ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/perl/background
(Generate patch)

Comparing rxvt-unicode/src/perl/background (file contents):
Revision 1.45 by root, Sun Jun 10 11:53:32 2012 UTC vs.
Revision 1.90 by sf-exg, Mon Mar 16 10:06:09 2015 UTC

1#! perl 1#! perl
2 2
3#:META:X_RESOURCE:%.expr:string:background expression 3#:META:RESOURCE:%.expr:string:background expression
4#:META:X_RESOURCE:%.border.:boolean:respect the terminal border 4#:META:RESOURCE:%.border:boolean:respect the terminal border
5 5#:META:RESOURCE:%.interval:seconds:minimum time between updates
6#TODO: once, rootalign
7 6
8=head1 NAME 7=head1 NAME
9 8
10 background - manage terminal background 9background - manage terminal background
11 10
12=head1 SYNOPSIS 11=head1 SYNOPSIS
13 12
14 urxvt --background-expr 'background expression' 13 urxvt --background-expr 'background expression'
15 --background-border 14 --background-border
15 --background-interval seconds
16
17=head1 QUICK AND DIRTY CHEAT SHEET
18
19Just load a random jpeg image and tile the background with it without
20scaling or anything else:
21
22 load "/path/to/img.jpg"
23
24The same, but use mirroring/reflection instead of tiling:
25
26 mirror load "/path/to/img.jpg"
27
28Load an image and scale it to exactly fill the terminal window:
29
30 scale keep { load "/path/to/img.jpg" }
31
32Implement pseudo-transparency by using a suitably-aligned root pixmap
33as window background:
34
35 rootalign root
36
37Likewise, but keep a blurred copy:
38
39 rootalign keep { blur 10, root }
16 40
17=head1 DESCRIPTION 41=head1 DESCRIPTION
18 42
19This extension manages the terminal background by creating a picture that 43This extension manages the terminal background by creating a picture that
20is behind the text, replacing the normal background colour. 44is behind the text, replacing the normal background colour.
26to be as simple as possible. 50to be as simple as possible.
27 51
28For example, to load an image and scale it to the window size, you would 52For example, to load an image and scale it to the window size, you would
29use: 53use:
30 54
31 urxvt --background-expr 'scale load "/path/to/mybg.png"' 55 urxvt --background-expr 'scale keep { load "/path/to/mybg.png" }'
32 56
33Or specified as a X resource: 57Or specified as a X resource:
34 58
35 URxvt.background-expr: scale load "/path/to/mybg.png" 59 URxvt.background.expr: scale keep { load "/path/to/mybg.png" }
36 60
37=head1 THEORY OF OPERATION 61=head1 THEORY OF OPERATION
38 62
39At startup, just before the window is mapped for the first time, the 63At startup, just before the window is mapped for the first time, the
40expression is evaluated and must yield an image. The image is then 64expression is evaluated and must yield an image. The image is then
53If any of the parameters that the expression relies on changes (when the 77If any of the parameters that the expression relies on changes (when the
54window is moved or resized, its position or size changes; when the root 78window is moved or resized, its position or size changes; when the root
55pixmap is replaced by another one the root background changes; or when the 79pixmap is replaced by another one the root background changes; or when the
56timer elapses), then the expression will be evaluated again. 80timer elapses), then the expression will be evaluated again.
57 81
58For example, an expression such as C<scale load "$HOME/mybg.png"> scales the 82For example, an expression such as C<scale keep { load "$HOME/mybg.png"
59image to the window size, so it relies on the window size and will 83}> scales the image to the window size, so it relies on the window size
60be reevaluated each time it is changed, but not when it moves for 84and will be reevaluated each time it is changed, but not when it moves for
61example. That ensures that the picture always fills the terminal, even 85example. That ensures that the picture always fills the terminal, even
62after it's size changes. 86after its size changes.
63 87
64=head2 EXPRESSIONS 88=head2 EXPRESSIONS
65 89
66Expressions are normal Perl expressions, in fact, they are Perl blocks - 90Expressions are normal Perl expressions, in fact, they are Perl blocks -
67which means you could use multiple lines and statements: 91which means you could use multiple lines and statements:
68 92
93 scale keep {
69 again 3600; 94 again 3600;
70 if (localtime now)[6]) { 95 if (localtime now)[6]) {
71 return scale load "$HOME/weekday.png"; 96 return load "$HOME/weekday.png";
72 } else { 97 } else {
73 return scale load "$HOME/sunday.png"; 98 return load "$HOME/sunday.png";
99 }
74 } 100 }
75 101
76This expression gets evaluated once per hour. It will set F<sunday.png> as 102This inner expression is evaluated once per hour (and whenever the
103terminal window is resized). It sets F<sunday.png> as background on
77background on Sundays, and F<weekday.png> on all other days. 104Sundays, and F<weekday.png> on all other days.
78 105
79Fortunately, we expect that most expressions will be much simpler, with 106Fortunately, we expect that most expressions will be much simpler, with
80little Perl knowledge needed. 107little Perl knowledge needed.
81 108
82Basically, you always start with a function that "generates" an image 109Basically, you always start with a function that "generates" an image
115horizontal and vertical dimensions. For example, this halves the image 142horizontal and vertical dimensions. For example, this halves the image
116width and doubles the image height: 143width and doubles the image height:
117 144
118 scale 0.5, 2, load "$HOME/mypic.png" 145 scale 0.5, 2, load "$HOME/mypic.png"
119 146
120Other effects than scalign are also readily available, for exmaple, you can 147IF you try out these expressions, you might suffer from some sluggishness,
121tile the image to fill the whole window, instead of resizing it: 148because each time the terminal is resized, it loads the PNG image again
149and scales it. Scaling is usually fast (and unavoidable), but loading the
150image can be quite time consuming. This is where C<keep> comes in handy:
122 151
152 scale 0.5, 2, keep { load "$HOME/mypic.png" }
153
154The C<keep> operator executes all the statements inside the braces only
155once, or when it thinks the outcome might change. In other cases it
156returns the last value computed by the brace block.
157
158This means that the C<load> is only executed once, which makes it much
159faster, but also means that more memory is being used, because the loaded
160image must be kept in memory at all times. In this expression, the
161trade-off is likely worth it.
162
163But back to effects: Other effects than scaling are also readily
164available, for example, you can tile the image to fill the whole window,
165instead of resizing it:
166
123 tile load "$HOME/mypic.png" 167 tile keep { load "$HOME/mypic.png" }
124 168
125In fact, images returned by C<load> are in C<tile> mode by default, so the C<tile> operator 169In fact, images returned by C<load> are in C<tile> mode by default, so the
126is kind of superfluous. 170C<tile> operator is kind of superfluous.
127 171
128Another common effect is to mirror the image, so that the same edges touch: 172Another common effect is to mirror the image, so that the same edges
173touch:
129 174
130 mirror load "$HOME/mypic.png" 175 mirror keep { load "$HOME/mypic.png" }
131 176
132This is also a typical background expression: 177Another common background expression is:
133 178
134 rootalign root 179 rootalign root
135 180
136It first takes a snapshot of the screen background image, and then 181This one first takes a snapshot of the screen background image, and then
137moves it to the upper left corner of the screen - the result is 182moves it to the upper left corner of the screen (as opposed to the upper
138pseudo-transparency, as the image seems to be static while the window is 183left corner of the terminal window)- the result is pseudo-transparency:
139moved around. 184the image seems to be static while the window is moved around.
140 185
141=head2 CYCLES AND CACHING 186=head2 COLOUR SPECIFICATIONS
142 187
143As has been mentioned before, the expression might be evaluated multiple 188Whenever an operator expects a "colour", then this can be specified in one
144times. Each time the expression is reevaluated, a new cycle is said to 189of two ways: Either as string with an X11 colour specification, such as:
145have begun. Many operators cache their results till the next cycle.
146 190
147For example, the C<load> operator keeps a copy of the image. If it is 191 "red" # named colour
148asked to load the same image on the next cycle it will not load it again, 192 "#f00" # simple rgb
149but return the cached copy. 193 "[50]red" # red with 50% alpha
194 "TekHVC:300/50/50" # anything goes
150 195
151This only works for one cycle though, so as long as you load the same 196OR as an array reference with one, three or four components:
152image every time, it will always be cached, but when you load a different
153image, it will forget about the first one.
154 197
155This allows you to either speed things up by keeping multiple images in 198 [0.5] # 50% gray, 100% alpha
156memory, or comserve memory by loading images more often. 199 [0.5, 0, 0] # dark red, no green or blur, 100% alpha
200 [0.5, 0, 0, 0.7] # same with explicit 70% alpha
157 201
158For example, you can keep two images in memory and use a random one like 202=head2 CACHING AND SENSITIVITY
159this:
160 203
161 my $img1 = load "img1.png"; 204Since some operations (such as C<load> and C<blur>) can take a long time,
162 my $img2 = load "img2.png"; 205caching results can be very important for a smooth operation. Caching can
163 (0.5 > rand) ? $img1 : $img2 206also be useful to reduce memory usage, though, for example, when an image
207is cached by C<load>, it could be shared by multiple terminal windows
208running inside urxvtd.
164 209
165Since both images are "loaded" every time the expression is evaluated, 210=head3 C<keep { ... }> caching
166they are always kept in memory. Contrast this version:
167 211
168 my $path1 = "img1.png"; 212The most important way to cache expensive operations is to use C<keep {
169 my $path2 = "img2.png"; 213... }>. The C<keep> operator takes a block of multiple statements enclosed
170 load ((0.5 > rand) ? $path1 : $path2) 214by C<{}> and keeps the return value in memory.
171 215
172Here, a path is selected randomly, and load is only called for one image, 216An expression can be "sensitive" to various external events, such as
173so keeps only one image in memory. If, on the next evaluation, luck 217scaling or moving the window, root background changes and timers. Simply
174decides to use the other path, then it will have to load that image again. 218using an expression (such as C<scale> without parameters) that depends on
219certain changing values (called "variables"), or using those variables
220directly, will make an expression sensitive to these events - for example,
221using C<scale> or C<TW> will make the expression sensitive to the terminal
222size, and thus to resizing events.
223
224When such an event happens, C<keep> will automatically trigger a
225reevaluation of the whole expression with the new value of the expression.
226
227C<keep> is most useful for expensive operations, such as C<blur>:
228
229 rootalign keep { blur 20, root }
230
231This makes a blurred copy of the root background once, and on subsequent
232calls, just root-aligns it. Since C<blur> is usually quite slow and
233C<rootalign> is quite fast, this trades extra memory (for the cached
234blurred pixmap) with speed (blur only needs to be redone when root
235changes).
236
237=head3 C<load> caching
238
239The C<load> operator itself does not keep images in memory, but as long as
240the image is still in memory, C<load> will use the in-memory image instead
241of loading it freshly from disk.
242
243That means that this expression:
244
245 keep { load "$HOME/path..." }
246
247Not only caches the image in memory, other terminal instances that try to
248C<load> it can reuse that in-memory copy.
175 249
176=head1 REFERENCE 250=head1 REFERENCE
177 251
178=head2 COMMAND LINE SWITCHES 252=head2 COMMAND LINE SWITCHES
179 253
189overwriting borders and any other areas, such as the scrollbar. 263overwriting borders and any other areas, such as the scrollbar.
190 264
191Specifying this flag changes the behaviour, so that the image only 265Specifying this flag changes the behaviour, so that the image only
192replaces the background of the character area. 266replaces the background of the character area.
193 267
268=item --background-interval seconds
269
270Since some operations in the underlying XRender extension can effectively
271freeze your X-server for prolonged time, this extension enforces a minimum
272time between updates, which is normally about 0.1 seconds.
273
274If you want to do updates more often, you can decrease this safety
275interval with this switch.
276
194=back 277=back
195 278
196=cut 279=cut
197 280
281our %_IMG_CACHE;
198our $HOME; 282our $HOME;
199our ($self, $old, $new); 283our ($self, $frame);
200our ($x, $y, $w, $h); 284our ($x, $y, $w, $h, $focus);
201 285
202# enforce at least this interval between updates 286# enforce at least this interval between updates
203our $MIN_INTERVAL = 1/100; 287our $MIN_INTERVAL = 6/59.951;
204 288
205{ 289{
206 package urxvt::bgdsl; # background language 290 package urxvt::bgdsl; # background language
291
292 sub FR_PARENT() { 0 } # parent frame, if any - must be #0
293 sub FR_CACHE () { 1 } # cached values
294 sub FR_AGAIN () { 2 } # what this expr is sensitive to
295 sub FR_STATE () { 3 } # watchers etc.
207 296
208 use List::Util qw(min max sum shuffle); 297 use List::Util qw(min max sum shuffle);
209 298
210=head2 PROVIDERS/GENERATORS 299=head2 PROVIDERS/GENERATORS
211 300
218=item load $path 307=item load $path
219 308
220Loads the image at the given C<$path>. The image is set to plane tiling 309Loads the image at the given C<$path>. The image is set to plane tiling
221mode. 310mode.
222 311
223Loaded images will be cached for one cycle. 312If the image is already in memory (e.g. because another terminal instance
313uses it), then the in-memory copy is returned instead.
224 314
315=item load_uc $path
316
317Load uncached - same as load, but does not cache the image, which means it
318is I<always> loaded from the filesystem again, even if another copy of it
319is in memory at the time.
320
225=cut 321=cut
322
323 sub load_uc($) {
324 $self->new_img_from_file ($_[0])
325 }
226 326
227 sub load($) { 327 sub load($) {
228 my ($path) = @_; 328 my ($path) = @_;
229 329
230 $new->{load}{$path} = $old->{load}{$path} || $self->new_img_from_file ($path); 330 $_IMG_CACHE{$path} || do {
331 my $img = load_uc $path;
332 Scalar::Util::weaken ($_IMG_CACHE{$path} = $img);
333 $img
334 }
231 } 335 }
232 336
233=item root 337=item root
234 338
235Returns the root window pixmap, that is, hopefully, the background image 339Returns the root window pixmap, that is, hopefully, the background image
236of your screen. The image is set to extend mode. 340of your screen.
237 341
238This function makes your expression root sensitive, that means it will be 342This function makes your expression root sensitive, that means it will be
239reevaluated when the bg image changes. 343reevaluated when the bg image changes.
240 344
241=cut 345=cut
242 346
243 sub root() { 347 sub root() {
244 $new->{rootpmap_sensitive} = 1; 348 $frame->[FR_AGAIN]{rootpmap} = 1;
245 die "root op not supported, exg, we need you"; 349 $self->new_img_from_root
246 } 350 }
247 351
248=item solid $colour 352=item solid $colour
249 353
250=item solid $width, $height, $colour 354=item solid $width, $height, $colour
258=cut 362=cut
259 363
260 sub solid($;$$) { 364 sub solid($;$$) {
261 my $colour = pop; 365 my $colour = pop;
262 366
263 my $img = $self->new_img (urxvt::PictStandardARGB32, $_[0] || 1, $_[1] || 1); 367 my $img = $self->new_img (urxvt::PictStandardARGB32, 0, 0, $_[0] || 1, $_[1] || 1);
264 $img->fill ($colour); 368 $img->fill ($colour);
265 $img 369 $img
266 } 370 }
267 371
268=item clone $img 372=item clone $img
272 376
273=cut 377=cut
274 378
275 sub clone($) { 379 sub clone($) {
276 $_[0]->clone 380 $_[0]->clone
381 }
382
383=item merge $img ...
384
385Takes any number of images and merges them together, creating a single
386image containing them all. The tiling mode of the first image is used as
387the tiling mode of the resulting image.
388
389This function is called automatically when an expression returns multiple
390images.
391
392=cut
393
394 sub merge(@) {
395 return $_[0] unless $#_;
396
397 # rather annoyingly clumsy, but optimisation is for another time
398
399 my $x0 = +1e9;
400 my $y0 = +1e9;
401 my $x1 = -1e9;
402 my $y1 = -1e9;
403
404 for (@_) {
405 my ($x, $y, $w, $h) = $_->geometry;
406
407 $x0 = $x if $x0 > $x;
408 $y0 = $y if $y0 > $y;
409
410 $x += $w;
411 $y += $h;
412
413 $x1 = $x if $x1 < $x;
414 $y1 = $y if $y1 < $y;
415 }
416
417 my $base = $self->new_img (urxvt::PictStandardARGB32, $x0, $y0, $x1 - $x0, $y1 - $y0);
418 $base->repeat_mode ($_[0]->repeat_mode);
419 $base->fill ([0, 0, 0, 0]);
420
421 $base->draw ($_)
422 for @_;
423
424 $base
277 } 425 }
278 426
279=back 427=back
280 428
281=head2 TILING MODES 429=head2 TILING MODES
314become transparent. This mode is most useful when you want to place an 462become transparent. This mode is most useful when you want to place an
315image over another image or the background colour while leaving all 463image over another image or the background colour while leaving all
316background pixels outside the image unchanged. 464background pixels outside the image unchanged.
317 465
318Example: load an image and display it in the upper left corner. The rest 466Example: load an image and display it in the upper left corner. The rest
319of the space is left "empty" (transparent or wahtever your compisotr does 467of the space is left "empty" (transparent or whatever your compositor does
320in alpha mode, else background colour). 468in alpha mode, else background colour).
321 469
322 pad load "mybg.png" 470 pad load "mybg.png"
323 471
324=item extend $img 472=item extend $img
325 473
326Extends the image over the whole plane, using the closest pixel in the 474Extends the image over the whole plane, using the closest pixel in the
327area outside the image. This mode is mostly useful when you more complex 475area outside the image. This mode is mostly useful when you use more complex
328filtering operations and want the pixels outside the image to have the 476filtering operations and want the pixels outside the image to have the
329same values as the pixels near the edge. 477same values as the pixels near the edge.
330 478
331Example: just for curiosity, how does this pixel extension stuff work? 479Example: just for curiosity, how does this pixel extension stuff work?
332 480
376 524
377Return the X and Y coordinates of the terminal window (the terminal 525Return the X and Y coordinates of the terminal window (the terminal
378window is the full window by default, and the character area only when in 526window is the full window by default, and the character area only when in
379border-respect mode). 527border-respect mode).
380 528
381Using these functions make your expression sensitive to window moves. 529Using these functions makes your expression sensitive to window moves.
382 530
383These functions are mainly useful to align images to the root window. 531These functions are mainly useful to align images to the root window.
384 532
385Example: load an image and align it so it looks as if anchored to the 533Example: load an image and align it so it looks as if anchored to the
386background. 534background (that's exactly what C<rootalign> does btw.):
387 535
388 move -TX, -TY, load "mybg.png" 536 move -TX, -TY, keep { load "mybg.png" }
389 537
390=item TW 538=item TW
539
540=item TH
391 541
392Return the width (C<TW>) and height (C<TH>) of the terminal window (the 542Return the width (C<TW>) and height (C<TH>) of the terminal window (the
393terminal window is the full window by default, and the character area only 543terminal window is the full window by default, and the character area only
394when in border-respect mode). 544when in border-respect mode).
395 545
396Using these functions make your expression sensitive to window resizes. 546Using these functions makes your expression sensitive to window resizes.
397 547
398These functions are mainly useful to scale images, or to clip images to 548These functions are mainly useful to scale images, or to clip images to
399the window size to conserve memory. 549the window size to conserve memory.
400 550
401Example: take the screen background, clip it to the window size, blur it a 551Example: take the screen background, clip it to the window size, blur it a
402bit, align it to the window position and use it as background. 552bit, align it to the window position and use it as background.
403 553
404 clip move -TX, -TY, blur 5, root 554 clip move -TX, -TY, keep { blur 5, root }
405 555
406=cut 556=item FOCUS
407 557
408 sub TX() { $new->{position_sensitive} = 1; $x } 558Returns a boolean indicating whether the terminal window has keyboard
409 sub TY() { $new->{position_sensitive} = 1; $y } 559focus, in which case it returns true.
410 sub TW() { $new->{size_sensitive} = 1; $w } 560
411 sub TH() { $new->{size_sensitive} = 1; $h } 561Using this function makes your expression sensitive to focus changes.
562
563A common use case is to fade the background image when the terminal loses
564focus, often together with the C<-fade> command line option. In fact,
565there is a special function for just that use case: C<focus_fade>.
566
567Example: use two entirely different background images, depending on
568whether the window has focus.
569
570 FOCUS ? keep { load "has_focus.jpg" } : keep { load "no_focus.jpg" }
571
572=cut
573
574 sub TX () { $frame->[FR_AGAIN]{position} = 1; $x }
575 sub TY () { $frame->[FR_AGAIN]{position} = 1; $y }
576 sub TW () { $frame->[FR_AGAIN]{size} = 1; $w }
577 sub TH () { $frame->[FR_AGAIN]{size} = 1; $h }
578 sub FOCUS() { $frame->[FR_AGAIN]{focus} = 1; $focus }
412 579
413=item now 580=item now
414 581
415Returns the current time as (fractional) seconds since the epoch. 582Returns the current time as (fractional) seconds since the epoch.
416 583
423C<$seconds> seconds. 590C<$seconds> seconds.
424 591
425Example: load some image and rotate it according to the time of day (as if it were 592Example: load some image and rotate it according to the time of day (as if it were
426the hour pointer of a clock). Update this image every minute. 593the hour pointer of a clock). Update this image every minute.
427 594
595 again 60;
428 again 60; rotate TW, TH, 50, 50, (now % 86400) * -720 / 86400, scale load "myclock.png" 596 rotate 50, 50, (now % 86400) * -72 / 8640, scale keep { load "myclock.png" }
429 597
430=item counter $seconds 598=item counter $seconds
431 599
432Like C<again>, but also returns an increasing counter value, starting at 600Like C<again>, but also returns an increasing counter value, starting at
4330, which might be useful for some simple animation effects. 6010, which might be useful for some simple animation effects.
435=cut 603=cut
436 604
437 sub now() { urxvt::NOW } 605 sub now() { urxvt::NOW }
438 606
439 sub again($) { 607 sub again($) {
440 $new->{again} = $_[0]; 608 $frame->[FR_AGAIN]{time} = $_[0];
441 } 609 }
442 610
443 sub counter($) { 611 sub counter($) {
444 $new->{again} = $_[0]; 612 $frame->[FR_AGAIN]{time} = $_[0];
445 $self->{counter} + 0 613 $frame->[FR_STATE]{counter} + 0
446 } 614 }
447 615
448=back 616=back
449 617
450=head2 SHAPE CHANGING OPERATORS 618=head2 SHAPE CHANGING OPERATORS
462Clips an image to the given rectangle. If the rectangle is outside the 630Clips an image to the given rectangle. If the rectangle is outside the
463image area (e.g. when C<$x> or C<$y> are negative) or the rectangle is 631image area (e.g. when C<$x> or C<$y> are negative) or the rectangle is
464larger than the image, then the tiling mode defines how the extra pixels 632larger than the image, then the tiling mode defines how the extra pixels
465will be filled. 633will be filled.
466 634
467If C<$x> an C<$y> are missing, then C<0> is assumed for both. 635If C<$x> and C<$y> are missing, then C<0> is assumed for both.
468 636
469If C<$width> and C<$height> are missing, then the window size will be 637If C<$width> and C<$height> are missing, then the window size will be
470assumed. 638assumed.
471 639
472Example: load an image, blur it, and clip it to the window size to save 640Example: load an image, blur it, and clip it to the window size to save
473memory. 641memory.
474 642
475 clip blur 10, load "mybg.png" 643 clip keep { blur 10, load "mybg.png" }
476 644
477=cut 645=cut
478 646
479 sub clip($;$$;$$) { 647 sub clip($;$$;$$) {
480 my $img = pop; 648 my $img = pop;
490=item scale $width_factor, $height_factor, $img 658=item scale $width_factor, $height_factor, $img
491 659
492Scales the image by the given factors in horizontal 660Scales the image by the given factors in horizontal
493(C<$width>) and vertical (C<$height>) direction. 661(C<$width>) and vertical (C<$height>) direction.
494 662
495If only one factor is give, it is used for both directions. 663If only one factor is given, it is used for both directions.
496 664
497If no factors are given, scales the image to the window size without 665If no factors are given, scales the image to the window size without
498keeping aspect. 666keeping aspect.
499 667
500=item resize $width, $height, $img 668=item resize $width, $height, $img
553 721
554Example: move the image right by 20 pixels and down by 30. 722Example: move the image right by 20 pixels and down by 30.
555 723
556 move 20, 30, ... 724 move 20, 30, ...
557 725
726=item align $xalign, $yalign, $img
727
728Aligns the image according to a factor - C<0> means the image is moved to
729the left or top edge (for C<$xalign> or C<$yalign>), C<0.5> means it is
730exactly centered and C<1> means it touches the right or bottom edge.
731
732Example: remove any visible border around an image, center it vertically but move
733it to the right hand side.
734
735 align 1, 0.5, pad $img
736
558=item center $img 737=item center $img
559 738
560=item center $width, $height, $img 739=item center $width, $height, $img
561 740
562Centers the image, i.e. the center of the image is moved to the center of 741Centers the image, i.e. the center of the image is moved to the center of
563the terminal window (or the box specified by C<$width> and C<$height> if 742the terminal window (or the box specified by C<$width> and C<$height> if
564given). 743given).
744
745Example: load an image and center it.
746
747 center keep { pad load "mybg.png" }
565 748
566=item rootalign $img 749=item rootalign $img
567 750
568Moves the image so that it appears glued to the screen as opposed to the 751Moves the image so that it appears glued to the screen as opposed to the
569window. This gives the illusion of a larger area behind the window. It is 752window. This gives the illusion of a larger area behind the window. It is
570exactly equivalent to C<move -TX, -TY>, that is, it moves the image to the 753exactly equivalent to C<move -TX, -TY>, that is, it moves the image to the
571top left of the screen. 754top left of the screen.
572 755
573Example: load a background image, put it in mirror mode and root align it. 756Example: load a background image, put it in mirror mode and root align it.
574 757
575 rootalign mirror load "mybg.png" 758 rootalign keep { mirror load "mybg.png" }
576 759
577Example: take the screen background and align it, giving the illusion of 760Example: take the screen background and align it, giving the illusion of
578transparency as long as the window isn't in front of other windows. 761transparency as long as the window isn't in front of other windows.
579 762
580 rootalign root 763 rootalign root
581 764
582=cut 765=cut
583 766
584 sub move($$;$) { 767 sub move($$;$) {
585 my $img = pop->clone; 768 my $img = pop->clone;
586 $img->move ($_[0], $_[1]); 769 $img->move ($_[0], $_[1]);
587 $img 770 $img
588 } 771 }
589 772
773 sub align($;$$) {
774 my $img = pop;
775
776 move $_[0] * (TW - $img->w),
777 $_[1] * (TH - $img->h),
778 $img
779 }
780
590 sub center($;$$) { 781 sub center($;$$) {
591 my $img = pop; 782 my $img = pop;
592 my $w = $_[0] || TW; 783 my $w = $_[0] || TW;
593 my $h = $_[0] || TH; 784 my $h = $_[1] || TH;
594 785
595 move 0.5 * ($w - $img->w), 0.5 * ($h - $img->h), $img 786 move 0.5 * ($w - $img->w), 0.5 * ($h - $img->h), $img
596 } 787 }
597 788
598 sub rootalign($) { 789 sub rootalign($) {
599 move -TX, -TY, $_[0] 790 move -TX, -TY, $_[0]
600 } 791 }
601 792
793=item rotate $center_x, $center_y, $degrees, $img
794
795Rotates the image clockwise by C<$degrees> degrees, around the point at
796C<$center_x> and C<$center_y> (specified as factor of image width/height).
797
798Example: rotate the image by 90 degrees around its center.
799
800 rotate 0.5, 0.5, 90, keep { load "$HOME/mybg.png" }
801
802=cut
803
804 sub rotate($$$$) {
805 my $img = pop;
806 $img->rotate (
807 $_[0] * ($img->w + $img->x),
808 $_[1] * ($img->h + $img->y),
809 $_[2] * (3.14159265 / 180),
810 )
811 }
812
602=back 813=back
603 814
604=head2 COLOUR MODIFICATIONS 815=head2 COLOUR MODIFICATIONS
605 816
606The following operators change the pixels of the image. 817The following operators change the pixels of the image.
607 818
608=over 4 819=over 4
820
821=item tint $color, $img
822
823Tints the image in the given colour.
824
825Example: tint the image red.
826
827 tint "red", load "rgb.png"
828
829Example: the same, but specify the colour by component.
830
831 tint [1, 0, 0], load "rgb.png"
832
833=cut
834
835 sub tint($$) {
836 $_[1]->tint ($_[0])
837 }
838
839=item shade $factor, $img
840
841Shade the image by the given factor.
842
843=cut
844
845 sub shade($$) {
846 $_[1]->shade ($_[0])
847 }
609 848
610=item contrast $factor, $img 849=item contrast $factor, $img
611 850
612=item contrast $r, $g, $b, $img 851=item contrast $r, $g, $b, $img
613 852
640 879
641Values less than 0 reduce brightness, while values larger than 0 increase 880Values less than 0 reduce brightness, while values larger than 0 increase
642it. Useful range is from -1 to 1 - the former results in a black, the 881it. Useful range is from -1 to 1 - the former results in a black, the
643latter in a white picture. 882latter in a white picture.
644 883
645Due to idiosynchrasies in the underlying XRender extension, biases less 884Due to idiosyncrasies in the underlying XRender extension, biases less
646than zero can be I<very> slow. 885than zero can be I<very> slow.
886
887You can also try the experimental(!) C<muladd> operator.
647 888
648=cut 889=cut
649 890
650 sub contrast($$;$$;$) { 891 sub contrast($$;$$;$) {
651 my $img = pop; 892 my $img = pop;
652 my ($r, $g, $b, $a) = @_; 893 my ($r, $g, $b, $a) = @_;
653 894
654 ($g, $b) = ($r, $r) if @_ < 4; 895 ($g, $b) = ($r, $r) if @_ < 3;
655 $a = 1 if @_ < 5; 896 $a = 1 if @_ < 4;
656 897
657 $img = $img->clone; 898 $img = $img->clone;
658 $img->contrast ($r, $g, $b, $a); 899 $img->contrast ($r, $g, $b, $a);
659 $img 900 $img
660 } 901 }
661 902
662 sub brightness($$;$$;$) { 903 sub brightness($$;$$;$) {
663 my $img = pop; 904 my $img = pop;
664 my ($r, $g, $b, $a) = @_; 905 my ($r, $g, $b, $a) = @_;
665 906
666 ($g, $b) = ($r, $r) if @_ < 4; 907 ($g, $b) = ($r, $r) if @_ < 3;
667 $a = 1 if @_ < 5; 908 $a = 1 if @_ < 4;
668 909
669 $img = $img->clone; 910 $img = $img->clone;
670 $img->brightness ($r, $g, $b, $a); 911 $img->brightness ($r, $g, $b, $a);
671 $img 912 $img
913 }
914
915=item muladd $mul, $add, $img # EXPERIMENTAL
916
917First multiplies the pixels by C<$mul>, then adds C<$add>. This can be used
918to implement brightness and contrast at the same time, with a wider value
919range than contrast and brightness operators.
920
921Due to numerous bugs in XRender implementations, it can also introduce a
922number of visual artifacts.
923
924Example: increase contrast by a factor of C<$c> without changing image
925brightness too much.
926
927 muladd $c, (1 - $c) * 0.5, $img
928
929=cut
930
931 sub muladd($$$) {
932 $_[2]->muladd ($_[0], $_[1])
672 } 933 }
673 934
674=item blur $radius, $img 935=item blur $radius, $img
675 936
676=item blur $radius_horz, $radius_vert, $img 937=item blur $radius_horz, $radius_vert, $img
688 sub blur($$;$) { 949 sub blur($$;$) {
689 my $img = pop; 950 my $img = pop;
690 $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0]) 951 $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0])
691 } 952 }
692 953
693=item rotate $new_width, $new_height, $center_x, $center_y, $degrees 954=item focus_fade $img
694 955
695Rotates the image by C<$degrees> degrees, counter-clockwise, around the 956=item focus_fade $factor, $img
696pointer at C<$center_x> and C<$center_y> (specified as factor of image
697width/height), generating a new image with width C<$new_width> and height
698C<$new_height>.
699 957
700#TODO# new width, height, maybe more operators? 958=item focus_fade $factor, $color, $img
701 959
702Example: rotate the image by 90 degrees 960Fades the image by the given factor (and colour) when focus is lost (the
961same as the C<-fade>/C<-fadecolor> command line options, which also supply
962the default values for C<factor> and C<$color>. Unlike with C<-fade>, the
963C<$factor> is a real value, not a percentage value (that is, 0..1, not
9640..100).
703 965
704=cut 966Example: do the right thing when focus fading is requested.
705 967
706 sub rotate($$$$$$) { 968 focus_fade load "mybg.jpg";
969
970=cut
971
972 sub focus_fade($;$$) {
707 my $img = pop; 973 my $img = pop;
708 $img->rotate ( 974
709 $_[0], 975 return $img
710 $_[1], 976 if FOCUS;
711 $_[2] * $img->w, 977
712 $_[3] * $img->h, 978 my $fade = @_ >= 1 ? $_[0] : defined $self->resource ("fade") ? $self->resource ("fade") * 0.01 : 0;
713 $_[4] * (3.14159265 / 180), 979 my $color = @_ >= 2 ? $_[1] : $self->resource ("color+" . urxvt::Color_fade);
714 ) 980
981 $img = $img->tint ($color) if $color ne "rgb:00/00/00";
982 $img = $img->muladd (1 - $fade, 0) if $fade;
983
984 $img
715 } 985 }
716 986
717=back 987=back
718 988
989=head2 OTHER STUFF
990
991Anything that didn't fit any of the other categories, even after applying
992force and closing our eyes.
993
994=over 4
995
996=item keep { ... }
997
998This operator takes a code block as argument, that is, one or more
999statements enclosed by braces.
1000
1001The trick is that this code block is only evaluated when the outcome
1002changes - on other calls the C<keep> simply returns the image it computed
1003previously (yes, it should only be used with images). Or in other words,
1004C<keep> I<caches> the result of the code block so it doesn't need to be
1005computed again.
1006
1007This can be extremely useful to avoid redoing slow operations - for
1008example, if your background expression takes the root background, blurs it
1009and then root-aligns it it would have to blur the root background on every
1010window move or resize.
1011
1012Another example is C<load>, which can be quite slow.
1013
1014In fact, urxvt itself encloses the whole expression in some kind of
1015C<keep> block so it only is reevaluated as required.
1016
1017Putting the blur into a C<keep> block will make sure the blur is only done
1018once, while the C<rootalign> is still done each time the window moves.
1019
1020 rootalign keep { blur 10, root }
1021
1022This leaves the question of how to force reevaluation of the block,
1023in case the root background changes: If expression inside the block
1024is sensitive to some event (root background changes, window geometry
1025changes), then it will be reevaluated automatically as needed.
1026
1027=cut
1028
1029 sub keep(&) {
1030 my $id = $_[0]+0;
1031
1032 local $frame = $self->{frame_cache}{$id} ||= [$frame];
1033
1034 unless ($frame->[FR_CACHE]) {
1035 $frame->[FR_CACHE] = [ $_[0]() ];
1036
1037 my $self = $self;
1038 my $frame = $frame;
1039 Scalar::Util::weaken $frame;
1040 $self->compile_frame ($frame, sub {
1041 # clear this frame cache, also for all parents
1042 for (my $frame = $frame; $frame; $frame = $frame->[0]) {
1043 undef $frame->[FR_CACHE];
1044 }
1045
1046 $self->recalculate;
1047 });
1048 };
1049
1050 # in scalar context we always return the first original result, which
1051 # is not quite how perl works.
1052 wantarray
1053 ? @{ $frame->[FR_CACHE] }
1054 : $frame->[FR_CACHE][0]
1055 }
1056
1057# sub keep_clear() {
1058# delete $self->{frame_cache};
1059# }
1060
1061=back
1062
719=cut 1063=cut
720 1064
721} 1065}
722 1066
723sub parse_expr { 1067sub parse_expr {
724 my $expr = eval "sub {\npackage urxvt::bgdsl;\n#line 0 'background expression'\n$_[0]\n}"; 1068 my $expr = eval
1069 "sub {\n"
1070 . "package urxvt::bgdsl;\n"
1071 . "#line 0 'background expression'\n"
1072 . "$_[0]\n"
1073 . "}";
725 die if $@; 1074 die if $@;
726 $expr 1075 $expr
727} 1076}
728 1077
729# compiles a parsed expression 1078# compiles a parsed expression
730sub set_expr { 1079sub set_expr {
731 my ($self, $expr) = @_; 1080 my ($self, $expr) = @_;
732 1081
1082 $self->{root} = []; # the outermost frame
733 $self->{expr} = $expr; 1083 $self->{expr} = $expr;
734 $self->recalculate; 1084 $self->recalculate;
1085}
1086
1087# takes a hash of sensitivity indicators and installs watchers
1088sub compile_frame {
1089 my ($self, $frame, $cb) = @_;
1090
1091 my $state = $frame->[urxvt::bgdsl::FR_STATE] ||= {};
1092 my $again = $frame->[urxvt::bgdsl::FR_AGAIN];
1093
1094 # don't keep stuff alive
1095 Scalar::Util::weaken $state;
1096
1097 if ($again->{nested}) {
1098 $state->{nested} = 1;
1099 } else {
1100 delete $state->{nested};
1101 }
1102
1103 if (my $interval = $again->{time}) {
1104 $state->{time} = [$interval, urxvt::timer->new->after ($interval)->interval ($interval)]
1105 if $state->{time}[0] != $interval;
1106
1107 # callback *might* have changed, although we could just rule that out
1108 $state->{time}[1]->cb (sub {
1109 ++$state->{counter};
1110 $cb->();
1111 });
1112 } else {
1113 delete $state->{time};
1114 }
1115
1116 if ($again->{position}) {
1117 $state->{position} = $self->on (position_change => $cb);
1118 } else {
1119 delete $state->{position};
1120 }
1121
1122 if ($again->{size}) {
1123 $state->{size} = $self->on (size_change => $cb);
1124 } else {
1125 delete $state->{size};
1126 }
1127
1128 if ($again->{rootpmap}) {
1129 $state->{rootpmap} = $self->on (rootpmap_change => $cb);
1130 } else {
1131 delete $state->{rootpmap};
1132 }
1133
1134 if ($again->{focus}) {
1135 $state->{focus} = $self->on (focus_in => $cb, focus_out => $cb);
1136 } else {
1137 delete $state->{focus};
1138 }
735} 1139}
736 1140
737# evaluate the current bg expression 1141# evaluate the current bg expression
738sub recalculate { 1142sub recalculate {
739 my ($arg_self) = @_; 1143 my ($arg_self) = @_;
749 1153
750 $arg_self->{next_refresh} = urxvt::NOW + $MIN_INTERVAL; 1154 $arg_self->{next_refresh} = urxvt::NOW + $MIN_INTERVAL;
751 1155
752 # set environment to evaluate user expression 1156 # set environment to evaluate user expression
753 1157
754 local $self = $arg_self; 1158 local $self = $arg_self;
755
756 local $HOME = $ENV{HOME}; 1159 local $HOME = $ENV{HOME};
757 local $old = $self->{state}; 1160 local $frame = $self->{root};
758 local $new = my $state = $self->{state} = {};
759 1161
760 ($x, $y, $w, $h) =
761 $self->background_geometry ($self->{border}); 1162 ($x, $y, $w, $h) = $self->background_geometry ($self->{border});
1163 $focus = $self->focus;
762 1164
763 # evaluate user expression 1165 # evaluate user expression
764 1166
765 my $img = eval { $self->{expr}->() }; 1167 my @img = eval { $self->{expr}->() };
766 warn $@ if $@;#d# 1168 die $@ if $@;
1169 die "background-expr did not return anything.\n" unless @img;
1170 die "background-expr: expected image(s), got something else.\n"
767 die if !UNIVERSAL::isa $img, "urxvt::img"; 1171 if grep { !UNIVERSAL::isa $_, "urxvt::img" } @img;
768 1172
769 $state->{size_sensitive} = 1 1173 my $img = urxvt::bgdsl::merge @img;
1174
1175 $frame->[FR_AGAIN]{size} = 1
770 if $img->repeat_mode != urxvt::RepeatNormal; 1176 if $img->repeat_mode != urxvt::RepeatNormal;
771 1177
772 # if the expression is sensitive to external events, prepare reevaluation then 1178 # if the expression is sensitive to external events, prepare reevaluation then
773 1179 $self->compile_frame ($frame, sub { $arg_self->recalculate });
774 my $repeat;
775
776 if (my $again = $state->{again}) {
777 $repeat = 1;
778 my $self = $self;
779 $state->{timer} = $again == $old->{again}
780 ? $old->{timer}
781 : urxvt::timer->new->after ($again)->interval ($again)->cb (sub {
782 ++$self->{counter};
783 $self->recalculate
784 });
785 }
786
787 if (delete $state->{position_sensitive}) {
788 $repeat = 1;
789 $self->enable (position_change => sub { $_[0]->recalculate });
790 } else {
791 $self->disable ("position_change");
792 }
793
794 if (delete $state->{size_sensitive}) {
795 $repeat = 1;
796 $self->enable (size_change => sub { $_[0]->recalculate });
797 } else {
798 $self->disable ("size_change");
799 }
800
801 if (delete $state->{rootpmap_sensitive}) {
802 $repeat = 1;
803 $self->enable (rootpmap_change => sub { $_[0]->recalculate });
804 } else {
805 $self->disable ("rootpmap_change");
806 }
807 1180
808 # clear stuff we no longer need 1181 # clear stuff we no longer need
809 1182
810 %$old = (); 1183# unless (%{ $frame->[FR_STATE] }) {
811
812 unless ($repeat) {
813 delete $self->{state}; 1184# delete $self->{state};
814 delete $self->{expr}; 1185# delete $self->{expr};
815 } 1186# }
816 1187
817 # set background pixmap 1188 # set background pixmap
818 1189
819 $self->set_background ($img, $self->{border}); 1190 $self->set_background ($img, $self->{border});
820 $self->scr_recolour (0); 1191 $self->scr_recolor (0);
821 $self->want_refresh; 1192 $self->want_refresh;
822} 1193}
823 1194
824sub on_start { 1195sub on_start {
825 my ($self) = @_; 1196 my ($self) = @_;
826 1197
827 my $expr = $self->x_resource ("background.expr") 1198 my $expr = $self->x_resource ("%.expr")
828 or return; 1199 or return;
829 1200
1201 $self->has_render
1202 or die "background extension needs RENDER extension 0.10 or higher, ignoring background-expr.\n";
1203
830 $self->set_expr (parse_expr $expr); 1204 $self->set_expr (parse_expr $expr);
831 $self->{border} = $self->x_resource_boolean ("background.border"); 1205 $self->{border} = $self->x_resource_boolean ("%.border");
1206
1207 $MIN_INTERVAL = $self->x_resource ("%.interval");
832 1208
833 () 1209 ()
834} 1210}
835 1211

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines