ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/perl/background
(Generate patch)

Comparing rxvt-unicode/src/perl/background (file contents):
Revision 1.34 by root, Thu Jun 7 17:04:33 2012 UTC vs.
Revision 1.56 by root, Thu Jun 14 17:06:57 2012 UTC

1#! perl 1#! perl
2 2
3#:META:X_RESOURCE:%.expr:string:background expression 3#:META:X_RESOURCE:%.expr:string:background expression
4#:META:X_RESOURCE:%.border.:boolean:respect the terminal border 4#:META:X_RESOURCE:%.border:boolean:respect the terminal border
5#:META:X_RESOURCE:%.interval:seconds:minimum time between updates
5 6
7=head1 NAME
8
6=head1 background - manage terminal background 9 background - manage terminal background
7 10
8=head2 SYNOPSIS 11=head1 SYNOPSIS
9 12
10 rxvt -background-expr 'background expression' 13 urxvt --background-expr 'background expression'
11 -background-border 14 --background-border
15 --background-interval seconds
12 16
13=head2 DESCRIPTION 17=head1 DESCRIPTION
14 18
19This extension manages the terminal background by creating a picture that
20is behind the text, replacing the normal background colour.
21
22It does so by evaluating a Perl expression that I<calculates> the image on
23the fly, for example, by grabbing the root background or loading a file.
24
25While the full power of Perl is available, the operators have been design
26to be as simple as possible.
27
28For example, to load an image and scale it to the window size, you would
29use:
30
31 urxvt --background-expr 'scale load "/path/to/mybg.png"'
32
33Or specified as a X resource:
34
35 URxvt.background-expr: scale load "/path/to/mybg.png"
36
37=head1 THEORY OF OPERATION
38
39At startup, just before the window is mapped for the first time, the
40expression is evaluated and must yield an image. The image is then
41extended as necessary to cover the whole terminal window, and is set as a
42background pixmap.
43
44If the image contains an alpha channel, then it will be used as-is in
45visuals that support alpha channels (for example, for a compositing
46manager). In other visuals, the terminal background colour will be used to
47replace any transparency.
48
49When the expression relies, directly or indirectly, on the window size,
50position, the root pixmap, or a timer, then it will be remembered. If not,
51then it will be removed.
52
53If any of the parameters that the expression relies on changes (when the
54window is moved or resized, its position or size changes; when the root
55pixmap is replaced by another one the root background changes; or when the
56timer elapses), then the expression will be evaluated again.
57
58For example, an expression such as C<scale load "$HOME/mybg.png"> scales the
59image to the window size, so it relies on the window size and will
60be reevaluated each time it is changed, but not when it moves for
61example. That ensures that the picture always fills the terminal, even
62after its size changes.
63
64=head2 EXPRESSIONS
65
66Expressions are normal Perl expressions, in fact, they are Perl blocks -
67which means you could use multiple lines and statements:
68
69 again 3600;
70 if (localtime now)[6]) {
71 return scale load "$HOME/weekday.png";
72 } else {
73 return scale load "$HOME/sunday.png";
74 }
75
76This expression is evaluated once per hour. It will set F<sunday.png> as
77background on Sundays, and F<weekday.png> on all other days.
78
79Fortunately, we expect that most expressions will be much simpler, with
80little Perl knowledge needed.
81
82Basically, you always start with a function that "generates" an image
83object, such as C<load>, which loads an image from disk, or C<root>, which
84returns the root window background image:
85
86 load "$HOME/mypic.png"
87
88The path is usually specified as a quoted string (the exact rules can be
89found in the L<perlop> manpage). The F<$HOME> at the beginning of the
90string is expanded to the home directory.
91
92Then you prepend one or more modifiers or filtering expressions, such as
93C<scale>:
94
95 scale load "$HOME/mypic.png"
96
97Just like a mathematical expression with functions, you should read these
98expressions from right to left, as the C<load> is evaluated first, and
99its result becomes the argument to the C<scale> function.
100
101Many operators also allow some parameters preceding the input image
102that modify its behaviour. For example, C<scale> without any additional
103arguments scales the image to size of the terminal window. If you specify
104an additional argument, it uses it as a scale factor (multiply by 100 to
105get a percentage):
106
107 scale 2, load "$HOME/mypic.png"
108
109This enlarges the image by a factor of 2 (200%). As you can see, C<scale>
110has now two arguments, the C<200> and the C<load> expression, while
111C<load> only has one argument. Arguments are separated from each other by
112commas.
113
114Scale also accepts two arguments, which are then separate factors for both
115horizontal and vertical dimensions. For example, this halves the image
116width and doubles the image height:
117
118 scale 0.5, 2, load "$HOME/mypic.png"
119
120Other effects than scaling are also readily available, for example, you can
121tile the image to fill the whole window, instead of resizing it:
122
123 tile load "$HOME/mypic.png"
124
125In fact, images returned by C<load> are in C<tile> mode by default, so the C<tile> operator
126is kind of superfluous.
127
128Another common effect is to mirror the image, so that the same edges touch:
129
130 mirror load "$HOME/mypic.png"
131
132This is also a typical background expression:
133
134 rootalign root
135
136It first takes a snapshot of the screen background image, and then
137moves it to the upper left corner of the screen - the result is
138pseudo-transparency, as the image seems to be static while the window is
139moved around.
140
141=head2 CYCLES AND CACHING
142
143As has been mentioned before, the expression might be evaluated multiple
144times. Each time the expression is reevaluated, a new cycle is said to
145have begun. Many operators cache their results till the next cycle.
146
147For example, the C<load> operator keeps a copy of the image. If it is
148asked to load the same image on the next cycle it will not load it again,
149but return the cached copy.
150
151This only works for one cycle though, so as long as you load the same
152image every time, it will always be cached, but when you load a different
153image, it will forget about the first one.
154
155This allows you to either speed things up by keeping multiple images in
156memory, or conserve memory by loading images more often.
157
158For example, you can keep two images in memory and use a random one like
159this:
160
161 my $img1 = load "img1.png";
162 my $img2 = load "img2.png";
163 (0.5 > rand) ? $img1 : $img2
164
165Since both images are "loaded" every time the expression is evaluated,
166they are always kept in memory. Contrast this version:
167
168 my $path1 = "img1.png";
169 my $path2 = "img2.png";
170 load ((0.5 > rand) ? $path1 : $path2)
171
172Here, a path is selected randomly, and load is only called for one image,
173so keeps only one image in memory. If, on the next evaluation, luck
174decides to use the other path, then it will have to load that image again.
175
15=head2 REFERENCE 176=head1 REFERENCE
16 177
17=cut 178=head2 COMMAND LINE SWITCHES
18 179
19our $EXPR; 180=over 4
20#$EXPR = 'move W * 0.1, -H * 0.1, resize W * 0.5, H * 0.5, repeat_none load "opensource.png"';
21$EXPR = 'move -TX, -TY, load "argb.png"';
22#$EXPR = '
23# rotate W, H, 50, 50, counter 1/59.95, repeat_mirror,
24# clip X, Y, W, H, repeat_mirror,
25# load "/root/pix/das_fette_schwein.jpg"
26#';
27#$EXPR = 'solid "red"';
28#$EXPR = 'blur root, 10, 10'
29#$EXPR = 'blur move (root, -x, -y), 5, 5'
30#resize load "/root/pix/das_fette_schwein.jpg", w, h
31 181
182=item --background-expr perl-expression
183
184Specifies the Perl expression to evaluate.
185
186=item --background-border
187
188By default, the expression creates an image that fills the full window,
189overwriting borders and any other areas, such as the scrollbar.
190
191Specifying this flag changes the behaviour, so that the image only
192replaces the background of the character area.
193
194=item --background-interval seconds
195
196Since some operations in the underlying XRender extension can effectively
197freeze your X-server for prolonged time, this extension enforces a minimum
198time between updates, which is normally about 0.1 seconds.
199
200If you want to do updates more often, you can decrease this safety
201interval with this switch.
202
203=back
204
205=cut
206
207our %_IMG_CACHE;
208our $HOME;
32our ($self, $old, $new); 209our ($self, $old, $new);
33our ($x, $y, $w, $h); 210our ($x, $y, $w, $h);
34 211
35# enforce at least this interval between updates 212# enforce at least this interval between updates
36our $MIN_INTERVAL = 1/100; 213our $MIN_INTERVAL = 6/59.951;
37 214
38{ 215{
39 package urxvt::bgdsl; # background language 216 package urxvt::bgdsl; # background language
217
218 use List::Util qw(min max sum shuffle);
40 219
41=head2 PROVIDERS/GENERATORS 220=head2 PROVIDERS/GENERATORS
42 221
43These functions provide an image, by loading it from disk, grabbing it 222These functions provide an image, by loading it from disk, grabbing it
44from the root screen or by simply generating it. They are used as starting 223from the root screen or by simply generating it. They are used as starting
49=item load $path 228=item load $path
50 229
51Loads the image at the given C<$path>. The image is set to plane tiling 230Loads the image at the given C<$path>. The image is set to plane tiling
52mode. 231mode.
53 232
54Loaded images will be cached for one cycle. 233Loaded images will be cached for one cycle, and shared between temrinals
234running in the same process (e.g. in C<urxvtd>).
55 235
236=item load_uc $path
237
238Load uncached - same as load, but does not cache the image. This function
239is most useufl if you want to optimise a background expression in some
240way.
241
56=cut 242=cut
243
244 sub load_uc($) {
245 my ($path) = @_;
246
247 $_IMG_CACHE{$path} || do {
248 my $img = $self->new_img_from_file ($path);
249 Scalar::Util::weaken ($_IMG_CACHE{$path} = $img);
250 $img
251 }
252 }
57 253
58 sub load($) { 254 sub load($) {
59 my ($path) = @_; 255 my ($path) = @_;
60 256
61 $new->{load}{$path} = $old->{load}{$path} || $self->new_img_from_file ($path); 257 $new->{load}{$path} = $old->{load}{$path} || load_uc $path;
62 } 258 }
63 259
64=item root 260=item root
65 261
66Returns the root window pixmap, that is, hopefully, the background image 262Returns the root window pixmap, that is, hopefully, the background image
70reevaluated when the bg image changes. 266reevaluated when the bg image changes.
71 267
72=cut 268=cut
73 269
74 sub root() { 270 sub root() {
75 $new->{rootpmap_sensitive} = 1; 271 $new->{again}{rootpmap} = 1;
76 die "root op not supported, exg, we need you"; 272 $self->new_img_from_root
77 } 273 }
78 274
79=item solid $colour 275=item solid $colour
80 276
81=item solid $width, $height, $colour 277=item solid $width, $height, $colour
82 278
83Creates a new image and completely fills it with the given colour. The 279Creates a new image and completely fills it with the given colour. The
84image is set to tiling mode. 280image is set to tiling mode.
85 281
86If <$width> and C<$height> are omitted, it creates a 1x1 image, which is 282If C<$width> and C<$height> are omitted, it creates a 1x1 image, which is
87useful for solid backgrounds or for use in filtering effects. 283useful for solid backgrounds or for use in filtering effects.
88 284
89=cut 285=cut
90 286
91 sub solid($$;$) { 287 sub solid($;$$) {
92 my $colour = pop; 288 my $colour = pop;
93 289
94 my $img = $self->new_img (urxvt::PictStandardARGB32, $_[0] || 1, $_[1] || 1); 290 my $img = $self->new_img (urxvt::PictStandardARGB32, $_[0] || 1, $_[1] || 1);
95 $img->fill ($colour); 291 $img->fill ($colour);
96 $img 292 $img
97 } 293 }
98 294
99=back 295=item clone $img
100 296
101=head2 VARIABLES 297Returns an exact copy of the image. This is useful if you want to have
298multiple copies of the same image to apply different effects to.
102 299
103The following functions provide variable data such as the terminal
104window dimensions. Most of them make your expression sensitive to some
105events, for example using C<TW> (terminal width) means your expression is
106evaluated again when the terminal is resized.
107
108=over 4
109
110=item TX
111
112=item TY
113
114Return the X and Y coordinates of the terminal window (the terminal
115window is the full window by default, and the character area only when in
116border-respect mode).
117
118Using these functions make your expression sensitive to window moves.
119
120These functions are mainly useful to align images to the root window.
121
122Example: load an image and align it so it looks as if anchored to the
123background.
124
125 move -TX, -TY, load "mybg.png"
126
127=item TW
128
129Return the width (C<TW>) and height (C<TH>) of the terminal window (the
130terminal window is the full window by default, and the character area only
131when in border-respect mode).
132
133Using these functions make your expression sensitive to window resizes.
134
135These functions are mainly useful to scale images, or to clip images to
136the window size to conserve memory.
137
138Example: take the screen background, clip it to the window size, blur it a
139bit, align it to the window position and use it as background.
140
141 clip move -TX, -TY, blur 5, root
142
143=cut 300=cut
144 301
145 sub TX() { $new->{position_sensitive} = 1; $x }
146 sub TY() { $new->{position_sensitive} = 1; $y }
147 sub TW() { $new->{size_sensitive} = 1; $w }
148 sub TH() { $new->{size_sensitive} = 1; $h }
149
150=item now
151
152Returns the current time as (fractional) seconds since the epoch.
153
154Using this expression does I<not> make your expression sensitive to time,
155but the next two functions do.
156
157=item again $seconds
158
159When this function is used the expression will be reevaluated again in
160C<$seconds> seconds.
161
162Example: load some image and rotate it according to the time of day (as if it were
163the hour pointer of a clock). update this image every minute.
164
165 again 60; rotate TW, TH, 50, 50, (now % 86400) * -720 / 86400, scale load "myclock.png"
166
167=item counter $seconds
168
169Like C<again>, but also returns an increasing counter value, starting at
1700, which might be useful for some simple animation effects.
171
172=cut
173
174 sub now() { urxvt::NOW }
175
176 sub again($) {
177 $new->{again} = $_[0];
178 }
179
180 sub counter($) { 302 sub clone($) {
181 $new->{again} = $_[0]; 303 $_[0]->clone
182 $self->{counter} + 0
183 } 304 }
184 305
185=back 306=item merge $img ...
307
308Takes any number of images and merges them together, creating a single image containing them all.
309
310=cut
311
312 sub merge(@) {
313 #TODO
314 }
186 315
187=head2 TILING MODES 316=head2 TILING MODES
188 317
189The following operators modify the tiling mode of an image, that is, the 318The following operators modify the tiling mode of an image, that is, the
190way that pixels outside the image area are painted when the image is used. 319way that pixels outside the image area are painted when the image is used.
207Similar to tile, but reflects the image each time it uses a new copy, so 336Similar to tile, but reflects the image each time it uses a new copy, so
208that top edges always touch top edges, right edges always touch right 337that top edges always touch top edges, right edges always touch right
209edges and so on (with normal tiling, left edges always touch right edges 338edges and so on (with normal tiling, left edges always touch right edges
210and top always touch bottom edges). 339and top always touch bottom edges).
211 340
212Exmaple: load an image and mirror it over the background, avoiding sharp 341Example: load an image and mirror it over the background, avoiding sharp
213edges at the image borders at the expense of mirroring the image itself 342edges at the image borders at the expense of mirroring the image itself
214 343
215 mirror load "mybg.png" 344 mirror load "mybg.png"
216 345
217=item pad $img 346=item pad $img
219Takes an image and modifies it so that all pixels outside the image area 348Takes an image and modifies it so that all pixels outside the image area
220become transparent. This mode is most useful when you want to place an 349become transparent. This mode is most useful when you want to place an
221image over another image or the background colour while leaving all 350image over another image or the background colour while leaving all
222background pixels outside the image unchanged. 351background pixels outside the image unchanged.
223 352
224Example: load an image and display it in the upper left corner. The rets 353Example: load an image and display it in the upper left corner. The rest
225of the space is left "empty" (transparent or wahtever your compisotr does 354of the space is left "empty" (transparent or whatever your compositor does
226in alpha mode, else background colour). 355in alpha mode, else background colour).
227 356
228 pad load "mybg.png" 357 pad load "mybg.png"
229 358
230=item extend $img 359=item extend $img
231 360
232Extends the image over the whole plane, using the closest pixel in the 361Extends the image over the whole plane, using the closest pixel in the
233area outside the image. This mode is mostly useful when you more complex 362area outside the image. This mode is mostly useful when you use more complex
234filtering operations and want the pixels outside the image to have the 363filtering operations and want the pixels outside the image to have the
235same values as the pixels near the edge. 364same values as the pixels near the edge.
236 365
237Example: just for curiosity, how does this pixel extension stuff work? 366Example: just for curiosity, how does this pixel extension stuff work?
238 367
264 $img 393 $img
265 } 394 }
266 395
267=back 396=back
268 397
269=head2 PIXEL OPERATORS 398=head2 VARIABLE VALUES
270 399
271The following operators modify the image pixels in various ways. 400The following functions provide variable data such as the terminal window
401dimensions. They are not (Perl-) variables, they just return stuff that
402varies. Most of them make your expression sensitive to some events, for
403example using C<TW> (terminal width) means your expression is evaluated
404again when the terminal is resized.
272 405
273=over 4 406=over 4
274 407
275=item clone $img 408=item TX
276 409
277Returns an exact copy of the image. 410=item TY
278 411
279=cut 412Return the X and Y coordinates of the terminal window (the terminal
413window is the full window by default, and the character area only when in
414border-respect mode).
280 415
416Using these functions make your expression sensitive to window moves.
417
418These functions are mainly useful to align images to the root window.
419
420Example: load an image and align it so it looks as if anchored to the
421background.
422
423 move -TX, -TY, load "mybg.png"
424
425=item TW
426
427Return the width (C<TW>) and height (C<TH>) of the terminal window (the
428terminal window is the full window by default, and the character area only
429when in border-respect mode).
430
431Using these functions make your expression sensitive to window resizes.
432
433These functions are mainly useful to scale images, or to clip images to
434the window size to conserve memory.
435
436Example: take the screen background, clip it to the window size, blur it a
437bit, align it to the window position and use it as background.
438
439 clip move -TX, -TY, once { blur 5, root }
440
441=cut
442
443 sub TX() { $new->{again}{position} = 1; $x }
444 sub TY() { $new->{again}{position} = 1; $y }
445 sub TW() { $new->{again}{size} = 1; $w }
446 sub TH() { $new->{again}{size} = 1; $h }
447
448=item now
449
450Returns the current time as (fractional) seconds since the epoch.
451
452Using this expression does I<not> make your expression sensitive to time,
453but the next two functions do.
454
455=item again $seconds
456
457When this function is used the expression will be reevaluated again in
458C<$seconds> seconds.
459
460Example: load some image and rotate it according to the time of day (as if it were
461the hour pointer of a clock). Update this image every minute.
462
463 again 60; rotate 50, 50, (now % 86400) * -720 / 86400, scale load "myclock.png"
464
465=item counter $seconds
466
467Like C<again>, but also returns an increasing counter value, starting at
4680, which might be useful for some simple animation effects.
469
470=cut
471
472 sub now() { urxvt::NOW }
473
474 sub again($) {
475 $new->{again}{time} = $_[0];
476 }
477
281 sub clone($) { 478 sub counter($) {
282 $_[0]->clone 479 $new->{again}{time} = $_[0];
480 $self->{counter} + 0
283 } 481 }
482
483=back
484
485=head2 SHAPE CHANGING OPERATORS
486
487The following operators modify the shape, size or position of the image.
488
489=over 4
284 490
285=item clip $img 491=item clip $img
286 492
287=item clip $width, $height, $img 493=item clip $width, $height, $img
288 494
312 $img->sub_rect ($_[0], $_[1], $w, $h) 518 $img->sub_rect ($_[0], $_[1], $w, $h)
313 } 519 }
314 520
315=item scale $img 521=item scale $img
316 522
317=item scale $size_percent, $img 523=item scale $size_factor, $img
318 524
319=item scale $width_percent, $height_percent, $img 525=item scale $width_factor, $height_factor, $img
320 526
321Scales the image by the given percentages in horizontal 527Scales the image by the given factors in horizontal
322(C<$width_percent>) and vertical (C<$height_percent>) direction. 528(C<$width>) and vertical (C<$height>) direction.
323 529
324If only one percentage is give, it is used for both directions. 530If only one factor is give, it is used for both directions.
325 531
326If no percentages are given, scales the image to the window size without 532If no factors are given, scales the image to the window size without
327keeping aspect. 533keeping aspect.
328 534
329=item resize $width, $height, $img 535=item resize $width, $height, $img
330 536
331Resizes the image to exactly C<$width> times C<$height> pixels. 537Resizes the image to exactly C<$width> times C<$height> pixels.
332 538
333=cut 539=item fit $img
334 540
335#TODO: maximise, maximise_fill? 541=item fit $width, $height, $img
542
543Fits the image into the given C<$width> and C<$height> without changing
544aspect, or the terminal size. That means it will be shrunk or grown until
545the whole image fits into the given area, possibly leaving borders.
546
547=item cover $img
548
549=item cover $width, $height, $img
550
551Similar to C<fit>, but shrinks or grows until all of the area is covered
552by the image, so instead of potentially leaving borders, it will cut off
553image data that doesn't fit.
554
555=cut
336 556
337 sub scale($;$;$) { 557 sub scale($;$;$) {
338 my $img = pop; 558 my $img = pop;
339 559
340 @_ == 2 ? $img->scale ($_[0] * $img->w * 0.01, $_[1] * $img->h * 0.01) 560 @_ == 2 ? $img->scale ($_[0] * $img->w, $_[1] * $img->h)
341 : @_ ? $img->scale ($_[0] * $img->w * 0.01, $_[0] * $img->h * 0.01) 561 : @_ ? $img->scale ($_[0] * $img->w, $_[0] * $img->h)
342 : $img->scale (TW, TH) 562 : $img->scale (TW, TH)
343 } 563 }
344 564
345 sub resize($$$) { 565 sub resize($$$) {
346 my $img = pop; 566 my $img = pop;
347 $img->scale ($_[0], $_[1]) 567 $img->scale ($_[0], $_[1])
348 } 568 }
569
570 sub fit($;$$) {
571 my $img = pop;
572 my $w = ($_[0] || TW) / $img->w;
573 my $h = ($_[1] || TH) / $img->h;
574 scale +(min $w, $h), $img
575 }
576
577 sub cover($;$$) {
578 my $img = pop;
579 my $w = ($_[0] || TW) / $img->w;
580 my $h = ($_[1] || TH) / $img->h;
581 scale +(max $w, $h), $img
582 }
583
584=item move $dx, $dy, $img
585
586Moves the image by C<$dx> pixels in the horizontal, and C<$dy> pixels in
587the vertical.
588
589Example: move the image right by 20 pixels and down by 30.
590
591 move 20, 30, ...
592
593=item align $xalign, $yalign, $img
594
595Aligns the image according to a factor - C<0> means the image is moved to
596the left or top edge (for C<$xalign> or C<$yalign>), C<0.5> means it is
597exactly centered and C<1> means it touches the right or bottom edge.
598
599Example: remove any visible border around an image, center it vertically but move
600it to the right hand side.
601
602 align 1, 0.5, pad $img
603
604=item center $img
605
606=item center $width, $height, $img
607
608Centers the image, i.e. the center of the image is moved to the center of
609the terminal window (or the box specified by C<$width> and C<$height> if
610given).
611
612Example: load an image and center it.
613
614 center pad load "mybg.png"
615
616=item rootalign $img
617
618Moves the image so that it appears glued to the screen as opposed to the
619window. This gives the illusion of a larger area behind the window. It is
620exactly equivalent to C<move -TX, -TY>, that is, it moves the image to the
621top left of the screen.
622
623Example: load a background image, put it in mirror mode and root align it.
624
625 rootalign mirror load "mybg.png"
626
627Example: take the screen background and align it, giving the illusion of
628transparency as long as the window isn't in front of other windows.
629
630 rootalign root
631
632=cut
349 633
350 sub move($$;$) { 634 sub move($$;$) {
351 my $img = pop->clone; 635 my $img = pop->clone;
352 $img->move ($_[0], $_[1]); 636 $img->move ($_[0], $_[1]);
353 $img 637 $img
354 } 638 }
355 639
640 sub align($;$$) {
641 my $img = pop;
642
643 move $_[0] * (TW - $img->w),
644 $_[1] * (TH - $img->h),
645 $img
646 }
647
648 sub center($;$$) {
649 my $img = pop;
650 my $w = $_[0] || TW;
651 my $h = $_[1] || TH;
652
653 move 0.5 * ($w - $img->w), 0.5 * ($h - $img->h), $img
654 }
655
656 sub rootalign($) {
657 move -TX, -TY, $_[0]
658 }
659
660=item rotate $center_x, $center_y, $degrees
661
662Rotates the image by C<$degrees> degrees, counter-clockwise, around the
663pointer at C<$center_x> and C<$center_y> (specified as factor of image
664width/height).
665
666#TODO# new width, height, maybe more operators?
667
668Example: rotate the image by 90 degrees
669
670=cut
671
356 sub rotate($$$$$$) { 672 sub rotate($$$$) {
357 my $img = pop; 673 my $img = pop;
358 $img->rotate ( 674 $img->rotate (
359 $_[0],
360 $_[1],
361 $_[2] * $img->w * .01, 675 $_[0] * $img->w,
362 $_[3] * $img->h * .01, 676 $_[1] * $img->h,
363 $_[4] * (3.14159265 / 180), 677 $_[2] * (3.14159265 / 180),
364 ) 678 )
365 } 679 }
366 680
367 sub blur($$;$) { 681=back
368 my $img = pop; 682
369 $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0]) 683=head2 COLOUR MODIFICATIONS
370 } 684
685The following operators change the pixels of the image.
686
687=over 4
688
689=item contrast $factor, $img
690
691=item contrast $r, $g, $b, $img
692
693=item contrast $r, $g, $b, $a, $img
694
695Adjusts the I<contrast> of an image.
696
697The first form applies a single C<$factor> to red, green and blue, the
698second form applies separate factors to each colour channel, and the last
699form includes the alpha channel.
700
701Values from 0 to 1 lower the contrast, values higher than 1 increase the
702contrast.
703
704Due to limitations in the underlying XRender extension, lowering contrast
705also reduces brightness, while increasing contrast currently also
706increases brightness.
707
708=item brightness $bias, $img
709
710=item brightness $r, $g, $b, $img
711
712=item brightness $r, $g, $b, $a, $img
713
714Adjusts the brightness of an image.
715
716The first form applies a single C<$bias> to red, green and blue, the
717second form applies separate biases to each colour channel, and the last
718form includes the alpha channel.
719
720Values less than 0 reduce brightness, while values larger than 0 increase
721it. Useful range is from -1 to 1 - the former results in a black, the
722latter in a white picture.
723
724Due to idiosyncrasies in the underlying XRender extension, biases less
725than zero can be I<very> slow.
726
727=cut
371 728
372 sub contrast($$;$$;$) { 729 sub contrast($$;$$;$) {
373 my $img = pop; 730 my $img = pop;
374 my ($r, $g, $b, $a) = @_; 731 my ($r, $g, $b, $a) = @_;
375 732
376 ($g, $b) = ($r, $r) if @_ < 4; 733 ($g, $b) = ($r, $r) if @_ < 3;
377 $a = 1 if @_ < 5; 734 $a = 1 if @_ < 4;
378 735
379 $img = $img->clone; 736 $img = $img->clone;
380 $img->contrast ($r, $g, $b, $a); 737 $img->contrast ($r, $g, $b, $a);
381 $img 738 $img
382 } 739 }
383 740
384 sub brightness($$;$$;$) { 741 sub brightness($$;$$;$) {
385 my $img = pop; 742 my $img = pop;
386 my ($r, $g, $b, $a) = @_; 743 my ($r, $g, $b, $a) = @_;
387 744
388 ($g, $b) = ($r, $r) if @_ < 4; 745 ($g, $b) = ($r, $r) if @_ < 3;
389 $a = 1 if @_ < 5; 746 $a = 1 if @_ < 4;
390 747
391 $img = $img->clone; 748 $img = $img->clone;
392 $img->brightness ($r, $g, $b, $a); 749 $img->brightness ($r, $g, $b, $a);
393 $img 750 $img
751 }
752
753=item blur $radius, $img
754
755=item blur $radius_horz, $radius_vert, $img
756
757Gaussian-blurs the image with (roughly) C<$radius> pixel radius. The radii
758can also be specified separately.
759
760Blurring is often I<very> slow, at least compared or other
761operators. Larger blur radii are slower than smaller ones, too, so if you
762don't want to freeze your screen for long times, start experimenting with
763low values for radius (<5).
764
765=cut
766
767 sub blur($$;$) {
768 my $img = pop;
769 $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0])
770 }
771
772=back
773
774=head2 OTHER STUFF
775
776Anything that didn't fit any of the other categories, even after applying
777force and closing our eyes.
778
779=over 4
780
781=item once { ... }
782
783This function takes a code block as argument, that is, one or more
784statements enclosed by braces.
785
786The trick is that this code block is only evaluated once - future calls
787will simply return the original image (yes, it should only be used with
788images).
789
790This can be extremely useful to avoid redoign the same slow operations
791again and again- for example, if your background expression takes the root
792background, blurs it and then root-aligns it it would have to blur the
793root background on every window move or resize.
794
795Putting the blur into a C<once> block will make sure the blur is only done
796once:
797
798 rootlign once { blur 10, root }
799
800This leaves the question of how to force reevaluation of the block, in
801case the root background changes: Right now, all once blocks forget that
802they ahve been executed before each time the root background changes (if
803the expression is sensitive to that) or when C<once_again> is called.
804
805=item once_again
806
807Resets all C<once> block as if they had never been called, i.e. on the
808next call they will be reevaluated again.
809
810=cut
811
812 sub once(&) {
813 my $once = $self->{once_cache}{$_[0]+0} ||= do {
814 local $new->{again};
815 my @res = $_[0]();
816 [$new->{again}, \@res]
817 };
818
819 $new->{again} = {
820 %{ $new->{again} },
821 %{ $once->[0] }
822 };
823
824 # in scalar context we always return the first original result, which
825 # is not quite how perl works.
826 wantarray
827 ? @{ $once->[1] }
828 : $once->[1][0]
829 }
830
831 sub once_again() {
832 delete $self->{once_cache};
394 } 833 }
395 834
396=back 835=back
397 836
398=cut 837=cut
430 869
431 # set environment to evaluate user expression 870 # set environment to evaluate user expression
432 871
433 local $self = $arg_self; 872 local $self = $arg_self;
434 873
874 local $HOME = $ENV{HOME};
435 local $old = $self->{state}; 875 local $old = $self->{state};
436 local $new = my $state = $self->{state} = {}; 876 local $new = my $state = $self->{state} = {};
437 877
438 ($x, $y, $w, $h) = 878 ($x, $y, $w, $h) =
439 $self->background_geometry ($self->{border}); 879 $self->background_geometry ($self->{border});
440 880
441 # evaluate user expression 881 # evaluate user expression
442 882
443 my $img = eval { $self->{expr}->() }; 883 my $img = eval { $self->{expr}->() };
444 warn $@ if $@;#d# 884 warn $@ if $@;#d#
445 die if !UNIVERSAL::isa $img, "urxvt::img"; 885 die "background-expr did not return an image.\n" if !UNIVERSAL::isa $img, "urxvt::img";
446 886
447 $state->{size_sensitive} = 1 887 # if the expression is sensitive to external events, prepare reevaluation then
888
889 my $again = delete $state->{again};
890
891 $again->{size} = 1
448 if $img->repeat_mode != urxvt::RepeatNormal; 892 if $img->repeat_mode != urxvt::RepeatNormal;
449 893
450 # if the expression is sensitive to external events, prepare reevaluation then
451
452 my $repeat;
453
454 if (my $again = $state->{again}) { 894 if (my $again = $again->{time}) {
455 $repeat = 1; 895 my $self = $self;
456 $state->{timer} = $again == $old->{again} 896 $state->{timer} = $again == $old->{again}
457 ? $old->{timer} 897 ? $old->{timer}
458 : urxvt::timer->new->after ($again)->interval ($again)->cb (sub { 898 : urxvt::timer->new->after ($again)->interval ($again)->cb (sub {
459 ++$self->{counter}; 899 ++$self->{counter};
460 $self->recalculate 900 $self->recalculate
461 }); 901 });
462 } 902 }
463 903
464 if (delete $state->{position_sensitive}) { 904 if ($again->{position}) {
465 $repeat = 1;
466 $self->enable (position_change => sub { $_[0]->recalculate }); 905 $self->enable (position_change => sub { $_[0]->recalculate });
467 } else { 906 } else {
468 $self->disable ("position_change"); 907 $self->disable ("position_change");
469 } 908 }
470 909
471 if (delete $state->{size_sensitive}) { 910 if ($again->{size}) {
472 $repeat = 1;
473 $self->enable (size_change => sub { $_[0]->recalculate }); 911 $self->enable (size_change => sub { $_[0]->recalculate });
474 } else { 912 } else {
475 $self->disable ("size_change"); 913 $self->disable ("size_change");
476 } 914 }
477 915
478 if (delete $state->{rootpmap_sensitive}) { 916 if ($again->{rootpmap}) {
479 $repeat = 1;
480 $self->enable (rootpmap_change => sub { $_[0]->recalculate }); 917 $self->enable (rootpmap_change => sub {
918 delete $_[0]{once_cache}; # this will override once-block values from
919 $_[0]->recalculate;
920 });
481 } else { 921 } else {
482 $self->disable ("rootpmap_change"); 922 $self->disable ("rootpmap_change");
483 } 923 }
484 924
485 # clear stuff we no longer need 925 # clear stuff we no longer need
486 926
487 %$old = (); 927 %$old = ();
488 928
489 unless ($repeat) { 929 unless (%$again) {
490 delete $self->{state}; 930 delete $self->{state};
491 delete $self->{expr}; 931 delete $self->{expr};
492 } 932 }
493 933
494 # set background pixmap 934 # set background pixmap
499} 939}
500 940
501sub on_start { 941sub on_start {
502 my ($self) = @_; 942 my ($self) = @_;
503 943
504 my $expr = $self->x_resource ("background.expr") 944 my $expr = $self->x_resource ("%.expr")
505 or return; 945 or return;
506 946
947 $self->has_render
948 or die "background extension needs RENDER extension 0.10 or higher, ignoring background-expr.\n";
949
507 $self->set_expr (parse_expr $expr); 950 $self->set_expr (parse_expr $expr);
508 $self->{border} = $self->x_resource_boolean ("background.border"); 951 $self->{border} = $self->x_resource_boolean ("%.border");
952
953 $MIN_INTERVAL = $self->x_resource ("%.interval");
509 954
510 () 955 ()
511} 956}
512 957

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines