the root pixmap, or a timer, then it will be remembered. If not,
51then it will be removed.
52
53If any of the parameters that the expression relies on changes (when the
54window is moved or resized, its position or size changes; when the root
55pixmap is replaced by another one the root background changes; or when the
56timer elapses), then the expression will be evaluated again.
57
58For example, an expression such as C<scale keep { load "$HOME/mybg.png"
59}> scales the image to the window size, so it relies on the window size
60and will be reevaluated each time it is changed, but not when it moves for
61example. That ensures that the picture always fills the terminal, even
62after its size changes.
63
64=head2 EXPRESSIONS
65
66Expressions are normal Perl expressions, in fact, they are Perl blocks -
67which means you could use multiple lines and statements:
68
69 scale keep {
70 again 3600;
71 if (localtime now)[6]) {
72 return load "$HOME/weekday.png";
73 } else {
74 return load "$HOME/sunday.png";
75 }
76 }
77
78This inner expression is evaluated once per hour (and whenever the
79temrinal window is resized). It sets F<sunday.png> as background on
80Sundays, and F<weekday.png> on all other days.
81
82Fortunately, we expect that most expressions will be much simpler, with
83little Perl knowledge needed.
84
85Basically, you always start with a function that "generates" an image
86object, such as C<load>, which loads an image from disk, or C<root>, which
87returns the root window background image:
88
89 load "$HOME/mypic.png"
90
91The path is usually specified as a quoted string (the exact rules can be
92found in the L<perlop> manpage). The F<$HOME> at the beginning of the
93string is expanded to the home directory.
94
95Then you prepend one or more modifiers or filtering expressions, such as
96C<scale>:
97
98 scale load "$HOME/mypic.png"
99
100Just like a mathematical expression with functions, you should read these
101expressions from right to left, as the C<load> is evaluated first, and
102its result becomes the argument to the C<scale> function.
103
104Many operators also allow some parameters preceding the input image
105that modify its behaviour. For example, C<scale> without any additional
106arguments scales the image to size of the terminal window. If you specify
107an additional argument, it uses it as a scale factor (multiply by 100 to
108get a percentage):
109
110 scale 2, load "$HOME/mypic.png"
111
112This enlarges the image by a factor of 2 (200%). As you can see, C<scale>
113has now two arguments, the C<200> and the C<load> expression, while
114C<load> only has one argument. Arguments are separated from each other by
115commas.
116
117Scale also accepts two arguments, which are then separate factors for both
118horizontal and vertical dimensions. For example, this halves the image
119width and doubles the image height:
120
121 scale 0.5, 2, load "$HOME/mypic.png"
122
123IF you try out these expressions, you might suffer from some sluggishness,
124because each time the terminal is resized, it loads the PNG image agin
125and scales it. Scaling is usually fast (and unavoidable), but loading the
126image can be quite time consuming. This is where C<keep> comes in handy:
127
128 scale 0.5, 2, keep { load "$HOME/mypic.png" }
129
130The C<keep> operator executes all the statements inside the braces only
131once, or when it thinks the outcome might change. In other cases it
132returns the last value computed by the brace block.
133
134This means that the C<load> is only executed once, which makes it much
135faster, but also means that more memory is being used, because the loaded
136image must be kept in memory at all times. In this expression, the
137trade-off is likely worth it.
138
139But back to effects: Other effects than scaling are also readily
140available, for example, you can tile the image to fill the whole window,
141instead of resizing it:
142
143 tile keep { load "$HOME/mypic.png" }
144
145In fact, images returned by C<load> are in C<tile> mode by default, so the
146C<tile> operator is kind of superfluous.
147
148Another common effect is to mirror the image, so that the same edges
149touch:
150
151 mirror keep { load "$HOME/mypic.png" }
152
153Another common background expression is:
154
155 rootalign root
156
157This one first takes a snapshot of the screen background image, and then
158moves it to the upper left corner of the screen (as opposed to the upper
159left corner of the terminal window)- the result is pseudo-transparency:
160the image seems to be static while the window is moved around.
161
162=head2 CACHING AND SENSITIVITY
163
164Since some operations (such as C<load> and C<blur>) can take a long time,
165caching results can be very important for a smooth operation. Caching can
166also be useful to reduce memory usage, though, for example, when an image
167is cached by C<load>, it could be shared by multiple terminal windows
168running inside urxvtd.
169
170=head3 C<keep { ... }> caching
171
172The most important way to cache expensive operations is to use C<keep {
173... }>. The C<keep> operator takes a block of multiple statements enclosed
174by C<{}> and keeps the return value in memory.
175
176An expression can be "sensitive" to various external events, such as
177scaling or moving the window, root background changes and timers. Simply
178using an expression (such as C<scale> without parameters) that depends on
179certain changing values (called "variables"), or using those variables
180directly, will make an expression sensitive to these events - for example,
181using C<scale> or C<TW> will make the expression sensitive to the terminal
182size, and thus to resizing events.
183
184When such an event happens, C<keep> will automatically trigger a
185reevaluation of the whole expression with the new value of the expression.
186
187C<keep> is most useful for expensive operations, such as C<blur>:
188
189 rootalign keep { blur 20, root }
190
191This makes a blurred copy of the root background once, and on subsequent
192calls, just root-aligns it. Since C<blur> is usually quite slow and
193C<rootalign> is quite fast, this trades extra memory (for the cached
194blurred pixmap) with speed (blur only needs to be redone when root
195changes).
196
197=head3 C<load> caching
198
199The C<load> operator itself does not keep images in memory, but as long as
200the image is still in memory, C<load> will use the in-memory image instead
201of loading it freshly from disk.
202
203That means that this expression:
204
205 keep { load "$HOME/path..." }
206
207Not only caches the image in memory, other terminal instances that try to
208C<load> it can reuse that in-memory copy.
209
210=head1 REFERENCE
211
212=head2 COMMAND LINE SWITCHES
213
214=over 4
215
216=item --background-expr perl-expression
217
218Specifies the Perl expression to evaluate.
219
220=item --background-border
221
222By default, the expression creates an image that fills the full window,
223overwriting borders and any other areas, such as the scrollbar.
224
225Specifying this flag changes the behaviour, so that the image only
226replaces the background of the character area.
227
228=item --background-interval seconds
229
230Since some operations in the underlying XRender extension can effectively
231freeze your X-server for prolonged time, this extension enforces a minimum
232time between updates, which is normally about 0.1 seconds.
233
234If you want to do updates more often, you can decrease this safety
235interval with this switch.
236
237=back
238
239=cut
240
241our %_IMG_CACHE;
242our $HOME;
243our ($self, $frame);
244our ($x, $y, $w, $h);
245
246# enforce at least this interval between updates
247our $MIN_INTERVAL = 6/59.951;
9 248
10{ 249{
11 package urxvt::bgdsl::vars;
12
13 our ($self, $old, $new);
14 our ($x, $y, $w, $h);
15
16 package urxvt::bgdsl; # background language 250 package urxvt::bgdsl; # background language
17 251
18 *repeat_black = \&urxvt::RepeatNone; #TODO wtf 252 sub FR_PARENT() { 0 } # parent frame, if any - must be #0
19 *repeat_wrap = \&urxvt::RepeatNormal; 253 sub FR_CACHE () { 1 } # cached values
20 *repeat_pad = \&urxvt::RepeatPad; 254 sub FR_AGAIN () { 2 } # what this expr is sensitive to
21 *repeat_mirror = \&urxvt::RepeatReflect; 255 sub FR_STATE () { 3 } # watchers etc.
256
257 use List::Util qw(min max sum shuffle);
258
259=head2 PROVIDERS/GENERATORS
260
261These functions provide an image, by loading it from disk, grabbing it
262from the root screen or by simply generating it. They are used as starting
263points to get an image you can play with.
264
265=over 4
266
267=item load $path
268
269Loads the image at the given C<$path>. The image is set to plane tiling
270mode.
271
272If the image is already in memory (e.g. because another terminal instance
273uses it), then the in-memory copy us returned instead.
274
275=item load_uc $path
276
277Load uncached - same as load, but does not cache the image, which means it
278is I<always> loaded from the filesystem again.
279
280=cut
22 281
23 sub load($) { 282 sub load($) {
24 my ($path) = @_; 283 my ($path) = @_;
25 284
26 $new->{load}{$path} = $old->{load}{$path} || $self->new_img_from_file ($path); 285 $_IMG_CACHE{$path} || do {
286 my $img = $self->new_img_from_file ($path);
287 Scalar::Util::weaken ($_IMG_CACHE{$path} = $img);
288 $img
289 }
27 } 290 }
291
292=item root
293
294Returns the root window pixmap, that is, hopefully, the background image
295of your screen.
296
297This function makes your expression root sensitive, that means it will be
298reevaluated when the bg image changes.
299
300=cut
28 301
29 sub root() { 302 sub root() {
30 die "root op not supported, exg, we need you"; 303 $frame->[FR_AGAIN]{rootpmap} = 1;
304 $self->new_img_from_root
305 }
306
307=item solid $colour
308
309=item solid $width, $height, $colour
310
311Creates a new image and completely fills it with the given colour. The
312image is set to tiling mode.
313
314If C<$width> and C<$height> are omitted, it creates a 1x1 image, which is
315useful for solid backgrounds or for use in filtering effects.
316
317=cut
318
319 sub solid($;$$) {
320 my $colour = pop;
321
322 my $img = $self->new_img (urxvt::PictStandardARGB32, 0, 0, $_[0] || 1, $_[1] || 1);
323 $img->fill ($colour);
324 $img
325 }
326
327=item clone $img
328
329Returns an exact copy of the image. This is useful if you want to have
330multiple copies of the same image to apply different effects to.
331
332=cut
333
334 sub clone($) {
335 $_[0]->clone
336 }
337
338=item merge $img ...
339
340Takes any number of images and merges them together, creating a single
341image containing them all. The tiling mode of the first image is used as
342the tiling mode of the resulting image.
343
344This function is called automatically when an expression returns multiple
345images.
346
347=cut
348
349 sub merge(@) {
350 return $_[0] unless $#_;
351
352 # rather annoyingly clumsy, but optimisation is for another time
353
354 my $x0 = +1e9;
355 my $y0 = +1e9;
356 my $x1 = -1e9;
357 my $y1 = -1e9;
358
359 for (@_) {
360 my ($x, $y, $w, $h) = $_->geometry;
361
362 $x0 = $x if $x0 > $x;
363 $y0 = $y if $y0 > $y;
364
365 $x += $w;
366 $y += $h;
367
368 $x1 = $x if $x1 < $x;
369 $y1 = $y if $y1 < $y;
370 }
371
372 my $base = $self->new_img (urxvt::PictStandardARGB32, $x0, $y0, $x1 - $x0, $y1 - $y0);
373 $base->repeat_mode ($_[0]->repeat_mode);
374 $base->fill ([0, 0, 0, 0]);
375
376 $base->draw ($_)
377 for @_;
378
379 $base
380 }
381
382=head2 TILING MODES
383
384The following operators modify the tiling mode of an image, that is, the
385way that pixels outside the image area are painted when the image is used.
386
387=over 4
388
389=item tile $img
390
391Tiles the whole plane with the image and returns this new image - or in
392other words, it returns a copy of the image in plane tiling mode.
393
394Example: load an image and tile it over the background, without
395resizing. The C<tile> call is superfluous because C<load> already defaults
396to tiling mode.
397
398 tile load "mybg.png"
399
400=item mirror $img
401
402Similar to tile, but reflects the image each time it uses a new copy, so
403that top edges always touch top edges, right edges always touch right
404edges and so on (with normal tiling, left edges always touch right edges
405and top always touch bottom edges).
406
407Example: load an image and mirror it over the background, avoiding sharp
408edges at the image borders at the expense of mirroring the image itself
409
410 mirror load "mybg.png"
411
412=item pad $img
413
414Takes an image and modifies it so that all pixels outside the image area
415become transparent. This mode is most useful when you want to place an
416image over another image or the background colour while leaving all
417background pixels outside the image unchanged.
418
419Example: load an image and display it in the upper left corner. The rest
420of the space is left "empty" (transparent or whatever your compositor does
421in alpha mode, else background colour).
422
423 pad load "mybg.png"
424
425=item extend $img
426
427Extends the image over the whole plane, using the closest pixel in the
428area outside the image. This mode is mostly useful when you use more complex
429filtering operations and want the pixels outside the image to have the
430same values as the pixels near the edge.
431
432Example: just for curiosity, how does this pixel extension stuff work?
433
434 extend move 50, 50, load "mybg.png"
435
436=cut
437
438 sub pad($) {
439 my $img = $_[0]->clone;
440 $img->repeat_mode (urxvt::RepeatNone);
441 $img
442 }
443
444 sub tile($) {
445 my $img = $_[0]->clone;
446 $img->repeat_mode (urxvt::RepeatNormal);
447 $img
448 }
449
450 sub mirror($) {
451 my $img = $_[0]->clone;
452 $img->repeat_mode (urxvt::RepeatReflect);
453 $img
454 }
455
456 sub extend($) {
457 my $img = $_[0]->clone;
458 $img->repeat_mode (urxvt::RepeatPad);
459 $img
460 }
461
462=back
463
464=head2 VARIABLE VALUES
465
466The following functions provide variable data such as the terminal window
467dimensions. They are not (Perl-) variables, they just return stuff that
468varies. Most of them make your expression sensitive to some events, for
469example using C<TW> (terminal width) means your expression is evaluated
470again when the terminal is resized.
471
472=over 4
473
474=item TX
475
476=item TY
477
478Return the X and Y coordinates of the terminal window (the terminal
479window is the full window by default, and the character area only when in
480border-respect mode).
481
482Using these functions make your expression sensitive to window moves.
483
484These functions are mainly useful to align images to the root window.
485
486Example: load an image and align it so it looks as if anchored to the
487background (that's exactly what C<rootalign> does btw.):
488
489 move -TX, -TY, keep { load "mybg.png" }
490
491=item TW
492
493Return the width (C<TW>) and height (C<TH>) of the terminal window (the
494terminal window is the full window by default, and the character area only
495when in border-respect mode).
496
497Using these functions make your expression sensitive to window resizes.
498
499These functions are mainly useful to scale images, or to clip images to
500the window size to conserve memory.
501
502Example: take the screen background, clip it to the window size, blur it a
503bit, align it to the window position and use it as background.
504
505 clip move -TX, -TY, keep { blur 5, root }
506
507=cut
508
509 sub TX() { $frame->[FR_AGAIN]{position} = 1; $x }
510 sub TY() { $frame->[FR_AGAIN]{position} = 1; $y }
511 sub TW() { $frame->[FR_AGAIN]{size} = 1; $w }
512 sub TH() { $frame->[FR_AGAIN]{size} = 1; $h }
513
514=item now
515
516Returns the current time as (fractional) seconds since the epoch.
517
518Using this expression does I<not> make your expression sensitive to time,
519but the next two functions do.
520
521=item again $seconds
522
523When this function is used the expression will be reevaluated again in
524C<$seconds> seconds.
525
526Example: load some image and rotate it according to the time of day (as if it were
527the hour pointer of a clock). Update this image every minute.
528
529 again 60;
530 rotate 50, 50, (now % 86400) * -72 / 8640, scale keep { load "myclock.png" }
531
532=item counter $seconds
533
534Like C<again>, but also returns an increasing counter value, starting at
5350, which might be useful for some simple animation effects.
536
537=cut
538
539 sub now() { urxvt::NOW }
540
541 sub again($) {
542 $frame->[FR_AGAIN]{time} = $_[0];
543 }
544
545 sub counter($) {
546 $frame->[FR_AGAIN]{time} = $_[0];
547 $frame->[FR_STATE]{counter} + 0
548 }
549
550=back
551
552=head2 SHAPE CHANGING OPERATORS
553
554The following operators modify the shape, size or position of the image.
555
556=over 4
557
558=item clip $img
559
560=item clip $width, $height, $img
561
562=item clip $x, $y, $width, $height, $img
563
564Clips an image to the given rectangle. If the rectangle is outside the
565image area (e.g. when C<$x> or C<$y> are negative) or the rectangle is
566larger than the image, then the tiling mode defines how the extra pixels
567will be filled.
568
569If C<$x> an C<$y> are missing, then C<0> is assumed for both.
570
571If C<$width> and C<$height> are missing, then the window size will be
572assumed.
573
574Example: load an image, blur it, and clip it to the window size to save
575memory.
576
577 clip keep { blur 10, load "mybg.png" }
578
579=cut
580
581 sub clip($;$$;$$) {
582 my $img = pop;
583 my $h = pop || TH;
584 my $w = pop || TW;
585 $img->sub_rect ($_[0], $_[1], $w, $h)
586 }
587
588=item scale $img
589
590=item scale $size_factor, $img
591
592=item scale $width_factor, $height_factor, $img
593
594Scales the image by the given factors in horizontal
595(C<$width>) and vertical (C<$height>) direction.
596
597If only one factor is give, it is used for both directions.
598
599If no factors are given, scales the image to the window size without
600keeping aspect.
601
602=item resize $width, $height, $img
603
604Resizes the image to exactly C<$width> times C<$height> pixels.
605
606=item fit $img
607
608=item fit $width, $height, $img
609
610Fits the image into the given C<$width> and C<$height> without changing
611aspect, or the terminal size. That means it will be shrunk or grown until
612the whole image fits into the given area, possibly leaving borders.
613
614=item cover $img
615
616=item cover $width, $height, $img
617
618Similar to C<fit>, but shrinks or grows until all of the area is covered
619by the image, so instead of potentially leaving borders, it will cut off
620image data that doesn't fit.
621
622=cut
623
624 sub scale($;$;$) {
625 my $img = pop;
626
627 @_ == 2 ? $img->scale ($_[0] * $img->w, $_[1] * $img->h)
628 : @_ ? $img->scale ($_[0] * $img->w, $_[0] * $img->h)
629 : $img->scale (TW, TH)
31 } 630 }
32 631
33 sub resize($$$) { 632 sub resize($$$) {
34 $_[0]->scale ($_[1], $_[2]) 633 my $img = pop;
634 $img->scale ($_[0], $_[1])
35 } 635 }
36 636
637 sub fit($;$$) {
638 my $img = pop;
639 my $w = ($_[0] || TW) / $img->w;
640 my $h = ($_[1] || TH) / $img->h;
641 scale +(min $w, $h), $img
642 }
643
644 sub cover($;$$) {
645 my $img = pop;
646 my $w = ($_[0] || TW) / $img->w;
647 my $h = ($_[1] || TH) / $img->h;
648 scale +(max $w, $h), $img
649 }
650
651=item move $dx, $dy, $img
652
653Moves the image by C<$dx> pixels in the horizontal, and C<$dy> pixels in
654the vertical.
655
656Example: move the image right by 20 pixels and down by 30.
657
658 move 20, 30, ...
659
660=item align $xalign, $yalign, $img
661
662Aligns the image according to a factor - C<0> means the image is moved to
663the left or top edge (for C<$xalign> or C<$yalign>), C<0.5> means it is
664exactly centered and C<1> means it touches the right or bottom edge.
665
666Example: remove any visible border around an image, center it vertically but move
667it to the right hand side.
668
669 align 1, 0.5, pad $img
670
671=item center $img
672
673=item center $width, $height, $img
674
675Centers the image, i.e. the center of the image is moved to the center of
676the terminal window (or the box specified by C<$width> and C<$height> if
677given).
678
679Example: load an image and center it.
680
681 center keep { pad load "mybg.png" }
682
683=item rootalign $img
684
685Moves the image so that it appears glued to the screen as opposed to the
686window. This gives the illusion of a larger area behind the window. It is
687exactly equivalent to C<move -TX, -TY>, that is, it moves the image to the
688top left of the screen.
689
690Example: load a background image, put it in mirror mode and root align it.
691
692 rootalign keep { mirror load "mybg.png" }
693
694Example: take the screen background and align it, giving the illusion of
695transparency as long as the window isn't in front of other windows.
696
697 rootalign root
698
699=cut
700
37 sub move($$$) { 701 sub move($$;$) {
38 # TODO: must be simpler 702 my $img = pop->clone;
39 $_[0]->transform ($_[0]->w, $_[0]->h, $_[1], 703 $img->move ($_[0], $_[1]);
40 1, 0, -$_[2], 704 $img
41 0, 1, -$_[3], 705 }
42 0, 0, 1, 706
707 sub align($;$$) {
708 my $img = pop;
709
710 move $_[0] * (TW - $img->w),
711 $_[1] * (TH - $img->h),
712 $img
713 }
714
715 sub center($;$$) {
716 my $img = pop;
717 my $w = $_[0] || TW;
718 my $h = $_[1] || TH;
719
720 move 0.5 * ($w - $img->w), 0.5 * ($h - $img->h), $img
721 }
722
723 sub rootalign($) {
724 move -TX, -TY, $_[0]
725 }
726
727=item rotate $center_x, $center_y, $degrees, $img
728
729Rotates the image clockwise by C<$degrees> degrees, around the point at
730C<$center_x> and C<$center_y> (specified as factor of image width/height).
731
732Example: rotate the image by 90 degrees around it's center.
733
734 rotate 0.5, 0.5, 90, keep { load "$HOME/mybg.png" }
735
736=cut
737
738 sub rotate($$$$) {
739 my $img = pop;
740 $img->rotate (
741 $_[0] * ($img->w + $img->x),
742 $_[1] * ($img->h + $img->y),
743 $_[2] * (3.14159265 / 180),
43 ) 744 )
44 } 745 }
45 746
747=back
748
749=head2 COLOUR MODIFICATIONS
750
751The following operators change the pixels of the image.
752
753=over 4
754
755=item tint $color, $img
756
757Tints the image in the given colour.
758
759Example: tint the image red.
760
761 tint "red", load "rgb.png"
762
763Example: the same, but specify the colour by component.
764
765 tint [1, 0, 0], load "rgb.png"
766
767=cut
768
46 sub rotate($$$$) { 769 sub tint($$) {
47 $_[0]->rotate ($_[0], $_[1], $_[2], $_[3] * (3.14159265 / 180)) 770 $_[1]->tint ($_[0])
48 } 771 }
49 772
50 sub blur($$$) { 773=item contrast $factor, $img
51 my ($img, $rh, $rv) = @_;
52 774
53 $img = $img->clone; 775=item contrast $r, $g, $b, $img
54 $img->clone->blur ($rh, $rv); 776
55 $img 777=item contrast $r, $g, $b, $a, $img
56 } 778
779Adjusts the I<contrast> of an image.
780
781The first form applies a single C<$factor> to red, green and blue, the
782second form applies separate factors to each colour channel, and the last
783form includes the alpha channel.
784
785Values from 0 to 1 lower the contrast, values higher than 1 increase the
786contrast.
787
788Due to limitations in the underlying XRender extension, lowering contrast
789also reduces brightness, while increasing contrast currently also
790increases brightness.
791
792=item brightness $bias, $img
793
794=item brightness $r, $g, $b, $img
795
796=item brightness $r, $g, $b, $a, $img
797
798Adjusts the brightness of an image.
799
800The first form applies a single C<$bias> to red, green and blue, the
801second form applies separate biases to each colour channel, and the last
802form includes the alpha channel.
803
804Values less than 0 reduce brightness, while values larger than 0 increase
805it. Useful range is from -1 to 1 - the former results in a black, the
806latter in a white picture.
807
808Due to idiosyncrasies in the underlying XRender extension, biases less
809than zero can be I<very> slow.
810
811=cut
57 812
58 sub contrast($$;$$;$) { 813 sub contrast($$;$$;$) {
814 my $img = pop;
59 my ($img, $r, $g, $b, $a) = @_; 815 my ($r, $g, $b, $a) = @_;
816
60 ($g, $b) = ($r, $r) if @_ < 4; 817 ($g, $b) = ($r, $r) if @_ < 3;
61 $a = 1 if @_ < 5; 818 $a = 1 if @_ < 4;
819
62 $img = $img->clone; 820 $img = $img->clone;
63 $img->contrast ($r, $g, $b, $a); 821 $img->contrast ($r, $g, $b, $a);
64 $img 822 $img
65 } 823 }
66 824
67 sub brightness($$;$$;$) { 825 sub brightness($$;$$;$) {
826 my $img = pop;
68 my ($img, $r, $g, $b, $a) = @_; 827 my ($r, $g, $b, $a) = @_;
828
69 ($g, $b) = ($r, $r) if @_ < 4; 829 ($g, $b) = ($r, $r) if @_ < 3;
70 $a = 1 if @_ < 5; 830 $a = 1 if @_ < 4;
831
71 $img = $img->clone; 832 $img = $img->clone;
72 $img->brightness ($r, $g, $b, $a); 833 $img->brightness ($r, $g, $b, $a);
73 $img 834 $img
74 } 835 }
75 836
76 sub x() { $new->{position_sensitive} = 1; $x } 837=item blur $radius, $img
77 sub y() { $new->{position_sensitive} = 1; $y }
78 sub w() { $new->{size_sensitive} = 1; $w }
79 sub h() { $new->{size_sensitive} = 1; $h }
80 sub now() { urxvt::NOW }
81 838
82 sub again($) { 839=item blur $radius_horz, $radius_vert, $img
83 $new->{again} = $_[0]; 840
841Gaussian-blurs the image with (roughly) C<$radius> pixel radius. The radii
842can also be specified separately.
843
844Blurring is often I<very> slow, at least compared or other
845operators. Larger blur radii are slower than smaller ones, too, so if you
846don't want to freeze your screen for long times, start experimenting with
847low values for radius (<5).
848
849=cut
850
851 sub blur($$;$) {
852 my $img = pop;
853 $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0])
854 }
855
856=back
857
858=head2 OTHER STUFF
859
860Anything that didn't fit any of the other categories, even after applying
861force and closing our eyes.
862
863=over 4
864
865=item keep { ... }
866
867This operator takes a code block as argument, that is, one or more
868statements enclosed by braces.
869
870The trick is that this code block is only evaluated when the outcome
871changes - on other calls the C<keep> simply returns the image it computed
872previously (yes, it should only be used with images). Or in other words,
873C<keep> I<caches> the result of the code block so it doesn't need to be
874computed again.
875
876This can be extremely useful to avoid redoing slow operations - for
877example, if your background expression takes the root background, blurs it
878and then root-aligns it it would have to blur the root background on every
879window move or resize.
880
881Another example is C<load>, which can be quite slow.
882
883In fact, urxvt itself encloses the whole expression in some kind of
884C<keep> block so it only is reevaluated as required.
885
886Putting the blur into a C<keep> block will make sure the blur is only done
887once, while the C<rootalign> is still done each time the window moves.
888
889 rootlign keep { blur 10, root }
890
891This leaves the question of how to force reevaluation of the block,
892in case the root background changes: If expression inside the block
893is sensitive to some event (root background changes, window geometry
894changes), then it will be reevaluated automatically as needed.
895
896=cut
897
898 sub keep(&) {
899 my $id = $_[0]+0;
900
901 local $frame = $self->{frame_cache}{$id} ||= [$frame];
902
903 unless ($frame->[FR_CACHE]) {
904 $frame->[FR_CACHE] = [ $_[0]() ];
905
906 my $self = $self;
907 my $frame = $frame;
908 Scalar::Util::weaken $frame;
909 $self->compile_frame ($frame, sub {
910 # clear this frame cache, also for all parents
911 for (my $frame = $frame; $frame; $frame = $frame->[0]) {
912 undef $frame->[FR_CACHE];
913 }
914
915 $self->recalculate;
916 });
917 };
918
919 # in scalar context we always return the first original result, which
920 # is not quite how perl works.
921 wantarray
922 ? @{ $frame->[FR_CACHE] }
923 : $frame->[FR_CACHE][0]
924 }
925
926# sub keep_clear() {
927# delete $self->{frame_cache};
84 } 928# }
85 929
86 sub counter($) { 930=back
87 $new->{again} = $_[0]; 931
88 $self->{counter}++ + 0 932=cut
89 } 933
90} 934}
91 935
92sub parse_expr { 936sub parse_expr {
93 my $expr = eval "sub {\npackage urxvt::bgdsl;\n#line 0 'background expression'\n$_[0]\n}"; 937 my $expr = eval
938 "sub {\n"
939 . "package urxvt::bgdsl;\n"
940 . "#line 0 'background expression'\n"
941 . "$_[0]\n"
942 . "}";
94 die if $@; 943 die if $@;
95 $expr 944 $expr
96} 945}
97 946
98# compiles a parsed expression 947# compiles a parsed expression
99sub set_expr { 948sub set_expr {
100 my ($self, $expr) = @_; 949 my ($self, $expr) = @_;
101 950
102 local $Data::Dumper::Deparse=1; use Data::Dumper; warn Dumper $expr;#d# 951 $self->{root} = [];
103 $self->{expr} = $expr; 952 $self->{expr} = $expr;
104 $self->recalculate; 953 $self->recalculate;
105} 954}
106 955
956# takes a hash of sensitivity indicators and installs watchers
957sub compile_frame {
958 my ($self, $frame, $cb) = @_;
959
960 my $state = $frame->[urxvt::bgdsl::FR_STATE] ||= {};
961 my $again = $frame->[urxvt::bgdsl::FR_AGAIN];
962
963 # don't keep stuff alive
964 Scalar::Util::weaken $state;
965
966 if ($again->{nested}) {
967 $state->{nested} = 1;
968 } else {
969 delete $state->{nested};
970 }
971
972 if (my $interval = $again->{time}) {
973 $state->{time} = [$interval, urxvt::timer->new->after ($interval)->interval ($interval)]
974 if $state->{time}[0] != $interval;
975
976 # callback *might* have changed, although we could just rule that out
977 $state->{time}[1]->cb (sub {
978 ++$state->{counter};
979 $cb->();
980 });
981 } else {
982 delete $state->{time};
983 }
984
985 if ($again->{position}) {
986 $state->{position} = $self->on (position_change => $cb);
987 } else {
988 delete $state->{position};
989 }
990
991 if ($again->{size}) {
992 $state->{size} = $self->on (size_change => $cb);
993 } else {
994 delete $state->{size};
995 }
996
997 if ($again->{rootpmap}) {
998 $state->{rootpmap} = $self->on (rootpmap_change => $cb);
999 } else {
1000 delete $state->{rootpmap};
1001 }
1002}
1003
107# evaluate the current bg expression 1004# evaluate the current bg expression
108sub recalculate { 1005sub recalculate {
109 my ($self) = @_; 1006 my ($arg_self) = @_;
110 1007
111 local $urxvt::bgdsl::vars::self = $self; 1008 # rate limit evaluation
112 1009
113 local $urxvt::bgdsl::vars::old = $self->{state}; 1010 if ($arg_self->{next_refresh} > urxvt::NOW) {
114 local $urxvt::bgdsl::vars::new = my $state = $self->{state} = {}; 1011 $arg_self->{next_refresh_timer} = urxvt::timer->new->after ($arg_self->{next_refresh} - urxvt::NOW)->cb (sub {
1012 $arg_self->recalculate;
1013 });
1014 return;
1015 }
115 1016
116 ($urxvt::bgdsl::vars::x, $urxvt::bgdsl::vars::y, $urxvt::bgdsl::vars::w, $urxvt::bgdsl::vars::h) = 1017 $arg_self->{next_refresh} = urxvt::NOW + $MIN_INTERVAL;
117 $self->get_geometry;
118 1018
1019 # set environment to evaluate user expression
1020
1021 local $self = $arg_self;
1022 local $HOME = $ENV{HOME};
1023 local $frame = [];
1024
1025 ($x, $y, $w, $h) = $self->background_geometry ($self->{border});
1026
1027 # evaluate user expression
1028
119 my $img = eval { $self->{expr}->() }; 1029 my @img = eval { $self->{expr}->() };
120 warn $@ if $@;#d# 1030 die $@ if $@;
1031 die "background-expr did not return anything.\n" unless @img;
1032 die "background-expr: expected image(s), got something else.\n"
1033 if grep { !UNIVERSAL::isa $_, "urxvt::img" } @img;
121 1034
122 my $repeat; 1035 my $img = urxvt::bgdsl::merge @img;
123 1036
124 if (my $again = $state->{again}) { 1037 $frame->[FR_AGAIN]{size} = 1
125 $repeat = 1; 1038 if $img->repeat_mode != urxvt::RepeatNormal;
126 $state->{again} = urxvt::timer->new->after ($again)->cb (sub { $self->recalculate }); 1039
1040 # if the expression is sensitive to external events, prepare reevaluation then
1041 $self->compile_frame ($frame, sub { $arg_self->recalculate });
1042
1043 # clear stuff we no longer need
1044
1045# unless (%{ $frame->[FR_STATE] }) {
1046# delete $self->{state};
1047# delete $self->{expr};
127 } 1048# }
128 1049
129 if (delete $state->{position_sensitive}) { 1050 # set background pixmap
130 $repeat = 1;
131 $self->enable (position_change => sub { $_[0]->recalculate });
132 } else {
133 $self->disable ("position_change");
134 }
135 1051
136 if (delete $state->{size_sensitive}) {
137 $repeat = 1;
138 $self->enable (size_change => sub { $_[0]->recalculate });
139 } else {
140 $self->disable ("size_change");
141 }
142
143 # TODO: install handlers for geometry changes &c
144
145 warn $img;
146 $self->set_background ($img); 1052 $self->set_background ($img, $self->{border});
147 $self->scr_recolour (0); 1053 $self->scr_recolour (0);
148 $self->want_refresh; 1054 $self->want_refresh;
149} 1055}
150 1056
151sub on_start { 1057sub on_start {
152 my ($self) = @_; 1058 my ($self) = @_;
153 1059
1060 my $expr = $self->x_resource ("%.expr")
1061 or return;
1062
1063 $self->has_render
1064 or die "background extension needs RENDER extension 0.10 or higher, ignoring background-expr.\n";
1065
154 $self->set_expr (parse_expr $EXPR); 1066 $self->set_expr (parse_expr $expr);
1067 $self->{border} = $self->x_resource_boolean ("%.border");
1068
1069 $MIN_INTERVAL = $self->x_resource ("%.interval");
155 1070
156 () 1071 ()
157} 1072}
158 1073

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines